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Kurzfassung

Die vorliegende Arbeit ,,Materwave Optics with Dark-state Polaritons: Applications to
Interferometry and Quantum Information” befafit sich im Weiteren mit dem Thema Dun-
kelzusténde und im Speziellen mit den im Zusammenhang mit der Speicherung von Pho-
tonenwellenpaketen in optisch dichten Medien eingefiihrten Dunkelzustandspolaritonen.
Diese lassen sich als Superposition von Licht- und Materiewellen auffassen. Im Rahmen
der Arbeit werden die besonderen optischen und materiewellenoptischen Eigenschaften
dieser Anregungen untersucht. Zum einen wird ein neues Verfahren vorgestellt, das zur
rdumlichen Erhohung der Anregungsdichte benutzt werden kann, zum anderen werden
die Eigenschaften zur Konstruktion eines neuen Sagnac-Interferometers verwendet. Die
Arbeit gliedert sich in vier Teile:

In einem Einfiithrungskapitel werden die zum Verstédndnis der Arbeit notwendigen Be-
griffe, wie elektromagnetisch induzierte Transparenz (EIT), Dunkelzustandspolaritonen
und Sagnac-Effekt erldutert. Aulerdem werden zum spéteren Vergleich die state-of-the-
art Quantenlimites fiir Laser- und Materiewellen-Gyroskope angegeben.

Das zweite Kapitel der Arbeit betrachtet das von A. André und M. D. Lukin entwickel-
te Verfahren zur Erzeugung stationédrer optischer Wellenpakete in speziell préaparieren
EIT-Medien. Es wird, unter Betrachtung eines selbstkonsistenten Gleichungssystems fiir
ein schwaches Probefeld, und durch Einfithrung angepafiter Normalmoden gezeigt, dass
die Absorption einer der Moden zum Phénomen des pulse-machtings und damit zu einem
diffusiven Verhalten der anderen Normalmode fiihrt. Alle bis zu diesem Punkt durch-
gefiihrten Untersuchungen basieren auf einer homogenen und symmetrischen Konfigurati-
on der Préaparationslaser. Wird diese Symmetrie aufgeben, so erkennt man, dass der diffu-
siven Verbreiterung der nichtabsorbierten Normalmoden eine Driftbewegung superponiert
ist. Durch die Wahl einer speziellen Praparationslaserkonfiguration kann die Driftbewe-
gung so modifiziert werden, dass sie zu einer effektiven Kraft fiihrt, welche die diffusive
Verbreiterung kompensiert. Insbesondere kann die effektive Kraft so stark werden, dass die
Feldverteilung dieser Normalmode komprimiert wird. Der hier beschriebene Prozess kann
mittels einer Fokker-Planck Gleichung vom Ornstein-Uhlenbeck-Typ beschrieben werden,
deren Losung einer Losung des geddmpften harmonischen Oszillator sehr dhnlich ist. Es
zeigt sich, dass das Komprimieren der Feldverteilung zu einer Anregung hoherer Moden
der allgemeinen Ornstein-Uhlenbeck Losung fiihrt, welche wesentlich schneller zerfallen
als der Grundzustand. Im letzten Abschnitt dieses Kapitels wird dieser Anregungsprozess
ndher untersucht und es werden Bedingungen angegeben, die zu einer Verringerung bzw.
Vermeidung der Anregung héherer Moden fithren. Alle in diesem Kapitel gemachten Aus-
sagen werden durch numerische Simulationen ergénzt.

Im dritten Kapitel werden die materiewellenoptischen Eigenschaften der Dunkelzu-
standspolaritonen untersucht. Diese werden dazu benutzt, um ein neuartiges Licht-Materie-
wellen Hybrid Sagnac Interferometer zu konstruieren. Zunéchst werden der prinzipiel-
le Aufbau und die Funktionsweise eines solchen Interferometers skizziert. AnschlieBend
wird die Dynamik der Materie-Licht-Wechselwirkung in einem rotierenden Bezugssy-
stem erldutert und die relevanten Bewegungsgleichungen werden abgeleitet. Diese bil-
den die Grundlage fiir die darauffolgende Untersuchungen der Dunkelzustandspolari-



tonendynamik ohne und unter Einflul von externen Fallenpotentialen fiir den Mate-
riewellenanteil. Wir zeigen, dass eine Sensitivitéitserhohung des Hybrid-Gyroskopes ge-
geniiber eines gewdhnlichen, passiven Laser-Gyroskopes selber Flache zu erwarten ist,
wenn anfinglich das beteiligte gasformige Medium sich in einem suprafluiden Quantenzu-
stand in einer Ringfalle befindet. Auflerdem wird aufgezeigt, dass ein simultaner Impuls-
und Kohérenztransfer fiir die Arbeit des Interferometers notwendig ist. Im letzten Teil
des Kapitels wird die zu erwartende Sensititivit des neuen Gyroskopes am Schrotrauschli-
mit durch Betrachtung der Einteilchen-Dichtematrixgleichungen ermittelt. Insbesondere
wird der Einflufl der Teilchenbewegung bei diesen Berechnungen mit beriicksichtigt. Dazu
werden die Maxwell-Bloch-Gleichungen storungstheoretisch in der gesuchten Rotations-
rate behandelt und die Suszeptibilitdt des betrachteten 3-Niveau-Systems in beliebiger
Ordnung des Probefeldes bestimmt. Schliefllich wird die so gefundene Sensitivitit des
Hybrid-Gyroskopes mit state-of-the-art Laser- und Materiewellen Sagnac Interferometern
verglichen.

Das letzte Kapitel der Arbeit ist durch ein gemeinsames theoretisches und experi-
mentelles Projekt im Rahmen eines Praktikums in der AG Bergmann enstanden. Das
Praktikum wurde durch das Graduiertenkolleg 792: , Ultrakurzzeitphysik und nichtlinea-
re Optik” initiiert. Dieser Abschnitt behandelt nicht mehr direkt die oben diskutierten
Dunkelzustandspolaritonen sondern greift den allgemeineren Begriff des Dunkelzustands
auf. Durch experimentelle Arbeiten konnten erstmals die von E. Arimonodo et al. vor-
hergesagten geschwindigkeitsselektiven transienten Dunkelzustdnde nachgewiesen werden.
Das Kapitel fithrt zunéchst in den Begriff des geschwindigkeitsselektiven Dunkelzustands
am Beispiel einer A-Kopplung ein. Die Systemdynamik fiir diesen Fall wird in der spe-
ziellen Basis aus Hell- und Dunkelzusténden nédher erldutert und fiihrt schlieflich zur
Einfithrung des transienten Dunkelzustandes. Danach werden die zur theoretischen Be-
schreibung notwendigen Gleichungen abgeleitet, da diese im darauffolgenden Abschnitt
zur numerischen Simulation des Systems benotigt werden. Diese Simulationen basieren auf
der Losung der verallgemeinerten Bloch-Gleichungen, welche die Schwerpunktsbewegung
der Atome ebenfalls beriicksichtigen. Unter Zuhilfenahme dieser und Untersuchungen mit-
tels eines resolvententheoretischen Ansatzes werden Bedingungen zur Beobachtbarkeit der
transienten Dunkelzustdnde angegeben. SchliefSlich werden die experimentellen Vorausset-
zungen und die Messmethode vorgestellt und die experimentellen mit den theoretischen
Resultaten verglichen.



Abstract

The present work ”Materwave Optics with Dark-state Polaritons: Applications to Interfer-
ometry and Quantum Information” deals in a broad sense with the subject of dark-states
and in particular with the so-called dark-state polaritons introduced by M. Fleischhauer
and M. D. Lukin to discribe the coherent and reversible storage of photonic wavepackets
in optical dense media. The dark-state polaritons can be regarded as combined excitation
of electromagnetic fields and spin/matter-waves. Within the framework of this thesis the
special optical properties of the combined excitation are studied. On one hand a new pro-
cedure to spatially manipulate and to increase the excitation density of stored photons
is described and on the other hand the properties are used to construct a new type of
Sagnac Hybrid interferometer. The thesis is devided into four parts.

In the introduction all notions necessary to understand the work are described, e. g. :
electromagnetically induced transparency (EIT), dark-state polaritons and the Sagnac
effect. Moreover, for later comparison the standard quantum limits for state-of-the-art
laser and matterwave gyroscopes are provided.

The second chapter considers the method developed by A. André and M. D. Lukin
to create stationary light pulses in specially dressed EIT-media. In a first step a self-
consistent set of field equations is derived and simplified by introducing a new set of
normal modes. The absorption of one of the normal modes leads to the phenomenon of
pulse-matching for the other mode and thereby to a diffusive spreading of its field en-
velope. This is further studied by considering the equations of motion for the first two
momenta of the non-absorbed normal mode. All these considerations are based on a ho-
mogeneous and symmetrical field setup of the EIT preparation laser. If this restriction
is dismissed one finds that a drift motion is superimposed to the diffusive spreading. By
choosing a special laser configuration the drift motion can be tailored such that an effec-
tive force is created that counteracts the spreading. Moreover, the force can not only be
strong enough to compensate the diffusive spreading but also to exceed this dynamics and
hence to compress the field envelope of the excitation. The compression can be discribed
using a Fokker-Planck equation of the Ornstein-Uhlenbeck type. The general solution
of this equation is quite similar to the solution of the damped harmonic oscillator. The
investigations show that the compression leads to an excitation of higher-order modes of
the general Ornstein-Uhlenbeck solution which decay very fast. In the last section of the
chapter this exciation will be discussed in more detail and conditions will be given how
the excitation of higher-order modes can be avoided or even suppressed. All results given
in the chapter are supported by numerical simulatons.

In the third chapter the matterwave optical properties of the dark-state polaritons
will be studied. They will be used to construct a light-matterwave hybrid Sagnac in-
terferometer. First the principle setup of such an interferometer will be sketched and
the relevant equations of motion of light-matter interaction in a rotating frame will be
derived. These form the basis of the following considerations of the dark-state polariton
dynamics with and without the influence of external trapping potentials on the matter-
wave part of the polariton. It will be shown that a sensitivity enhancement compared
to a passive laser gyroscope can be anticipated if the gaseous medium is initially in a



superfluid quantum state in a ring-trap configuration. To achieve this enhancement a
simultaneous coherence and momentum transfer is furthermore necessary. In the last
part of the chapter the quantum sensitivity limit of the hybrid interferometer is derived
using the one-particle density matrix equations incorporating the motion of the particles.
To this end the Maxwell-Bloch equations are considered perturbatively in the rotation
rate of the noninertial frame of reference and the susceptibility of the considered 3-level
A-type system is derived in arbitrary order of the probe-field. This is done to determine
the optimum operation point. With its help the anticipated quantum sensitivity of the
light-matterwave hybrid Sagnac interferometer is calculated at the shot-noise limit and
the results are compared to state-of-the-art laser and matterwave Sagnac interferometers.
The last chapter of the thesis originates from a joint theoretical and experimental
project within the Graduiertenkolleg 792: ” Ultrakurzzeitphysik und nichtlineare Optik”.
It is based on a laboratory in the AG Bergmann. This chapter does no longer consider
the dark-state polaritons of the last two chapters but deals with the more general concept
of dark states and in particular with the transient velocity selective dark states as intro-
duced by E. Arimondo et al. In the experiment we could for the first time measure these
states. The chapter starts with an introduction into the concept of velocity selective dark
states as they occur in a A-configuration. Then the system dynamics will be described
in a special basis set namley the dark- and bright-states of the present system. This
leads us to the introduction of the transient velocity selective dark-states as they occur
in an particular extension of the A-system. For later use in the simulations the relevant
equations of motion are derived in detail. The simulations are based on the solution of
the generalized optical Bloch equations which also incooperate the center-of-mass motion
of the atoms. With the help of these simulations and a resolvent ansatz conditions for
the parameters to meausre those states are presented. Finally the experimental setup and
procedure are explained and the theoretical and experimental results are compared.






Outline

The subject of this thesis are matterwave properties of dark-state polaritons (DSP) in-
troduced by M. Fleischhauer and M. D. Lukin [1] to solve the light-storage problem in
media showing electromagnetically induced transparency (EIT) [2]. These dark-state po-
laritons are combined excitations of electromagnetic fields and atomic Raman transitions
[3]. The main theme of this thesis is: can we use the special superposition nature of the
DSP for applications that outperform conventional or matterwave optics. This rather
general problem is discussed for two different, more specific subjects. The first is: ”Can
we use the special properties of the DSPs to construct an efficient quantum logic gate?”
and the second: "Is it possible to make use of the matterwave component of the DSP in
interferometry (especially when constructing a DSP-gyroscope)?”. Since the whole thesis
can be divided according to these two questions we motivate both parts separately.

Quantum information technologies requires methods to coherently store, transfer and
manipulate quantum states. The dark-state polariton approach has made considerable
progress in terms of the first two requirements. Ensembles of atoms with long-lived atomic
states provide reliable storage units for quantum information. The transfer is mediated
by photons which are quite robust and are an efficient realization of flying qubits. How-
ever, the development of high fidelity quantum logic gates operating on single quantum
excitations is a still unsolved problem. To date a number of proposals based on the DSP
approach have been considered, for example: scattering of DSP in optical lattices [1],
dipole-dipole interaction of slow-light pulses via Rydberg states [5] and entanglement of
photons via N-shaped atomic configurations schemes [(]. All these approaches suffer,
however, from several drawbacks.

The first one is the limited interaction time. For example in head-on type collisions
between two polaritons the interaction time stays constant irrespectively of the group
velocity vg, of the polaritons. Thus in order to achieve a long interaction time copropa-
gating pulses were considered [6]. However, this configuration leads to nonhomogeneous
interaction and spectral broadening of the wave packets. Hence, the latter ansatz has
limited suitability for quantum information processing as well.

A second drawback becomes apparent if we want to reach the required nonlinear in-
teraction to entangle two DSPs, moving with a small group velocity v, < ¢, via the
nonlinear part of the susceptibility. In this case we run into trouble since the number of
photons in the DSP-pulse decreases by the factor vy, /c when it enters the medium. Hence,
the usable interaction energy decreases by the same factor. For small group velocities the
major part of excitation is transfered to the matterwave part of the polariton which is



not available for nonlinear interaction via the susceptibility. In this case one might argue
that an extension of the interaction time would help, however, a longer interaction time
is accompanied by decoherence which has to be avoided.

The reduced photonic part of slow moving polaritons might be compensated by the
resonant enhancement of the nonlinear susceptibility in EIT media [7, 8]. As found by S.
Harris [9] nonlinear optical processes become efficient already at energy densities of one
photon per atomic cross section [10]. This requires however tight spatial confinement of
the photonic excitation in addition to the long interaction time.

