
Efficient Structural Update for

Three-Dimensional Topology

Optimization Problems

Using Level Set Functions

Emanuel Teichmann

Vom Fachbereich Mathematik

der Universität Kaiserslautern

zur Verleihung des akademischen Grades

Doktor der Naturwissenschaften

(Doctor rerum naturalium, Dr. rer. nat.)

genehmigte Dissertation.

1. Gutachter: PD. Dr. Oleg Iliev

2. Gutachter: Prof. Dr. Joachim Schöberl

Vollzug der Promotion: 07. November 2008

D 386

Abstract

We present a new efficient and robust algorithm for topology optimization of

3D cast parts. Special constraints are fulfilled to make possible the incorpora-

tion of a simulation of the casting process into the optimization: In order to

keep track of the exact position of the boundary and to provide a full finite

element model of the structure in each iteration, we use a twofold approach

for the structural update. A level set function technique for boundary repre-

sentation is combined with a new tetrahedral mesh generator for geometries

specified by implicit boundary descriptions. Boundary conditions are mapped

automatically onto the updated mesh. For sensitivity analysis, we employ the

concept of the topological gradient.

Modification of the level set function is reduced to efficient summation of sev-

eral level set functions, and the finite element mesh is adapted to the modified

structure in each iteration of the optimization process. We show that the re-

sulting meshes are of high quality. A domain decomposition technique is used

to keep the computational costs of remeshing low. The capabilities of our

algorithm are demonstrated by industrial-scale optimization examples.

Acknowledgements

In the first place I would like to thank my advisors Heiko Andrä and Oleg Iliev.

They gave me plenty of opportunity for independent work as well as unfailing

guidance and valuable stimulation through many fruitful discussions. Their

steady support enabled me to finish this thesis.

Sincere thanks are given to Iuliana Matei and Inga Shklyar. Their contribu-

tions to the solution of numerous questions of detail and suggestions for further

development were particularly helpful.

My special gratitude goes to my parents and my wife Inger Lise, for their

unconditional encouragement and believe in me. The backup they gave me

throughout these years contributed vitally to the completion of this work.

This research was done at the Fraunhofer Institut für Techno- und Wirtschafts-

mathematik in the framework of the project “MIDPAG - Innovative Methods

for Integrated Dimensioning and Process Design for Cast Parts”, which has

been supported in part by the European Regional Development Fund, ERDF,

and the Ministry of Economic Affairs, Transport, Agriculture, and Viniculture

of Rhineland-Palatinate.

Contents

List of notations 1

Introduction 3

0.1. Prior Work 5

Chapter 1. The Topology Optimization Problem 9

1.1. The Continuous Topology Optimization Problem 9

1.2. The Discrete Topology Optimization Problem 13

Chapter 2. Boundary Representation Using a Level Set Function 15

2.1. Boundary Representation by a Continuous Level Set Function 16

2.2. Boundary Representation by a Discrete Level Set Function 18

2.3. Regularization 20

Chapter 3. Mesh Generation 23

3.1. Uniform Mesh Generation 24

3.1.1. Uniform 2D Triangulation 25

3.1.2. Uniform 3D Tetrahedralization 28

3.2. Adaptive Mesh Generation 32

3.2.1. Adaptive 2D Triangulation 32

3.2.2. Adaptive 3D Tetrahedralization 34

3.3. Mesh Postprocessing and Improvement 37

3.4. Boundary Condition Mapping 43

3.5. Mesh Quality 45

3.5.1. Mesh Quality Measures 47

3.5.2. Mesh Quality Evaluation 48

Chapter 4. Numerical Algorithm 54

4.1. The Underlying Optimization Algorithm 55

4.2. Topological Sensitivity 57

4.3. Structural Update 61

4.3.1. Update of the Level Set Function 61

4.3.2. Modification of the FE Mesh 65

4.4. The Complete Numerical Algorithm 67

i

CONTENTS ii

Chapter 5. Numerical Examples 70

5.1. Bridge 70

5.2. Dial Plate 75

5.3. Bearing Cap 80

Summary and Future Work 85

Bibliography 87

List of notations

∅ the empty set

C cell of a Cartesian grid

C Hooke’s 4th order material tensor

D design space

∂D boundary of the design space

E edge of a cell of a Cartesian grid

ε linearized strain tensor

F face of a cell of a Cartesian grid

Gθ regular Cartesian grid of width θ

Γ0 ∂Ω ∩D
ΓD part of ∂D where Dirichlet boundary conditions are applied

ΓN part of ∂D where Neumann boundary conditions are applied

ΓN0
part of ΓN where homogeneous Neumann boundary conditions are applied

ΓNt part of ΓN where inhomogeneous Neumann boundary conditions are applied

ϑ level set function discretization parameter

h finite element discretization parameter

hk diameter of the k-th finite element

H−1/2 Sobolev space with norm ||f ||2
H−1/2

I 2D or 3D image for adaptive mesh generation

j objective function incorporating cost functional and constraints

J cost functional

K stiffness matrix

K simplicial complex

λ, µ Lamé coefficients

n normal vector on ∂Ω

N natural numbers

N3 three-dimensional space with integer coordinates

N1(P) set of one-ring neighbors of P

P corner point of a cell in a Cartesian grid

P orthogonal projection operator

ϕ continuous level set function for domain representation

ϕϑ discretized level set function for domain representation

1

LIST OF NOTATIONS 2

ψ given load on ΓN , ψ ∈
(
H−1/2 (ΓN)

)3
,

R real numbers

R
3 three-dimensional Euclidian space with real coordinates

σ Cauchy stress tensor

T triangulation of a domain boundary

Uad set of admissible domains

Vtarget target volume

Ω domain

Ω closure of Ω

∂Ω boundary of Ω

Ωbor border layer of Ω

Ωh domain represented by a finite element mesh

Ωint regular interior part of Ω

Ωϕϑ
domain represented by a discrete level set function

Introduction

Modern design in mechanical engineering has not only the construction of

functional and reliable parts as a goal, but includes more and more aspects as

weight reduction and optimal utilization of a minimum amount of material.

This reduces production costs as well as operation expenses, since the amount

of energy needed to set parts into motion decreases with the weight of the part.

This is important for instance in vehicle and aircraft construction.

Since human intuition quickly reaches its limits as the complexity of compo-

nents increases, mathematical tools have been developed to assist construction

engineers with finding better designs. This field is called structural optimiza-

tion or topology optimization.

Topology optimization is particularly interesting for cast parts, since this man-

ufacturing method to a unique extent allows for formation of fine and complex

three-dimensional structures. Due to this high flexibility, cast components of-

ten feature a large optimization potential. One drawback, though, is the risk

of eigenstresses building up during non-uniform cooling down. These stresses

can reduce the strength of cast parts when superimposed with external work-

ing loads. However, inclusion of a simulation of the casting and solidification

process in structural optimization makes possible to account for the effects of

eigenstresses and thereby produce more efficient components.

Integration of a casting simulation in the optimization process demands two

things: The exact position of the structure’s boundary and thus the domain

occupied by the cast alloy has to be known at any time. In addition, a complete

finite element mesh approximating the structure has to be provided in each

step of the optimization process.

Existing topology optimization algorithms do not satisfy both criteria (cf. sec-

tion 0.1), and to the best of our knowledge the algorithm presented in this

thesis is the first fulfilling the requirements and thus allowing for inclusion of

a casting simulation in the optimization process.

3

INTRODUCTION 4

Figure 0.1. General structure of topology optimization algo-

rithms. After the initial structure is provided (initialization),

sensitivity analysis and structural update are iterated until the

algorithm converges.

As all popular topology optimization algorithms, our method comprises three

main steps: Initialization, sensitivity analysis, and structural update. A graph-

ical illustration of the process is given in Figure 0.1. Initialization covers the

definition of the starting structure, boundary conditions, and material under

consideration. Loosely speaking, sensitivity analysis can be understood as

computation of a derivative of the structure’s form with respect to the objec-

tive function. It results in a criterion prescribing how the structure can be

modified in order to decrease the objective function. In this work, we employ

the concept of the topological gradient [26]. Finally, structural update denotes

the realization of the modifications indicated by the sensitivity analysis, i.e.,

the actual deformation of the structure.

In order to implement the structural update under the constraints described

above we employ and combine two different approaches: On the one hand, we

make use of the flexibility provided by implicit boundary descriptions using

level set functions [38]. Compared to other topology optimization methods

which employ level set functions, we simplify the structural update signifi-

cantly. Instead of solving a Hamilton-Jacobi equation and evolving the domain

by a velocity function, we represent structural modifications by simple level set

functions and define an addition operator. Thus, the level set function merely

serves as a means of boundary representation.

On the other hand, we developed an octree-based tetrahedral mesh generator

which takes the level set function as input and therewith operates directly on

the implicit boundary description. A domain decomposition approach makes

0.1. PRIOR WORK 5

possible to avoid complete remeshing in each iteration of the optimization

algorithm: A large part of the mesh close to the structure’s boundary is kept,

and only areas in which the level set function has been modified are remeshed.

All boundary conditions are automatically transferred to the updated mesh,

i.e., in each iteration we construct a complete finite element model which is

not created by simple removal of elements from an existing mesh but has been

adapted to the modified structure. This is crucial not only for the casting

simulation, but allows in addition for exact sensitivity analysis and evaluation

of the component’s performance. We are not aware of any other structural

optimization algorithm providing this feature, which is of great importance for

execution of the algorithm.

Both our level set function update and the mesh modification algorithm are

very efficient, which keeps computing times low and allows for optimization of

industrial-scale cast parts.

This work is organized as follows: In section 0.1, we give a short overview of

prior work done in the fields of structural optimization, mesh generation, and

implicit boundary representation, without which we could not have accom-

plished this thesis. Thereafter, we present the topology optimization problem,

which is a moving boundary value problem (chapter 1). Chapter 2 contains

a review of implicit boundary representation by means of level set functions.

Our mesh generation algorithm along with an assessment of the mesh quality

is given in chapter 3. Chapters 2 and 3 form the basis for the description

of the structural update. Chapter 4 comprises the optimization algorithm we

use, the topological sensitivity, and the structural update for both level set

function and finite element mesh, i.e., it provides a detailed presentation of

the complete numerical topology optimization algorithm which is sketched in

Figure 0.1. The capabilities of our algorithm are demonstrated by numerical

examples in chapter 5. A summary and some ideas for future work complete

this thesis.

0.1. Prior Work

In the field of structural optimization, three essential approaches have been de-

veloped. Sizing, which finds an optimal choice of a finite number of parameters

describing, e.g., the cross section area or diameter of the so-called members

of a structure, shape optimization, which alters the structure’s boundary, and

0.1. PRIOR WORK 6

topology optimization, which in contrast to shape optimization allows for cre-

ation, merging, and deletion of holes. A schematic illustration of the three

methods is shown in Figure 4.2.

Clearly, sizing is the least flexible of the mentioned structural optimization

methods. However, it is widely applied in areas like steel construction where

structures are built of normed parts which are not available in arbitrary sizes

or shapes.

Shape optimization is a powerful tool for improvement of structures the topol-

ogy and approximate form of which are known or prescribed. This restriction

is the reason why the method often shows a strong dependency on the initial

guess. The sensitivity used in shape optimization is called shape derivative.

For a comprehensive introduction to shape derivatives and shape optimization

see, e.g., [56, 17].

In this work, we focus on topology optimization. The first algorithms of this

class used sensitivities based on local stress criteria as for instance the von

Mises stress [10]. In 1995, Schumacher [49] introduced the concept of the topo-

logical sensitivity, which was further developed by Masmoudi et al. [26, 33],

who introduced the name topological gradient, and thereafter widely adopted

in structural optimization ([55, 14, 36, 7] and many more).

The strongest point of this method is its flexibility. It admits basically arbi-

trary starting structures, indicates all necessary topology changes, and incor-

porates shape optimization.

For the actual structural update, i.e., the implementation of the topology

changes indicated by the topological sensitivity, various approaches are used.

Homogenization methods, which were first introduced by Bendsoe and Kikuchi

[10] and later widely applied [58, 18, 6], actualize topology changes by using

a material model with varying densities. Material is not directly removed, but

the density is changed according to the optimality criteria. Several variations

of the homogenization method have been developed to deal with the problem

that the resulting structures cannot be manufactured. Grayscale designs with

varying density have to be replaced by black-and-white designs which do not

allow for intermediate densities.

Probably the most well-known approach is the solid isotropic material with

penalization method (SIMP) [9, 11]. It assumes constant material properties

in each discretization element (e.g., cube or tetrahedron) of the structure and

0.1. PRIOR WORK 7

uses the density in the cells as design variables. Material properties are as-

sumed to be proportional to the relative density change raised to some power.

The power law approach penalizes intermediate densities and leads eventually

to the desired black-and-white designs.

Since all modifications are performed on one and the same mesh and only entire

cells can be deleted from or added to the structure, the resulting designs show

as a general rule very jagged edges and are not as smooth as the underlying

density field might prescribe.

It is immediately clear that this approach is not suitable in our case. Inter-

mediate densities cannot be modeled in the simulation of the casting process,

and a sharp boundary of the structure is required at any time.

A more flexible approach consists in the construction of an isosurface of equal

density, which then is considered to be the structure’s boundary. This is

used by the topology optimization software package TOSCA [66]. The result-

ing structures are generally smoother than the ones obtained with the SIMP

method. However, it is not clear which isosurface has to be chosen and the re-

sults of the optimization process can differ considerably even for small changes

in the value determining the isosurface.

Besides the various homogenization methods, the use of level set functions

in topology optimization has become very popular. This type of boundary

representation has been instigated by Osher and Sethian [38] for modeling

of physical phenomena involving propagating interfaces as for example fluid

dynamics or combustion processes.

The governing equation for interface propagation is the time dependent initial

value problem

φt + F |∇φ| = 0,

φ(x, t = 0) given,

where φ denotes the level set function, φt is the time derivative of the level set

function, F is a so-called speed function, and ∇φ denotes the spatial derivative

of the level set function.

In the context of topology optimization, F usually depends on the stresses

σ in the structure and on the structure’s boundary, respectively (see, e.g.,

[14, 52, 4, 2]).

The benefits of the application of level set functions are flexibility, robust-

ness and efficiency. All kinds of topology modifications such as nucleation or

merging of holes can be performed without problems. However, none of the

0.1. PRIOR WORK 8

previously developed algorithms adapts the mesh used for computation of the

stresses to the modified structure. Thus, these approaches cannot be used if

the casting simulation is to be included.

According to the concise overview of mesh generation techniques given in

[39], there are three main classes of mesh generation algorithms: Quadtree

(2D)/octree (3D) techniques, techniques based on the Delaunay criterion, and

advancing front algorithms. Each of these groups comprises numerous partic-

ular algorithms. The Delaunay refinement method [44], which is one of the

most popular meshing algorithms, starts from an initial triangulation and re-

fines the mesh until a prescribed element quality is reached. Advancing front

algorithms [41] start at the structure’s boundary, too, and generate meshes

by creating elements along a front moving from the boundary into the do-

main. Quadtree and octree methods [63] subdivide squares/cubes enclosing

the structure and thereby refine the mesh until a desired resolution is achieved.

In order to smooth the mesh and to achieve a better fit to the structure, irreg-

ular cells are created by computation of intersection points of cubes and the

structure’s boundary.

Most of the meshing algorithms require explicit descriptions of the structure’s

boundaries. Persson [42] presented a technique for generation of unstructured

meshes from implicit geometries, which improves an initial mesh of a ran-

dom point cloud by interpreting the mesh as a truss structure and solving

for force equilibrium. Zhang et al. [64] published an algorithm for adaptive

octree-based mesh generation from volumetric imaging data. They minimize

a quadratic error function and are able to preserve sharp features of the input

structures. Our mesh generation algorithm follows central ideas presented in

these two works.

Remark 0.1. For further information on the inclusion of eigenstresses in

topology optimization and for examples demonstrating the resulting advan-

tages, we would like to refer to [34]. This work is closely related to our work

in that it deals with other aspects of the same problem: Topology optimization

for cast parts.

CHAPTER 1

The Topology Optimization Problem

In this chapter, we describe the continuous and discretized topology optimiza-

tion problem under consideration. In section 1.1, we give a general represen-

tation of the design space and the domain, followed by the formulation of the

objective function and the constraints. More details on the continuous case

can be found in [34]. Section 1.2 describes the discretization.

1.1. The Continuous Topology Optimization Problem

Let D be a Lipschitz domain in R3 and Ω be a smooth subdomain of D with

boundary ∂Ω ∈ C0,1 occupied by a linear elastic material. Ω denotes the

structure, i.e. the domain we want to optimize, whereas D stands for the

design space, which is the maximal domain the structure may occupy.

The boundary ∂D of D is made of two disjoint parts

∂D = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅,

where ΓD is of nonzero Lebesgue measure. On ΓD, Dirichlet boundary condi-

tions are applied, whereas ΓN is the area of Neumann boundary conditions.

ΓN be divided into the boundary portions of homogeneous and inhomogeneous

Neumann boundary conditions, respectively:

ΓN = ΓN0
∪ ΓNt ,

where ΓN0
∩ ΓNt = ∅.

We assume that the boundary ∂Ω of Ω satisfies

(1) ∂Ω = ΓD ∪ ΓNt ∪ (ΓN0
∩ ∂Ω) ∪ Γ0,

with Γ0 = ∂Ω ∩D. A graphical representation of the model problem’s bound-

aries is given in Figure 1.1.

