TY - JOUR
A1 - Ciak, RenĂ©
A1 - Shafei, Behrang
A1 - Steidl, Gabriele
T1 - Homogeneous Penalizers and Constraints in Convex Image Restoration
N2 - Recently convex optimization models were successfully applied
for solving various problems in image analysis and restoration.
In this paper, we are interested in relations between
convex constrained optimization problems
of the form
\({\rm argmin} \{ \Phi(x)\) subject to \(\Psi(x) \le \tau \}\)
and their penalized counterparts
\({\rm argmin} \{\Phi(x) + \lambda \Psi(x)\}\).
We recall general results on the topic by the help of an epigraphical projection.
Then we deal with the special setting \(\Psi := \| L \cdot\|\) with \(L \in \mathbb{R}^{m,n}\)
and \(\Phi := \varphi(H \cdot)\),
where \(H \in \mathbb{R}^{n,n}\) and \(\varphi: \mathbb R^n \rightarrow \mathbb{R} \cup \{+\infty\} \)
meet certain requirements which are often fulfilled in image processing models.
In this case we prove by incorporating the dual problems
that there exists a bijective function
such that
the solutions of the constrained problem coincide with those of the
penalized problem if and only if \(\tau\) and \(\lambda\) are in the graph
of this function.
We illustrate the relation between \(\tau\) and \(\lambda\) for various problems
arising in image processing.
In particular, we point out the relation to the Pareto frontier for joint sparsity problems.
We demonstrate the performance of the
constrained model in restoration tasks of images corrupted by Poisson noise
with the \(I\)-divergence as data fitting term \(\varphi\)
and in inpainting models with the constrained nuclear norm.
Such models can be useful if we have a priori knowledge on the image rather than on the noise level.
Y1 - 2012
UR - https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3347
UR - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:386-kluedo-33476
PB - Springer Verlag
ER -