To fulfill the requirements of long interaction time and tight spatial confinement we
consider not the standard slow-light scheme but an extension introduced by A. André and
M. D. Lukin [1 1, 12]. This scheme allows for the creation of long-lived stationary photonic
excitations in the medium. All main ingredients for the construction of a quantum logic
gate are provided by the stationary light scheme except that the excitation density on
the single excitation level is not high enough. A coherent and quantum state preserving
spatial compression of the excitation is required to profit from the resonant enhanced
nonlinear susceptibility. That this can be achieved will be shown in chapter 2.

Let us turn now to the second question, i. e. whether it is possible to make use of the
matterwave part of the DSP in interferometry. Recently U. Leonhardt and P. Piwnicki
[13] pointed out that one might anticipate a sensitivity enhancement c¢/vg, of a gyroscope
using slow-light in an EIT-medium as compared to a standard optical Sagnac gyroscope.
This suggestion lead to an intense research since at the same time L. V. Hau and cowork-
ers [11] showed that it is possible to reach incredible low group velocities on the order of
meters per second in EIT-media. There exists a large interest for high sensitivity gyro-
scopes as they are used in many commercial applications such as orientation sensors for
airplanes. They are also interesting from a pure scientific point of view since they can
help to decide between different gravitation theories.

In this thesis we discuss a slow-light gyroscope that makes use of the possible free
motion of the atoms in a gaseous medium [15]. We show that a sensitivity enhancement
is only achievable if the momentum transfer from the light to the matterwave part of the
dark-state polariton is taken into account. This statement is controversially discussed in
the community [16].

The thesis is structured as follows: The first chapter gives an introduction in the con-
cepts used. The standard Hamiltonian of quantum optics in the length-gauge is derived
with special emphasis on a separation of relative and center-of-mass coordinates since
we are also interested in the quantum mechanical treatment of the center-of-mass vari-
able. In a second step we explain electromagnetically induced transparency which is a
phenomenon at the heart of the dark-state polariton concept. Furthermore, we introduce
slow-light and explain its limitations with respect to light-storage. We can cope with its
limitations by using explicitly time-dependent electromagnetically induced transparency.
This finally leads us to the dark-state polariton mechanism which allows for a state and
shape preserving storage and release of light pulses. At the end of the Introduction chap-
ter we give a brief review of the Sagnac effect and stated the quantum limits of gyroscopes
based on the corresponding effect.

Chapter 2 is devoted to the detailed analysis of the stationary light scheme and the



coherent manipulation of stationary light. We first derive a self-consistent set of field
equations which describe the dynamics of electromagnetic fields in an EIT-media dressed
in a special way. The introduction of new set of variables, i. e. normal modes, leads to a
clearer representation of the ongoing dynamics. Absorption of one of the normal modes,
which is equivalent to the phenomenon of pulse matching, leads to a diffusive behavior
of the other mode. This dynamics is discussed in more detail. Finally by choosing an
appropriate dressing of the EIT-medium the stationary field can spatially be compressed.
All the analytical calculation are supported by numerical simulations.

The 3rd chapter is devoted to the detailed analysis of the proposed polariton based
Sagnac interferometer. In a first step we derive the relevant equations of motion in the
rotating frame. The conceptual basics of the gyroscopes are introduced afterwards. We
show that an enhancement of the interferometers sensitivity is only possible if the atoms
— matter part of the polariton — are initially prepared in a superfluid quantum state in a
ring-trap type configuration. Finally we derive the minimum detectable rotation rate at
the optimal operation point of the gyroscope by calculating the signal-to-noise ratio.

The last chapter originates form a joint experimental and theoretical project in the
,,Graduiertenkolleg 792: Ultrakurzzeitphysik und nichtlineare Optik”. Together with Dr.
F. Vewinger I was able to measure for the first time the transient dark state in the veloc-
ity selective coherent population trapping (VSCPT) scheme. The corresponding chapter
gives first an introduction into the concepts of VSCPT. In a second step we review the
theoretical concepts used later on for our numerical simulations. At the end of the chapter
the experimental and numerical results are compared.






Chapter 1

Introduction

1.1 Hamiltonian of quantum optics

In this thesis we consider the interaction of radiation with matter, either in the form of
optically dense ensembles of A-like 3-level atoms or of a beam of two level atoms. We
therefore introduce the concept of the interaction of quantized electromagnetic fields with
non-stationary atoms. We do this to establish the notation used later on and to give a brief
conceptual overview. To this end we introduce first the minimal coupling Hamiltonian
(see [17, 18] and references therein). To simplify the discussion we assume a very simple
atom model which is however sufficient for this thesis. Since we will treat the center-
of-mass motion of atoms quantum mechanically in chapter 3 and 4, we will show how
the initial minimal coupling Hamiltonian transforms to center-of-mass coordinates. For
convenience and later use we will derive the length or E-f-gauge form of the corresponding
Hamiltonian using the Power-Zienau-transformation. Last but not least, a brief derivation
of the Hamiltonian for stationary A-like 3-level atoms will be given. The interaction of
such atoms with electromagnetic fields is the major topic of this thesis.

1.1.1 Interaction of neutral atoms with electromagnetic fields
Transformation to center-of-mass coordinates

We will restrict ourselves within this thesis to the class of atoms with a single valence
electron, e. g. alkali atoms, since most relevant experiments in this field are conducted on
their basis [14, 19, 20]. Alkali-metal atoms can be treated fairly well in the one-electron
approximation with a heavy nuclei and an outer, much lighter valence electron. The elec-
tric charge of the core is in general screened by the inner electrons and the core therefore
possesses the screened charge . Let e be the electric charge of the electron with mass
me and position r.. The mass and position of the core shall be denoted by m. and t.
respectively.

In non-relativistic quantum theory the standard Hamiltonian that describes the inter-
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action between quantized electromagnetic fields and atoms is given by
H=H,+ H,, + H;. (1.1)

Here H, is the minimal coupling Hamiltonian that is responsible for the light-matter-
interaction, H,, is the part that stands for the atom-atom interaction and the last term
is the Hamiltonian of the free electromagnetic field. We will neglect the atom-atom
interaction due to collisions in this thesis. This is valid as long as the considered atomic
ensemble, which we assume to be gaseous, is sufficiently dilute. Collisions will be taken
into account only indirectly by including, if necessary, dephasing or decay rates into the
equations of motion for the atomic variables.

The minimal coupling Hamiltonian distinguishes itself from others by the invariance of
its corresponding Schrodinger equation under local gauge phase transformations [21, 22].
For the electron-core system it is given by

(Pc — qA(1))® | (Pe — eA(E.))?

_'_
2me 2me
where V. denotes the effective (screened) Coulomb potential between the outer valence
electron and the core. p. and p. are the canonical momenta corresponding to the elec-
tron and core position coordinates. In eq. (1.2) A denotes the vector potential. The
fundamental dynamical variables for the motion of electron and core obey the following
commutation relations

Ha = +V;30 (feyfc)a (12)

[Pais 5,5] = [Pavi» Ps,j] = 0, (1.3)
[Faiy Pl =1h0ap0:; with 4, j=x,y,2 and a,F =e,c. (1.4)

The free electromagnetic field is described in the Coulomb-gauge, i. e. V - A =0, and in
second quantization by the following Hamiltonian

N 2
m:@/&ﬂlgﬁﬁ
2 €0

with ¢ being the speed of light in vacuum and ¢, the dielectric constant. The subscript
1 denotes transversal vectors fields!. In the Coulomb-gauge the dynamical variables of
the system are A 1 and 11 = =-D L= eoatA 1. One determines the electric and magnetic
fields from these by E, = -9A, and B, =V x A,. The representation of the field
operators in terms of creation (dxe) and annihilation (a_) operators of the field modes

{k, €} are given in the Schrodinger picture by

*“ﬂVXAJ”T , (1.5)

A (r)= A( (r) + A( Z Ao [akeeelkr +af _ee ik'r] : (1.6)
B, (r)= E(f)(r) + E(J)(r) = Zié’wk [dkeee‘k'r - dLeee’ik'r] : (1.7)
ke

B.(r) =B ) +B ) =Y iB,, [dke(n x €)eT — al (k x e)e—ik*} . (18)

ke

!The vector field F(r) is a transversal field if V - F(r) = 0.
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where &, = +/fwi/2¢)V is the electric field per photon in the quantization volume V'
and we have A, =&, /wx and B, =&, /c. Ineq. (1.6) A(f) corresponds to the positive
and A(J) to the negative frequency part of the transverse vector potential. The notation
also hold for the electric and magnetic fields. For the polarization unit vector of the
electric field and the vector potential we have used the symbol € and k = k/|k| denotes
the normalized wave vector. In the following we will for notational simplicity omit the
subscript L. The equal time commutation relation for the vector components of the field
operators

Ai(r, 1), A, 0)| = [T, 0), 1,07, )| =0, (1.9)
[figjyt),fb(rﬂt)} —ihsh(r—v))  with ije{1,2,3}, (1.10)
can either be deduced from the commutator relation [dye, &Le,} = dee' Ok Of the creation

and annihilation operators or have to be postulated in the course of a canonical quanti-
zation. 6;5(R —1’) in eq. (1.10) denotes the transversal delta function [17].
In a first step we rewrite eq. (1.2) using the center-of-mass variables defined by

R = M, (1.11)
m

f’:mf{:mcfc+mef‘e:f)c+f)e, (1.12)

where m = m. + m, is the total mass of the atom and R and P is the center-of-mass
coordinate and the corresponding conjugate momentum. In addition one defines the
relative coordinate and momentum respectively,

P = — Fo, (1.13)
D dA AC Ae
p_¢_P P (1.14)

using the reduced mass p = meme/m. With these definitions the commutator relations
eq. (1.3,1.4) transform to

[71,75] = [pi, Bs] = [fialfij} = [fiapj} = [Riaﬁj] = [Rialfij} =0, and (1.15)
[fi;ﬁj] - [EI,PJ] = ih(SLj Wlth Z,j G {1,2,3} (116>

Substituting the inverse transformations of eqgs. (1.11-1.14), i. e.

t.=R - —1, (1.17) pe= —P —p, (1.19)
) TZL and nw; R
t. =R+ —r1, (1.18) p. = — P+ p, (1.20)
m m

into the minimal coupling Hamiltonian, eq. (1.2), one arrives, after applying the dipole
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approximation with respect to the exchange of transverse photons and using the commu-
tativity of P and p with A in the Coulomb gauge, at

P2 P’ gteion o (a e o

— X ARy P+ (L VAR b
2m+2,u m (R) +<me me) (R)-p

LS A v (1.21)
2 \me.  me s '

The dipole or long-wavelength approximation, used in the derivation of eq. (1.21), is ap-
plicable as long as the vector potential does not change significantly over the size of the
atom, i. e. if ag < A\, where aq is the radius of the corresponding atom and A\ the wave-
length of the transversal photon.

In this thesis we will only deal with electrically neutral atoms, hence the total charge
q + e is zero and the third term in eq. (1.21) vanishes. Eq. (1.21) together with the
additional term of the free electromagnetic field Hamiltonian and the atom—atom inter-
action contribution represent the full Hamiltonian of quantum optics for neutral atoms in
center-of-mass and relative variables. Using again the fact that we restrict ourselves to

neutral atoms we can simplify eq. (1.21) applying ¢ = —e (neutral atom) and
2 2 2
¢l E (1.22)
Me Mo J
°c 4 __ 9 (1.23)
Me  Me i
With the help of these relations we rewrite eq. (1.21) and find
H L AR)] + V(R 1.24
o= o o [P OAR)] LR ), (1.24)

Transformation to the length- or E - r-gauge

We note that not the vector potential but the electric field is the gauge invariant observ-
able. Hence, it is desirable to express the above Hamiltonian in terms of the latter. To go
from the Coulomb- to the length-gauge of the Hamiltonian (1.24) we apply the unitary
transformation [17]

i .

U = exp [—ﬁqf* : A(R)} . (1.25)

This transformation is called Power-Zienau transformation [23]. Applying U to the dy-
namical variables of the system leads to the following substitution rules:
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The rest of the variables remain invariant. Eq. (1.24) reads in the new gauge

D2 2
Hy = HS™ + HG = om T 5_,“ + Vee( R, ), (1.28)

where the prime denotes that this is a Hamiltonian with respect to the length gauge.
The distinction between relative and center-of-mass motion is given by the superscripts

(cen) and (rel). The transformation of the free electromagnetic field Hamiltonian is not
as straight forward. To this end we need to apply the following transformation rule [24]

2

e"°4BeA = B — a[A, B] + % [A,[A,B]] - ... (1.29)

and the commutator relations eq. (1.9) and (1.10). This leads to

Hf,:%’ / a3 [%Or)
o5 fers () smer

The first term is again the free electromagnetic field Hamiltonian, the second one is
the interaction Hamiltonian in dipole approximation and length-gauge. The last term
is the dipolar self energy that would lead to an infinite contribution and needs to be
renormalized. We will neglect it in the forthcoming because the renormalization leads to
constant energy shift which we assume to be absorbed into H, (rel) [25, 26].

TI(R)

€0

(1.30)

Hamiltonian for a A-like 3-level atom

Starting from the general results given in the last section we now want to derive a Hamil-
tonian for a simplified atom model with three relevant states in a A-type configuration
as shown in fig. 1.1. In a first step we assume that we can in principle find the spectral
decomposition of the Hamiltonian describing the relative motion of core and electron.
This means we can write

HD ZE V) (1.31)

where the v is an abbreviation for all relevant quantum numbers which are necessary to
specify the atomic states. Using eq. (1.25) and therefore eq. (1.30) we have restricted our
considerations to electric dipole transitions. This is sufficient for most of the applications
in quantum optics because it is the dominant type of transition occuring in nature. For
higher order multipole contributions see [17, 18]. The dipole interaction term in eq. (1.30)
may be identified with the polarization of the medium. The idea of polarization considers a
charge distribution, here the electron of the atom, with respect to a reference distribution,
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Figure 1.1: A A-type 3-level atomic system with the (meta)-stable levels |g) and |s) as
well as the excited unstable state |e). The two fields leading to dipole allowed transition
are called probe E, and control-field E.. Shown here is a resonant configuration between
electromagnetic fields and Bohr frequencies.

the core. In this thesis the main focus is on atomic ensembles. In the case of an ensemble
of N-atoms the polarization of the medium is

P(r) = Zaj S =Ry)=> > (duu,6u., +ha)dr—Ry), (1.32)

J=1 pj,v;

where d,,,, = (u|d;|lv) = e{u|r;|v) is the dipole moment of the j-th atom mediating
the transition |u) < [v) and 6,,,,, = |u;)(v;| are the corresponding single atom spin-flip
operators. The atom is assumed to be localized at R;. The expression after the second
equal sign corresponds to a representation of the polarization operator in the basis of
eigenstates of the Hamiltonian eq. (1.31). As can be seen from parity considerations
only two dipole allowed transition can exist in a A-like 3-level atom as shown in fig. 1.1.
The polarization of the system is, in the interaction picture with respect to the 3-level
Hamiltonian of eq. (1.31) and after a rotating wave approximation, given by

N
Py(r) = (degbege™' + deybese™ " +hoa.) 5(r — Ry). (1.33)

j=1
The Bohr frequencies used in eq. (1.33) are defined by w,, = w, — w,, where w, = E,, /h.

