TY - THES
A1 - Faltings, Ulrike
T1 - On the Characters of the Syolw \(2\)-Subgroup of \(F_4(2^n)\) and Decomposition Numbers
N2 - In this thesis, we deal with the finite group of Lie type \(F_4(2^n)\). The aim is to find information on the \(l\)-decomposition numbers of \(F_4(2^n)\) on unipotent blocks for \(l\neq2\) and \(n\in \mathbb{N}\) arbitrary and on the irreducible characters of the Sylow \(2\)-subgroup of \(F_4(2^n)\).
S. M. Goodwin, T. Le, K. Magaard and A. Paolini have found a parametrization of the irreducible characters of the unipotent subgroup \(U\) of \(F_4(q)\), a Sylow \(2\)-subgroup of \(F_4(q)\), of \(F_4(p^n)\), \(p\) a prime, for the case \(p\neq2\).
We managed to adapt their methods for the parametrization of the irreducible characters of the Sylow \(2\)-subgroup for the case \(p=2\) for the group \(F_4(q)\), \(q=p^n\). This gives a nearly complete parametrization of the irreducible characters of the unipotent subgroup \(U\) of \(F_4(q)\), namely of all irreducible characters of \(U\) arising from so-called abelian cores.
The general strategy we have applied to obtain information about the \(l\)-decomposition numbers on unipotent blocks is to induce characters of the unipotent subgroup \(U\) of \(F_4(q)\) and Harish-Chandra induce projective characters of proper Levi subgroups of \(F_4(q)\) to obtain projective characters of \(F_4(q)\). Via Brauer reciprocity, the multiplicities of the ordinary irreducible unipotent characters in these projective characters give us information on the \(l\)-decomposition numbers of the unipotent characters of \(F_4(q)\).
Sadly, the projective characters of \(F_4(q)\) we obtained were not sufficient to give the shape of the entire decomposition matrix.
Y1 - 2018
UR - https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/5205
UR - https://nbn-resolving.org/urn:nbn:de:hbz:386-kluedo-52051
ER -