Let us denote the prescribed Dirichlet and Neumann boundary conditions on

ΓD and ΓNt by u∗ and t∗, respectively. Then, a general elliptic boundary value

problem (BVP) of mixed type in the domain Ω can be stated as

9

1.1. THE CONTINUOUS TOPOLOGY OPTIMIZATION PROBLEM 10

ΓD ΓD

ΓNtΓNt

ΓN0

D Ω

Γ0

Figure 1.1. Design space D (left) and structure Ω (right) with

the different boundary parts.

Problem 1.1. Mixed BVP in linear elasticity

(2)





AΩ(x)u(x) = F (x), x ∈ Ω,

γ0(u)(x) = u∗(x), x ∈ ΓD,

γ1(u)(x) = t∗(x), x ∈ ΓN ∩ ∂Ω.

Here, γ0 and γ1 are the Dirichlet and Neumann trace operator, respectively.

A particular case of the general boundary value problem (2) is the problem

of linear elasticity. Here, the elliptic partial differential operator AΩ describes

the balance of linear momentum and is given by

(3) AΩu(x) = −div(σ(u)(x)), x ∈ Ω,

where u(x) is the displacement at point x and σ is the stress tensor. The

relation between σ and the linearized strain tensor

ε =
1

2

(
∇u+ ∇uT

)

is given by Hooke’s law:

σ = C : ε.

C denotes the 4-th order elasticity tensor, which in the case of an isotropic

material described by the two Lamé coefficients λ and µ is given by

Cijkl = λδijδkl + µ(δikδjl + δilδjk).

δij is the Kronecker symbol:

δij =

{
1 for i = j

0 for i 6= j
i, j = 1, 2, 3.

1.1. THE CONTINUOUS TOPOLOGY OPTIMIZATION PROBLEM 11

Using Hooke’s law, equation (3), and denoting the outward normal on ∂Ω by

n, system (2) can be rewritten as follows:

(4)





−div (C : ε(u(x))) = 0, x ∈ Ω,

u(x) = u∗(x), x ∈ ΓD,

(C : ε(u(x))) · n(x) = t∗(x), x ∈ ΓNt ,

(C : ε(u(x))) · n(x) = 0, x ∈ ΓN0
.

In order to formulate the variational formulation of (4), we recall the definition

of Sobolev spaces.

Definition 1.2. Let 0 ≤ r ∈ R, r = s + t, where s ∈ N0 and t ∈ [0, 1) . Let

n denote the space dimension and α be a multi-index of length |α|. Then, the

Sobolev space Hr(Γ) is defined as the space of functionals f : Γ → R with

norm ||f ||Hr(Γ) <∞, where

||f ||Hr(Γ) =
(
||f ||2Hs(Γ) + |f |2Hr(Γ)

) 1

2

and

|f |Hr(Γ) =


∑

|α|=s

∫

Γ

∫

Γ

|Dαf(x) −Dαf(y)|2
|x− y|n−1+2t

dsxdsy




1

2

.

For 0 > r ∈ R, the norm is defined as

||f ||Hr(Γ) = sup
06=g∈H−r(Γ)

|(f, g)1/2|
||g||H−r(Γ)

.

Now, we can state the variational formulation associated with (4):

Problem 1.3. Variational form of equations of linear elasticity

(5)

For a given load t∗ ∈
(
H−1/2 (ΓNt)

)3
,

find u ∈ (H1 (Ω))
3

such that u|ΓD
= u∗

and aΩ(u, v) = lΩ(v) ∀v ∈ H1
0,ΓD

(Ω).

The bilinear form aΩ(., .) is defined as

aΩ(u, v) =

∫

Ω

∇u : C : ∇vdx

and lΩ(.) is the linear form

lΩ(v) =

∫

ΓNt

t∗ · vds.

The Lax-Milgram lemma (cf., e.g., [16]) provides existence and uniqueness of

the solution to the variational formulation (5) of the elasticity problem.

1.1. THE CONTINUOUS TOPOLOGY OPTIMIZATION PROBLEM 12

The aim of topology optimization in elasticity is to find the domain which is

optimal in the sense that it minimizes a certain cost functional J while fulfilling

a set of given constraints. Usually, J depends on both the domain, which in

our case is the design variable, and the state variables. Thus, if s is a yet to

be determined parametrization of the domain Ω = Ω(s), we have

J = J(s, u).

In principal, the cost function can consist of any structural response or a com-

bination of various responses. However, to fix ideas we choose the compliance

J(u) =

∫

ΓNt

t∗ · uds,

which is a widely used criterion. Using Green’s formula, the compliance can

also be computed by

J(s, u) =

∫

Ω(s)

[C : ε(u)] : ε(u)dx.

The constraints under consideration are a volume constraint which reflects a

desired volume reduction and the variational form of the equations of linear

elasticity (5). The set of admissible domains is given by

Uad = {s | Ω(s) ⊂ D, (ΓNt ∪ ΓD) ⊂ ∂Ω(s)} .

The continuous topology optimization problem can thus be formulated as fol-

lows:

Problem 1.4. Continuous topology optimization problem

(6)

mins∈Uad
J(s, u) =

∫
Ω(s)

[C : ε(u)] : ε(u)dx

subject to
∫

Ω(s)

dx ≤ Vtarget and

aΩ(s)(u, v) = lΩ(s)(v).

The volume constraint is considered in the objective function as follows:

(7) j(s) = J(s, u) + ℓ(|Ω(s)| − Vtarget).

Here, ℓ can be interpreted as a Lagrange multiplier and |Ω(s)| is the Lebesgue

measure of Ω.

It is well known that the optimization problem (6) is ill-posed in the sense

that generally no solution exists in the original set of admissible functions

Uad (see, e.g., [15, 5, 30]). Since the problem is a non-convex optimization

1.2. THE DISCRETE TOPOLOGY OPTIMIZATION PROBLEM 13

problem, there are often many local minima which usually have different topol-

ogy. Without further constraints, the solution would be a microstructure with

infinitesimal features [35]. To overcome this problem, either relaxation or re-

striction of Uad is required to make the problem well-posed. We introduce a

constrained set of admissible functions UR
ad the choice of which will be discussed

in chapter 2 where we fix the parametrization s of Ω.

1.2. The Discrete Topology Optimization Problem

In order to solve the topology optimization problem (6) numerically, we have to

discretize it. On one hand, this concerns the solution of the elasticity problem

(5) and the evaluation of the objective function. On the other hand, we have

to use a discrete representation of the structure’s boundary ∂Ω.

It is possible to use one and the same discretization for both parts. This

approach is used, e.g., in [26], where the elasticity problem is solved on a

hexahedral mesh and the boundary of the structure is defined by corners,

edges, and faces of the same mesh, and to some extent in homogenization

methods [10, 58, 18, 6], which employ varying densities and partly construct

black-and-white designs in a post-processing step.

However, the purposes and required features of the two discretizations differ

significantly. The solution of the elasticity problem is concerned with the entire

domain, whereas the domain representation can be reduced to a representation

of the structure’s boundary.

To meet these requirements, we distinguish between the discretization of the

equations of elasticity and the discrete representation of Ω. Accordingly, we

introduce two discretization parameters h and ϑ. The latter discretizes the

boundary representation s, the discrete version of which will be denoted by

sϑ. Naturally, the choice of ϑ depends on the choice of s and will therefore be

discussed in section 2.2.

For the solution of the equations of elasticity (5) we employ the finite element

method (FEM). For an introduction to this method we refer the reader to

[20, 61]. Thorough presentations can be found in, e.g., [12, 16, 65].

The domain Ω is replaced by a polyhedral domain Ωh, and the parts ΓD and

ΓN where Dirichlet and Neumann boundary conditions are applied, are ap-

proximated by ΓDh and ΓNh, respectively. ΓNh is divided into the disjoint

parts ΓN0h and ΓNth. We assume that the discrete equivalent of relation (1) is

valid, too:

∂Ωh = ΓDh ∪ ΓNth ∪ (ΓN0h ∩ ∂Ωh) ∪ Γ0h.

1.2. THE DISCRETE TOPOLOGY OPTIMIZATION PROBLEM 14

Let us define the space of finite-dimensional shape functions by

VΩh
=

{
v ∈ (H1(Ωh))

3 : v|ΓDh
= 0

}

and let us denote the boundary conditions applied on ΓDh and ΓNth by u∗h and

t∗h, respectively. With the bilinear form

aΩh
(uh, vh) =

∫

Ωh

∇uh : C : ∇vhdx

and the linear form

lΩh
(vh) =

∫

ΓNth

t∗h · vhds,

we can formulate the discrete version of the equations of linear elasticity:

Problem 1.5. Discrete equations of elasticity

(8)

For a given load t∗h ∈
(
H−1/2 (ΓNth)

)3
,

find uh ∈ (H1 (Ωh))
3

such that uh|ΓDh
= u∗h

and aΩh
(uh, vh) = lΩh

(vh) ∀vh ∈ VΩh
.

Denoting the space of discrete admissible domains by UR
ad,ϑ, the discrete topol-

ogy optimization problem reads as follows:

Problem 1.6. Discrete topology optimization problem

minsϑ∈U
R
ad,ϑ

J(sϑ, uh) =
∫

Ω(sϑ)

[C : εh(uh)] : εh(uh)dx

subject to
∫

Ω(sϑ)

dx ≤ Vtarget and

aΩ(sϑ)(uh, vh) = lΩ(sϑ)(vh).

Chapter 2 contains the description of the boundary representation and the

restriction of the set of admissible domains we use to make the problem well-

posed. The discretization of Ω is described in chapter 3, where we present a fast

and robust tetrahedral mesh generator. Chapter 4 consists of the numerical

algorithm used for the actual solution of the optimization problem. There we

also describe the structural update.

CHAPTER 2

Boundary Representation Using a Level Set Function

Having formulated the optimization problem we now want to focus on the

parametrization s of the domain Ω. In doing so, we have to consider two

properties: During the optimization process, all types of topology changes as

for example creation or merging of holes can occur. Hence, flexibility of s is

paramount. On the other hand we want to solve complex and large industrial

optimization problems. Thus, the boundary representation method must be

robust and computationally efficient. Naturally, s must provide a sufficiently

precise approximation of Ω.

There are two classes of domain representations. On one hand, explicit rep-

resentations as for example analytic expressions of simple geometric bodies,

voxelizations, triangulated meshes for polygonal structures, or non-uniform

rational Bézier splines (NURBS), are widely used in, e.g, computer graphics,

computer aided design (CAD), and geometric modeling. It is easy to manually

modify explicit structures by moving mesh nodes or control points, and they

can be rendered very fast.

On the other hand there are implicit representations like volume of fluid (VOF)

or the representation by a level set function. This method was instigated by

Osher and Sethian [38] for propagating interfaces and free boundaries and is

used in modeling of a large variety of physical phenomena.

During the last years, the level set approach has been introduced in the field of

shape and topology optimization [3, 4, 13, 37, 52, 60]. Indeed, the method

has all the characteristics we require: Level set functions can represent any

domain and handle all kinds of topology changes such as nucleation, merging,

and deletion of holes. In the discrete case, they enable an accurate description

of the boundaries on a fixed Cartesian grid which leads to fast numerical

algorithms. The use of a narrow band technique (cf. Figure 2.4) reduces

memory consumption and computation times even further. In [51], the effect

of the narrow band technique is estimated as follows: Level set computations

that are performed over the entire domain require O(N3) operations, where N

is the number of nodes in the grid. If the number of points of the boundary in

3D is estimated as O(N2), the operation count is reduced to O(kN2), where

15

2.1. BOUNDARY REPRESENTATION BY A CONTINUOUS LEVEL SET FUNCTION 16

k is the number of grid cells in the narrow band. Our method of updating the

structure makes extensive use of level set functions and is simple, stable, and

very efficient. This will be discussed in section 4.3.

The present chapter introduces the concept of level set functions for boundary

representation. Section 2.1 describes the continuous case, whereas section 2.2

contains the discrete case and the narrow band technique. Both sections finish

with a level set-based reformulation of the continuous and discrete topology

optimization problem, respectively. The chapter is concluded by a discussion

of regularization techniques and possible restrictions of the set of admissible

functions Uad in section 2.3.

2.1. Boundary Representation by a Continuous Level Set Function

The main idea of the level set function approach is to represent the boundary

∂Ω(s) of Ω(s) as the zero level set of a function ϕ ∈ C0(D), which is negative

in the structure’s interior and positive outside:




ϕ(x) < 0 ⇐⇒ x ∈ Ω,

ϕ(x) > 0 ⇐⇒ x ∈ D \ Ω,

ϕ(x) = 0 ⇐⇒ x ∈ ∂Ω.

Thus, we have

∂Ω(ϕ) = {x ∈ D | ϕ(x) = 0} .
The actual domain Ω is then given as the support of the negative part ϕ− :=
1
2
(|ϕ| − ϕ) of ϕ:

Ω(ϕ) = supp(ϕ−).

To simplify notation, we write in the following Ωϕ and ∂Ωϕ instead of Ω(ϕ) and

∂Ω(ϕ), respectively. Note that s, which represented an arbitrary parametriza-

tion of Ω, is now substantiated by ϕ.

One possible choice of ϕ is the constrained signed distance function. Let

us denote the distance of a point x to the structure’s boundary by d(x) :=

miny∈∂Ωϕ |x− y|. Then the constrained distance function is defined as

ϕ(x) =





−α for x ∈ Ωϕ, d(x) ≥ α,

−d(x) for x ∈ Ωϕ, d(x) < α,

+d(x) for x /∈ Ωϕ, d(x) < α,

+α for x /∈ Ωϕ, d(x) ≥ α

.

Since ϕ is used only for boundary representation, it is sufficient to use the

correct signed distance function in regions close to the structures boundary.

In more remote regions, only the sign of the function is of interest. The width

2.1. BOUNDARY REPRESENTATION BY A CONTINUOUS LEVEL SET FUNCTION 17

1 2

−3
−2
−1

1
2
3

0 x

ϕ
Ωϕ

ϕ(x)

Figure 2.1. One-dimensional continuous level set function. Ωϕ

is the support of the negative part of ϕ.

of the neighborhood of ∂Ω in which ϕ equals the signed distance function is

denoted by c.

Figure 2.2. Two-dimensional continuous level set function rep-

resenting a simple truss structure. The yellow area marks the

zero level set of ϕ. Contour lines are plotted to illustrate the

shape of the structure.

Figure 2.1 shows an example of a one-dimensional domain which is represented

as described above. Ωϕ has two holes. The constant α is set to 2. A two-

dimensional example is given in Figure 2.2. Here, we represent a simple truss

structure as the zero level set (yellow area) of a constrained level set function.

Using ϕ as design variable in the optimization problem, the set of admissible

domains is given by

Uad =
{
ϕ ∈ C0(D,R) | Ωϕ ⊂ D, (ΓNt ∪ ΓD) ⊂ ∂Ωϕ

}

2.2. BOUNDARY REPRESENTATION BY A DISCRETE LEVEL SET FUNCTION 18

0
1
2
3

2

−2
−3

−1 1 x

ϕϑ

Ωϕϑ

ϕϑ(x)

ϑ

Figure 2.3. One-dimensional discrete level set function. The

red curve represents a linear interpolation of the values of the

continuous level set function (blue) in the grid points.

and (6) can be written as

(9)

minϕ∈Uad
J(ϕ, u) =

∫
Ωϕ

[C : ε(u)] : ε(u)dx

subject to
∫

Ωϕ

dx ≤ Vtarget and

aΩϕ(u, v) = lΩϕ(v).

2.2. Boundary Representation by a Discrete Level Set Function

Usually, level set functions are discretized on a fixed Cartesian grid. If we

denote the width of the grid by ϑ, the regular Cartesian grid in R3 is defined

as

Gϑ =
{
x ∈ R

3|∃ {i, j, k} ∈ N
3 s.t. x = (iϑ, jϑ, kϑ)

}
.

Restricting the continuous level set function ϕ introduced in section 2.1 to

Gϑ, we obtain a discrete level set function ϕϑ : Gϑ → R which represents a

discretization Ωϕϑ
of the domain Ωϕ:




ϕϑ(x) < 0 ⇐⇒ x ∈ Ωϕϑ
,

ϕϑ(x) > 0 ⇐⇒ x ∈ D \ Ωϕϑ
,

ϕϑ(x) = 0 ⇐⇒ x ∈ ∂Ωϕϑ
.

Naturally, ϕϑ is defined analogously to the continuous case:

ϕϑ(x) =





−α for x ∈ Ωϕϑ
, d(x) ≥ α,

−d(x) for x ∈ Ωϕϑ
, d(x) < α,

+d(x) for x /∈ Ωϕϑ
, d(x) < α,

+α for x /∈ Ωϕϑ
, d(x) ≥ α

.

Figure 2.3 displays the discrete version of the one-dimensional level set func-

tion introduced in the previous section for ϑ = 1. In order to determine the

2.2. BOUNDARY REPRESENTATION BY A DISCRETE LEVEL SET FUNCTION 19

ϑ

ϑ

Equidistant grid Gϑ

Boundary ∂Ωϕϑ

Narrow band Nϑ,c

2c

Figure 2.4. Narrow band representation of a domain. The

thick black line represents the structure’s boundary ∂Ωϕϑ
, the

shaded area is the narrow band for the continuous case, and the

red dots are the points belonging to Nϕϑ,c.

zero level set, we interpolate the discrete values of ϕϑ linearly and compute

the roots of the resulting piecewise linear function. Obviously, Ωϕϑ
does not

contain all the features of Ωϕ. The two holes which are correctly represented

in the continuous case (blue curve) are merged in the discrete case (red curve).

