TY - THES
A1 - Alzyod, Samer
T1 - A Coupled SQMOM-CFD Population Balance Framework for Modelling and Simulation of Liquid-liquid Extraction Equipment
N2 - The growing computational power enables the establishment of the Population Balance Equation (PBE)
to model the steady state and dynamic behavior of multiphase flow unit operations. Accordingly, the twophase
flow
behavior inside liquid-liquid extraction equipment is characterized by different factors. These
factors include: interactions among droplets (breakage and coalescence), different time scales due to the
size distribution of the dispersed phase, and micro time scales of the interphase diffusional mass transfer
process. As a result of this, the general PBE has no well known analytical solution and therefore robust
numerical solution methods with low computational cost are highly admired.
In this work, the Sectional Quadrature Method of Moments (SQMOM) (Attarakih, M. M., Drumm, C.,
Bart, H.-J. (2009). Solution of the population balance equation using the Sectional Quadrature Method of
Moments (SQMOM). Chem. Eng. Sci. 64, 742-752) is extended to take into account the continuous flow
systems in spatial domain. In this regard, the SQMOM is extended to solve the spatially distributed
nonhomogeneous bivariate PBE to model the hydrodynamics and physical/reactive mass transfer
behavior of liquid-liquid extraction equipment. Based on the extended SQMOM, two different steady
state and dynamic simulation algorithms for hydrodynamics and mass transfer behavior of liquid-liquid
extraction equipment are developed and efficiently implemented. At the steady state modeling level, a
Spatially-Mixed SQMOM (SM-SQMOM) algorithm is developed and successfully implemented in a onedimensional
physical spatial domain. The integral spatial numerical flux is closed using the mean mass
droplet diameter based on the One Primary and One Secondary Particle Method (OPOSPM which is the
simplest case of the SQMOM). On the other hand the hydrodynamics integral source terms are closed
using the analytical Two-Equal Weight Quadrature (TEqWQ). To avoid the numerical solution of the
droplet rise velocity, an analytical solution based on the algebraic velocity model is derived for the
particular case of unit velocity exponent appearing in the droplet swarm model. In addition to this, the
source term due to mass transport is closed using OPOSPM. The resulting system of ordinary differential
equations with respect to space is solved using the MATLAB adaptive Runge–Kutta method (ODE45). At
the dynamic modeling level, the SQMOM is extended to a one-dimensional physical spatial domain and
resolved using the finite volume method. To close the mathematical model, the required quadrature nodes
and weights are calculated using the analytical solution based on the Two Unequal Weights Quadrature
(TUEWQ) formula. By applying the finite volume method to the spatial domain, a semi-discreet ordinary
differential equation system is obtained and solved. Both steady state and dynamic algorithms are
extensively validated at analytical, numerical, and experimental levels. At the numerical level, the
predictions of both algorithms are validated using the extended fixed pivot technique as implemented in
PPBLab software (Attarakih, M., Alzyod, S., Abu-Khader, M., Bart, H.-J. (2012). PPBLAB: A new
multivariate population balance environment for particulate system modeling and simulation. Procedia
Eng. 42, pp. 144-562). At the experimental validation level, the extended SQMOM is successfully used
to model the steady state hydrodynamics and physical and reactive mass transfer behavior of agitated
liquid-liquid extraction columns under different operating conditions. In this regard, both models are
found efficient and able to follow liquid extraction column behavior during column scale-up, where three
column diameters were investigated (DN32, DN80, and DN150). To shed more light on the local
interactions among the contacted phases, a reduced coupled PBE and CFD framework is used to model
the hydrodynamic behavior of pulsed sieve plate columns. In this regard, OPOSPM is utilized and
implemented in FLUENT 18.2 commercial software as a special case of the SQMOM. The dropletdroplet
interactions
(breakage
and
coalescence)
are
taken
into
account
using
OPOSPM,
while
the
required
information
about
the
velocity
field
and
energy
dissipation
is
calculated
by
the
CFD
model.
In
addition
to
this,
the proposed coupled OPOSPM-CFD framework is extended to include the mass transfer. The
proposed framework is numerically tested and the results are compared with the published experimental
data. The required breakage and coalescence parameters to perform the 2D-CFD simulation are estimated
using PPBLab software, where a 1D-CFD simulation using a multi-sectional gird is performed. A very
good agreement is obtained at the experimental and the numerical validation levels.
KW - Liquid-Liquid Extraction
KW - Liquid-liquid extraction
KW - Steady state
KW - Transient state
KW - Population balances
KW - SQMOM
KW - SM-SQMOM
KW - Hydrodynamics
KW - Mass transfer
KW - Reactive extraction
KW - 1D-CFD
KW - 2D-CFD
KW - pulsed and stirred columns
KW - Flüssig-Flüssig-Extraktion
KW - stationär
KW - transient
KW - Populationsbilanzen
KW - Hydrodynamik
KW - Stoffaustausch
KW - Reaktivextraktion
KW - pulsierte und gerührte Kolonen
Y1 - 2018
UR - https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/5445
UR - https://nbn-resolving.org/urn:nbn:de:hbz:386-kluedo-54452
ER -