We assume that the dipoles are randomly distributed over the interaction region according
to the probability density

p(Ri Ra) =p(Ro) oo p(Ra) with [ @R p(Re.. Ra) = L (134)

By writing eq. (1.34) we assumed that the probability p(R;) to find a dipole at R; is
independent of the probability p(R;) to find an other dipole at R; (with ¢ # j). This
assumption is valid as long as the interaction between the dipoles is negligible and the
densityare of the sample is small enough such that local-field corrections are unimportant.
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The averaged polarization of a medium consisting of A-like 3-level atoms is then given by

P, (r) :/d3R1.../d3RNp(R1,...,RN)PA(r)
= p(r)N (degbeg€ " + desbese’ " + hoa) . (1.35)
We now assume that p(r) is a uniform distribution. Thus the probability density to
find a dipole at r is 1/V. Using eq. (1.35) and eq. (1.30) we can easily determine the

Hamiltonian for the interaction of A-like 3-level atoms with two electromagnetic fields. In
the interaction picture and after a rotating wave approximation we have

Hm:i/&%PMﬂ—ﬂ@)Z‘lf&rﬁww‘ﬁ@)

€0 €0

— _V d3r |:p a.egél(j‘)(r)e—i(w_weg)t + p/ &ESEE“F)(I.)e—i(Wc—WeS)t _|_ ha] 7 (136)

where p = d.4-€, and ¢ = d.,-€.. Here €, and €, are the unit vectors for the polarization
of the probe and control field respectively. The (near) resonant optical transitions |g) <
le) and |s) < |e) are mediated by the probe and control field with main carrier frequencies
w and w, respectively. The quantities IAE;JF) and ESP) denote the envelope functions of the
positive frequency parts of the corresponding fields. We will only consider strong classical
control-fields within the framework of this thesis, i. e. E, — (Ec), and therefore introduce

for notational simplicity the Rabi frequency of the control-field via 2, = ¢’ (E£+)) /h.

Equations of motion for electromagnetic fields

Before we discuss the special features of the interaction of electromagnetic fields with
A-type atoms of fig. 1.1, we will briefly summarize the equations of motion for electro-
magnetic fields in media with polarization P. By determining the Heisenberg equations
for the dynamical field variables {A, IT} we find

@ﬂmw:—%vaxAme (1.37)

0

DA, 1) = LTU(r 1) + ~P(r,1), (1.38)
€0 €0

where 11y denotes the free space permeability. From these equations we can derive the two
coupled Maxwell equations (without current density because we disregard free charges).
To this end we use B(r, ) = VxA(r, ) and the relation between the conjugate momentum
and the displacement operator in a dielectric medium consisting of neutral atoms given

by [15]

ﬂmw:—ﬁmw:—Fﬁ@@+P@@. (1.39)
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The two coupled Maxwell equations then read

. A 1. A 1 -
(9tE(r,t) = 02 V X B(I'7 t) — E—atPL(I'7t) <~ atD(r, t) = u—v X B(r, t), (140)
0 0

B(r,t) = =V x E_ (r,t). (1.41)

From this set of equations we obtain the wave-equation in dielectric media
A 1 ~
[af - CQA}E(r,t) — 9P (1) (1.42)
€o

In chapter 2 we will need a decomposition of the electromagnetic field in forward (+) and
backward propagating (—) components. To this end we make the following ansatz for the
positive frequency part of the electric field E™) and the polarization P*) or that of an
arbitrary vector field F(+)

PO = L pH (1.43)
with ]?‘(f)(r, t) = Fy(r,t) exp [—i(wt F kz)]. Using this ansatz we finally find the paraxial
wave equation

[at +cd, + ﬁm Eu(r,t) = — P, (r1). (1.44)

To derive eq. (1.44) we have applied the slowly-varying envelope approximation (SVEA)
[21], 1. e. we have assumed that the characteristic length scale L on which the field envelope
F changes is much larger than the optical wavelength A\ = 27 /k. Analog arguments were
applied to the time domain.

1.2 Electromagnetically induced transparency (EIT)
and slow-light

The concepts of electromagnetically induced transparency and slow-light can most easily
be understood in terms of of dark-state polaritons which we are using throughout this
thesis. Hence it is worth studying them briefly.

Using Electromagnetically Induced Transparency (EIT) a medium that is otherwise
optically thick, i. e. opaque, for a probe-field is rendered transparent by the appropriate
application of an additional control-field. It is based on the coherent preparation [27]
of 3-level type atoms as shown for example in fig. 1.2. It was first experimentally been
observed by Boller et al. [28] in Strontium. For the atoms to show EIT it is not necessary
to be in a A-like configuration, we will restrict, however, ourselves to this configuration.

The coherent preparation not only leads to the modification of the absorptive proper-
ties but also to very useful changes of the dispersive properties. The modified properties
of EIT-media can be used to generate pulses with a very small group velocity [29, 11], to
effectively control nonlinearities [30, 7] and for high precision magnetometry [31].
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Figure 1.2: A-type 3-level atomic system with the (meta)-stable levels |g) and |s) as
well as the excited state |e). The control-field is denoted by (2. and the signal field by
Q, = p(Ep> /h. A and § are one- and two-photon detuning respectively (see main text).
74 and 5 are the population decay rates of the excited state into the two lower levels and
7gs denotes the decay rate of the Raman coherence.

In general the interaction of light with atoms depends on the frequency of the incident
light field [21, 17]. If the frequency of the light field equals the Bohr frequency of a particu-
lar transition, a resonance condition occurs and is accompanied by a dispersive/dissipative
back-action of the medium on the radiation field. In the linear response limit, which we
are generally interested in, the back-action is described by the linear polarization of the
medium

P(z,w) = €0 [6,(w) — 1] E(2,w) = € [X'(w) +ix"(w)] E(z,w). (1.45)

Here ¢, is the relative electric permittivity and x’ and x” are the real and imaginary part
of the complex susceptibility x. The later determines the corresponding back-action [32].
In general we can safely ignore the magnetic properties of the atomic system. In most
cases the magnetic reponse is many orders of magnitude smaller than the electric one.
Hence, we set the magnetic permeability equal to unity. The next section will discuss EIT
by the examination of an idealized, homogeneously broadend 3-level A-system in detail.

1.2.1 The model system of EIT

Various ways exist to describe the phenomenon of EIT. In this section we analyze the
linear susceptibility derived from a density matrix ansatz based on the work of Imamoglu
and Harris [33]. To do so we examine a system consisting of A-type 3-level atoms as
indicated in fig. 1.2. For simplicity we assume that the only relevant mode in the electric
field expansion of eq. (1.7) is given by the resonance frequency w, hence we can define a
common coupling constant

© hw
= — . 1.4
9= 1\ 26V (1.46)
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With the help of this the interaction Hamiltonian eq. (1.36) is given, in a frame co-rotating
with the optical frequencies by

Hiy = — N/dgrh AUSS +(0+A)0ge + [Qfr, t)065+g5< )Ueg+ha]}
(1.47)

In the above Hamiltonian we have used a calligraphic symbol for the electric field opera-
tor. We changed the notation since the corresponding electric field is now a dimensionless
variable. The transformation to this new, scaled variables is straight forward. Finally
A = wes —w, as well as § = wyy — (w — w,) respresent the one-photon detuning of the
control-field as well as the two-photon detuning of probe- and control-field from the Ra-
man transition |g) < |s).

Under the assumption that the thermal occupancy of the relevant radiation field modes
is completely negligible, which is justified for optical frequencies [17], one finds the fol-
lowing equations of motion for the off-diagonal spin operators 4 and 6y

Gge = — (Yge + 1 (6 4+ A)) Gge — i gEH(1,8) (Gee — Ogg) + 1 Qu(x, 1)Ggs + Fye, (1.48)
5'93 = — (’ygs +1i0) Ggs — zgc‘f (r,t)Ges + 1 Qi (r, )age + ng (1.49)

These can be derived from the Hamiltonian (1.47) by calculating the Heisenberg-Langevin
equations. The F w are the Langevin noise forces corresponding to the decay rates 7,
34].

The transverse decay rate vy = (75+7s)/2+Vphase i determined by the radiative decay
rates v, and -y, on the transition |e) — |g) respectively |e) — |s) and a dephasing term
primarily due to collisions [35]. Since the transition |g) < |s) is not dipole allowed the
major contribution here is given by non-radiative dephasing mechanisms, like collisions
or fluctuations of external fields.

By treating the ratio of the collective Rabi frequency g(f:' ) of the probe field over the
Rabi frequency of the control field €. as a perturbation parameter we find, assuming that
initially all population is in state |g), i. e. 652) =1, in first order

&$—<m+w+w> )i g&,(x,t) + i Qu(r, )5 Y. (1.50)
o) = — (755 +10) 650 +iQ(xr,t)6lY. (1.51)

Within the present approach we keep all orders of the strong field 2., which coher-
ently couples the states |e) and |s), but treat the probe-field only in first order of the
above perturbation expansion. This is sufficient to derive the linear susceptibility [35].
If we additionally assume that the polarization of the ensemble of atoms is given by the
average polarization of each atom times the number of atoms N devided by the quan-
tization/interaction volume, i. e. P = pN Gg4e/V, then the susceptibility reads [30]

2N ¢? Vgs + 10
— . 1.52
N | P F TG T A)) (e +70) F [P (1.52)
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X x 2N@F/w ]

Figure 1.3: Real (solid line) and imaginary (dashed line) parts of the linear susceptibility

(in units of 2]\06—92 ) as a function of the normalized detuning /v, width Q. = 0.5, and
(a) ’ygs == 0 and A = O as Weu as (b) ’)/gs = 10_2’)/96 and A — 2,7ge .

To obtain eq. (1.52) we have solved the eqgs. (1.50-1.51) in steady state, i. e. we set all
time derivatives to zero. This assumes that the evolution of the atomic system is much
faster than the temporal change of the radiation field. Using the above equation one easily
finds the real (x’) and imaginary part (x”) of the complex susceptibility x = x’ +1x”

2N g Yos (A +0)7gs + 07ge) — 0(YgeVgs — (A +6) + |Qc‘2)
w (VgeYgs — O(A +0) +[Q2[*)2 + ((A + 0)7gs + 07ge)? ,
2N g Yoe (Vs + %) + Ygs el?

w  (YgeVgs — 6(A+6) + Q) + ((A + 5)795 + 5’79«3)2.

X (6,A) = (1.53)

X/I((S, A) —

(1.54)

The linear susceptibility, as shown in fig. 1.3, displays a number of the prominent features
of EIT. First of all one immediately recognizes that at two-photon resonance, § = 0, both
real and imaginary part of the susceptibility vanish in the limit of vanishing decay rate
of the Raman coherence 7,5 = 0. This is called the ideal limit since it is not realized in
nature.

However, even in the case 45 # 0, one obtains, for | /7,75 < Q2| < v4e, a very sharp
dip in the imaginary part of the susceptibility which corresponds to a dip in the absorption
spectrum. Its width Awy, is proportional to the intensity of the applied control-laser

field, Awy ~ |Q]?/7ge [37]. This sharp dip-like feature calls for a quantum interference
explanation rather than simple line splitting argumentation as is for example the case for
Autler-Townes splitting [2, 38]. The transparency obtained at two-photon resonance is

independent from the one-photon detuning of the control-field as we can see from fig. 1.3
(b). With increasing one-photon detuning, the absorption spectrum slowly turns into
that of a two-level system with an additional narrow Raman peak close to two-photon
resonance. The effective two-level system can be identified in fig. 1.3 (b) by its broad
Lorentzian lineshape in the imaginary part of the susceptibility and steep slope of the
real part. The spectrum of the real and imaginary part of the susceptibility are very
asymmetric in this case.

In general, due to external disturbances like atomic collisions, the Raman decay rate
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Figure 1.4: (a) Transmission spectra for an optical depth of the medium of OD =
L/L.s = 6 and for the two cases of figure 1.3 (solid line case (a) and dashed line case
(b)). (b) Refractive index as a function of the probe-field frequency for the parameters of
fig. 1.3 (a) (herew., = 0 without loss of generality is assumed).

does not vanish. However, even in this case most of the important properties of EIT
remain observable as long as the Rabi frequency of the coupling field satisfies [27]

|Q2)® > Ygevgs- (1.55)

Due to the resonance in the absorption spectrum the medium becomes transparent as we
can see by inspecting the properties of the intensity transmission coefficient T of the probe-
field. This coefficient is defined by T'(L,d) = I(L, )/ 1y, where Ij is the initial intensity of
the probe-beam before entering the cell containing the atomic ensemble and I(L, d) is the
intensity after passing through the cell of length L. Using the time-independent shortend
wave equation for the probe-field, i. e. 825',, = ikxffp and applying the definition of the
absorption length Laus = ¢,/ ¢*>N in absence of EIT, we find

T(5) = exp {—x"(6)kL} :exp{—f("(é) LL } (1.56)
abs

After the second equal sign of eq. (1.56) we have introduced the normalized susceptibility
X- It is defined by X = v,w(¢g?N)"*x. We use this definition because it most easily
allows to see that the exponent of eq. (1.56) is completely defined by the decay rates and
detunings as well the ratio L/L.ns. The latter is called optical depth. For the optically
dense media under consideration it is (much) bigger than unity [39, 36]. Eq. (1.56) was
used to create fig. 1.4 (a).

So let us discuss now fig. 1.4. In the case of non vanishing relaxation of the Raman
coherence the real part x’ of the complex susceptibility is still equal to zero but the imagi-
nary part x” in eq. (1.54) is proportional to v,s at two-photon resonance. Hence complete
transparency, T' = 1, is only obtained in the ideal case of a vanishing relaxation rate of
the corresponding coherence. In this case quantum interference completely suppresses
absorption at Raman resonance [10]. For a small detuning § the interference is no longer
perfect and the medium becomes absorbing. Thus, following the earlier argumentation
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about the sharpness of the absorption resonance, the transparency peak that appears in
the transmission spectrum is typically very narrow (see figure 1.4 (a)). The interference
turns more robust and the spectral width Awy, of the transparency window increases even
more the larger the Rabi frequency of the coupling field turns, i. e. the better condition
(1.55) is fullfilled. This property allows to increase the tolerance of EIT to two-photon
frequency mismatch. We note that the asymmetry of the susceptibility in fig. 1.3 (b) also
appears in the transmission spectrum.

