TY - RPRT
A1 - Feldmann, S.
A1 - Lang, P.
T1 - Padé-like reduction of stable discrete linear systems preserving their stability
N2 - A new stability preserving model reduction algorithm for discrete linear SISO-systems based on their impulse response is proposed. Similar to the Padé approximation, an equation system for the Markov parameters involving the Hankel matrix is considered, that here however is chosen to be of very high dimension. Although this equation system therefore in general cannot be solved exactly, it is proved that the approximate solution, computed via the Moore-Penrose inverse, gives rise to a stability preserving reduction scheme, a property that cannot be guaranteed for the Padé approach. Furthermore, the proposed algorithm is compared to another stability preserving reduction approach, namely the balanced truncation method, showing comparable performance of the reduced systems. The balanced truncation method however starts from a state space description of the systems and in general is expected to be more computational demanding.
T3 - Berichte des Fraunhofer-Instituts für Techno- und Wirtschaftsmathematik (ITWM Report) - 48
KW - Discrete linear systems
KW - model reduction
KW - stability
KW - Hankel matrix
KW - Stein equation
Y1 - 2003
UR - https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1505
UR - https://nbn-resolving.org/urn:nbn:de:hbz:386-kluedo-13135
ER -