Correspondingly, small holes which do not contain a grid point will be erased.

This is not shown in the picture, but it follows immediately if ϕϑ is multiplied

by −1 and the inverse domain is considered.

As mentioned in the introduction of this chapter, memory consumption and

CPU time can be significantly reduced if a narrow band technique is used. The

main idea behind this concept is that knowledge of the values of the level set

function in a neighborhood of the boundary ∂Ωh is sufficient for construction

of a piecewise linear boundary representation. For most of the grid points we

only need to know if they lie inside or outside the structure.

Considering the Cartesian grid Gϑ, we define the narrow band of width c of

∂Ωϕϑ
as

Nϕϑ,c :=

{
p ∈ Gϑ| min

z∈∂Ωϕϑ

|z − p| ≤ c

}
.

For a two-dimensional example, Nϕϑ,c is illustrated in Figure 2.4. The thick

black line represents the structure’s discretized boundary ∂Ωϕϑ
, the shaded

area is the narrow band for the continuous case, and the red dots are the

points belonging to Nϕϑ,c.

Choosing ϕϑ as design variable, the discrete counterpart of (9) is the following:

2.3. REGULARIZATION 20

Problem 2.1. Discrete topology optimization problem using a level

set function

minϕϑ∈Uad,ϑ
J(ϕϑ, uh) =

∫
Ωϕϑ

[C : εh(uh)] : εh(uh)dx

subject to
∫

Ωϕϑ

dx ≤ Vtarget and

aΩϕϑ
(uh, vh) = lΩϕϑ

(vh).

2.3. Regularization

As mentioned in chapter 1, the topology optimization problem (6) is ill-posed

and restriction of the set of admissible domains is necessary. Loosely speaking,

we want to prevent creation of too small holes and development of too small

features.

In terms of set operations this can be achieved by application of the morpho-

logical set transformations erosion and dilation:

Definition 2.2. Let Ω̃ be the modified domain and let S be an arbitrary but

fixed subset of R3 containing the origin. S is called structural element. Let

Sx be the set obtained by translation of S by a vector x.

Then, erosion of Ω̃ by S is defined as

(10) Ω̃ ⊖ S =
{
z ∈ R

3|Sz ⊆ Ω̃
}
.

Similarly, dilation of Ω̃ by S is defined as

(11) Ω̃ ⊕ S =
{
z ∈ R

3|Sz ∩ Ω̃ 6= ∅
}
.

Consecutive application of these operations leaves the main features of Ω̃ un-

touched and affects only unwanted fine details.

In the framework of level set functions, erosion and dilation can be formulated

as convolutions. We denote the filtering kernel, which is a functional on R
3,

by k̃, and the level set function representing the modified domain Ω̃ by ϕ̃. The

convolution of k̃ and ϕ̃ is defined as

(12) (k̃ ∗ ϕ̃)(x) =

∫

D

k̃(y)ϕ̃(x− y)dy.

Convolution corresponds to dilation, whereas deconvolution, which we denote

by the operator ⋆, is the equivalent to erosion.

The restricted set of admissible domains is given by

UR
ad =

{
ϕ | Ωϕ ⊂ D, (ΓNt ∪ ΓD) ⊂ ∂Ωϕ, ∃φ ∈ C0(D,R) : ϕ = k̃ ⋆ (φ ∗ k̃)

}
,

2.3. REGULARIZATION 21

ϕ̃ ϕΩϕ̃

k̃

Figure 2.5. Erosion of a level set function. The level set func-

tion ϕ is convoluted with the filtering kernel k̃. The domain Ωϕ̃

associated with ϕ̃ has one big hole instead of the two smaller

holes which were present in the original domain (ϕ̃ is not nega-

tive between 10 and 11). The fine feature separating the holes

has been removed by erosion.

where k̃ is a fixed filtering kernel, e.g.,

k̃(x) =
1

0.1 + x4

as originally proposed in [54].

To illustrate erosion, we give a 1D-example in Figure 2.5. The level set function

ϕ represents a domain with a two holes separated by a small feature centered

at x = 10.4. The filtering kernel k̃ is chosen as above but displayed with an

offset for better visualization. The red curve is the convolution ϕ̃ = ϕ ∗ k̃.
Obviously, the two holes present in the original domain have been merged and

the separating feature has been erased.

Remark 2.3. The deconvolution operator ⋆ is not the inverse of the convo-

lution operator ∗. It is only a short notation for the algorithm-based process

of reconstructing the second argument of a convolution where the filtering ker-

nel is known. Naturally, ⋆ is not commutative. The order of the arguments

determines which one is the filtering kernel.

In the discrete case, restriction of Uad,ϑ is actualized as in the continuous case.

Again, we apply erosion and dilation, but since we are working on the Cartesian

grid Gϑ, the definitions look as follows:

Definition 2.4. Let Ωϑ be the discretized modified domain and let Sϑ be

an arbitrary but fixed subset of the Cartesian grid Gϑ containing the origin.

Denoting by Sϑ,z the set obtained by translation of Sϑ by the vector z, we can

define erosion and dilation as

2.3. REGULARIZATION 22

Ω̃ϑ ⊖ Sϑ =
{
z ∈ Gϑ|Sϑ,z ⊆ Ω̃ϑ

}

and

Ω̃ϑ ⊕ Sϑ =
{
z ∈ Gϑ|Sϑ,z ∩ Ω̃ϑ 6= ∅

}
,

respectively.

In the framework of discrete level set functions, the integration in the convo-

lution (12) becomes a summation over all points belonging to the support of

the kernel:

(k̃ϑ ∗ ϕ̃ϑ)(x) =
1

|supp(k̃ϑ)|
∑

y∈supp(k̃ϑ)

k̃ϑ(y)ϕ̃ϑ(x− y).

The simplest choices of k̃ϑ are the seven point stencil and the cube of 27

points having x as center point, where k̃ϑ ≡ 1. Other choices can use larger

neighborhoods of x and/or assign different values of k̃ϑ to the points x ∈
supp(k̃ϑ), thereby strengthening or weakening the effect of erosion and dilation.

The higher the value of k̃ϑ in the center point compared to the surrounding

points, the stronger is the discrete convolution.

Finally, the restricted set of admissible domains in the discretized topology

optimization problem is given by

UR
ad,ϑ = { ϕϑ | Ωϕϑ

⊂ D, (ΓNth ∪ ΓDh) ⊂ ∂Ωϕϑ
,

∃φϑ ∈ C0(D,R) : ϕϑ = k̃ϑ ⋆ (φϑ ∗ k̃ϑ)
}
.

CHAPTER 3

Mesh Generation

As mentioned in chapter 1, we employ the finite element method (FEM) for

solution of the elasticity problem (8). There are two major tasks connected to

this method: On the one hand, the domain has to be discretized in a proper

way. On the other hand, a large sparse system of linear equations has to be

set up and solved.

Intuitively, the latter will be considered the more difficult and time-consuming

problem. However, this is generally not true. Despite the enormous progress

in the young field of automated mesh generation, which started to evolve in

the middle of the 1980s, the meshing process is still often the by far harder

challenge and may consume the by far larger part of the total computing time.

In the current chapter, we present a modification of a mesh generation al-

gorithm belonging to the group of octree techniques. In order to motivate

this and to justify it in view of the large number of existing mesh generation

algorithms, we have to anticipate a detail of the implementation of the opti-

mization algorithm, which is presented in section 4.4. There we explain that

we remesh the structure in every iteration.

Frequent remeshing made it necessary to modify an existing algorithm and to

adapt it to our demands. Clearly, the computing time needed for generation

of a finite element mesh becomes a critical factor if the process is repeated

several times in a single optimization run. Therefore, speed and efficiency

of the algorithm are of great importance. The remeshing itself is in turn

motivated by the casting process and a gain in accuracy of the solution to the

elasticity equations in modified domains.

Another point that has to be considered is robustness of the mesh generation

algorithm. In the course of the optimization process, structures can become

very complex. To ensure that the optimization is not aborted due to an error in

mesh generation before a minimum is reached, we have to create a mesh under

any circumstances. Naturally, as one cannot have everything, this may lead to

a reduction in accuracy of the domain representation. However, we think that

the continuation of the optimization process is of greater importance.

23

3.1. UNIFORM MESH GENERATION 24

As we will show in section 4.3.2, our algorithm is especially suitable for topol-

ogy optimization problems which may involve significant changes of the struc-

ture. A large fraction of the computationally expensive part of the mesh can

be kept, which reduces computing time significantly.

In the following, we give an abstract description of the concept of a finite

element mesh. Thereafter, we describe the mesh generation algorithm, the

main concepts and ideas of which are taken from Zhang et al. [64]. To illustrate

the process, we first describe uniform triangulation of two-dimensional domains

(section 3.1.1). This approach will be extended to three dimensions (section

3.1.2), and finally we present adaptive triangulation and tetrahedralization in

two and three space dimensions, respectively (sections 3.2.1 and 3.2.2).

Intuitively, tetrahedral mesh generation is the process of approximating the

domain Ω under consideration by a set of tetrahedra which are joined along

their faces. For a more formal description, we use the notion of a simplex and

a simplicial complex, respectively (cf. [57]):

Definition 3.1. A simplex or n-simplex is the convex hull of a set of

points {Pi ∈ Rn, i = 1, ..., n+ 1} which are affinely independent, i.e., for each i

the set {Pi − Pj|j = 1, ..., n+ 1} is linearly independent. 0-simplices are called

vertices, 1-simplices edges, 2-simplices faces, and 3-simplices tetrahedra.

Definition 3.2. A simplicial complex K consists of a set of vertices V =

{vi ∈ R3, i = 1, ..., m} and the simplices of K, i.e., a set of non-empty subsets

of V fulfilling the following conditions: Each non-empty subset containing a

single vertex vi is a simplex in K, and every non-empty subset of a simplex in

K is again a simplex in K.

With these concepts, we can formally describe mesh generation as construction

of a simplicial complex.

3.1. Uniform Mesh Generation

The basic idea of the mesh generation process is to subdivide the domain Ω

into two disjunct parts, a regular interior and a boundary layer:

Ω = Ωint ∪ Ωbor

such that Ωint ∩ Ωbor = ∅ and Ωint ∩ Ωbor = ∂Ωint. For this purpose, we

introduce an underlying regular Cartesian grid Gh of width h and define Ωint

as the union of all grid cells which are completely contained in Ω, whereas Ωbor

is the remaining thin layer of width ≤ h : Ωbor = Ω \ Ωint.

3.1. UNIFORM MESH GENERATION 25

Thus, the parts are chosen in such a way that a large portion of the structure

can be meshed extremely fast by using pre-computed configurations and a thin

layer, the meshing of which requires more computing time, provides sufficient

accuracy of domain representation.

For practical purposes and the sample computations we performed, we ob-

tained good results choosing

(13) h =
1

c
min {xmax − xmin, ymax − ymin, zmax − zmin} ,

where {x, y, z}{min,max} denote the minimal and maximal extension of the

structure in all coordinate directions, respectively, and the constant c is chosen

between 20 and 50.

For a more formal description of Ωint and Ωbor and the actual mesh generation,

we adopt some concepts which are used in [64]:

Definition 3.3. Let E be an edge of a cell C in a Cartesian grid G and

P1, P2 be the endpoints of E.

E is called a sign change edge if

(ϕ(P1) ≤ 0 ∧ ϕ(P2) > 0) ∨ (ϕ(P2) ≤ 0 ∧ ϕ(P1) > 0),

i.e., one of its endpoints lies inside and the other one lies outside the domain

Ω.

Definition 3.4. A cell C of a Cartesian grid G is called boundary cell if

at least one of its edges is a sign change edge.

Definition 3.5. A cell C of a Cartesian grid G is called interior cell if all

of its corner points Pi, i = 1, . . . , 4 (Pi, i = 1, . . . , 8 in 3D) fulfill ϕ(Pi) ≤ 0,

i.e., all corner points belong to the domain Ω.

Using these notions we define the interior part Ωint of Ω as the union of all

interior cells and the boundary part Ωbor as the intersection of the union of all

boundary cells with Ω. Figure 3.1 illustrates the domain decomposition in the

2D case.

From the above definitions it is clear that Ωint and Ωbor depend on the width

h of the chosen Cartesian grid Gh. Nevertheless, for the sake of simplicity, we

drop the mesh width in notation and keep in mind that Ωint = Ωint(h) and

Ωbor = Ωbor(h).

3.1.1. Uniform 2D Triangulation. In the two-dimensional uniform case,

Ωint is meshed by simple subdivision of each interior cell into two triangles. To

avoid anisotropy, we turn the diagonal in every other cell.

3.1. UNIFORM MESH GENERATION 26

Ωbor

h

Ωint

h

∂Ω

Figure 3.1. Decomposition of the domain in interior Ωint

(blue) and boundary part Ωbor (red). Shaded cells are boundary

cells.

For mesh generation in Ωbor we need a piecewise linear approximation T of

∂Ω. T consists of a set of nodes {P1, . . . , PN} ⊂ R2, which, for example, might

be chosen such that each boundary cell contains exactly one node, and a set of

edges
{
Eij = PiPj

}
, where Pi, Pj belong to neighbored boundary cells. Since

our approximation depends on the width h of the underlying grid, we denote

it by Th.

A high-quality and feature-preserving approximation can be obtained by the

dual contouring method [29], which uses volumetric Hermite data, i.e., position

and normal information of intersections of sign change edges and the surface

to be approximated to compute one minimizer for each boundary cell.

The minimizers are obtained by minimization of a predefined quadratic error

function eq. Garland and Heckbert [25] proposed the following:

eq1(x) =
∑

i

(ni · (x− pi))
2.

Here, pi are the intersection points of the boundary cell’s sign change edges

and the surface ∂Ω and ni are the unit normal vectors to the surface in pi.

eq1(x) is the sum of squared distances of the vertex x to the straight lines

defined by the intersection points and normals.

3.1. UNIFORM MESH GENERATION 27

intersection points

normal vectors

Pmin eq2

Pmin eq1

Figure 3.2. Preservation and smoothing of discontinuities of

∂Ω by using eq1 and eq2 in minimizer computation, respec-

tively. eq1 (red curve) preserves the sharp corner, eq2 (blue curve)

smoothes the structure.

If only the positions of intersection points are considered and normal informa-

tion is neglected, one can define another quadratic error function

eq2(x) =
∑

i

(x− pi)
2.

It is immediately clear that the minimizer pmin of eq2(x) is the arithmetic mean

of the intersection points, pmin = 1
n

∑n
i=1 pi.

By connecting the minimizers of respectively two cells sharing a sign change

edge a line segment is associated to each sign change edge. The union of all

these line segments forms the desired approximation T of ∂Ω.

The advantage of eq1(x) is that the resulting triangulation of the domain

boundary can preserve discontinuities and sharp features of ∂Ω, whereas the

solution of eq2(x) is equivalent to Taubin et al’s discretization of the Laplace-

Beltrami operator over triangular surfaces [59, 62] and corresponds to a

smoothing of ∂Ω. The difference between the two quadratic error functions

is illustrated in Figure 3.2.

When the minimizers of all boundary cells have been computed, the actual

mesh generation for Ωbor can be performed. To describe this process we intro-

duce two more concepts following [64]:

Definition 3.6. A corner point P of a boundary cell of a Cartesian grid G
is called interior point if ϕ(P) ≤ 0.

3.1. UNIFORM MESH GENERATION 28

h

h

∂Ω

Ωbor

Ωint

Figure 3.3. Uniform triangulation. First, Ωint is meshed. Af-

ter computation of the minimizers (green dots), Ωbor is meshed

in two steps: Triangles associated to interior edges and one min-

imizer are constructed (yellow). Then, two minimizers and an

interior point form the dark blue triangles. The red line shows

the structure’s boundary ∂Ω.

Definition 3.7. An edge E with endpoints P1, P2 of a boundary cell of a

Cartesian grid G is called interior edge if both P1 and P2 are interior points.

In the 2D case, mesh generation in Ωbor is done in two steps: First, a triangle

is created for each interior edge. The edge forms the triangle’s basis, and

the minimizer of the boundary cell to which the edge belongs is the third

node. The triangles created by this step are the yellow ones in Figure 3.3.

In a second step, a triangle is assigned to each sign change edge. One of the

edge’s endpoints is an interior point. This point and the minimizers of the two

boundary cells sharing the sign change edge form a triangle. In Figure 3.3,

these triangles are indicated by blue color.

3.1.2. Uniform 3D Tetrahedralization. In three space dimensions, the

uniform mesh generation procedure is very similar to the 2D case. Again, the

domain Ω is divided into Ωint and Ωbor, which are defined as the union of all

interior cells and the intersection of the union of all boundary cells and the

domain Ω, respectively.

3.1. UNIFORM MESH GENERATION 29

As in 2D, Ωint is meshed by subdivision of cells. Each cell is divided into

five tetrahedra. To avoid the diagonal choosing problem and to generate a

consistent tetrahedral mesh, one can use two different cell decompositions for

adjacent cells. The two configurations are shown in Figures 3.4(a) and 3.4(b),

respectively.

(a) (b)

Figure 3.4. Decomposition of interior cells into tetrahedra.

Two different configurations are used to avoid the diagonal

choosing problem.

Mesh generation for Ωbor is slightly more complicated than in 2D, but the

ideas are the same. First, a minimizer is computed for each boundary cell.