Finally, we want to consider the dispersive properties of the dressed medium in order to
determine the group and phase velocity of the probe-field. To this end we calculate the
real part of the index of refraction using its definition n = n’ +1in” and its relation to the
permittivity [11, 12]

n? = (2, w)pr(2,w) 2 (2, w). (1.57)
We find the following set of equations

X =m)?—(n")? -1, (1.58)
X' =2n'n", (1.59)

that can be solved to give [21]

N2 11211/2 ny /2

n,:{[(1+X) +X2] +(1+X)} | (1.60)
N2 no11/2 ny /2

o {[(1 +xX)% +x 2] (1 +x)} sen(y"). (1.61)

In the ideal case of vanishing Raman dephasing the probe-field experiences at two-photon
resonance no absorption and a vanishing real susceptibility. Therefore the refractive index
n', shown in fig. 1.4 (b), is equal to unity. This implies that the phase velocity of the probe-
field in the medium is equal to that in vacuum. On the other hand, due to absorptive
interference and the symmetry of the states, the refractive index n’ has a large normal
dispersion, i. e. wdn/dw > 1, in the vicinity of the two-photon resonance. This leads via

C
Vgp = ————— 1.62
¥ontwdn (162)

to a very small group velocity v,. In addition there is no group velocity dispersion,
i. e. d’n/dw? = 0, which is essential for the formstable propagation of pulses in the
medium. A non-vanishing group velocity dispersion would lead to pulse distortion [29].
From the statements of this section we see that EIT-media are suitable for the distortion-
free slow-down of electromagnetic fields. This is one essential component necessary for
the construction of a quantum memory.
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1.2.2 Slow-light and its limitations

In this section we will show that even though the large frequency dispersion of EIT-media
|wdn/dw| > 1, can be used to slow down a field pulse to incredibly low group velocities,
of the order of 10 —10% m/s [13, 44, 14, 45, 46], this is not enough to construct an efficient
quantum memory [3]. To store photons or to manipulate them coherently would require a
non destructive storage and retrieval of the quantum state of a photon. In order to show
this deficiency we consider the propagation dynamics of a weak probe field in an atomic
ensemble of A-like atoms in more detail.

Weak probe-field limit and the adiabatic approximation

To discuss later on the limitations of slow-light we derive first the equation of motion for a
weak probe field in an EIT-medium. Furthermore we assume that the characteristic time
T in which the probe field respectively the control field changes is much longer than the
decay time of the optical coherence 7;61, i. e. we have Ty, > 1. To derive the equation
of motion of the probe field we solve the equations (1.50) and (1.51) for the optical and
spin coherence respectively

R g a4 1 0 i .

5 :—Q—s o [<8t+vge) &Y —Q—F } (1.63)
s — 1L (9 &) + Lp (1.64)
o T T \a Qo :

Substituting eq. (1.64) in eq. (1.63) and using furthermore that the interaction of a probe-
field pulse can be described using the shortened wave equation (1.44) with the polarization
of the medium given by P = g N &!(,?, we find the following set of equations

0 0\ » _gN [0 M\ A gN -
(82& + C(‘?z) Ep(z,t) = ({% + Vg5 ) Ogs(2,t) — o ng, (1.65)

(1) = ‘ﬁép“’” ~a @) e (@) o)

+ (570 (g Pe®) — ey o))
(1.66)

This set can be simplified considerably if we work in the adiabatic limit [17, 8, 9, 6]. By
introducing a normalized time 7 via 7 = t/T, where T is the characteristic time scale on
which the probe- as well the control-field changes we can expand the right hand side of
eq. (1.66) in powers of 1/T. This yields

) _ 9 i 10 i 10 50
JgS Q g Q |:<1_1a +7‘qe Ta +798 gs

10 i 1 . i 1 .
N =—=F,) - ——F,.|, 1.
+(T@ ”g)(ﬂzﬁg) o Tg} o
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A A

where we have used that (F),,(t)F,s3(t')) o< 6(7 — 7')/|T| holds in the Markov-limit. In
the lowest non-vanishing order of the perturbation expansion with respect to the small
parameter 1/T', we obtain from eq. (1.67)

Gos(2,1) = —Qcé’t)ép(z,t). (1.68)

To derive eq. (1.68) we have once more applied the EIT-condition (1.55). Substituting
eq. (1.68) into the field equation (1.65) yields the propagation equation of the quantized
probe-field

o 9\ 4 ?N (9 E(zt) -
— 4 c=— | &z t) = — — + s | % + Fr. 1.69
(at +C@z) WE0 =000 (at ”9) Q1) e (1.69)
The term proportional to 7,5 describes absorption of the probe field due to decay of the
ground state coherence. If we restrict ourselves to a timescale much shorter than 'y;b,l,

which we will do in the forthcoming, this term can be neglected. The operator F¢ is an
abbreviation for the Langevin force term corresponding to the decay of the probe field
operator. Its explicit representation is not of interest here. The shortened wave equation
(left hand side) together with the time derivate of the right hand side lead to slow-light
and light storage as we will show in the next sections.

Slow-light and its limits

The adiabatic approximation of the last section assumes that the dynamics in terms of
frequencies takes place within the narrow transparency window as shown in fig. 1.4 (a).
If the pulse is too short, or its spectrum too broad relative to the transparency width,
absorption and higher-order dispersion can not be neglected. To be more precise we
discuss once more the intensity transmission function of the medium. By assuming a
spatially homogeneous control-field, one finds that close to two-photon resonance, the
transmission function is given by

T(6,z) = exp {—k LIm[x(6)]} ~ exp {—6°/Awg, } (1.70)

where we have assumed that the probe-pulse traversed a medium of length L. The trans-
parency width

Q, 271/2 1 Q, 2
Awy = { c_[%] } I (1.71)
IVgeL Ngr V OD Vge
decreases with increasing group index which is given by [3]
2
g°N
and which is related to the group velocity of the probe field pulse by
‘ (1.73)

Vgp = .
gr
1+ ng
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The optical depth (opacity) of the medium is denoted by OD = L/L,ys, where Laps =
Yge/ 9N is the absorption length in absence of EIT. One notices from eq. (1.71) that
a reduction of the group velocity of the probe pulse leads to a decreasing transparency
width. We express the transparency width in terms of the probe-pulse delay time 7; =

(1/vge —1/¢)L = ny.L/c to find a more intuitive expression [29, 18, 19].The equation
1
Aw = VOD —. (1.74)
Td

states that an increasing delay time 7; implies a narrowing of the transparency window.
A narrow transparency window requires on the other hand long probe pulses. When the
group velocity is too small or in orther words the pulse delay time too long, the trans-
parency window becomes smaller than the spectral width of the pulse. In this case is the
adiabatic condition violated, and the medium absorbs the pulse. However, this line of
argumentation holds only if the spectral width of the pulse stays constant while propagat-
ing through the medium. This is the case if we consider a time independent control-field.
Unlike this does the time-dependent control-field case, discussed in section 1.3.3, allow a
simultaneous narrowing of the spectral pulse and the transmission transparency window
width.

To show that the spectral pulse width stays constant while the pulse is propagating
through the medium let us consider the propagation equation (1.69). For Q(z,t) = €(2)
one easily shows that the equation implies

{% + ugr(z)%} E,(2,1) =0, (1.75)

where the space dependence of the group velocity origins from the corresponding space
dependence of the control-field. By introducing new coordinates according to

z

1
T=t— [ dY , 1.76
/ Vgr (') ( )

0
¢ =2z, (1.77)

we can further simplify the propagation equation (1.75) and find

9

Seb6m) =0 (1.78)

The solution of the present Cauchy problem is

z

. A 1
= — 1. 1.
E(z,t) =&, |0, /dz oal?) (1.79)

Eq. (1.79) describes a pulse propagating with a spatially varying group velocity v,, and an
invariant temporal shape. Here £,(0,t") denotes the field entering the interaction region
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at z = 0. According to eq. (1.75) the slow down of the quantized probe-field in the
adiabatic limit is a lossless and linear process and hence all properties of the quantum
pulse are conserved. As explained in [21] the power-spectrum is given in terms of a two-
time correlation function of the corresponding radiation field. Under stationary conditions
the correlation function <<€'1I (t)€,(t")) only depends on the time difference 7 = ¢’ —t. Using
the solution (1.79) we see that the corresponding spectrum of the pulse is constant

S(z,w) = / dr(El ()&, (t — T))e ™™ = 5(0,w). (1.80)

In particular the spectral width of the probe pulse
Aw,(z) = Aw,(0) (1.81)

remains unchanged. Hence, in the case the probe field pulse is slowed down by a spatially
decreasing control field the spectral width of the pulse stays constant. However, the
reduction of the control field intensity also leads to a reduction of the transparency width
of the EIT-window as stated before. Sooner or later this leads to absorption of the field
pulse which makes slow-light as introduced here not usable for light-storage.

1.3 Storage of light in an optically dense medium

In section 1.2.2 we have already mentioned the existence of a remedy to cure the problems
of slow-light with respect to light storage. In the same section we argued that for EIT to
be effective in eliminating dissipation, the spectrum of the light pulse should lie within
the transparency window during the whole storage procedure. The essential limitation
of EIT as a storage mechanism in a quantum light memory is the inverse proportionality
between the spectral transmission width and the pulse delay time, eq. (1.74). Thus even if
the initial width of the pulse spectrum is smaller than the transmission width, the group
velocity reduction sooner or later leads to the absorption of the probe-pulse.

This problem can be cured using techniques similar to those used in stimulated Raman
adiabatic passage (STIRAP) [50]. To this end we assume that the control-field now
only depends on time and ignore its space-dependence. To include the latter does not
change the principle results but would make the presentation more involved. To solve
the propagation and later on the storage problem for a quantized probe-field we follow
M. Fleischhauer and M. D. Lukin [I, 3] and introduce a new set of variables. We will
see, that they can be identified with a new type of quasi-particles the so called bright-
and dark-state polaritons. Using the corresponding ansatz we will show that if the initial
spectral width of the probe pulse was smaller than the spectral width of the transmission
window it will be during the whole slow-down and storage process. This makes the present
approach suitable for the coherent storage of light.
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1.3.1 Definition of dark- and bright-state polaritons

To simplify the forthcoming considerations we assume a spatially homogeneous and real
control-field 2 = Q(t) = Q(¢)*. The equations of motion (1.65, 1.66) for the physically
relevant variables &, and 645 can be simplified by applying a unitary transformation

U(z,t) | | cos(t) —sind(t) E(z,t)
D(2, 1) ] B [ sinf(t) cos0(t) ] [ VNG (2, 1) ] ’ (1.82)

which defines a new pair of quantum fields. The mixing angle 6(¢) used in eq. (1.82) is
defined via the group index, i. e.
9°N

tan? (t) = 20 = Ng. (1.83)

For reasons which will become apparent later on we will call U dark-state and @ bright-
state polariton. We transform the equations of motion for the electric field and the
collective atomic spin variable using the inverse transformation of eq. (1.82) into field
equations for the new variables. After some algebra we finds

{%+ ¢ cos® H(t)%} U(z,t) = —%@(z,t} - Sinecosec%@(z,t) (1.84)
N sinf [ 0 0 . A .sinf -
O(2,t) = 2N (@ +'yge) (tan@a) (smé’\If — CoS 9@) + 1mFge, (1.85)

For the derivation of the above equations one has to keep in mind that the mixing angle
6 is now a function of time.

1.3.2 Dynamics in the adiabatic limit

Introducing the adiabaticity parameter ¢ = (gv/NT)~! with T being the same character-
istic time as of section 1.2.2, one expands the equations of motion (1.84) and (1.85) in
powers of €. In lowest order, i. e. in the adiabatic limit one finds

A

P(z,t) =0, (1.86)
and
8 2 8 a -
5% + ccos O(t)% U(z,t) =0. (1.87)

Using (1.86) we find furthermore in this limit

A~

Ey(2,t) = cos ()T (z,1), (1.88)
VNG (2, t) = —sin0(t)¥(z,1). (1.89)
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Eq. (1.87) describes a shape and quantum-state preserving propagation with an instanta-
neous group velocity given by v,,.(t) = ccos® 6(t). Applying the coordinate transformation

t

§=z— /vgr(T)dT, (1.90)
T =1, (1.91)

we find in analogy to section 1.2.2 a simple equation which can be integrated to solve the
initial value problem

t

U(z,t) =W Z—/Ugr(T)dT,O . (1.92)

Eq. (1.92) describes an amplitude and shape-preserving propagation of the dark-state
polariton which can be modified by changing the intensity of the control field in time.
We will use this results now to show that the polariton approach is suitable to achieve
a distortion-free storage of a light pulse in an optically dense EIT-medium. Before we
discuss this in more detail, we note that during the process of adiabatic slowing, the
spatial profile and, in particular, the length of the wavepacket (Al) remains unaffected,
as long as the group velocity is only a function of time. In other words,

Al = Alg. (1.93)

By inspecting equation (1.88) we see, that at the same time the amplitude of the field
gets reduced. In addition its temporal profile gets stretched due to the reduction of the
probe-pulse group velocity. The opposite happens when the group velocity is increased.
From egs. (1.88, 1.92) one finds

ép(z,t)_%g(%))ép - / ope(7)dT, 0 | | (1.94)

0

Determing with this the power-spectrum of the probe-field, we see that it now changes
during the propagation process and especially during the slow-down of the dark-state
polariton. Assuming that cosf changes only slow compared to the field amplitudes one

finds

cos® 0(t) w
S(z,w) = o2 0(0) S (O, m) : (1.95)

In particular, the spectral width narrows (broadens) according to

cos? 0(t)

Awy(t) ~ Awp(())m.

(1.96)
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Figure 1.5: Simultaneous narrowing of the transparency window (left) and probe-pulse
spectrum (right) in the case of a time-dependent variation of the group velocity vg,.

From eq. (1.71) we see that by reducing the group velocity the transparency window
decrease as well

cot? O(t)

Awy(t) = ot20(0)

Aw(0). (1.97)

Thus the ratio of the pulse and transparency width remains finite,

Aw,(t)  sin®6(t) Aw,(0)
Awi(t)  sin?6(0) Aw,(0)

(1.98)

In the practically relevant regime sin?#(t)/sin?0(0) is always close to unity since one
has to start with an already slowed probe-field pulse, i. e. v, < ¢ and sinf ~ 1. Thus
absorption can be prevented in the dynamical light-trapping method as long as the input
pulse spectrum lies within the transparency window,

Aw,y(0) < Awy, (0). (1.99)

The simultaneous reduction of the transparency window and the probe-pulse bandwidth
is illustrated in fig. 1.5.

