TY - THES A1 - Printsypar, Galina T1 - Mathematical Modeling and Simulation of Two-Phase Flow in Porous Media with Application to the Pressing Section of a Paper Machine N2 - Paper production is a problem with significant importance for the society and it is a challenging topic for scientific investigations. This study is concerned with the simulations of the pressing section of a paper machine. We aim at the development of an advanced mathematical model of the pressing section, which is able to recover the behavior of the fluid flow within the paper felt sandwich obtained in laboratory experiments. From the modeling point of view the pressing of the paper-felt sandwich is a complex process since one has to deal with the two-phase flow in moving and deformable porous media. To account for the solid deformations, we use developments from the PhD thesis by S. Rief where the elasticity model is stated and discussed in detail. The flow model which accounts for the movement of water within the paper-felt sandwich is described with the help of two flow regimes: single-phase water flow and two-phase air-water flow. The model for the saturated flow is presented by the Darcy's law and the mass conservation. The second regime is described by the Richards' approach together with dynamic capillary effects. The model for the dynamic capillary pressure - saturation relation proposed by Hassanizadeh and Gray is adapted for the needs of the paper manufacturing process. We have started the development of the flow model with the mathematical modeling in one-dimensional case. The one-dimensional flow model is derived from a two-dimensional one by an averaging procedure in vertical direction. The model is numerically studied and verified in comparison with measurements. Some theoretical investigations are performed to prove the convergence of the discrete solution to the continuous one. For completeness of the studies, the models with the static and dynamic capillary pressure–saturation relations are considered. Existence, compactness and convergence results are obtained for both models. Then, a two-dimensional model is developed, which accounts for a multilayer computational domain and formation of the fully saturated zones. For discretization we use a non-orthogonal grid resolving the layer interfaces and the multipoint flux approximation O-method. The numerical experiments are carried out for parameters which are typical for the production process. The static and dynamic capillary pressure-saturation relations are tested to evaluate the influence of the dynamic capillary effect. The last part of the thesis is an investigation of the validity range of the Richards’ assumption for the two-dimensional flow model with the static capillary pressure-saturation relation. Numerical experiments show that the Richards’ assumption is not the best choice in simulating processes in the pressing section. Y1 - 2012 UR - https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3108 UR - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:386-kluedo-31084 ER -