The quadratic error functions we use here are eq1 and eq2 introduced in section

3.1.1.

Respectively four boundary cells share a sign change edge. Their minimizers

are connected to a quad and subdivided along the diagonal, which associates

two triangles to each sign change edge. The union of all these triangles forms

a triangulation Th of ∂Ω.

For the detailed description of the actual mesh generation process for Ωbor, we

introduce the notion of an interior face:

Definition 3.8. A face F of a boundary cell of a Cartesian grid G is called

interior face if all of its corner points Pi, i = 1, . . . , 4 fulfill ϕ(Pi) ≤ 0, i.e.,

all corner points belong to the domain Ω.

Once the minimizers are computed, Ωbor is meshed in three steps:

Each interior face of a boundary cell forms together with the cell’s minimizer a

pyramid, which is split into two tetrahedra by dividing the base along the

diagonal prescribed by the decomposition configuration of the interior cell

sharing this face with the boundary cell.

After that we create the tetrahedra connected to interior edges. Each interior

edge is shared by two or three boundary cells. The first case is illustrated

3.1. UNIFORM MESH GENERATION 30

Figure 3.5. Uniform tetrahedralization: Decomposition of a

pyramid formed by a boundary cell’s interior face (red square)

and minimizer (blue point) into two tetrahedra.

(a) (b)

Figure 3.6. Uniform tetrahedralization: Possible cases of in-

terior edges. Shaded cells are interior cells, the red edge is the

interior edge.

by Figure 3.6(a). The endpoints of the edge and the minimizers of the two

boundary cells form one tetrahedron. If the interior edge is shared by three

boundary cells (cf. Figure 3.6(b)), two tetrahedra are created by the end points

of the edge and respectively two minimizers of adjacent boundary cells.

Finally, the tetrahedra associated to interior points are added. Here, we have

to distinguish three cases: An interior point can be part of one, two, or three

sign change edges. Examples for these configurations are shown in Figure

3.7(a)(b)(c). In all three cases the interior point and the four minimizers of

the boundary cells sharing a sign change edge form two tetrahedra. Therefore,

we obtain two, four, or six tetrahedra per interior point. To avoid anisotropy,

the quads formed by four minimizers are divided into two triangles in such

3.1. UNIFORM MESH GENERATION 31

(a) (b)

(c)

Figure 3.7. Uniform tetrahedralization: Possible cases of in-

terior points. The red points mark the interior points, the blue

ones are minimizers. The sign change edges connect the interior

point and one of the green points. In (a), the interior point be-

longs to one sign change edge, in (b) to two, and in (c) to three

sign change edges. Shaded cells are interior cells.

a way that of two adjacent minimizers one belongs to quad edges and the

dividing diagonals, whereas the other one only belongs to quad edges.

3.2. ADAPTIVE MESH GENERATION 32

3.2. Adaptive Mesh Generation

3.2.1. Adaptive 2D Triangulation. The mesh generation methods pre-

sented in the previous sections are robust in the sense that a mesh is created

under any circumstances, and fast, since meshing of the largest part of the

structure consists of assembling pre-computed voxel decompositions, which

takes very little computing time. As we will show in section 3.5, the resulting

meshes are of high quality. However, this simple approach is hardly applicable

to larger geometries and high resolution examples. The resulting numbers of

nodes and tetrahedra are very large, leading to long computing times. Thus, it

is desirable to reduce the number of nodes and elements. This can be achieved

by application of an adaptive mesh generation method.

As in uniform mesh generation, we divide the domain Ω into Ωint and Ωbor.

Since our method of boundary condition mapping, which is presented in section

3.4, requires high resolution of the mesh on ∂Ω, we do not allow for adaptiv-

ity on the structure’s boundary and apply exactly the same mesh generation

method for Ωbor as in the uniform case. Thus, adaptivity in mesh generation

concerns only Ωint.

For mesh generation in the interior domain Ωint, we use an approach developed

by Schulz et al. [48]. Originally, this method was designed for generation of

tetrahedral meshes from 3D voxel data, e.g., from 3D computer tomography

images, and used for numerical homogenization of highly complex microstruc-

tures. However, the algorithm is applicable to macrostructures, too, and pro-

vides fast and robust adaptive tetrahedral mesh generation for general voxel

geometries. In the following, we describe the method in two space dimensions.

The corresponding 3D case is discussed in section 3.2.2.

Taking the procedure for uniform mesh generation described in section 3.1.1

as a starting point, the number of grid cells and thus the number of triangles

can be reduced by combining neighbored cells to larger blocks, which then are

divided into triangles. This is equivalent to constructing a quadtree represen-

tation of Ωint.

The concept of a quadtree is well known. For a concise presentation see, e.g.,

[45, 46, 31]. For the sake of continuous reading, we sketch the method of

building a standard quadtree: First, we set up a square image I of size 2n×2n

grid cells (so-called picture elements or pixels), where n is the smallest natural

number such that I contains Ωint completely. We denote pixels belonging to

Ωint by black and those belonging to I \ Ωint by white. If I contains both

black and white pixels, it is subdivided into four equal-sized quadrants, the

sons, each of which is represented by a node in the quadtree representation.

3.2. ADAPTIVE MESH GENERATION 33

A

(a) (b)

4

3

2

1

(c)

10

1
3

6

13
14

9
2

11

7 8

4 5

12

* * 2 3 * * 4 5 9 * 10 * 13 * 14 *

E H* *121 6 7 F G8*

B D11C

A

I

Figure 3.8. Example of a region with enclosing image I (a),

image subdivision (b), and quadtree representation (c). Inner

nodes are denoted by letters, leafs by numbers. Numbers in

rectangles are boundary leafs. Hierarchy levels are given in cir-

cles.

The sons are labeled NW, NE, SW, and SE, according to their position. The

subdivision into quadrants is recursively repeated until each son contains only

pixels of one color, black or white.

An example for a quadtree subdivision is given in Figure 3.8, which shows a

region with the enclosing image I (3.8(a)), the actual subdivision (3.8(b)), and

the corresponding quadtree representation (3.8(c)). This representation looks

like an upside down tree, which is the reason for naming this type of structures

tree. Accordingly, the entire picture I is called root of the tree, whereas sons

which are not subdivided further are called leafs. Nodes and leafs are grouped

according to their resolution level. The root of the tree is assigned level 0, the

3.2. ADAPTIVE MESH GENERATION 34

finest possible leafs, i.e., single pixels, belong to level n. We number leafs with

numbers, whereas interior nonleaf nodes are numbered with letters.

In [64], a standard quadtree representation is used for construction of adaptive

triangular meshes. This allows for adjacent cells the hierarchy levels of which

differ by more than one. However, the larger this difference is, the worse the

quality of the triangles used in cell decomposition becomes. For example, if

the hierarchy levels differ by two, the smallest occurring angle is 12.53 degrees.

This makes postprocessing of the mesh necessary. To avoid this, Schulz et al.

[48] restrict the difference in hierarchy levels to one.

As mentioned above, the results of our method of boundary condition appli-

cation (cf. section 3.4) are the better the higher the resolution of the mesh on

the structure’s surface is. Therefore we require that all boundary cells of Ωint

must have highest possible resolution.

If this requirement is considered, the approach used in [48] leads to a modi-

fied quadtree representation an example of which is shown in Figure 3.9. We

assume that Figure 3.9(a) represents part of a sufficiently large region which al-

lows for the shown quadtree representation. In Figure 3.8(a), this assumption

is not necessary, since the quadtree would be the same, anyway.

Figure 3.10 shows the configurations which are used to subdivide transition

cells. Decompositions symmetric to the ones displayed are neglected. In Figure

3.11, the results of a complete adaptive triangulation of Ω = Ωint ∪ Ωbor are

presented. The underlying quadtree structure is highlighted by the green edges.

It is obvious that the number of leafs and hence the number of triangles created

by [48] is larger than in [64]. However, we think that the higher mesh qual-

ity making extensive postprocessing superfluous easily compensates for this

disadvantage.

Remark 3.9. Fixing the width h of the underlying grid Gh before Ωint is

meshed corresponds to truncation-based approximation of Ω (cf. [45]).

3.2.2. Adaptive 3D Tetrahedralization. The basic ideas for adaptive

mesh generation in Ω are the same as in the 2D case. High resolution is

required on ∂Ω, therefore adaptivity in mesh generation concerns only Ωint,

whereas Ωbor is meshed as in the uniform case.

The grid cells belonging to Ωint are grouped to blocks by using the three-

dimensional equivalent to the quadtree concept, the octree. Here, the image

I is a cube of size 2n × 2n × 2n, where n is the smallest number of grid cells

3.2. ADAPTIVE MESH GENERATION 35

A

(a) (b)

3

4

2

1

(c)

21
3 4 5 6 7 8

9 10
1112 13
14 1516

17 18
19 20
21 22

23 24
25
26

11 12 14 15

17 18 23 24

1 2 3 4 * * 5 6 * * 7 8 13 16 ** 19 20 21 22

F G 9 10 H * JI

25 26* *

C D EB

A

L* *K

I

Figure 3.9. Example of a region with enclosing image I (a),

modified image subdivision (b), and the corresponding quadtree

representation (c). Inner nodes are denoted by letters, leafs by

numbers. Numbers in rectangles are boundary leafs. Hierarchy

levels are given in circles.

Figure 3.10. Configurations for decomposition of blocks hav-

ing neighbors of lower hierarchy level.

needed to enclose the region to be subdivided completely. The grid cells are

called volume elements or voxels. If I contains both black and white voxels,

it is subdivided into eight equal-sized cubes, the octants. The decomposition

process is repeated recursively until each block contains voxels of one color

only.

3.2. ADAPTIVE MESH GENERATION 36

Figure 3.11. Adaptive triangulation. The green squares indi-

cate the underlying quadtree structure.

Again, Zhang et al. [64] use a standard octree, allowing for neighbored cells

the hierarchy levels of which differ by more than one. The faces of these

transition elements are subdivided by the algorithm for adaptive triangulation

in 2D which was presented in section 3.2.1. To be able to tetrahedralize the

elements Steiner points are inserted in the center of the cells. However, the

poor quality of the face triangulations leads to relatively low quality of the

tetrahedra and enforces postprocessing for quality enhancement.

As in the 2D case, [48] do not allow for hierarchy levels differing by more than

one for adjacent cells. Due to particular subdivision of elements, they generate

consistent tetrahedralizations without insertion of additional points. If sym-

metric decompositions are included, there are 12,420 possible configurations.

Despite this relatively high number, extremely fast mesh generation is possible

if these configurations are pre-computed and stored in a look-up table. The

quality of the resulting meshes is investigated in section 3.5.

Figure 3.12 shows a cross section of a three-dimensional structure meshed by

the algorithm presented by Schulz et al. [48]. The adaptive coarsening in the

structure’s interior is clearly visible.

For the example shown in Figure 3.12, the mesh generated by the adaptive

meshing algorithm consists of 39,347 nodes and 178,629 elements, whereas the

uniform algorithm produces a mesh of 48,410 nodes and 221,139 elements. Of

course, the surface mesh is identical in both cases. The number of nodes has

been reduced by a factor of 1.23. For a finer grid width h this effect would be

3.3. MESH POSTPROCESSING AND IMPROVEMENT 37

Figure 3.12. Cross section of an adaptive tetrahedral mesh.

even stronger, whereas for a larger value of h the ratio of node numbers would

be worse.

Remark 3.10. Naturally, for rather thin structures like shells or plates or

in small features like walls, little or no effect of adaptivity can be observed

and the resulting mesh is most likely the same as in uniform mesh generation.

However, the simplicity and efficiency of the algorithm we use compensates

for the high density and number of nodes and tetrahedra which might occur

locally or, in extreme cases, in the entire structure.

3.3. Mesh Postprocessing and Improvement

In the previous sections, we described a way of generating uniform and adap-

tive triangulations and tetrahedralizations, respectively. The computation of

minimizers of a quadratic error function eq plays a crucial role in this approach.

We mentioned

eq1(x) =
∑

i

(ni · (x− pi))
2,

which corresponds to the sum of squared distances of the vertex x to the lines

or, in three dimensions, planes defined by intersection points of sign change

3.3. MESH POSTPROCESSING AND IMPROVEMENT 38

intersection points

normal vectors

pmin eq1

Figure 3.13. The red dot is the minimizer of eq1 belonging to

the highlighted grid cell. Due to consideration of the normal

vectors in the intersection points, the boundary feature in this

cell is well preserved. However, the minimizer lies outside the

cell.

edges and the structure’s surface ∂Ω, and as a simpler alternative

eq2(x) =
∑

i

(x− pi)
2,

which has the arithmetic mean of the intersection points, pmin = 1
n

∑n
i=1 pi, as

minimizer.

The use of eq1 has the advantage that sharp features and edges can be pre-

served, whereas eq2 smoothes ∂Ω. However, when computing the minimizers

pmin of eq1, one has to keep in mind that these points can lie outside the cell

(cf. Figure 3.13). If pmin /∈ Ωint, this is not a problem. Otherwise, the de-

scribed method creates intersecting tetrahedra. One possible way to avoid this

is to restrict the set of admissible points, i.e. to determine the minimizer of a

boundary cell C as solution of the optimization problem

pmin = min
x∈C

eq1(x).

If eq2 is used, it is not necessary to restrict the set of admissible points for

minimizer determination.

Both minimization of eq1 and eq2 can lead to triangles and tetrahedra of ar-

bitrarily low quality: The closer pmin to an interior edge is, the lower the

elements’ quality becomes. For the 2D case, this is illustrated in Figure 3.14.

Zhang et al. [64] solve this problem by postprocessing the mesh. They employ

three quality measures based on which the mesh is corrected. Details on these

3.3. MESH POSTPROCESSING AND IMPROVEMENT 39

interior edge

pmin

d

β

α

Figure 3.14. The smaller the distance d between the minimizer

pmin and the interior edge is, the more acute the angles α and β

between interior edge and the sides of the triangle become.

α

β

γ

Figure 3.15. Definition of dihedral angles for a tetrahedron.

measures can be found in section 3.5. The actual correction is done in two

steps, which are applied iteratively until all elements fulfill the prescribed

criteria:

• Correction of orientation: If a triangle or tetrahedron does not comply

with the right-hand principle, i.e., it has negative volume, two of its

nodes are interchanged.

• Sliver removal by edge contraction: If a triangle or tetrahedron has in

node A a dihedral angle α ≤ 10◦ or α ≥ 160◦, the shortest of the three

edges AB, AC, and AD is deleted by merging of the edge’s endpoints

(cf. Figure 3.15).

We follow another approach and avoid creation of elements with too low quality

completely. Since the problem arises from minimizers placed at unfavorable

positions, minimizer computation is the point to be modified. As shown in

Figure 3.16, we restrict the domain in which the minimizer can be computed

to a sphere Sr of radius r < h
2

which has the cell center as midpoint, i.e.,

(14) pmin = min
x∈Sr

eq2(x).

3.3. MESH POSTPROCESSING AND IMPROVEMENT 40

��
�
�
�
�

����
����

Ωint

Ωbor

Sr

Figure 3.16. Restricted domain for minimizer computation in

boundary cells. Green triangles indicate the unconstrained min-

imizer positions, squares show the constrained position. For

green circles, constrained and unconstrained minimizer coincide.

Active restricted domains are indicated by dotted circles.

If the arithmetic mean of the intersection points of a boundary cell, which we

denote by pavg to distinguish it from the solution of (14), lies outside Sr, pmin

is computed as the orthogonal projection P of pavg onto Sr :

pmin = Ppavg .

Clearly, the quality of the tetrahedra resulting from the mesh depends on the

choice of the radius r of the sphere - the larger r is, the lower the elements’

quality can be. The proper choice of r will be discussed in section 3.5.

For further improvement of mesh quality, we apply an iterative smoothing pro-

cess to the mesh. This was inspired by the work of Persson [42], who exploits

the analogy of a mesh and a truss structure to construct meshes from implicit

geometry descriptions. By considering element edges as springs, Persson as-

signs a force to each edge in the mesh. This force depends on the actual length

l and the unextended length l0 of the spring. l0 is controlled by a mesh size

function which is defined in the entire domain and depends on the shortest

distance of a point to the structure’s boundary. However, only repulsive forces

are allowed since the initial mesh, which is based on a Delaunay triangulation

of a random point cloud, has to be pushed towards the structure’s boundary.

After that, a nodal force vector F is computed by summing up all forces as-

sociated to edges which contain a given node. Clearly, the nodal force vector

depends on the nodal positions, i.e., F = F(p). The resulting system of nodal

3.3. MESH POSTPROCESSING AND IMPROVEMENT 41

forces is solved for an equilibrium position of the nodes:

(15) F(p) = 0.

Since this minimization problem is rather complicated, [42] introduces an arti-

ficial time dependence and transforms (15) into the following system of ODEs:

(16)
dp

dt
= F(p), t ≥ 0.

A stationary solution of (16) fulfills condition (15). It is approximated using

the forward Euler method. Thus, a series of nodal positions is computed by

(17) pn+1 = pn + ∆tF(pn),

where pi is the vector of node coordinates at the i-th time step. When equi-

librium is reached, the resulting mesh is generally of very high quality.

In contrast to [42], we do not start with an implicit description of the structure

and a randomly distributed point cloud but with an initial mesh the surface

of which fits the structure well. Therefore, we modify the approach used by

Persson as follows:

By keeping the positions of nodes belonging to the surface mesh fixed we can

allow for both attractive and repulsive nodal forces. In addition, we need

not consider exterior forces which prevent nodes from crossing the structure’s

boundary. Since our initial mesh is already adaptive in element size, the con-

struction of an underlying mesh size function is not necessary.