In conclusion the simultaneous reduction of the width of the EIT transparency
window and the bandwidth of the probe-puls makes the present method applicable for
the coherent storage of a light pulses. Since the derived theory is valid also in the quantum
regime, i. e. eq. (1.87) is a linear operator equation, is it possible to store even single-
photon states in an ensemble of A-like 3-level atoms. In the next section we will discuss
the storage procedure in more detail. The state of a stored photonic excitation in an
atomic ensemble is the starting point of the considerations presented in chapter 2.

1.3.3 Coherent and adiabatic storage of photonic wave-packets

We start to describe the storage procedure based on the dark-state polaritons of the last
section in the Schrodinger picture, i. e. by considering the dark states of the present
system and show how they are connected to the former. Historically one understands
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under dark states superpostions of atomic states which are decoupled from the light-
matter interaction, i. e. they are eigenstates of the interaction Hamiltonian with vanishing
dipole moment. In this section we will see that they will turn out to be the actual storage
units of the considered quantum memory. In the case of a quantized probe field not
only one such state exists but a whole family of states into which the atoms are driven
[3, 1, 51, 52]. One of the these dark states is given by

n 1/2
RAEDS ( . ) (=sin0(t))™ (cos 0(1))" ™| (n. — m) ) ™), (1.100)

where [n*)) denotes the quantum field state with n photons in mode k and \sim)> is a
Dicke-like atomic state of the atomic ensemble containing m atoms in the Raman (spin)-

single atom state |s) [53, 35, 54]. These states are defined by
|S(O)> = |gl7g27"'7gN>7 (1101)
| N
i) = =" gr, i85 an) fulry), (1.102)
k \/N; J J
1 N
(2)
8 ) = —— B TP ) A r; r;), 1.103
|s1.7) IN(N —1) 7;7;1“11 b gn) fr(ri) fe(r;) ( )

where the f(r) are modefunctions for the k-th mode. The mode functions of the radiation
field form a orthonormal system, i. e.

Z Ji(r;) fir(rj) = Opper. (1.104)

To find a connection between this state description and the last section we consider a
plane-wave decomposition of dark- and bright-state polaritons, i. e.

U(z,t) =D y(t) e, (1.105)
O(z,t) =Y Dy(t)e*. (1.106)
k

Their equal time commutation relations read

N
~ AT 1 . .
[qfk, W], = b |cos? 0+ sin? O jzl(&;g — &), (1.107)
_ I 1 N 1
. » ) -
[Cbk, <I>k,_ = O g |Sin“ 6 + cos HN ;(aég —al)|, (1.108)
i 1 N T
[\Ifk, L] = desingeosd |1- - > (a), — ol (1.109)
i Jj=1 N




1.3. STORAGE OF LIGHT IN AN OPTICALLY DENSE MEDIUM 30

In the weak probe-field limit, i. e. if the number density of the photons in the initial
probe-field pulse is much smaller than the number density of atoms in the ensemble, they
reduce to those of bosonic quasi-particles, i. e.

[\i]k;lil]t/} = [(i)k7(i)l];’i| ~ 6k,k’ and [\i/k,(i)};,} ~ 0. (1110)

We have assumed again that all atoms have initially been prepared in state |g). In this
limit &gg ~ 1 and 67, ~ 0 is justified. Hence, we can associate bosonic quasi-particles
(polaritons) with these operators. Furthermore, one can verify that all the number states
created by \il,t are the dark-states mentioned above

Db = —= (1) 101, (1111)

where |0) denotes the field vacuum and n < N. This is the reason these quasi-particles are
called dark-state polaritons. Similarly one finds that the elementary excitations created
by Py correspond to the bright-states of the 3-level system.

For simplicity we consider in the forthcoming only a single-photon wavepacket in the
description of the storage procedure. The initial state of the probe-field is assumed to
be |1) = 3, &|1x) with |1;) = al|0), where the Fourier amplitudes & are normalized
according to Y, |&|*> = 1. Since the initial state of the ensemble is |s(?), the initial state
of the compound system of radiation field and atomic ensemble equals, for § = 0, to the
dark-state |Dy) = >, &|DYt). The limit § = 0, i. e. Q2 > ¢g>N, corresponds to the case of
electromagnetically induced transparency. The dark-state polariton has in this limit only
photonic character, i. e. it is given by U~ éfp and according to eq. (1.87) it propagates
with the speed of light in vacuum.

By adiabatically, continuously decreasing the control-field Rabi frequency to zero
we can change the character of the polariton from completely photonic into spin-like,
U = —V/N 04s- Thereby we reduce the velocity of the excitation to zero and transfer it
to an immobile Raman-coherence 6,,. The reduction of the control-field Rabi frequency
corresponds to a change of the mixing angle from # = 0 to § = 7/2 and rotates the
dark-state from

ID1(0 = 0)) = [1) @ [s?) — |Dy(0 = 7/2)) = ~|0) @ |s'V), (1.112)

i. e. the initial photon is mapped, using this adiabatic rotation, onto the collective spin
state [s(). Here we have defined in accordance with the single-photon definition |0) =
I1,,|05) and in addition we have introduced the multimode single-spin excitation by |s())) =
>k §k|3,(€1)>. Due to the linearity of eq. (1.87) the quantum state as well as the shape of
the dark-state polariton remains unchanged during the slow down and storage procedure.
Adiabatically increasing the control-field Rabi-frequency, i. e. to a value much bigger than
the collective Rabi-Frequency of the probe-field, Q? > ¢?N, allows us to reaccelerate the
polariton and to transfer the quantum state stored in the collective spin state |s") back
into its initial form of a single-photon wave packet.

The propagation of a dark-state polariton is plotted in fig. 1.7. The figure shows
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Figure 1.6: The group velocity is controlled externally via €2, according to véﬁr) =cx0.5x%
(1—tanh(0.1% (¢ —>50))) for the forward (4) and according to vl = cx0.5x(1 +tanh(0.1x
(t — 150))) for the backward direction (—). In (a) the solid (black) line corresponds to
the forward control-field and the dashed (red) line to the backward one. (b) and (c) show

respectively the corresponding mixing angles 6+ and group velocities USE).

storage of a forward (positive z-direction) propargating probe-field and its later read out
into the backward direction [55]. The adiabatic rotation of the mixing angle using the
time-dependent control-field is shown in figure 1.6. The essential point of the described
technique is not the storage of the energy or of the momentum carried by the photon but
the storage of its quantum state. Most part of the energy of the probe-field photon is
carried away by the control-field in the stimulated Raman scattering process. Only in the
case of energetically non-degenerated lower-levels does the medium absorb some energy.
However, we disregard in this section the influence of such processes. An extension of the
theory with respect to recoil transfer will be given in chapter 3. There the recoil transfer
will become a major ingredient of the proposal.

1.4 The Sagnac effect

As we have noted in the Outline, the second major topic of this thesis is connected to
the Sagnac effect. The third chapter shows that dark-state polaritons can be used to
increase the sensitivity of a Sagnac interferometer. As a preparation we will now give a
brief explanation of the Sagnac effect and derive the anticipated sensitivity limits for light
and matterwave Sagnac gyroscopes.

The Sagnac-effect is the rotation induced phase difference of two counter-propagating
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Figure 1.7: The plot shows the storage of a forward propagating light pulse and subsequent
read-out into the backward direction. Propagation of a dark-state polariton with Gaussian
envelope 107%/(v/2710) exp (—1/2 % (2 — 20)?/0?), where 0 = 10 and z = —60¢/(gv/'N).
In (a) the coherent amplitude of the dark-state polariton (¥) is shown. The electric
field amplitude (£,) as well as the Raman coherence component |(&,,)| are given in (b)
and (c) respectively. The time ¢ is given in units of gV/N and the position z in units of
¢/gvV'N. (W), (£,) and |(5,,)| are normalized with respect to their maximal value within
the integration interval. Since the atoms do not move the spin coherence is stationary in
space.

coherent waves in a rotating Mach-Zehnder interferometer. With the help of this effect it
is possible to determine the state of rotation of the local frame of reference by means of
an intrinsic measurement. Intrinsic means in this case that a reference to other frames,
as for example by optical means, is not allowed.

The Sagnac-effect was first measured by the German student F. Harres in 1911 in
his doctor thesis [76]. He unfortunately misinterpreted his excellent experimental results.
However, independently from Harres similar experiments were carried out by G. Sagnac
in 1913. In contrast to Harres, Sagnacs intention was to find the rotationally induced
shift of interference fringes. He already noted in his first publication that the phase shift
is proportional to the rotation rate €2 of the interferometer according to [57]

A-Q

AﬁbSagnaC = T; (1113)
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S, (t=0)

Figure 1.8: A simplified Sagnac configuration consisting of a ring-interferometer with two
beam splitters which either couple the waves into the interferometer (S;) or which are used
to couple the radiation and leads it to the detector unit (Sy). The beam co-propagating
with the interferometer needs longer (¢,) to arrive at the second beam splitter So as the
counter-propagating beam (¢_). Hence, there is a difference in arrival times At =¢, —¢_
between co- and counter-propagating beam. This corresponds to the Sagnac phase shift.

where A is the enclosed area in the Mach-Zehnder type interferometer, A the wavelength
and v phase velocity of the used wave phenomenon. Sagnac and Harres used light for their
measurements, however, as we will see later, the restriction to electromagnetic waves is
not necessary.

1.4.1 A brief explanation

In this section we want to give a classical, kinematical derivation of the Sagnac phase
shift eq. (1.113). To this end we consider the situation shown in fig. 1.8. The propagation
of coherent waves is assumed to be constrained to follow a circular path of radius R. We
calculate the time difference between clockwise (a) and counter-clockwise (b) circulation.
Let us consider now the situation from an inertial frame of reference. If the interferometer
is not rotating with respect to this frame, the time needed to traverse the semi circle is
t = wR/v, irrespectively whether the wave propagates clockwise or counter clockwise.
Hence, the arrival time difference between waves traveling from beam splitter S; to S, for
the two directions is zero. This leads to a vanishing phase difference.

This is however different, when we consider a rotating interferometer. Let us assume
that the beams leave the first beam splitter S; at ¢ = 0. The counter clockwise beam,
traveling in the opposite direction as the direction of rotation, meets the second beam
splitter Sy at t_, whereas the clockwise beam traveling in the same direction arrives at So
at t,. In the case the whole interferometer rotates with an angular velocity ) the time
for the counter-clockwise beam to go to S, is given by

(1.114)

v v

7R — QRt_ 7TR( RQ)‘1
_ 1_|__ ,

v
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since So moves in the semi-circle transit-time towards the first beam splitter S;. A similar
result holds for the clockwise beam

-1
p, =8 (1 - R—Q> , (1.115)

(% (%

however, it takes longer for the wave to catch-up with the beam splitter which moves away
from the approaching wave. The time difference between clockwise and counter-clockwise
beams is then given by

2 2\ ~! 2
Aty g 20mE ( (Q_R) ) L 20nR (1116)

V2 v 12

where the last approximate holds if QR < v, i. e. if we consider reasonable small radii.
This corresponds to a difference in (optical) path length of AL = vAt and hence to phase
shift of

4% R?Q)

A¢ = ALk =
¢ k SV

(1.117)
with respect to a considered wave with wavelength A = 27 /k. In this derivation we con-
sidered a ring configuration which can, however, be generalized to arbitrary interferometer
shapes [58]. From the considerations above we see that the Sagnac effect is based on the
rotationally induced difference in the (optical) path length. Furthermore, we see that the
derivation of the Sagnac formula does in principle not depend on the nature of the wave
phenomenon, i. e. whether one uses light or matterwaves. As we will see in the next sec-
tion this is different when we determine the sensitivity of Sagnac effect based gyroscopes.
Finally, we note that measuring a phase difference allows us, according to eq. (1.113), not
only to state that the local frame is rotating but also to determine the rate of rotation.
To this determination we will turn now.

1.4.2 Quantum limit of laser and matter-wave gyroscopes

In this section we derive the quantum limit of the minimal detectable rotation rate of
light and matterwave gyroscopes. In chapter 3 we will compare the results given here
with the result derived for the dark-state polariton based gyroscope. For the derivation
of the quantum limit we assume that the minimum detectable phase shift is given by the
shot noise limit [21]

1
v

where n is number of particles, either photons or atoms depending on the nature of the
considered interferometer. The number of quanta is given by the flux j of quanta hitting
the detector by jt,,, where t,, is the measurement time. In case of a laser gyroscope
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the flux is given by the power P divided by the photon energy Aw. Hence, by equating
eq. (1.117) and (1.118) we find the minimum detectable rotation rate to be

- h hw
Qllght _ 111
e Am, V' Pt,,’ ( 9)

where m., = hw/c? is the effective photon mass. If we, instead of a laser gyroscope, con-
sider a matterwave interferometer, we will have to substitute the wavelength in eq. (1.117)
by the de-Broglie wavelength Agg = i/muv of the atom. In this case the minimum de-
tectable rotation rate is given by

gt _ b1
2rAm A\ jtm

We note here that if the enclosed are A and the flux would be the same for laser and
matterwave gyroscope the matterwave gyroscopes would be more sensitive by a factor
m/m., = mc?/hw ~ 10 for typical laser wavelengths. However, these conditions can not
be fulfilled with state-of-the-art technologies. As we will show in chapter 3, it is to some
extend possible to use the superposition nature of the dark-state polaritons, i. e. that
they are a superposition of light and matterwaves, to have a sensitivity enhancement
of a dark-state polariton gyroscope as compared to conventional light and matterwave
gyroscopes.

(1.120)

min

1.4.3 Overview: state-of-the-art gyroscopes

For later comparison we finally state briefly the current sensitivity limits of Sagnac gyro-
scopes. But first we note that not all gyroscopes are based on the Sagnac effect. Other
physical principles can be used for rotation sensing, as are e. g. the Josephson effect in
superfluid *He and *He [59] or nuclear spin precession [60, 61]. Even mechanical gyro-
scopes which work quite well in low gravity environments are under discussion [62].

Gyroscopes based on the Sagnac effect have so far achieved a sensitivity of 2 x 10710
rad s~! Hz~'/? using a ring laser with an enclosed area of 1 m? [63] and 6 x 107'° rad s~
Hz~'/2 using an atomic interferometer with a path length of 2 m [(4] (a value for the area
was not given). Compact fiber-optic gyroscopes have a reported sensitivity of 2 x 1078
rad s~' Hz='/2 [61]. Even though the later are less sensitive they are very robust and are
used in commercial airplanes [65].
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Chapter 2

Coherent spatial control of
stationary light

2.1 Motivation

The success of quantum-information (QI) processing will strongly depend on the ability
to construct a scalable quantum network, i. e. a set-up capable of storing, transferring and
handling the units of quantum information (qubits). The various physical requirements
for such a network have been summarized by DiVincenzo [(6].