There is a significant difference in the actual computation of a stationary

solution of (16). In contrast to [42], we do not set up global vectors p and F

which contain the data of all nodes and allow for simultaneous correction of

all nodal positions, but use a local approach.

For the description of this approach we use the set of one-ring neighbors:

Definition 3.11. For a node Pi of a mesh, the set N1(Pi) of one-ring

neighbors is defined as the set of all nodes Pj which are connected to Pi by

an edge Eij.

nN1
= nN1(Pi) = |N1(Pi)| denotes the cardinality of N1(Pi), i.e., the number of

one-ring neighbors of Pi.

Applying the non-physical assumption that all springs (edges) in the mesh

have unextended length l0 = 0 and using a simple linear model for the spring

3.3. MESH POSTPROCESSING AND IMPROVEMENT 42

force, we compute the nodal force in a node Pi as

1

|N1(Pi)|

|N1(Pi)|∑

j=1

(Pj − Pi).

Setting the time step ∆t = 1, we obtain the updated position Pin+1
of Pin by

using

Pin+1
= Pin +

1

|N1(Pin)|

|N1(Pin)|∑

j=1

(Pjn − Pin)

=
1

|N1(Pin)|

|N1(Pin)|∑

j=1

(Pjn).

This means that the solution of (15) is approximated by sequential computa-

tion of nodal position updates.

Experiments have shown that it is not necessary to iterate the smoothing

process until convergence is reached. Sufficient element quality is generally

reached after five to seven iterations. The overall quality of the resulting

meshes is investigated in section 3.5.

To summarize our mesh generation algorithm, we give a concise presentation

in pseudocode:

START

define the underlying Cartesian grid Gh

determine Ωint and Ωbor by detection of interior and

boundary cells

build a modified octree representation of Ωint

mesh Ωint using pre-computed decompositions of blocks

compute a minimizer for each boundary cell:

pmin = minx∈Sr eq2(x)

mesh Ωbor: construct tetrahedra assigned to interior

faces, edges, and points

WHILE (mesh quality not high enough)

smooth the mesh using equation (18)

END WHILE

END

3.4. BOUNDARY CONDITION MAPPING 43

3.4. Boundary Condition Mapping

For practical reasons, specification of the boundary conditions which are ap-

plied to the structure is connected to boundary patches described by surface

triangulations. Clearly, these triangulations will in general not coincide with

the surface mesh resulting from the mesh generation process described ear-

lier in this chapter. In order to make meshing and structural analysis fast,

manual interaction has to be avoided wherever possible. Therefore, boundary

conditions have to be transferred automatically to the mesh. This is of special

importance if the iterative nature of the topology optimization algorithm pre-

sented in chapter 4 is considered: If boundary conditions had to be manually

assigned to the updated tetrahedral mesh, our algorithm would be practically

useless since computations could not be performed in acceptable time and with

justifiable effort.

As shown above, we do not apply adaptive coarsening on the boundary of the

structure, i.e., the entire surface mesh is of the highest resolution. The maxi-

mal possible edge length is h+2r, where r is the radius of the sphere in which

a boundary cell’s minimizer of the quadratic error function eq is computed.

Together with the fact that surface patches which are subject to boundary

conditions are given as triangulated surfaces, this allows for the following pro-

cedure of boundary condition mapping, which we give in pseudocode before

we explain the details:

START

initialize boundary condition indices with 0

FOR all faces ci of the surface mesh

FOR all faces cBC
j of the boundary condition surface

IF ((bounding box(ci) overlaps with cBC
j) AND

(cos ∠(nci
,ncBC

j
) ≤ 1.0− tolerance))

assign boundary condition index of cBC
j to ci

break

END IF

END FOR

END FOR

END

As shown in the pseudocode description of the boundary condition surface

mapping, we compare each face of the surface mesh with the faces of the

boundary condition patch. If the bounding box of a face ci of the surface mesh

3.4. BOUNDARY CONDITION MAPPING 44

overlaps with a face cBC
j of the boundary patch and the angle between the

normals nci
and ncBC

j
of both faces is small enough, we assign the index of the

boundary condition surface to the face of the surface mesh. If there are several

boundary condition patches, the procedure is repeated until all patches have

been treated. However, in the second and later iterations, only faces which

have not been assigned a boundary condition index need to be considered.

For large meshes of high resolution and finely discretized boundary condition

patches, the number of overlap tests and normal comparisons can become very

large. To keep computing times low, we employ a highly efficient algorithm

for tests of triangle-box overlap, which was developed by Akenine-Möller [1].

This test is based on the separating axis theorem by Gottschalk et al. [27],

but uses axis aligned bounding boxes instead of oriented bounding boxes. The

maximal number of axis tests is reduced to 13, compared to 15 in [27].

To achieve a higher accuracy, we supplement the triangle-box overlap test by

computation of the portion of the triangle’s area which intersects with the

box. Only if the overlapping area is more than one half of the total area of the

triangle, the respective boundary condition index is assigned.

Figure 3.17. Mapping of boundary condition patches (red, yel-

low, and green). The normal of triangles subject to boundary

conditions differs significantly from the normals of neighbored

triangles which do not belong to a boundary condition patch.

For the classes of problems we consider, completion of the triangle-box over-

lap test by comparison of normals is proximate. Usually, boundary condition

patches are clearly delimited, and often adjacent surface patches have signifi-

cantly different normals, as illustrated for internal surfaces of bores in Figure

3.17. However, the normal comparison criterion is not completely reliable.

3.5. MESH QUALITY 45

Therefore, we allow for manual correction of boundary condition patches: Sin-

gle surface element faces can be assigned or unassigned an arbitrary boundary

condition index.

Figure 3.18. Mapping of boundary condition patches.

For the example shown in Figure 3.18, all boundary condition patches were

properly detected, and no manual correction was necessary.

Remark 3.12. Inclusion of information about boundary condition surfaces

in the mesh generation process would allow for adaptive coarsening on the

structure’s surface, too. The boundaries of boundary condition patches could

be resolved well, whereas the interior of such patches and areas not subject

to boundary conditions could be meshed more coarsely. However, this would

require a modification of the meshing algorithm. In adaptively meshed surface

areas, the width of the boundary layer should be much larger to avoid elements

of very low quality.

3.5. Mesh Quality

In finite element computations, the quality of the mesh is crucial both for

accuracy of the solution and speed of iterative solvers. In [53], Shewchuk

shows that interpolation accuracy as well as the condition number of the global

stiffness matrix depend on the quality of the mesh.

3.5. MESH QUALITY 46

Concerning interpolation, two types of errors have to be considered: Let v(p)

be a continuous scalar function on a mesh T consisting of elements t and

let w(p) denote a piecewise linear approximation to v(p). The errors under

consideration are

‖ v − w ‖∞= max
p∈T

| v(p) − w(p) |

and

‖ ▽v −▽w ‖∞= max
p∈T

| ▽v(p) −▽w(p) |,

i.e., the largest pointwise interpolation error and the largest error in the in-

terpolated gradient, respectively. In structural analyses and simulations of

mechanical deformation, the strains ▽v are usually of greater interest than

the displacements v.

Shewchuk [53] gives bounds for both errors:

‖ v − w ‖∞≤ ctr
2
mc ≤ ct

3

8
l2max

and

‖ ▽v −▽w ‖∞ ≤ ct

1
3V

∑
1≤i<j≤4AiAjl

2
ij + 2 maxi

∑
j 6=iAjlij∑4

m=1 Am

≤ ct

∑
1≤i<j≤4AiAjl

2
ij

V
∑4

m=1Am

,

respectively. Here, rmc is the radius of the min-containment sphere, i.e., the

smallest sphere which encloses the element completely, ct is a constant which

may vary from element to element, V denotes the element volume, lij is the

length of the edge connecting nodes i and j, and Ai is the area of the tetra-

hedron’s i-th face. The weaker upper bounds are easier to compute. They

show that ‖ v−w ‖∞ is proportional to the square of the length of the longest

edge, but does not depend on the element’s shape, whereas both the volume

V and the areas Ai occur in the bound of ‖ ▽v −▽w ‖∞ . This explains why

slivers, i.e., tetrahedra which are nearly flat but do not have an edge which

is significantly shorter than the others, should be avoided in mesh generation:

Since V is very small, the error of the interpolated gradient can become very

large.

Solution time for the system of equations arising in finite element computations

usually grows with the condition number κ = λK
max/λ

K
min, where λK

max and λK
min

denote the largest and smallest eigenvalue of the stiffness matrix K. In [24],

Fried gives a lower bound for λK
min which is proportional to the volume of the

smallest element in T . λK
max is proportional to the largest eigenvalue λt

max of

3.5. MESH QUALITY 47

an element stiffness matrix. If m is the largest number of elements sharing a

single node,

max
t∈T

λt
max ≤ λK

max ≤ mmax
t∈T

λt
max.

For tetrahedral meshes, λt
max and λK

max are not scale invariant, i.e., if t is scaled

uniformly without changing the shape, λt
max is not constant. In fact, it grows

with the length of the longest edge lmax. Therefore, the largest element in a

mesh might determine the largest eigenvalue of the global stiffness matrix,

and it is important that large elements are well-shaped. This indicates that

adaptive mesh coarsening, which reduces the number of nodes and elements,

should be applied cautiously and that the number of levels in the hierarchical

octree describing the decomposition of Ωint into cells should be limited if the

quality of large elements is too low.

3.5.1. Mesh Quality Measures. There exist a wide variety of quality

measures for tetrahedral meshes. To evaluate the quality of the meshes gener-

ated by the method above, we adopt the concept of a fair measure, which is

introduced in, e.g., [19].

Definition 3.13. A function mf : T → R, t ∈ T 7→ mf (t), which assigns a

real number to each element of a triangulation is called a fair measure if it

fulfills the following conditions:

• mf(tdeg) = 0 for all degenerate elements tdeg ∈ T , i.e., for all elements

of volume 0,

• mf ti = mf tj for similar elements ti, tj ∈ T . Elements are called sim-

ilar if one can be transformed into the other one by an affine map,

i.e., rotation, scaling, and translation,

• mf is bounded, i.e., mf (t) <∞ for all elements t, and

• mf is normalized, i.e., 0 ≤ mf (t) ≤ 1 for all elements t.

The last item in Definition 3.13 indicates that fair measures are easier to

compare than other measures.

In particular, we use the following quality measures, which are described in,

e.g., [71, 40, 23]. Where necessary, we inverted the measure to obtain fair

measures.

• the normalized shape ratio qnsr = 3r
R
,

• the aspect ratio qµ = 2
√

6 r
L
,

• qη = 12 (3V)2/3

∑6
i=1 l2i

, and

• the edge ratio qedgeRatio = l/L.

3.5. MESH QUALITY 48

Here, r denotes the radius of the insphere of a tetrahedron, R denotes the

circumsphere, V is the tetrahedron’s volume, li is the length of the i-th edge,

and l and L denote the shortest and longest edge of the tetrahedron, respec-

tively. In addition to the popular quality measures shape ratio, aspect ratio,

and edge ratio, we consider qη which takes the volume V into account and

therefore allows for detection of slivers, which have acceptable edge lengths

but almost zero volume.

The quality measures used for mesh optimization in [64] are qV = V

V̂
, where

V̂ is the volume of the equilateral tetrahedron with same radius R of the cir-

cumsphere as the tetrahedron under consideration, the minimal and maximal

angle of the tetrahedron, and the right hand side principle which checks the

orientation of a tetrahedron’s nodes and interchanges two arbitrary nodes if

the volume V is negative.

Alternative measures which are used in various finite element codes are for

example the uniformity measure

mint∈T V

maxt∈T V
,

which assigns a single value to an entire mesh, the minimal and maximal

dihedral angle, the minimum Jacobian

((P0 − P2) × (P1 − P0)) · (P3 − P0),

where P0, . . . , P3 are the corners of the tetrahedron, and

1

64
√

2

(
∑6

i=1 li)
3

V
+

6∑

i=1

(
li
h

+
h

li
− 2)

with h the desired edge length.

The latter is used in [47]. Its effect is twofold: The first term prevents the

creation of flat elements with relatively long edges and small volume, whereas

the second term penalizes elements with too large or too small volume. How-

ever, the quality measure is not applicable in our case since we want to use

the adaptive coarsening to some extent.

3.5.2. Mesh Quality Evaluation. In the following, we analyze the qual-

ity of the meshes by showing histograms of the four quality measures. Each

step of the mesh generation process is evaluated.

The quality of the mesh of Ωint (uniform case) is shown in Figure 3.19. The

histograms display the accumulated distribution of element quality values. All

3.5. MESH QUALITY 49

Figure 3.19. Accumulated element quality distribution for the

mesh of Ωint (uniform case). All elements have quality values

higher than 0.7. No smoothing has been applied to the mesh.

ten tetrahedra used in the decomposition of voxels have quality values higher

than 0.7 which is very good. The value distributions for qnsr and qµ are iden-

tical.

To evaluate the quality of the tetrahedra potentially originating from adaptive

decomposition of blocks in Ωint, we constructed a mesh containing all possible

configurations. A small part of this mesh is shown in Figure 3.20. The quality

values for this mesh are shown in Figure 3.21. Again, we display accumulated

data. Compared to the non-adaptive case, there are elements of significantly

lower quality. This is natural, since the tetrahedra created from transition

cells deviate much more from the ideal equilateral tetrahedron than the ones

used in ordinary voxel decomposition. However, no element has a quality value

3.5. MESH QUALITY 50

Figure 3.20. Part of a mesh containing all possible configu-

rations of voxel decomposition into tetrahedra in Ωint (adaptive

case). No smoothing has been applied to the mesh.

lower than 0.3, which is often seen as a bound for admissible element quality.

That means that the elements created during mesh generation in Ωint are of

good quality.

The quality of the mesh describing the border layer Ωbor depends on the chosen

width of the margin. As shown in Figure 3.22, a margin of 28 % of the

grid width h has to be chosen to guarantee an element quality not smaller

than 0.3. However, smoothing of the mesh allows for a significantly smaller

value and thereby for higher precision in domain representation. Figure 3.23

shows a cross section through a typical smoothed adaptive mesh. The quality

histogram for this mesh is given in Figure 3.24. The margin was set to 10 %

of the grid width, and three smoothing iterations were performed. The mesh

consists of 191,456 nodes and 886,280 tetrahedra. It contains only 17 slivers

with qη < 0.3.

Sliver tetrahedra are a common problem in tetrahedral mesh generation, and

all Delaunay mesh generators have to deal with it. As pointed out above, they

should be avoided because their Jacobian is close to singular and interpolation

3.5. MESH QUALITY 51

Figure 3.21. Accumulated element quality distribution for the

mesh of Ωint (adaptive case). Element qualities are significantly

lower than in the uniform case. However, all elements have qual-

ity values higher than 0.3. No smoothing has been applied to

the mesh.

of derivatives on such elements becomes inaccurate. There are various tech-

niques which have been developed for sliver removal, for example edge flipping

and face swapping combined with Laplacian smoothing [22]. However, the

influence of single bad elements on the solution of finite element computations

is not clear [53]. For the time being we neglect the few slivers occurring in our

meshes and do not apply sliver removal methods. Future work might investi-

gate the effect of the elements having lower quality and possibly enhance the

algorithm by sliver removal if necessary.

Remark 3.14. As mentioned above, large elements might have a strong

influence on the condition number of the stiffness matrix K and thereby on the

solution time of the structural analysis. However, since large elements occur

3.5. MESH QUALITY 52

Figure 3.22. Correlation of minimizer position restriction and

lowest occurring element quality.

Figure 3.23. Cross section through a typical smoothed adap-

tive mesh consisting of 191,456 nodes and 886,280 tetrahedra.

Only 17 elements have a quality qη < 0.3.

only in the interior of the structure and are of good quality, it is not necessary

to evaluate a uniformity measure and restrict the number of hierarchy levels

of the octree structure used in adaptive mesh generation.

3.5. MESH QUALITY 53

Figure 3.24. Typical accumulated element quality distribution

for the complete mesh of Ω (adaptive case). The margin for

minimizer computation was set to 10%, and three smoothing

iterations have been performed.

Remark 3.15. Inclusion of information about boundary condition surfaces

in the mesh generation process would allow for adaptive coarsening on the

structure’s surface, too. The boundaries of boundary condition patches could

be resolved well, whereas the interior of such patches and areas not subject

to boundary conditions could be meshed more coarsely. However, this would

require a modification of the meshing algorithm since the width of the bound-

ary layer should be much larger in adaptively meshed surface areas in order to

avoid large elements of very low quality.

CHAPTER 4

Numerical Algorithm

This chapter contains a detailed description of the numerical algorithm we

use for solving the topology optimization problem. A very basic sketch of the

algorithm’s framework is shown in Figure 4.1. Below, we follow this outline

and split the algorithm in its components. In section 4.1, we discuss the choice

of the underlying optimization algorithm in general terms. Sections 4.2 and

4.3 describe the topological sensitivity and the structural update, respectively.

The latter concerns both the level set function ϕi describing the domain Ωi in

the i-th optimization iteration and the corresponding finite element mesh which

is used for the structural analysis. Special weight is put on the simplicity and

efficiency of our method. Section 4.4 summarizes and illustrates the complete

process chain.

Figure 4.1. General structure of topology optimization algo-

rithms. After the initial structure is provided (initialization),

sensitivity analysis and structural update are iterated until the

algorithm converges.

54

4.1. THE UNDERLYING OPTIMIZATION ALGORITHM 55

As stated in chapter 1, the discrete topology optimization problem is

(18)

minϕϑ∈Uad,ϑ
J(ϕϑ, uh) =

∫
Ωϕϑ

[C : εh(uh)] : εh(uh)dx

subject to
∫

Ωϕϑ

dx ≤ Vtarget and

aΩϕϑ
(uh, vh) = lΩϕϑ

(vh).

ϕϑ is the design variable, and the set of admissible solutions is given by

UR
ad,ϑ = { ϕϑ | Ωϕϑ

⊂ D, (ΓNth ∪ ΓDh) ⊂ ∂Ωϕϑ
,

∃φϑ ∈ C0(D,R) : ϕϑ = k̃ϑ ⋆ (φϑ ∗ k̃ϑ)
}
.

For the sake of simplicity, we drop the level set function discretization param-

eter ϑ in the following and keep in mind that we are working with discrete

level set functions.

4.1. The Underlying Optimization Algorithm

For the solution of the optimization problem (18), we employ an iterative

scheme. We introduce a set ωt = {t0, t1, ..., tN} of fictitious time steps and con-

sider a family of domains (Ωti)0≤i≤N which is represented by a time-dependent

level set function

ϕ : ωt ×D → R, (ti, x) 7→ ϕ(ti, x)

such that

ϕi(x) =





−c for x ∈ Ωti , d(x) ≥ c,

−d(x) for x ∈ Ωti , d(x) < c,

+d(x) for x /∈ Ωti , d(x) < c,

+c for x /∈ Ωti , d(x) ≥ c

,

where c is the width of the narrow band and d(x) denotes the distance of a

point x to the structure’s boundary.

To simplify notation, we define here ϕi(x) := ϕ(ti, x) and denote the domain

associated to ϕi(x) by Ωi.

ϕ0 represents the initial structure, which might be chosen as the design space

D. For i ≥ 1 the level set function ϕi is computed from ϕi−1 and the results

of the structural analysis of Ωi−1.

One of the simplest iterative optimization algorithms is the method of steepest

descent with a fixed step size τ . Let ϕ be the state variable and let g(ϕ) be

a yet to be determined generalized derivative of the objective function j(ϕi).

The choice of g(ϕ) will be substantiated in section 4.2. Starting with an initial

4.1. THE UNDERLYING OPTIMIZATION ALGORITHM 56

guess ϕ0, the descent direction −g(ϕ0) is computed and a step of length τ is

taken to determine the point ϕ1. This is iterated until a local minimum of j is

found:

ϕi+1 = ϕi − τg(ϕi), i ≥ 0.

The method can be summarized in pseudocode as follows:

START

choose a termination scalar ε, a starting point ϕ0,

and a step size τ

WHILE (||g(ϕi)|| ≥ ε)

compute the descent direction ξi = − g(ϕi)
||g(ϕi)||

ϕi+1 = ϕi + τξi
i = i+ 1

END WHILE

END

The main advantage of this algorithm is its simplicity. However, it is rather

costly and requires many iterations, and often no stationary point can be found

because the method jumps over the minimum due to the fixed step size.

The number of iterations can be reduced and the solution can be improved if

line search is used. Instead of using a fixed step size τ, an optimal step size

τi is computed in each iteration. τi is the solution or an approximation to the

solution of the optimization problem

min
τ∈R

j(ϕi + τξi).

Usually, this method works quite well at the beginning of the optimization

process, but as a stationary point is approached it takes small, nearly orthog-

onal steps. This leads to a high number of iterations and thus evaluations of

the objective function. As the method of steepest descent with fixed step size,

line search will in general find a local minimum.

More sophisticated optimization algorithms could be used, for example a con-

jugate gradient method (cf., e.g., [8, 28, 43, 21] or any textbook on optimiza-

tion).

However, since we are dealing with varying domains and do not intend to find

a global minimum, we employ a slightly modified version of the line search

algorithm. The modification affects only the choice of the step size τi. We

observed in many numerical tests that a large relative variation of the objective

function indicates undesirable changes in the structure such as decomposition

4.2. TOPOLOGICAL SENSITIVITY 57

into several parts. Therefore, we prescribe an empirically determined constant

η and follow the routine given in pseudocode below.

START

choose a termination scalar ε and a starting point ϕ0

WHILE (||g(ϕi)|| ≥ ε)

compute the descent direction ξi = − g(ϕi)
||g(ϕi)||

set τi = ||g(ϕi)||
set ϕi+1 = ϕi + τiξi
WHILE (

j(ϕi+1)−j(ϕi)
j(ϕi)

≥ η)

τi = τi/2

ϕi+1 = ϕi + τiξi
END WHILE

i = i+ 1

END WHILE

END

Using bisection for determination of the step size prevents the structure from

breaking apart and yields reliable results.

To summarize, we can write the iterative solution scheme as

(19) ϕi+1 = ϕi + τiξi,

where ϕi is the level set function representing Ωi, the step size is denoted by

τi, and ξi is the descent direction computed from a generalized derivative of

the objective function.

Due to practical reasons, our software reads the input, i.e., the design space D

and the initial structure Ω0, as surface triangulations. For the actual initializa-

tion step, i.e., the construction of ϕ0, is based on a marching cube algorithm.

This method has been originally developed by Lorensen and Cline [32] for

construction of surfaces from a three-dimensional field of scalar values. It will

not be further discussed in the scope of this work.

4.2. Topological Sensitivity

The objective of this section is to substantiate the generalized derivative g of

the objective function which was introduced in section 4.1. Generally speaking,

g is a criterion which prescribes how the structure has to be modified in order

to decrease the value of the objective function.

4.2. TOPOLOGICAL SENSITIVITY 58

(a) (b) (c)

Figure 4.2. Examples for sizing (a), shape optimization (b),

and topology optimization (c).

As mentioned in the introduction, the three essential approaches which have

been developed in the field of structural optimization are sizing, shape opti-

mization, and topology optimization. Figure 4.2 shows simple examples for the

three approaches and illustrates the differences.

Both sizing and shape optimization are important in special application areas

such as steel construction or optimization of parts the approximate form of

which is prescribed. For our purposes, however, topology optimization is the

most suitable approach, since this method is the most flexible one. It admits

basically arbitrary starting structures, not least the entire design space D

as the simplest possible choice, indicates all necessary topology changes, and

incorporates shape optimization.

The sensitivity used in topology optimization is called topological sensitivity

or topological gradient. This concept can be traced back to Schumacher et al.

[49, 50]. It was further developed by Masmoudi et al. [26, 33], and thereafter

widely adopted in structural optimization ([55, 14, 36, 7] and many more).

The topological gradient is mathematically justified and can be computed for

arbitrary elliptic systems of differential equations. For systems with piece-

wise constant coefficients, it can be computed analytically, which makes very

efficient computation of the criterion possible.

4.2. TOPOLOGICAL SENSITIVITY 59

In the following we give an account of the fundamental ideas behind the topo-

logical sensitivity as presented in [26]. For this purpose, we drop the notation

using the domain parametrization by a level set function ϕ and denote the do-

main under consideration by Ω. A detailed alternative presentation and proof

of the topological sensitivity can be found in [34]. There, the focus is put on

inclusion of the casting process simulation into topology optimization.

The aim of the topological sensitivity is to describe how the objective function

j(Ω) varies if Ω is perturbed, for example through creation of a small hole.

Let 0 < ρ ∈ R, x0 ∈ Ω, and ω ⊂ R3 be a fixed open and bounded subset

containing the origin. Then Ωρ is defined as the set obtained by removing a

small part x0 +ρω from Ω, i.e., Ωρ = Ω\(x0 + ρω). The physical interpretation

of the perturbation ω depends on the type of boundary conditions which are

applied on the boundary of the perturbation: If a homogeneous Neumann

boundary condition is imposed, ω represents a perforation. A homogeneous

Dirichlet condition would imply a weld or rivet at x0+ρω. Thus, we can restrict

ourselves to Neumann boundary conditions.

In [26], an asymptotic expansion of j of the form

(20) j(Ωρ) − j(Ω) = f(ρ)g(x0) + o(f(ρ))

is derived. Here, f is proportional to the volume of the hole: f ∝ ρ3. Further-

more, limρ→0 f(ρ) = 0 and f(ρ) > 0.

The function g(x) is called the topological sensitivity or topological gradient. It

can be interpreted as a generalized derivative:

g(x0) = lim
ρ→0

j(Ωρ) − j(Ω)

f(ρ)
.

For the computation of g(x0) and f(ρ) in equation (20), Masmoudi et al. [26]

employ a generalized adjoint method and a truncation technique. For three-

dimensional problems and Neumann boundary conditions on the boundary of

the perturbation they obtain the following results, which we quote without

proof:

The topological sensitivity is

(21) g(x0) = −(20µσ(u) : ε(p) + (3λ− 2µ)trσ(u)trε(p))(x0),

and f(ρ) is given by

f(ρ) =
(λ+ 2µ)

µ(9λ+ 14µ)
πρ3,

where µ and λ are the Lamé coefficients, tr is the trace operator, u is the

solution of the variational formulation of the elasticity problem (5), and p is

the solution of the adjoint problem

4.2. TOPOLOGICAL SENSITIVITY 60

Problem 4.1. Adjoint elasticity problem

Find p ∈ VΩR
= {w ∈ (H1(ΩR))3 : w|ΓD

= 0}
such that a(w, p) = −DJ(u) ∀w ∈ VΩR

.

Here, D denotes the Fréchet derivative of the objective function with respect

to u.

If the compliance is used as objective function, the problem is selfadjoint and

we have p = −2u, i.e.,

g(x0) = (40µσ(u) : ε(u) + (6λ− 4µ)trσ(u)trε(u))(x0).

That means that g(x) can be computed by a single structural analysis, which

makes the method very efficient.

According to equation (20), the topological gradient describes how the function

j will change if a small hole is created at x0. Indeed, removing material where

g(x) < 0 will decrease the objective function.

Remark 4.2. The topological gradient is defined via creation of a single

hole of arbitrary shape. Since nucleation of a hole can change the results of

the structural analysis in the entire domain, it cannot be taken for granted

that the approach is valid if several holes are created. We did not investigate

this point. However, since we never experienced an increase of the objective

function due to creation of disjoint holes, we set aside measures preventing

multiple holes and allow for large step sizes in the optimization algorithm.

Obviously, g(x) defines the following optimality criterion: When

g(x) ≥ 0 ∀x ∈ Ω,

j cannot be further reduced and a local minimum has been reached.

g(x) gives the step size τ in the iterative scheme (19) implicitly. The modified

structure Ωi+1 can be obtained from Ωi by removing all points x with g(x) < 0:

Ωi+1 = {x ∈ Ωi|g(x) ≥ 0} .

Alternatively, the authors of [26] propose the definition of a decreasing se-

quence (mk)k≥0 of volume constraints with m0 = meas(Ω0). This, in turn,

generates a sequence (ck)k≥1, where ck+1 is chosen such that
{

Ωk+1 = {x ∈ Ωk|gk(x) ≤ ck+1} ,
meas(Ωk+1) = mk+1.

In this case, holes are created in the points which have the lowest values of

g(x).

4.3. STRUCTURAL UPDATE 61

As mentioned above we observed that a large relative variation of the objec-

tive function often indicates a break up of the structure, which is not desirable.

Therefore, we choose an empirically determined constant η, prescribe a maxi-

mal admissible volume change per iteration ∆Vmax, and define ck as the largest

constant c fulfilling




Ωk+1 = {x ∈ Ωk|gk(x) ≤ c} ,
meas(Ωk) − meas(Ωk+1)

meas(Ωk)
≤ ∆Vmax,

j(Ωk+1) − j(Ωk)

j(Ωk)
< η.

Usually, the relative volume change is the decisive criterion for determination

of ck. This is essential for computational efficiency, since evaluation of the

second criterion, namely the relative change of the objective function, requires

a complete structural update, mesh generation, and structural analysis. In our

sample computations, we obtained generally good results for ∆Vmax ≤ 0.10.

4.3. Structural Update

For the structural update basically any combination of a generalized gradient

or descent direction and a method to modify the structure’s boundary can be

chosen. As mentioned earlier, we employ the topological gradient g as descent

direction. Due to restrictions imposed by incorporation of the casting process

into the optimization algorithm, we perform the structural update on the level

set function, which gives us the exact position of the boundary at any time.

Thereafter, the FE mesh is adapted to the new structure on the basis of the

updated level set function.

An overview of the various approaches used for structural update in topology

optimization has been given in section 0.1.

4.3.1. Update of the Level Set Function. During the last years, the

use of level set functions in topology optimization has become very popular.

Originally, this type of boundary representation has been developed by Osher

and Sethian [38] for modeling of physical phenomena involving propagating

interfaces as for example fluid dynamics or combustion processes.

There, boundary movement is controlled by the time dependent initial value

problem

(22)
φt + F |∇φ| = 0,

φ(x, t = 0) given,

4.3. STRUCTURAL UPDATE 62

where φt is the time derivative of the level set function, F is a so-called speed

function, and ∇φ denotes the spatial derivative of the level set function.

In the context of topology optimization, F usually depends on the stresses

σ in the structure and on the structure’s boundary, respectively (see, e.g.,

[14, 52, 4, 2]).

The benefits of the application of level set functions are flexibility, robustness

and efficiency. All kinds of topology modifications such as nucleation or merg-

ing of holes can be performed. The use of a Cartesian grid combined with a

narrow band technique leads to fast algorithms.

Our approach employs level set functions, too, and takes advantage of these

strong points. However, we do not use a velocity as described above but base

the structural modification directly on the topological gradient. Thus, we

manage without solution of a Hamilton-Jacobi equation as (22). Our method

stands out due to its simplicity and efficiency.

As described in section 4.1, we use a time-dependent level set function, in-

troduce the set ωt = {t0, t1, ..., tN} of fictitious time steps, and update the

structure by the iterative scheme

ϕi+1 = ϕi + τigi,

where ϕi(x) is a short notation for ϕ(ti, x) and denotes the level set function

associated to the domain Ωi.

Our realization of the modification of the structure is based on the following

considerations:

• In the domain Ωi, we have to increase the level set function in points

where gi(x) < 0 in order to create holes in these points.

• The actual value of the level set function in a point x is of interest

only if miny∈∂Ωi
|x−y| < c, i.e., x is close to the structure’s boundary.

Otherwise, the sign of ϕ is sufficient. This comes from the fact that

only points closer than c are needed to determine the exact position

of the zero level set by interpolation in the discretized problem.

Therefore, instead of evolving the level-set function in time by a Hamilton-

Jacobi equation propagating the interface Γ0(t), we propose the following way

of updating the level set function ϕi:

Assume g(ti, x0) indicates that we have to remove material at the point x0.

Since we use the signed distance function, it is sufficient for creation of a hole of

radius r < c to set ϕi+1(x0) = r and to adapt ϕi(x) in the surrounding points

x ∈ Nx0
(r), such that ϕi+1 remains a correct signed distance function. Here,

4.3. STRUCTURAL UPDATE 63

Nx0
(r) = {x ∈ D s.t. |x− x0| < 2r} is the neighborhood of radius r around x0.

This approach implements merging and deletion of holes as well as trouble-free

creation of new holes at arbitrary points, including boundary points. Thus, it

provides both shape and topology optimization.

For a formal description of this procedure we introduce a new level set function

ψx0,r ≡̂ Br(x0) representing the hole of radius r to be created at position x0.

Furthermore, we define a special addition operator for level set functions:

Definition 4.3. The level set function addition operator

⊕ : C0(D) × C0(D) → C0(D)

is defined as the maximum of its arguments:

(ϕ⊕ ψx0,r)(x) = max(ϕ(x), ψx0,r(x)).

Then we obtain the updated level set function ϕi+1 as the sum of ϕi and the

functions describing the holes to be created:

ϕi+1 = ϕi ⊕
∑

(x,r)∈Bi

ψx,r,

where

Bi = B(gi, Vti)

=



(x̂, r̂) ∈ Ω × R s.t. |

⋃

(x̂,r̂)∈Bi

Br̂(x̂)| = Vti and gi(x̂) < gi(x) ∀x /∈ Bi





is the set of center points of the holes which have to be created such that the

desired amount Vti of material is removed and
∑

is to be understood as a

short notation for multiple application of the summation operator ⊕ defined

above.

Close to the boundary ∂Ωi+1 of the updated domain, ϕi+1 is the signed distance

function. In all points x with distance to ∂Ωi+1 greater than c, ϕi+1(x) is

constant:

ϕi+1(x) = −c for x ∈ Ωi+1 and

ϕi+1(x) = +c for x ∈ D \ Ωi+1.

This means that ϕi has to be adapted only in a small neighborhood of the

modified free boundary. In addition, the approach is completely robust. Prob-

lems such as sharp corners, ambiguously defined normals, or self-intersection as

4.3. STRUCTURAL UPDATE 64

x

ϕi+1

ϕ(x)

x

ϕi

ϕ(x)

ψ(x0, r)
x0

x0

r

Figure 4.3. Update of a one-dimensional continuous level set

function. In the upper figure, the blue line is the original level set

function ϕi, whereas the green line is represents a hole of radius

r which is centered at x0. The lower part of the figure shows

the updated level set function (red) resulting from addition of

ϕi (dashed line) and ψx0,r (dotted line).

described in [51] for interface evolution by a Hamilton-Jacobi equation cannot

occur.