A number of systems are at present under investigation to achieve this goal, some of these

are for example: ion traps [07], nuclear magnetic resonance schemes (NMR) [658, 69, 70],
high-Q optical cavities [71, 72, 73] and superconducting quantum interference devices
(SQUIDs) [74]. To date none of these approaches fullfills all the requirements posed for

the construction of a complete and scalable quantum network. Among the various consid-
ered attempts we here consider one based upon photons as flying qubits, i. e. information
carriers, and atomic ensembles as storage and processing units. As stated in the introduc-
tion, a number of techniques for a reliable transfer of quantum information between light
and atomic ensembles have been proposed [1, 3, 75] and, in part, experimentally realized
over the last couple of years [19, 20, 76]. The first experimental demonstrations were
based upon classical fields. Only recently it was possible to demonstrate these storage
techniques on the single photon level [77, 78, 79].

Despite the progress in storage and transfer of single photons the implementation of an
information processing unit, i. e. a set of a high-fidelity, scalable quantum logic gates
with photonic qubits, is still challenging. At present two major directions are actively
explored. The first one is a probabilistic approach based on linear optical elements and
photodectors [30, 81, 82]. The non-linear dynamics necessary for quantum information
processing is here a part of the detection process. We are here however interested into the
second approach that aims at deterministic entanglement between pairs of single photons.
Due to the almost negligible interaction energy per photon, this turns out to be a very
difficult task since entanglement between photons requires a sufficiently strong non-linear
interaction between these [9, 10, 5]. We can only meet this requirement if we spatially

37
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confine the (photonic) excitation very tightly and use a sufficiently long interaction time.
This would, due to the locality of most interactions, lead to high enough interaction en-
ergy. Even for long-range interactions, as e. g. for the dipole-blockade scheme discussed
in [33], tight spatial confinement would be desirable [34, 85].

In the present chapter we will discuss a method to coherently and spatially manipulate
the shape of collective excitations of stationary pulses of light in atomic ensembles. This
method will allow us to increase the excitation density. The scheme to create stationary

pulses of light has been introduced by A. André and M. D. Lukin [/ 1, 8] and has in
addition been experimentally verified shortly afterwards by the same group [12]. Tt is
a combination of the earlier mentioned light-storage and retrieval technique [1, 27] with

techniques of Bragg reflection on absorptive periodic structures.

The procedure is to first store a light pulse by adiabatically rotating the corresponding
dark-state polariton, from a freely propagating electromagnetic field pulse, see fig. 2.2 (a),
into a stationary Raman coherence'. Stored in this coherence, the excitation is well pro-
tected from environmental influences for a rather long time. This is an essential feature
of a quantum memory. However, it makes the excitation also immobile and limits the
possibilities of spatial manipulation to the atomic degrees of freedom. Unless one actively
changes the spatial distribution of the atoms the only way to manipulate the spatial shape
of stored excitation is to partially convert it back to light but to keep it trapped in a spe-
cial kind of artificial high Q-cavity such that it does not leave the medium. To this end
Lukin et al. [12] used a weak retrieval field, created by two counter-propagating control
lasers forming a standing wave pattern, and created a quasi stationary pulse of light as
shown in fig. 2.1. The illumination by the two counter-propagating fields has several in-
teresting consequences: first of all, everywhere except for the nodes of the control-fields
the spin coherence is partially converted back into the probe-field. This leads to a pe-
riodic structure of the probe-field amplitude imprinted by the control-field. Second, the
control-field dresses the medium in such a way that the absorption of the probe-field is
suppressed again everywhere except at the nodes of the control-field. This results in a
sharply peaked, periodic modulation of the atomic absorption for the probe-field (see
fig. 2.1). Even if the retrieved photonic component is at all times very small, the process
renders the excitation sufficiently mobile to follow the profile of the retrieval lasers. It
provides a potential mechanism to manipulate and coherently control the spatial shape
of the excitation, using the external control-fields, while keeping most of its probability
amplitude in the well-protected collective spin coherence.

The chapter is organized as follows. First we state the fundamental equations of mo-
tion for this system. In particular we give the relevant equations in secular approximation
and in the weak probe field limit. Then we briefly introduce a new stationary light scheme
which circumvents the need of a secular approximation and adds some new freedom to
the system. Using the fundamental equations we derive a self-consistent set of equations
of motion for the forward and backward propagating probe fields in the adiabatic limit.
These are simplified by introducing a new set of normal modes. In the new representation

! The storage phase mentioned is in principle not necessary; adiabatically turning on the second control-
field while the probe-pulse is propagating through the EIT-medium is sufficient [87]. See also section 2.3
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Figure 2.1: The dashed dotted (blue) line is the envelope of the spin coherence in which
the information of the initial probe pulse is stored. The dashed line (black) corresponds
to the absorption profile for the probe-field due to the dressing of the medium by the
control-field standing wave. The solid line (red) represents the partially retrieved probe-

field.

we see that one of the normal modes is absorbed leading to pulse matching phenomenon
which we discuss in more detail. Subsequently we consider the configuration of spatially
homogeneous control fields. This topic can furthermore be divided into the two cases
of equal and unequal field intensities of the forward and backward propagating control
fields. The first case leads to the discussion of diffusion in the stationary light scheme and
the second to the introduction of a drift motion. Both phenomena turn out to be impor-
tant for the last part of the chapter the discussion of spatially nonhomogeneous control
fields. A special configuration of nonhomogeneous control fields can lead to effective forces
which counteract the diffusive spreading and can be used to compress the spatial probe
field distribution. At the end of the chapter we discuss the effectivity of this process.

2.2 The stationary light system

2.2.1 The absorptive stationary light scheme
Linear response of the dressed EIT-medium

Stationary light is created in a A-type 3-level medium with strong, counter-propagating
control-fields on the |e)—|s)-transition, having the same one-photon detuning A = we,—w,.
This configuration is shown in fig. 2.2 (b). The control-field dresses the medium in such a
way that the weak probe-field experiences EIT and travels with a reduced group veloctiy
through the medium. Furthermore we allow for a detuning § = w,y — (w — w,) from
the two-photon Raman transition |g) — |s). In the interaction picture and in a slowly
varying time frame as well as using the undepleted control-field approximation [3%] the
Hamiltonian of the system is given by

O — / Prh {Ad(rt) + (54 ) gy (r.1) + [2r. ) 50s(r.1) + ha |

Vv
np [E<+> (£,1) 6o (v, 1) + h.a.} } (2.1)
where g = £/ ;‘:T‘i is the atom-field coupling constant of the probe-field with the dipole

moment p and the quantization volume V. N is the number of atoms in this volume.
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|EL +E_|?

Figure 2.2: (a) Storage of light scheme for a probe pulse E., where the storage process is
mediated by adiabatically reducing the control-field Q, to zero. (b) Subsequent partial
regeneration of stationary probe light with counter-propagating components F. by ap-
plying two control-fields Q4 which form a standing wave. (c) The total field distribution
of the retrieved probe-field approaches due to a pulse matching phenomenon diffusively
(indicated by the red arrow) the control-field envelope.

For simplicity, and without loss of generality, we consider g to be real. To describe the
quantum properties of the medium we use collective atomic operators

N,
. 1l — .,
6 (r,1) = = D 67, (1), (2.2)
o

where the sum is taken over all atoms within a small but macroscopic volume containing
N, > 1 atoms around the position r [39]. The Ef{w are the single-atom spin-flip operators
at position r;. In the continuum limit, the collective operators obey the commutator
relation

[Gap(r, 1), 6, (x', )] = %5(1‘ — 1) (0p00u(r,) = Ov,00,5(r, 1)) - (2.3)

The equations of motion for these collective atomic operators are given by the Heisenberg-
Langevin equations [21]

06,,(r,t) . i, . .
T = () = 1 |G (r8), ()] + Fu(r,8). (2.4)
According to the dissipation-fluctuation theorem [21], that states that dissipation is al-

ways accompanied by fluctuation and visa versa, we had to add rapidly and randomly
fluctuating noise forces when including the transverse decay rates 7, into equation
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(2.4). Due to these forces the commutation relations for the collective atomic opera-
tors will stay preserved at all times [341]. In the Markovian limit, the first order corre-
lation function of the Langevin noise force Fw—operators are o-correlated, i. e. we have
(F(t)Fap(t))) = Dyagd(t — t'). Using the Einstein relations, which hold in the Marko-
vian limit, the diffusion coefficients D, 3 may be calculated from the drift constants of
the problem. The determination of the latter is possible at least perturbatively. Finally
the noise forces have to have a vanishing expectation value (F,,(t)) = 0. They do not
change the dynamics for the expectation values of the collective atomic operators [35].

Finally, we summarize the Heisenberg-Langevin equations for the Hamiltonian (2.1).
The corresponding equations for the diagonal elements of the spin operators are

5gg = YggOce — 19 [E(Jr)( )Geg — EA(_)(r,t)&ge} + Fgg(r,t), (2.5)
b = Vason + i[Q*(r, )6 — Q(r, t)&es} B (r 1), (2.6)

&ee = - [ng + ’758] &ee + 1|:Q(I', t>a-es - Q*<I', t)a'sei|
+ig [EH) (£,)60s — B, )age] + R (r,t), (2.7)
and the ones for the collective coherence operators are

Ggo = — [((8 4 A) + Vo] Gge — 1gET)(1,1) [Gee — Ogg] + 1T, 1)Ggs + Foe(r, ),  (2.8)
5gs = —[10 4 Vgs] s — 1gE( )( 1)Ges + 127 (r, 1) 0ge + ng( t), (2.9)
é'se = [1 A + W/se] Ose + lgE( )( )Usg IQ(I‘, ) [Uee - USS] + FS@( ) (21())

In our approach we assume that the transverse decay rates are given by v, = (749 +
Vss)/2 = Yse, wWhere the ~,,, with p € {g,s}, are the population decay rates of the
le) — |u)-transitions.

Since we are interested only in the linear response we treat eqgs. (2.5-2.10) perturba-
tively in the probe-field. By assuming that the collective Rabi frequency of the probe-field
is much smaller than the control-field Rabi frequency, and the number of photons in the
probe-field is much smaller than the number of atoms N in the quantization volume [18],
such a perturbation is justified, and we find in first order

DG ge = —(Yge + (A + 0))Gge +igED (1, 1) + 16,45 + Eye, (2.11)
NG gs = —(Ygs +10)Fgs + 106 g0 + Eye. (2.12)

To derive (2.11) and (2.12) we have assumed that the medium was initially prepared in
the ground state |g), i. e. 04y 22 1 > 0., 055. In order to describe a standing control field
wave we make the following ansatz

Qr, t) = Qe 4 Q_e ez, (2.13)

We also decompose the signal field into forward (+) and backward (—) propagating spa-
tially slowly varying variables

A

EM(r,t) = E,(r,t)e* + E_(r,t) e 7. (2.14)
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Furthermore, we assume that the polarization P = N p &, of the |g) < |e)-transition,
and hence the collective operator ¢, follows the behavior of the probe-field and can be
decomposed in the same way. After introducing all these decompositions into the equa-
tions of motion of the collective atomic operators we can perform a secular approximation,
i. e. we neglect fast oscillating terms of the form exp(j:ichz) or exp(—i(k + kc)z) By
introducing the following transformations

Ei(r,t) = Ex(r, t)etdF, (2.15)
Gge(r,t) = 655 (x, 1) 4 600 (r, )e 744, (2.16)

with Ak = k. — k = Aw/c, we finally find

0,565 = —[i(0 + A) + 7o) 615 + ig€s + 10, (2.17)
Ougs = — [10 4 7gs] Gs +1 (105 + Q255)) . (2.18)

In addition we note that the propagation equations for the probe modes of the plus (+)
and minus (—) direction are given in this case, in paraxial approximation, by

(at +ch. + ﬁm) i = —iAwés +igN6(H. (2.19)

Egs. (2.17-2.19) are the starting point for the derivation of a self-consistent set of equations
for the two probe-field modes in the linear response regime of our model medium of A-type
3-level atoms. Before we go on to discuss the probe field dynamics in such a stationary
light configuration we first introduce a new stationary light scheme which does not require
a secular approximation and provides some additional degrees of freedom which may be
useful in practical applications.

2.2.2 The 2V-scheme for stationary light

In this section we introduce a new scheme that also shows the phenomenon of stationary
light. Let us consider to counter-propagating control-fields in a ¢ — o~ -configuration as
shown in fig. 2.3. Furthermore, we assume that also the probe-fields are in a corresponding
configuration. In contrast to the scheme by A. André and M. D. Lukin [l 1, 12] the
considered configuration is not based on the Bragg scattering from the spatially periodic
absorption maxima. In the present case the interaction Hamiltonian in a frame co-rotating
with the optical frequencies is given by

N O O
Hy = =7 [ dr h{(A+ + AN, + (A + A5+

+ (0460 + Q60+ ha] + [EF6,,  + EPG, 4 hal }
(2.20)

Using eq. (2.4) we can again determine the Heisenberg-Langevin equations for the col-
lective spin operator. These are very similar to the earlier equations, however, they
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Figure 2.3: Sketch of the 2V-coupling scheme exhibiting stationary light. The figure
displays the one- and two-photons resonance.

incooperate a few more terms. Therefore, we give them here explicitly. The equations for
the diagonal terms read

3gg = Vgt Ociey + Vg-Oc o — [E(H( t)0e,g + EY )< t)6e_g — h. a} Fgg(ra t),
(2.21)
O = Yot Feser + Voo 1|V, 000, + (1,000 — ha| + Fiu(r 1),
(2.22)
é-eiei = - |:7g:|: + f)/s:t] a'eiei + i|:Q:|:(I', t)a-eis - Qi(r, t)&seii|
tig [ (0,000 — BE) (00600 | + Fraes (0,1), (2.23)
and the ones for the coherence operators are
6%61 = - [i(Aﬂ: + A(C))i + 'Vgei] Oges — igE(i+) (I‘,t) [&eiei - 6gg]
Q4 (1, 1) — ig B (0, 8)Fepen Fye(r, 1), (2.24)
3gs = —YgsOgs — 1gE(+)( t)0e,s — 1gE( )( t)0e_s
+ I (1, 1) Fge, + 107 (v, )50 + Fys(r, 1), (2.25)
&sei = - [1 (A:I: + Ai + ’Yse:| é-sei + lgE(i )( )Usg iQ:I:(r7t) [5—eiei - a-ss}
— Q50 es + Fue (r,1), (2.26)
Gere. == [i((Ar = A+ (AY = AD) 30 ] e
+i0 6o, — i 60 +igE 6., —igE 6., (2.27)

In the weak-probe field limit we can treat these equations perturbatively. By assuming
that initially all population is in the ground state, i. e. 6,y = 1 and 6, = 0 for the rest, we
find in first order a set of six equations. However, we immediately see that these separate
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into two sets of three equations respectively. We only note here the ones relevant for us

6-%9:!: == I(Aﬂ: + AEE)) + 'Vgei] a-gezl: + lgE(i+) (I', t)N + iQ:I:(r7 t)‘3gs + Fge(ru t)7
(2.28)
o = —VYasOgs + 1V (0, )0, + 10" (1,)Fge + Fys(r, t). (2.29)

For simplicity we have omitted the superscripts denoting the perturbation order. We note
that these equations are formally identical to eq. (2.17) and (2.18) for the A-scheme. The
difference here is that no secular approximation was necessary and that the single-photon
detunings A, can now be different for the forward and backward direction.