Having presented the update of the continuous level set function, the discrete

case is straightforward. All occurring level set functions (ϕi, ϕi+1, and the

holes ψx,r) are discretized on the same Cartesian grid as described in section

2.2. The constant c is defined as two times the width of the narrow band.

The summation of level set functions is performed pointwise, and ϕϑ has to be

modified only in a small tube around the modified boundary which makes the

method highly efficient.

In a small neighborhood of areas where boundary conditions are applied, the

values of the level set function are fixed. Here, removal of material is prohib-

ited. Thereby, we guarantee that the load cases under consideration remain

unmodified throughout the entire optimization process. Besides this approach

we have implemented the possibility to explicitly define free surface areas. In

this case, structural modifications may only be performed in the structure’s

interior and the designated surface patches. Erosion and dilation are applied

4.3. STRUCTURAL UPDATE 65

as described in section 2.3 to prevent development of too fine features and

holes. Again, boundary condition patches are excluded from the process.

Our level set-based realization of the structural update goes very well in line

with the iterative nature of the optimization algorithm. Even large models

can be handled efficiently and accurately, and frequent modifications of the

structure are no problem. It becomes clear that the solution of the elasticity

problems is the most time-consuming part of the algorithm and in some sense

a limiting factor. We want to underline that high efficiency is not achieved at

the expense of stability.

4.3.2. Modification of the FE Mesh. In order to evaluate the objec-

tive function and to determine whether further iterations in the optimization

process have to be performed, we have to solve the equations of elasticity in

the updated domain. This requires creation of a finite element mesh approx-

imating Ωi+1. One possible way is to apply the mesh generation algorithm

described in chapter 3. Since our mesh generation method is very fast, this

would not lead to an unacceptable increase in computing time. However, it is

possible to achieve a significant speed-up by exploiting the knowledge of the

points in which the updated level set function ϕi+1 differs from ϕi.

The computationally most expensive part of mesh generation is the compu-

tation of minimizers of the quadratic error function eq. Therefore, this is the

point where it is most profitable to save CPU time.

It is obvious that large parts of ∂Ωi and ∂Ωi+1 coincide. This is true at least

for all surface patches where boundary conditions are applied, but in general

for large portions of the free boundary, too. Thus, it is proximate to keep as

much of the old finite element mesh as possible and to remesh only those parts

where the structure has been modified.

The differences between mesh generation and mesh modification are very small.

Let us denote the union of the cells of the Cartesian grid Gh in which ϕi has

been changed by Ωmod. Then we only have to delete all tetrahedra in Ωmod

(in the uniform case). The rest of the mesh, especially the computationally

expensive minimizers in Ωbor \Ωmod, will not be modified. After this clean-up,

we simply use our mesh generator restricted to Ωmod to complete the partially

erased mesh and to adapt it to the updated level set function.

Since mesh modification and generation are almost identical and the latter

has been described in great detail in chapter 3, we restrict ourselves to a

pseudocode representation of the mesh modification algorithm for the uniform

case.

4.3. STRUCTURAL UPDATE 66

Figure 4.4. Mesh modification. The red portion of the struc-

ture’s boundary has been modified, and only the red part of

the mesh has been reconstructed. Most of the minimizers and a

large part of the interior mesh remain unchanged, which keeps

the computing time low.

START

delete all tetrahedra in the cells belonging to Ωmod

divide the grid cells of Ωmod into interior and boundary

cells, respectively

adapt the modified octree representation of Ωint

mesh Ωint ∩ Ωmod using pre-computed decompositions of blocks

compute a minimizer for each cell of Ωbor ∩ Ωmod:

pmin = minx∈Sr eq2(x)

mesh Ωbor ∩ Ωmod: construct tetrahedra assigned to interior

faces, edges, and points

WHILE (mesh quality not high enough)

smooth the mesh of Ωmod using equation 18

END WHILE

END

In the case of adaptive mesh generation, the entire mesh of Ωint has to be

deleted because the modified octree representation may vary significantly from

the original one. In the uniform case, the new octree is simply a subset of the

old octree representation.

4.4. THE COMPLETE NUMERICAL ALGORITHM 67

Figure 4.4 illustrates the process in two dimensions. The outer blue line is

the boundary of the original domain Ωi. Green squares indicate the unmodi-

fied portion of the underlying quadtree structure. The modified part of both

quadtree and FE mesh is given in red. Even in this extreme example which

displays an exceptionally large step from Ωi to Ωi+1, about two thirds of the

minimizers are carried over from the original mesh.

Naturally, element quality evaluation yields exactly the same good results for

the modified mesh as for meshes generated from scratch.

Since ϕ is fixed in areas where boundary conditions are applied, the mesh is

not modified in these regions. Hence, the boundary condition mapping has to

be performed only in the initial mesh generation but not in mesh modification.

Besides the reduction of computing time, this guarantees that the boundary

condition patches are exactly the same in all iterations. This is crucial for

reliable evaluation and comparability of the objective function.

4.4. The Complete Numerical Algorithm

In order to summarize the presentation of the numerical algorithm, we give a

flow chart describing the entire process chain in Figure 4.5.

The processes can be grouped in three major units, which are indicated by un-

derlying grey boxes: Initialization, sensitivity analysis, and structural update.

Clearly, these three steps correspond to the iterative scheme (cf. equation

(19))

ϕi+1 = ϕi + τigi.

Starting from an initial guess ϕ0, we can iteratively compute improved struc-

tures with the help of the topological gradient gi and a step size τi.

The initialization step consists of three parts: First, the input data has to

be specified. For practical reasons, the actual initial guess, which may be

chosen as the entire design space, has to be provided as a surface triangulation

(stl format). In addition, a triangulation of each boundary condition surface

must be available, but these triangulations can differ from the one describing

the entire structure. Furthermore, the applied boundary conditions must be

specified in a text file. Since the load cases are transferred automatically to the

FE mesh, no mesh dependency like element or node numbers is contained in

the boundary condition file. The second and third step are initialization of the

level set function with a marching cube-based algorithm and generation of the

initial FE mesh with the algorithm described in chapter 3, respectively. Here,

4.4. THE COMPLETE NUMERICAL ALGORITHM 68

Figure 4.5. Flow chart of the processes in our topology opti-

mization algorithm.

the width of the Cartesian grids for discretization of the level set function,

ϑ, and FE mesh generation, h, are chosen. Naturally, the entire initialization

step has to be done only once.

Sensitivity analysis comprises the processes which are required for the compu-

tation of the topological gradient, i.e., the criterion which prescribes how the

structure has to be modified. In the standard case, only a structural analy-

sis has to be performed, i.e., the variational formulation of the equations of

elasticity (8) has to be solved. For this purpose we employ the parallel fi-

nite element solver DDFEM [67], which has been developed at the Fraunhofer

Institute for Industrial Mathematics. The solver is based on domain decom-

position and scales very well with the number of processors. Parallelization of

this computationally intensive process reduces computing time significantly. If

in addition eigenstresses have to be considered, we have to perform a casting

process simulation besides the structural analysis. Here, we use the software

package MAGMA [68], which is widely used in foundries for simulation of

4.4. THE COMPLETE NUMERICAL ALGORITHM 69

cooling down, solidification, and the development of eigenstresses. The topo-

logical gradient is computed according to equation (21). Consideration of

eigenstresses introduces an additional term in the formula for the topological

gradient. Then, one obtains

g(x0) = −(20µσ(u) : ε(p) + (3λ− 2µ)trσ(u)trε(p))(x0) − 2|ω|b(ε0)u0(x0),

where |ω| is the volume of the created hole, ε0 are the strains in the unper-

turbed domain, and u0(x0) is the displacement at point x0 (the center of the

hole) in the unperturbed domain. For the derivation of this formula and more

information on the importance of eigenstresses and the casting process itself,

we refer to [34].

If the topological gradient g(x) > 0 for all x ∈ Ωi, a local optimum has been

reached and the optimization process is stopped. If this is not the case, the

structure has to be modified and another iteration has to be performed.

The structural update concerns both the level set function representing the

boundary ∂Ωi of the domain Ωi and the FE mesh associated to this domain.

These processes have been described in sections 4.3.1 and 4.3.2, respectively.

The boundary conditions are automatically transferred to the modified FE

mesh.

CHAPTER 5

Numerical Examples

5.1. Bridge

The first example is the expansion to 3D of a two-dimensional problem that has

been treated, e.g., in [2, 3, 4]. The design space D is the cuboid 3.0×2.0×1.0

with zero displacement at the bottom left side and zero vertical displacement

at the bottom right side. In the middle of the bottom face, a distributed

vertical load is applied (see Figure 5.1).

����������
����������
����������

����������
����������
����������

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

������
������
������

������
������
������

Figure 5.1. Schematic view of the loads applied to the cuboid.

The marked areas at corners of the bottom face are subject to

zero displacement (left) and zero vertical displacement (right),

respectively. On the shaded area in the middle, a distributed

vertical force is applied.

In general, topology optimization results cannot be transferred from 2D to 3D.

However, our results resemble very much what is known from similar problems

in 2D. Indeed, the optimized structure’s projection onto the x-z-plane gives the

typical structure of a circular arc which is connected by spokes to the point of

application of the load.

70

5.1. BRIDGE 71

Figure 5.2. Plot of the objective function. The algorithm con-

verges after 99 iterations

The computation was performed using the following input data: The width

h of the underlying Cartesian grid was determined by (13) with c = 20. The

resulting initial mesh consisted of 61,809 nodes and 294,252 elements. The tar-

get volume was set to 20 % of the initial volume, which is a very low value and

usually only applicable if one accepts a significant increase of the compliance.

The maximum volume change per iteration was set to 1 %. This number is

always related to the structure’s volume in the current optimization iteration,

not to the initial volume. Naturally, such a small volume change increases

the number of iterations needed to reach the target volume significantly. In

the displayed example, the algorithm converged after 99 iterations. The total

computation time was 3 hours, 15 minutes and 25 seconds on a machine with

two Intel(R) Xeon(R) Quad Core CPUs (2.33GHz) and 16 GB RAM.

Figure 5.2 shows a plot of the objective function against the iteration numbers.

The results of the structural analysis of the initial structure are shown in Figure

5.3, some steps of the optimization are shown in Figures 4(a) to 4(e). Figure

5.5 depicts the final result. In all examples we display the von Mises equivalent

stress as a quantity relevant in practice. The step from the initial design to

iteration 8 demonstrates clearly that material is removed in areas of low stress

indicated by dark blue colors in the upper corners of the cuboid. In these

areas, both von Mises stress and the topological gradient attain the lowest

values. Since the color scale is identical for all results, it is clearly visible that

the maximum von Mises stress increases as the amount of material is reduced.

Symmetry is not preserved in the course of the optimization process, since the

5.1. BRIDGE 72

Figure 5.3. Von Mises stress on the initial structure.

finite element meshes are not symmetric, which leads to slightly asymmetric

results of the structural analysis.

In order to illustrate that not only shape optimization but topology optimiza-

tion is performed, we give a transparent view of the results of iteration 12 in

Figure 5.6. The two lower holes are connected to the exterior, whereas the

hole in the upper part of the structure is completely enclosed by the domain

Ω. Only as the hole grows in later iterations, it connects to the exterior and

thereby separates the two arcs of the bridge structure.

5.1. BRIDGE 73

(a) 8th iteration. (b) 39th iteration.

(c) 45th iteration. (d) 53rd iteration.

(e) 76th iteration.

Figure 5.4. Some intermediate results of the optimization process.

5.1. BRIDGE 74

Figure 5.5. 99th iteration. The volume of the structure has

been reduced to 29.2 % of the initial volume.

Figure 5.6. Transparent view of the structure after 12 itera-

tions. The upper hole is not connected to the exterior, which

means that both shape and topology optimization is performed.

5.2. DIAL PLATE 75

Figure 5.7. Load case of the dial plate. Yellow and green areas

are subject to homogeneous Dirichlet conditions. A distributed

tangential force is applied on the red rectangle. Only blue areas

can be modified.

5.2. Dial Plate

Our second example is a dial plate which is used for mounting various tools for

metal machining. Usage and resulting load case can be explained with the help

of Figure 5.7. The rotary plate is clamped to a hub in the center. In order to

guarantee a maximal contact surface between hub and plate, a homogeneous

Dirichlet condition is applied at the yellow area, i.e., the center must not be

modified in the course of the optimization. The mounted tool is simulated

by a tangential force which is distributed over the red rectangle. In order to

prevent too large an unbalance, the entire rim (green) is considered a fixed but

unloaded area. Thus, only the blue areas can be altered.

The following parameter values were chosen: The constant c in (13) was set

to 30, which resulted in an initial mesh consisting of 50,500 nodes and 224,995

tetrahedra. The target volume was set to 50 % of the initial value, and the

maximum volume reduction per iteration was 3 %.

The objective function, which is plotted in Figure 5.8, decreases monotoni-

cally. After 16 iterations, the target volume was reached and the algorithm

terminated. The final structure is shown in Figure 12(b). However, this design

might not be chosen for production since the compliance value has increased

5.2. DIAL PLATE 76

Figure 5.8. Plot of the objective function.

by 135 %. A more realistic shape might be given by the result of the fifth

iteration (cf. Figure 11(d)), which combines a 20 % volume reduction with an

increase of compliance smaller than 5 %. Naturally, the final choice depends

on the required manufacturing precision.

Figure 5.9. Distribution of computing time. The repeated

structural analysis takes the by far largest part of the time. The

structural update, which includes modification of both the level

set function and the finite element mesh, takes only 15 % of the

total computing time. Input, output, and internal data manage-

ment account for 4 % of the time.

5.2. DIAL PLATE 77

Figure 5.10. Von Mises stress on the initial configuration.

The total computing time for this example was 1 hour, 1 minute and 25 sec-

onds. Again, we used a machine with two Intel(R) Xeon(R) Quad Core CPUs

(2.33GHz) and 16 GB RAM. The distribution of computing time between the

main processes is shown as a pie chart in Figure 5.9. As expected, the solution

of the finite element problem takes the by far largest part of the time, whereas

the structural updates and mesh modifications of all iterations together with

input, output, and internal data management consume only 15 % of the total

computing time. This ratio becomes even larger if one considers the fact that

the parallelized FE solver uses two CPUs with four cores each, whereas the

rest of the program is run on a single core. Thus, the distribution of computing

time underlines the efficiency of the algorithms for the structural update we

presented in this thesis.

As for the academic example in section 5.1, we show the von Mises stress

on the structure’s surface at several iterations. Figure 5.10 is the original

configuration, Figures 11(a) to 12(a) show intermediate results, and Figure

12(b) is the final result fulfilling the volume constraint but having an extreme

increase in compliance. The color scale is the same for all iterations. Since this

is not clearly visible due to symmetry of the initial part, we want to point out

that the area of application of the tangential load is located at the rightmost

point of the pictures, at the same height as the dial table’s center.

5.2. DIAL PLATE 78

(a) 2nd iteration. (b) 3rd iteration.

(c) 4th iteration. (d) 5th iteration.

(e) 9th iteration. (f) 10th iteration.

Figure 5.11. Some intermediate results of the optimization process.

5.2. DIAL PLATE 79

(a) 11th iteration. (b) 16th iteration.

Figure 5.12. Some intermediate results of the optimization process.

5.3. BEARING CAP 80

Figure 5.13. Load case for the bearing cap.

5.3. Bearing Cap

The last example we want to consider in this thesis is a bearing cap which

is used in car manufacturing to secure the shaft transmitting the rotational

movement from the motor to the traction axle.

The boundary condition surfaces are highlighted in Figure 5.13. There is

a distributed load acting normal to the wall of the semicylinder holding the

shaft (turquoise area) and the part is mounted with two bolts running through

the drilling holes and exerting vertical, downwards pointing forces at the rings

on top of the structure. The walls of the drilling holes and the small vertical

patches at the narrow faces are fixed. In a conservative scenario prescribed

by the manufacturer, only the large light blue surface patch on the front side

and a corresponding surface patch on the opposite face of the bearing cap are

defined as free boundaries. Therefore, the effects of topology optimization are

restricted to the volume above the semicylinder.

For this example, we want to compare two computations differing only in the

maximal admissible volume change per iteration (3 % and 10 %, respectively).

The initial mesh consisted of 34,624 nodes and 156,629 elements. The target

volume was 80 % of the initial volume.

The plot of the objective functions (cf. Figure 5.14) shows that our algorithm

tends to run into local minima. Reducing the structure’s volume significantly

in each iteration decreases the objective function much more than the optimiza-

tion with a small step size. Despite the fact that the volume of the resulting

structure for the large step size is slightly lower than for the other computation

5.3. BEARING CAP 81

Figure 5.14. Plot of the objective function.

(79.25 % of the initial volume compared to 83.70 %), the compliance is lower

(102.38 % of the value of the original structure compared to 106.64 %).

Figure 5.15. Distribution of computation time, 7 iterations.

The computing times were exactly 17 minutes (3 % volume reduction) and 7

minutes, 25 seconds (10 % volume reduction), respectively. The distribution

of computing time for the case is shown in Figure 5.15. It confirms the re-

sults described in section 5.2. For the second case, the distribution is almost

identical.

5.3. BEARING CAP 82

(a) Initial configuration. (b) 1st iteration.

(c) 2nd iteration. (d) 3rd iteration.

(e) 4th iteration.