2.2.3 Self-consistent probe-field equations
Effective field equations in the adiabatic limit

In this section we use the Heisenberg-Langevin equations and the shortened wave equation
as found in section 2.2.1 to derive a self-consistent set for the weak forward and backward
propagating probe fields. Using this we will discuss the probe field dynamics for a few
control-field configurations. To this end, we note that the decay rate -y, of the optical
transition |g) — |e) is in general much larger than the decay rate of the Raman coherence,
therefore we may adiabatically eliminate the first [21]. In an intuitive picture this means
that the temporal evolution of the optical coherence happens on a much shorter time scale
than that of the Raman coherence. Furthermore we assume that this also holds for the
characteristic time of the dynamics of the probe and control-field. Hence, we can set the
time derivative of 6;? in eq. 2.17 equal to zero and obtain

~A(£) lgg:t + i&-Z:I:a-gs

= ) 2.30

75 T i A) Yo (2.30)
Using this result as well as the definition of the total control-field Rabi frequency

O = |0, 2 + 02 2:31)

we can eliminate the polarization of probe-field from the atomic dynamics. To do this we
substitute eq. (2.30) into eq. (2.18). Solving the resulting equation for the spin coherence
we find

GELQE +E ) + (10 + A) + 7Yge) Di0gs
(10 + 7gs) (I(0 + A) + 7ge) + |2

(2.32)

Ogs = —

Equations (2.30) and (2.32) describe the dynamics of the spin coherence adiabatically
followed by the optical coherence. In order to find a self-consistent set of equations for the
probe-field amplitudes alone, we perform a perturbation expansion based on the temporal
change of the spin coherence. To this end, we introduce a normalized time ¢ = ¢/T', where
T is the characteristic time for the changes of the Raman coherence 6,5. By expanding
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the right-hand side of eq. (2.32) in terms of 1/7" we can ignore in zeroth order the time
derivative of the coherence. If we would expand the above equation only up to this order
we would, however, neglect all interesting effects we want to study. The approximation
would mean that the characteristic probe pulse time and hence the characteristic time
of change of the Raman coherence is much larger than the time the probe pulse needs
to transverse the medium. Hence, it would not allow for a finite group velocity of the
considered probe pulse. To include the group velocity, we will have to expand the series
up to first order. Using the abbreviations

Fge =1(0 + A) + Ve, (2.33)
Fos =10 + g5, (2.34)

and I'? = I'yI'ss we find up to first order

5 I e * Qj— 2 Q*-‘r
Ogs = 9+ LPZ GRE (atm “rEy e ) Ty rm?}

A [ge O* a*
T 9é- [( e (at T |9|28t' ')‘mwmz}
F *

Here we have allowed for a possible explicit time-dependence of the control-fields. Finally
we substitute this expression into the optical coherence (2.30) and subsequently into the
paraxial wave equation for the (+)- and (—)-modes of the probe-field. After some algebra

we find

<at + D, + AL) £ — —iAwé,

2ik

N [ [94]? Ep — QOLEL _¢°N 2 ¢
Ty 2+ [ Tpe \I24]0Q2) 7"

2 *
9N ; L .0 ; L L0
_ (F2 + |Q|2)2 <5+ |:Q:tatQ+ + |§—;|28t|Q|2:| —|—5, {Qi(?tﬂ — mat’QP
2
N A R
- (ngwﬁi (Qiat& + Q”L&&) : (2.36)

In the following we will summarize conditions, which are well justified for EIT-systems,
that we are going to use to simplify the system of equations (2.36) for the forward and
backward propagating modes &...

Simplifying conditions

To further simplify the above expressions, the following assumptions are made:

Vs Vge < |QI, (2.37)
5(6+A) < Q. (2.38)
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Figure 2.4: Contour plot of the imaginary part of the susceptibility x’ as a function
of the one-photon detuning of the control-field from the excited state and of the two-
photon detuning of the probe and control-fields from the Raman transition. Dark area
corresponds to high absorption and white area to low absorption. The transparency
window at two-photon resonance, 6 = 0, is clearly visible. Parameters for the plot:
Q = 0.654 and 7,5 = 10720

Both conditions are necessary to achieve EIT [27]. The first one states that the time to
establish EIT, 1. e. 74 /|Q|?, should be much shorter than the decoherence time ;' of the
Raman coherence. The interpretation of the second relation is also straight forward; it
says, that the dynamical Stark shift |Q2|2/(§+A) of the excited state should be much larger
than a possible two-photon detuning ¢ [27]. The second condition can also be understood
in the dark- and bright-state basis. The coupling of the dark-state to the bright-state of
the 3-level A-system under consideration, is either proportional to non-adiabatic processes
or to a finite two-photon detuning §. The latter is negligible as long as |5 < |Q*/]A|
[90]. If the two-photon detuning is to large, i. e. larger than the narrow EIT-transparency
window, the probe-field is being absorbed as shown in fig. 2.4. In addition we want to
make the following approximation

1 1

T+ 0P ~ Jof 2
which holds if

0Yge < |Q7, and Ay, < Q)7 (2.40)
where we have used that in general v,, < v, [39]. These conditions can be understood

in a similar fashion as the conditions above. They lead to a restriction of the possible
operation time. The most serious condition is eq. (2.37) since the others can by fulfilled
by choosing one- and two-photon resonance. As we will see later, we will have to slightly
violate the exact two-photon resonance condition because of a phase matching which
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has to be fulfilled. This does, however, not lead to a violation of the above conditions.
To summarize this section: the entire dynamics has to take place, as in the standard
slow-light and light storage experiments, within the EIT-window shown in fig. 2.4.

Introduction of mixing angles

Based on this approximations we can simplify (2.36) and obtain

c 4 . 5
<8t + co, + ﬂAL> Er = —1AwéL

PN [19:262 = Er\ AN 4
- - nggzl:
€2 e €2

g°N * QiQJr 2 5 L 0207 2
|Q|4 (5+ {Qiﬁtﬁ P ———0;|Q] } +E- {Qi(‘?tQ_ P 8t|Q| ])
2
g N * 5 *
ot <Q+(9t€+ + Q_@t€_> . (2.41)
This result suggest the introduction of the following mixing angles
2 2
.2 g°N 1€2]
sin“ g = gzN——|—|52|2 and COS 0 = m7 (242>
as well as
Q_|? QL )?
sin ¢ = ||Q||2 and cos® p = ||Q+||2 : (2.43)

For simplicity we choose the Rabi frequencies of the control-fields to be real, i. e. Q4 =
Q.. Using furthermore the expression vy, = ccos? f as an abbreviation, we find

<8t + Vg0, + ;;;AL> (‘f+ = — (iAw cos® f + [ sin? 0) é’+

2
—sin?f—sinp (sin p&yL —cosp 5_)
[ye

— sin” fsin ¢ (cos 09 & —singp c‘f+>

2 2| e CoS ¢ 5 sin
sin” f cos ¢ 2 [5+8t< q >+5_8t( q )} (2.44)

and
<6’ Vgr D, + 5 /{;A ) E = — (iAw cos® O + [gs sin? 9) c‘:’+

2

Q
+ sin% 46
ge

Cos ¢ <sin %) c‘ir — CoS gl)
+ sin?  cos ¢ (cos 0 E_ —sing é+>

. . 4 Cos 5 sin
— sin® @ sin ¢ [5+8t ( Qg@) +E_0, < Q@)] . (2.45)
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As we will see later on is vg, not the true group velocity of the field modes. However, for
convenience we will stick to this definition since it is the definition for the group velocity
in the case of standard slow-light [I, 3, 27]. The structure of the above equations suggests
the introducution of a new set of normal modes. We will see in the next section that this
will turn them into a more transparent form.

2.2.4 Normal modes

In order to approximately decouple the field equations we introduce the following normal
modes

E | _ cosp  sing & | (2.46)
Ep —sinp cosy E
Using the unitary transformation (2.46) we define a new pair of normal modes which we
will term sum- (€s) and difference-mode (€p). In the new representation we find the
following set of differential equations
<8t + Vg COS 200 0, + ;,—gleL) é’g = — (9 tanf + iAw cos® 0 + [gs sin? 9) é'g
i
+ ((,b cos? 0 + Ugy SIN 2¢0 az) Ep
+ Ugrp (sin 20 Eg + cos 2 (‘:’D> : (2.47)

and

c A . 0? A
<8t —ccos2¢ 0, + ﬂA¢> Ep =— [1Aw + (ng + F_ge> tan? 6] Ep

— (¢ — csin2p8.) Eg
+cy (cos 20 &g — sin 2 £D> . (2.48)

We have taken into account here that the mixing angles # and ¢ can depened on both
space and time. For simplicity we have neglected the transversal dependence of the
mixing angles. The dot denotes, as usual, the derivative with respect to time and the
prime denotes the derivative with respect to the z-coordinate. In eq. (2.47) we have used
sin? 0 9, In Q = — tan 09,0 which we find by differentiation of tan é(z,t) = gv/N/Q(z,t).

Equations (2.47) and (2.48) are the first major result of this chapter. We will give
now a brief discussions of the occuring terms. The above equations are a set of coupled
first order (in z and t), linear differential equations. The second term of each left-hand
side is the group velocity of the corresponding normal mode. It is remarkable that both
group velocities can be altered using the external control-fields via the factor

Q% (z,t) — Q2 (2,t)
D2 (2,t) + Q2 (2, 1)

cos2p(z,t) = (2.49)
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This additional factor in the group velocity of the sum- and difference-mode is a signature
of the phenomenon of stationary light [12, 11]. The first line on the right hand side of
each equation describes a phase shift of the fields due to a wavevector mismatch and due
to detuning or correspondingly the fields’ absorption. By appropriately choosing one-
and two-photon detuning we can avoid this phase shift. As long as the decay rate of the
Raman coherence is not negligible, absorption always occurs.

A non-vanishing time derivative of the mixing angle ¢ describes non-adiabatic coupling
between the normal modes. In a first approach we will neglect this coupling. The second
expressions in the same brackets will turn out to be the most important ones for the
forthcoming sections and include a number of phenomena such as diffusion and spatial
compression of the fields. The last line of each equation shows that cross-coupling between
the normal modes occurs as long as the spatial change of the control-fields is not negligible.
We see that the set of equations decouples if, and only if, the external control-fields do
not change in space and time and one of the two control-fields is zero, i. e. sin2¢ = 0.

This is the earlier studied case of slow light which we will not consider here [1]. Before
we proceed we apply to the above set of equations the phase matching condition
§ = —Awcot’0 = —AkcQ?/(g*N) (2.50)

and neglect for simplicity the transversal derivatives , which simplifies the equations to
(0 + vgr 08200 0,) Eg = — (9 tan 0 + g sin® 9) Es
+ (gb cos®f + Vgy SIN 20 82) ép
+ Vg’ (sin 20 Eg + cos 2p c‘fD> : (2.51)

and

2
(0p — ccos2¢pd,)Ep = — {(%S + 1{2—) tan? 8} Ep

ge

— (¢ — csin2p8.) Es
+cy (cos 20 Eg — sin 2g0<‘:’D> . (2.52)
In the case of a small group-velocity, i. e. if vy, < ¢, the phase matching condition (2.50)

does not lead to a violation of the EIT condition eq. (2.38) and hence the probe-field will
not be absorbed. This is since

5= —Awcot?’f = —Aw—F— ~ —ALE (2.53)

i. e. the two-photon detuning can be chosen arbitrarily small in the small group veloctiy
regime. The condition can easily be accomplished experimentally [35] and leads in ad-
dition to a transversal guiding of the probe-fields as explained in [36]. Since we do not
take transversal effects into account, we will here not discuss this issue any further. For
simplicity we will drop the terms proportional to d,p and 9;0. We will cosider them in
section 2.5.2 where we take nonadiabatic corrections into account. To make the discussion
in the next sections more transparent we will also set the Raman coherence decay rate

Vgs = 0.
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2.2.5 Pulse matching and adiabatic elimination
Pulse matching

When considering the set of equations (2.51) and (2.52) one makes the following ob-

servations: In the case of a non-vanishing Raman decay rate v,, both normal modes are

absorbed. Even in the non-realistic limiting case of 7, = 0, one recognizes from eq. (2.52)

that the difference mode is strongly absorbed with a rate
02 g*N

— tan® 6 =
T, VT T

(2.54)

ge

As a consequence the amplitudes of the retrieved fields approach a configuration where
the difference mode vanishes, i. e. £p — 0, which means that the probe-field amplitudes
match those of the control-fields

& Q
g—ir — cot p = Q—J: (2.55)
The phenomenon of shape matching of pulses is well known for EIT systems and was
observed first by Harris [91]. One may understand eq. (2.55) by considering the semi-
classical version, i. e. classical field and quantized atom, of the model considered here. In
this case the dark-state is given by

Qclg) — Qpls)

where (2. and (2, are the Rabi frequencies of the control and probe-fields respectively. In
our four-wave mixing scheme the dark-state (2.56) is either established by €2, + and €2, 1 or
by its backward propagating counterpart. One immediately verifies that these two dark-
states |DS.) and |DS_) coincide if the fields fulfill eq. (2.55), 1. e. €, 4/, - = Qe 4 /Qe -
[92]. Hence, coupling of the forward and backward propagating modes via the common
dark-state leads to pulse matching of the participating fields. In our case due to phase-
matching and due to the Doppler-freeness this pair is given either by Q;r and QF or by
the backward propagating couple. It should be noted that even if the ratio of the control-
field envelopes is spatially constant but not equal to unity the difference mode will be
generated out of the sum mode until the latter is constant in space. This is the coupling
mentioned above, which will give rise to a slow spatio-temporal evolution.