Figure 5.16. Some intermediate results of the optimization process.

The initial configuration and intermediate results of the optimization using

the smaller step size are shown in Figure 5.16. Iteration 5 is omitted since no

differences to the final structure are visible from the outside.

The final optimized structures for both step sizes are displayed in Figure 5.17

for direct comparison. To visualize the different moldings in areas not visible

from the outside, we added transparent views of the results in Figure 5.18.

5.3. BEARING CAP 83

Figure 5.17. Top: Optimized structure after 6 iterations with

a maximal volume reduction of 3 % per iteration. Bottom: Re-

sult after 3 iterations with 10 % volume reduction per iteration.

The color bar is the same as in Figure 5.16.

5.3. BEARING CAP 84

Figure 5.18. Transparent views of the optimized structures.

Clearly, the smaller step size (top) lead to more filigree branches

and holes in the structure’s interior than the larger step size

(bottom). In both cases there are holes in the feet of the bearing

cap which are not connected to the exterior.

Summary and Future Work

In this thesis, we presented a new algorithm for the solution of 3D topology

optimization problems. Contrary to other methods, our approach allows for

the inclusion of a casting simulation in the optimization process. This can

yield better optimization results, since unfavorable eigenstresses are considered

when the sensitivity analyses are performed and the strength of structures is

evaluated.

We used a twofold structural update and thereby satisfied the two main chal-

lenges imposed by the casting process simulation: On the one hand, the use

of a level function for boundary representation ensures that the exact position

of the boundary is known at any time. On the other hand, a level set based

tetrahedral mesh generator constructs the complete FE model that is required

in each iteration of the optimization process.

To make optimization of industrially relevant components possible, we focused

on efficiency of the update process. We simplified the level set update signifi-

cantly by representing holes as simple level set functions and using an addition

operator for the update (section 4.3.1). With regard to the mesh generation

and update part (chapter 3 and section 4.3.2, respectively), we ensured compu-

tational efficiency by combining an octree-based algorithm with clever re-use

of the mesh from the previous iteration: Large parts of the computationally

far more expensive mesh close to the structure’s boundary are preserved, and

only modified areas have to be remeshed. The structure’s interior is meshed

by precomputed configurations, which reduces computing time significantly.

We showed that the resulting meshes are of high quality (section 3.5.2), which

is the basis for reliable results.

The capabilities of our algorithm were demonstrated with the help of industrial-

scale numerical examples (sections 5.2 and 5.3). Investigation of the distribu-

tion of computing time showed that our structural update requires significantly

significantly less time than the solution of the elasticity problem, even though

the FE solver was run on eight cores and the update on a single core. Thus,

remeshing is no longer the bottleneck in topology optimization and can be

successfully applied in each iteration.

85

SUMMARY AND FUTURE WORK 86

Repeated generation of a complete FE model is made possible by automatic

mapping of boundary condition surfaces (section 3.4). This feature is impor-

tant for a smooth and efficient execution of the complete algorithm - if manual

interaction were necessary, the process would take way too much time.

Future work can be split in two parts. Concerning theoretical aspects, we

see a need for investigation of the effects of single parameters as for instance

the width of the underlying Cartesian grid, the number of mesh smoothing

iterations, or the amount of material that can be removed in a single itera-

tion. Investigations in this direction might reveal criteria for an optimal and

automated determination of parameter values that could lead to even better

optimization results.

On the more practical side, some features which are relevant for foundries could

be included. Here, we want to mention the so-called minimum member size,

which prescribes a minimum thickness of for instance walls or trusses of cast

parts and is needed to guarantee producability. In our opinion, the level set

representation of the boundary provides a good basis for the implementation

of this criterion.

Another attribute which is important for the actual casting process is the

direction of removal from the mold. This can impose geometrical restrictions

to the design space and should be considered to ensure that optimal designs

can be manufactured.

Finally, a persistent parallelization of the code and especially the meshing pro-

cess would further reduce computation time and make the algorithm even more

attractive. Also here we see a good potential, since the deterministic nature

of the surface mesh seems to facilitate effective distribution of computational

effort among several processors.

Bibliography

[1] T. Akenine-Möller, Fast 3D Triangle-Box Overlap Testing, Department of Com-

puter Engineering, Chalmers University of Technology, 2001.

[2] G. Allaire, F.D. Gournay, F. Jouve, A.-M. Toader, Structural optimization

using topological and shape sensitivity via a level set method, Internal Report 555, Ecole

Polytechnique, France, 2004.

[3] G. Allaire, F. Jouve, A level-set method for vibration and multiple loads structural

optimization, Comput. Methods Appl. Mech. Engrg. 194, pp. 3269–3290, 2005.

[4] G. Allaire, F. Jouve, A.-M. Toader, Structural optimization using sensitivity

analysis and a level-set method, J. Comp. Phys. 194, pp. 363–393, 2004.

[5] G. Allaire, R.V. Kohn, Optimal design for minimum weight and compliance in

plane stress using extremal microstructures, European Journal of Mechanics/A 12, pp.

839–878, 1993.

[6] G. Allaire, R.V. Kohn, Topology optimization and optimal shape design using ho-

mogenization, In M.P. Bendsoe, C.A. Moa Soares (editors) Topology Design of Struc-

tures, volume 227 of NATO ASI Series, Series E, pp. 207–218, Kluwer, 1993.

[7] S. Amstutz, H. Andrä, A new algorithm for topology optimization using a level-set

method, Journal of Computational Physics Volume 216, Issue 2, pp. 573–588, 2006.

[8] M. Bazaraa, H. Sherali, C. Shetty, Nonlinear Programming Theory and Algo-

rithms, Wiley, 2006.

[9] M.P. Bendsoe, Optimal shape design as a material distribution problem, Structural

Optimization 1, pp. 193–202, 1989.

[10] M.P. Bendsoe, N. Kikuchi, Generating optimal topologies in structural design using

a homogenisation method, Computer Methods in Applied Mechanics and Engineering

71, pp. 197–224, 1988.

[11] M.P. Bendsoe, O. Sigmund, Material interpolations in topology optimization,

Archive of Applied Mechanics 69, pp. 635–654, 1999.

[12] S.C. Brenner, L.R. Scott, The Mathematical Theory of Finite Element Methods,

Springer, New York, 1994.

[13] M. Burger, A framework for the construction of level-set methods for shape optimiza-

tion and reconstruction, Interfaces and Free Boundaries 5, pp. 301–329, 2003.

[14] M.Burger, B.Hackl, W.Ring, Incorporating topological derivatives into level set

methods, J. Comp. Phys. 194, pp. 344–362, 2004.

[15] G.D. Cheng, N. Olhoff, An investigation concerning optimal design of solid elastic

plates, International Journal of Solids and Structures 16, pp. 305–323, 1981.

[16] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland Pub-

lishing Company, Amsterdam, 1978.

87

BIBLIOGRAPHY 88

[17] M.C. Delfour, J.P. Zolésio, Shapes and geometries. Analysis, differential calculus,

and optimization, SIAM, Philadelphia, 2001.

[18] A.R. Diaz, M.P. Bendoe, Shape optimization of structures for multiple loading con-

ditions using a homogenization method, Structural Optimization 4, pp. 17–22, 1992.

[19] D.A. Field, Qualitative measures for initial meshes, International Journal For Numer-

ical Methods In Engineering, Vol 47, pp. 887–906, John Wiley, 2000.

[20] J.E. Flaherty, FINITE ELEMENT ANALYSIS, Lecture Notes: Spring 2000.

[21] R. Fletcher, C.M. Reeves, Function minimization by conjugate gradients, Com-

puter Journal 7:149, 1964.

[22] L.A. Freitag, C. Ollivier-Gooch, Tetrahedral mesh improvement using swapping

and smoothing, Internat. J. Numer. Methods Engrg., 40(21) 3979–4002, 1997.

[23] P.J. Frey, P.-L. George, Mesh Generation, Hermes Science Publishing, Oxford &

Paris, 2000.

[24] I. Fried, Condition of finite element matrices generated from nonuniform meshes,

AIAA J. 10, pp. 219–221, 1972.

[25] M. Garland, P.S. Heckbert, Simplifying Surfaces with Color and Texture using

Quadric Error Metrics, IEEE Visualization ’98 Proceedings, pp.263–270, 1998.

[26] S. Garreau, P. Guillaume, M. Masmoudi, The topological Asymptotic for PDE

systems: the elasticity case, SIAM J. Control Optim. 39(6), pp. 1756–1778, 2001.

[27] S. Gottschalk, M.C. Lin, D. Manocha, OBBTree: A Hierarchical Structure for

Rapid Interference Detection, Computer Graphics (SIGGRAPH 96 Proceedings), pp.

171–180, 1996.

[28] F. Jarre, J. Stoer, Optimierung, Springer, Berlin [u.a.], 2004.

[29] T. Ju, F. Losasso, S. Schaefer, J. Warren, Dual Contouring of Hermite Data,

Siggraph 2002, Computer Graphics Proceedings, pp.339–346, ACM Press / ACM SIG-

GRAPH / Addison Wesley Longman, 2002.

[30] R.V. Kohn, G. Strang, Optimal design and relaxation of variational problems, Com-

munications on Pure and Applied Mathematics 39, pp. 1–25, 139–182, 353–377, 1986.

[31] H.R. Lewis, L. Denenberg, Data Structures and Their Algorithms, Addison-Wesley

Longman Publishing Co., 1997.

[32] W.E. Lorensen, H.E. Cline, Marching Cubes: A High Resolution 3D Surface Con-

struction Algorithm, Computer Graphics (Proceedings of SIGGRAPH ’87), Vol. 21, No.

4, pp. 163–169, 1987.

[33] M. Masmoudi, The Toplogical Asymptotic, Computational Methods for Control Ap-

plications, R. Glowinski, H. Kawarada and J. Periaux eds., GAKUTO Internat. Ser.

Math. Sci. Appl. Vol. 16, pp. 53–72, 2001.

[34] I. Matei, Development of Adequate Structure Optimization Methods for Foundries,

PhD thesis, Technische Universität Kaiserslautern, Dept. of Mathematics, in prepara-

tion.

[35] F. Murat, Contre-exemples pour divers problmes o le contrle intervient dans les coef-

ficients, Ann. Mat. Pura Appl., 112, pp. 49–68, 1977.

[36] A.A. Novotny, R.A. Feijóo, E. Taroco, C. Padra, Topological sensitivity analy-

sis, Computer Methods in Applied Mechanics and Engineering Volume 192, Issues 7-8,

pp. 803–829, 2003.

BIBLIOGRAPHY 89

[37] S. Osher, F. Santosa, Level-set methods for optimization problems involving geome-

try and constraints: frequencies of a two-density inhomogeneous drum, J. Comp. Phys.

171, pp. 272–288, 2001.

[38] S. Osher, J.A. Sethian, Front propagating with curvature dependent speed: Algo-

rithms based on Hamilton-Jacobi formulations, J. Comp. Phys. 78, pp. 12–49, 1988.

[39] S.J. Owen, A Survey of Unstructured Mesh Generation Technology, Proceedings, 7 th

International Meshing Roundtable, pp. 239–267, 1998.

[40] V.N. Parthasarathy et al., A comparison of tetrahedron quality measures, Finite

Elem. Anal. Des., 15: pp. 255–261, 1993.

[41] J. Peraire, J. Peiro, L. Formaggia, K. Morgan, O.C. Zienkiewicz, Finite

Element Euler Computations in Three Dimensions, International Journal For Numerical

Methods in Engineering, John Wiley & Sons, Ltd, Vol 26, pp. 2135–2159, 1988.

[42] P.-O. Persson, Mesh Generation for Implicit Geometries, PhD thesis, Massachusetts

Institute of Technology, Dept. of Mathematics, 2005.

[43] E. Polak, Computational Methods in Optimization, Academic Press, New York, 1971.

[44] J. Ruppert, A Delaunay refinement algorithm for quality 2-dimensional mesh gener-

ation, J. Algorithms, 18 (3), pp. 548–585, 1995.

[45] H. Samet, Applications of Spacial Data Structures, Addison-Wesley Publishing Com-

pany, New York, 1990.

[46] H. Samet, The Quadtree and Related Hierarchical Data Structures, ACM Comput.

Surv., vol. 16, nr. 2, pp. 187–260, ACM Press, 1984.

[47] J. Schöberl, NETGEN - An advancing front 2D/3D mesh generator based on abstract

rules, Computations in Visualization and Science 1, pp. 41–52, 1997.

[48] V. Schulz, H. Andrä, K. Schmidt, Robuste Netzgenerierung zur µFE-Analyse

mikrostrukturierter Materialien, NAFEMS Magazin Nr. 02/2007, 7. Ausgabe, 2007.

[49] A. Schumacher, Topologieoptimierung von Bauteilstrukturen unter Verwendung von

Lochpositionierungskriterien, PhD thesis, Universität-Gesamthochschule-Siegen, 1995.

[50] A. Schumacher, V.V. Kobolev, H.A. Eschenauer, Bubble method for topol- ogy

and shape optimization of structures, Journal of structural optimization no. 8, pp. 42–

51, 1994.

[51] J.A. Sethian, Level Set Methods and Fast Marching Methods, Cambridge University

Press, 1998..

[52] J.A. Sethian, A. Wiegmann, Structural boundary design via level-set and immersed

interface method, J. Comp. Phys. 163, pp. 489–528, 2000.

[53] J.R. Shewchuk, What is a Good Linear Element? Interpolation, Conditioning, and

Quality Measures, Proceedings, 11th International Meshing Roundtable, Sandia Na-

tional Laboratories, pp. 115–126, 2002.

[54] O. Sigmund, J. Petersson, Numerical instabilities in topology optimization: A survey

on procedures dealing with checkerboards, mesh-dependencies and local minima., Struct.

Multidisc. Optim., 16:68–75, 1998.

[55] J. Sokolowski, A. Zochowski, On the topological derivative in shape optimization,

SIAM J. Control Optim. 37, pp. 1241–1272, 1999.

[56] J. Sokolowski, J.-P. Zolésio, Introduction to shape optimization: shape sensitivity

analysis, Springer Series in Computational Mathematics vol. 10, Springer, Berlin, 1992.

[57] E.H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.

BIBLIOGRAPHY 90

[58] K. Suzuki, N. Kikuchi, A homogenization method for shape and topology optimiza-

tion, Computer Methods in Applied Mechanics and Engineering 93, pp. 291–381, 1991.

[59] G. Taubin, A signal processing approach to fair surface design, SIGGRAPH 95 Pro-

ceedings, pp. 351–358, 1995.

[60] M.Y. Wang, X. Wang, D. Guo, A level-set method for structural topology optimiza-

tion, Comput. Meth. Appl. Mech. Engrg. 192, pp. 227–246, 2003.

[61] R.E. White, An Introduction to the Finite Element Method with Applications to Non-

linear Problems, John Wiley and Sons, New York, 1985.

[62] G. Xu, Convergent Discrete Laplace-Beltrami Operators over Triangular Surfaces, 2004

Geometric Modeling and Processing, pp.195–204, 2004.

[63] M.A. Yerry, M.S. Shephard, Three-Dimensional Mesh Generation by Modified Oc-

tree Technique, International Journal for Numerical Methods in Engineering, vol 20,

pp. 1965–1990, 1984.

[64] Y. Zhang, C. Bajaj, B.-S. Sohn, Adaptive and quality 3D meshing from imaging

data, SM ’03: Proceedings of the eighth ACM symposium on Solid modeling and ap-

plications, pp.286–291, ACM Press, Seattle, 2003.

[65] O.C. Zienkiewicz, R.L. Taylor, The Finite-Element Method, Volumes 1-3, fifth ed.

Butterworth-Heinemann, Oxford, 2000.

Web-based Resources

[66] FE-DESIGN, , http://www.fe-design.de/tosca/tosca.html.

[67] Fraunhofer Institut für Techno- und Wirtschaftsmathematik,

Competence Center High Performance Computing and Visual-

ization, DDFEM - parallel code for three-dimensional structure mechanics,

http://www.itwm.fraunhofer.de/en/hpc parallelisierung ddfem/ddfem/.

[68] MAGMA Gießereitechnologie GmbH, MAGMA. Committed to casting excel-

lence., http://www.magmasoft.de/.

[69] J. Schöberl, NETGEN - automatic mesh generator,

http://www.hpfem.jku.at/netgen/ .

[70] H. Si, A Quality Tetrahedral Mesh Generator and Three-Dimensional Delaunay Trian-

gulator, http://tetgen.berlios.de/.

[71] C.J. Stimpson, C.D. Ernst, P. Knupp, P.P. Pébay, D. Thompson, The Verdict

Library Reference Manual, http://www.vtk.org/Wiki/images/6/6b/VerdictManual-

revA.pdf.

CURRICULUM VITAE

14.03.1980 geboren in Speyer

1986 – 1990 Grundschule Heiligenstein

1990 – 1999 Gymnasium am Kaiserdom, Speyer

Okt. 1999 Beginn des Studiums im Fach Technomathematik mit

Nebenfach Maschinenbau an der Technischen Universität

Kaiserslautern

Juli 2001 Vordiplom in Technomathematik

Aug. 2002 Studium der Mathematik an der Chalmers Tekniska Högskola

– Jan. 2003 in Göteborg im Rahmen des ECMI-Programms

Aug. 2004 Diplom in Technomathematik

Oct. 2004 Stipendiat des Graduiertenkollegs Technomathematik an

– Aug. 2007 der Universität Kaiserslautern