IDS) = (2.56)

Adiabatic elimination of the difference mode

Before discussing several control-field configurations we will adiabatically eliminate the
difference mode in the set of egs. (2.51) and (2.52). To this end we introduce the charac-
teristic time T of changes and length Lp of changes inside the medium for the difference
mode. In the limit of |Tye|/¢*?NTp < 1 and |Tye|c/g? NLp < 1 we can negelect the left
hand side of eq. (2.52). If we furthermore assume that the control-field changes sufficiently
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slow in space such that c|¢/||T,e|/¢*N < 1, we can also drop the term proportional to
the difference mode in the last bracket on the right hand side of eq. (2.52). Using this we
find

En(zt) = 5;]5 [ cos(20) + sin(20)0.] E5(=.1). (2.57)
To gain a simple physical understanding of these assumptions we consider the case of one-
and two-photon resonance, i. e. A = § = 0. In this case the first of the above conditions
simplifies to Laps < ¢T and the second one to Lans/L < 1, where Laps = ¢yge/9g? N is the
absorption length of the probe-field in absence of EIT. Hence, the first condition states
that the absorption length should be much less the typical vacuum-pulse length and the
second one that the optical density of the medium OD = L/L,s should be much larger
than unity. Since we consider optically thick media, the second condition is fulfilled by
definition. To give some judgement about the first condition we consider the light storage
experiments. In this case the typical length of the light pulse is on the order of some
kilometer due to the requirement, that the pulse spectrum has to fit initially into the
EIT-window. The absorption length on the other hand is on the order of some millimeter
for optically thick media. Thus the first condition is also satisfied. In the case of one- and
two-photon resonance eq. (2.57) reads

Ep(z,1) = Laps | ¢’ cos(2¢) + sin(Q@)az] Es(z,1). (2.58)

2.3 Spatially homogeneous retrieval beams

Within this subsection we will restrict ourselves to the discussion of spatially homogeneous
and time independent retrieval beams, which means that ¢ = 0 and ¢’ = 0. Furthermore
we set the Raman coherence decay rate to zero, which means that all the process happen
on a time scale which is much shorter than 7;. The field configuration to realize the
spatial homogeneous case is given by paraxial laser beams with a negligible curvature of
the phase fronts, i. e. we work in the plain wave regime. In this case the propagation
equations for the sum and difference mode simplify to

(8; + vgr 08 20 0,) Eg = Vg 5in 20 D.Ep, (2.59)

and
9°N

- Ep +csin200, Es. (2.60)

(Op — ccos2¢d,) Ep=—

ge

2.3.1 Equal control-field amplitudes

Within this section we want to study the case of equal control-field intensities. This
amounts to

cos 2¢ =0, (2.61)
sin 2p =1, (2.62)
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and hence the set of equations for the sum and difference mode simplify to

0Es = vy 0.Ep, (2.63)
2
R N - o
0p = —gr Ep+cd. Es. (2.64)

ge

One immediately realizes that this choice of control-fields leads to a vanishing of the
group velocity terms in the propagation equations. The dressing of the medium changes
the propagation properties in a very drastic way, as we will see now.

Telegraph equation in a dielectric medium

In order to find a deeper understanding of the field dynamics we rewrite in a first step
the above set of field equations (2.63) and (2.64) into a second order partial differential
equation. One can easily verify that the equation holds for both the sum and the difference
mode. The calculation results in

A 1 1
02E(z,t) = 0 +
CUgy UgrLabs

8t]<‘f(z, ). (2.65)

Eq. (2.65) is a representation of the telegraph equation which is usually used to describe
the propagation of electromagnetic waves along transmission lines.

If the absorption length of the medium in absence of EIT L,s tends to infinity the
equation reduces to the free space wave equation. This is because in this limit the group
velocity vg, tends to the vacuum speed of light. By applying a spatial and temporal
Fourier transformation to eq. (2.65) we find that the dispersion relation of the dressed
medium is given by

2
K2 = (“—") < [1+i ¢ ] . (2.66)
C Ugr WLabs

Solving equation (2.66) for the angular frequency we find

ic v, 1
k) =— +oy k2 — 2.67
w(k) e N e A2 (2.67)

which is depicted in fig. 2.5. We note that the considered dispersion relation is given

with respect to the slowly varying sum or difference mode, i. e. not to freely propagating
modes and hence the interpretation is not as straight forward. The figure shows that in
the low-Fourier-frequency or the long-wavelength limit the free propagation of the sum
and difference mode are forbidden. Furthermore, we see that if the free propagation of
the modes is allowed it is accompained by absorption.

If the Fourier wavenumber k is much smaller than the critical wavenumber

c 1
ke =] — : 2.68
Vgr 2Labs (2.68)
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Figure 2.5: Dispersion relation for stationary light. The dash-dotted (red) line is the real
part of the complex angular frequency eq. (2.67), the dashed (black) line represents the
imaginary part. The parameters for this plot are L.,s = 1¢/ g\/N and vg, = 0.1c.

which we determine by setting the radicand equal to zero in eq. (2.67), the k*-term in
eq. (2.67) and hence the term proportional to the second order time derivative in eq. (2.65)
are negligible. In this case the considered wave equation reduces to a diffusion equation
which we will discuss in more detail in the next section. For a Fourier transform limited
pulse this means that its spatial variance should not be smaller than the critical wavelength
Ae = 27 /k.. In the small group velocity regime this characteristic length

Ao = Ay [ 25 Loy, (2.69)
C

is much smaller than the absorption length in absence of EIT. As we will show later on
our considerations are restricted to wave packets with a width o > L., hence this term
is negligible. Even though the description using the telegraph equation is generally valid,
we simplify the considerations by making use of the property that the examined medium
is optically thick. As noted in section 2.2.5 the optical thickness of the medium allows
us to adiabatically eliminate the difference mode, i. e. we assume that its dynamics takes
place on a time scale which is much larger than Laps/c.

Adiabatic elimination - the diffusion equation

Following the argumentation presented in section 2.2.5 we adiabaticly eliminate the dif-
ference mode in eq. (2.64) and find a diffusion equation for the sum mode

0y Es = Vgr Laps 0% Es. (2.70)

The dynamics of the sum-mode resembles that of a Brownian particle in an emulsion.
The dynamics of the fields in this specifically dressed dielectric vapor is characterized by a
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Figure 2.6: Numerical simulation of the storage and partial retrieval of a light pulse. The
color code represents the amplitude of the probe-field components. A forward propagating
field (&) is stored. Subsequently the spin coherence (o,,) is read out by two counter-
propagating control-fields. In the retrieval process also a backward (€_) propagating
component is excited as well as the sum mode (Eg). The diffusively spreading dynamics
of the fields is accompanied by an adiabatically following spin coherence. The parameters
used for the simulations are: § = A = Aw = 0, 1,0 = 1 gV'N, 746 = 0, 2:(0) = 100 gv'N
and the initial width of the Gaussian wave-packet was Az = /2 * 10¢/(gvV/N).

diffusion constant D = vy, Laps. Here vy, = ccos® 6 is the earlier introduced group velocity
and L,s is the absorption length of the probe-field in absence of EIT. The constant
combines two important physical quantities. These are: (a) the mean velocity vy, of a
photon wave-packet traveling through a medium of randomly distributed scatterers and
(b) the mean free path L,,s of the photons in the medium. The Brownian motion
is shown in one dimension in fig. 2.6 as a false color image. Due to the positivity of
the diffusion constant D the dynamics of the system leads to a spreading of the wave-
packet. In fig. 2.6 we see that the initial field distribution, which starts to propagate
into the positive z-direction at z(t = 0) = —60¢/gv/N, is being stored into the collective
spin coherence 64, at t &~ 100 (gv/N)~!. Later at ¢t ~ 200 (gv/N)~', the coherence is
read out again using two counter-propagating control-fields. The control-field behavior
as well as the corresponding group velocities for the forward and backward direction are
shown in fig. 2.7. The data for the false color images fig. 2.6 are obtained by a numerical
integration of the full set of atomic density matrix equations (2.5-2.10) plus the reduced
wave equation (2.19). These equations are implemented into the programs after the
secular approximation, mentioned in section 2.2.1. The diffusive spreading occurs also in
the spin coherence 4. This happens since the spin coherence follows according to

1 ~
0gs = ———tanf & 2.71
%9 VN g (2.71)
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Figure 2.7: The figures show (a) the group velocities v}, = ¢ cos*#+ and (b) the control-
field amplitudes €24 as function of time. Both subplots show the storage and retrieval
phase. The forward control-field €2, is used for both the storage and retrieval procedure
and represented by a dash-dotted (blue) line. The corresponding group velocity has the
same color code. To achieve stationary light both the forward and backward propagating
control fields have to be simultaneously switched on. This is done at ¢ ~ 290(gv/N)~".
The backward direction is represented by the solid red lines.

adiabatically the dynamics of the sum normal mode. The expression can be derived
from eq. (2.32) in lowest order of the adiabatic approximation, i. e. by neglecting the
time derivative of the spin coherence and applying the conditions derived in section 2.2.3.
Fig. 2.8 shows cuts through the field distribution of the forward propagating mode as well
as the spin coherence for fixed times. After a short, initial time period the control-fields
nolonger change in time (see fig. 2.7), i. e. at this point in time the simulation enters the
diffusion phase. In this phase the field maxima decrease, as shown in fig. 2.8, whereas the
width of the field distributions increase. This is a clear indication of a diffusive type of

process. A more quantitative tests of the properties of a diffusion process will be given in
the forthcoming section, especially in section 2.3.2.

Properties of the quasi-stationary field in the diffusion limit

It is well known that for quantities following a diffusion equation such as the sum field £g
the zeroth moment

Fn) = [ Fetyas (2.7)

is a constant of motion. Because of eq. (2.57) and (2.71) the difference mode and the spin
coherence adiabatically follow the diffusive behavior of the sum mode. Hence, also these
field variables obey a diffusion equation. This property can also be found numerically as is
shown in fig. 2.9, where after an initial period of varying control fields, the system reaches
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Figure 2.8: The figures show (a) cuts through the field distribution of the forward prop-
agating mode (£,) at time t = 400(gv/N)~! (solid black line) and at ¢ = 600(gv/N)~!
(dashed red line). The cuts in (b) at t = 200(gv/N)~" (solid black line), t = 400(gyv/N)~*
(dashed-dotted blue line) and at t = 600(gy/N)~" (dashed red line) are cuts through the
spin coherence (o,s) presented in fig. 2.6. The picture clearly shows that the fields spread
in the course of time.

the diffusion regime. The numerical data for these plots are taken from a simulation
without any previous storage period, i. e. the control-fields are adjusted such that the pulse
is immediately transfered into a stationary light pulse. This is the standard approach in
experiments [37].

Furthermore, we can see by comparing fig. (2.9) (a) & (b) with (c) that the definition of
the sum mode can be applied to find the height of the zeroth moment of the sum mode for
large times, i. e. we have 2(€4)o/v/2 = (Es)o. The zeroth order moment of the difference
mode only gets excited in this example due to non-adiabatic processes. This excitation
vanishes very fast and the difference mode turns out to be a purely odd function with
vanishing zeroth moment (integral).

Finally we can see that almost the whole probe pulse is stored in the spin coherence,
fig. 2.9 (c), since the pulse area of the spin coherence is only slightly smaller than the
initial probe pulse area given by 10~ (see fig. 2.9 (a) for ¢ = 0). This reflects the fact
that we work in the small group velocity regime.

We continue by considering the temporal evolution of the total number of quanta in
the diffusion limit of stationary light. This is of particular interest since for quantum
information applications there should be a minimum loss of total excitations. Two major
loss channels exist within the system of which one is the decay of ground state coherence
and the other one spontaneous emission from the excited level. The origin of the first
channel are either collisions between the relevant atoms or fluctuations of external fields.
These processes lead to decoherence or dephasing of the Raman coherence. In the second
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Figure 2.9: Temporal evolution of the zero moment of the (a) forward, (b) backward, (c)
sum and (d) difference mode as well as of (c) the Raman spin coherence.

case loss of the excitation occurs due to spontaneous emission. To study the phenomenon
of excitation loss, we consider the equation of motion for the number of photons in the
stationary light field.

n=ny+n_= / (€47 + [E-]7] dz, (2.73)

— 00

is the number of photons in the forward (n;)/backward (n_) probe-mode. Since the
transformation between the forward and backward modes and the sum and difference
modes is unitary, we have

[e.e]

n = / [1En]? + €5]%] d-. (2.74)

—00



2.3. SPATIALLY HOMOGENEOUS RETRIEVAL BEAMS 58

In the adiabatic limit under consideration the equations of motion for the sum and dif-
ference mode are given by

0Es = DO*Es, (2.75)
oEp =0, (2.76)

which leads to following equation
on=-2D /(@ Es(2,1))(0. E5(z, 1)) dz. (2.77)

To derive eq. (2.77) we have used 9;|Ep|? = 0, which is true because of eq. (2.76). The
numerical simulation in fig. 2.10 (b) shows that this is strictly speaking not correct. Since
[ 1€p(z,t)|*dz yields however only a negligible contribution to n this is of no consequence
here. Eq. (2.77) shows that the total number of excitations in the quasi-stationary light
field decays in time. In the following we want to determine the relevant decay time. To
this end we assume, that the field is regenerated in form of a Gaussian distribution from
the spin coherence, i. e.

5() 1 z 2
E(z,t) = m exp (—5 <@) > : (2.78)

with o(t) = \/0(0) + 2 Dt. Making use of this ansatz equation (2.77) reads

D

on=———=|5l" 2.79
t Qﬁa(t)3| o (2.79)
and can easily be solved. The solution is

o (to) o(to)
Vot +2Dt N Vo(to)?+2Dtg ] } ' (2.80)

n(t) = n(ty) {1 +

or setting tg = 0:
a(0)
Vo(0)2+2Dt

One recognizes that the number of photons decreases non-exponentially, proportional to
one over the sum-field width. The latter depends on the group velocity as well as the
absorption length. The non-exponential decay can qualitatively be seen in fig. 2.10. It
compares very well with the numerical simulation. In order to have negligible losses, the
time over which a stationary pulse can be maintained is limited by

0*(0) _ o*(0)
D B UgrLabs

n(t) = n(0) (2.81)

t< : (2.82)

which is exactly the characteristic time for the spread of the initial wave-packet.
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Figure 2.10: Temporal evolution of the number of excitations in (a) the sum mode and
(b) the difference mode. Part (c¢) shows the evolution of the excitation stored in the spin
coherence. The last two subfigures (d) and (e) show the dynamics of the total number
of photons as well as the total excitation given by nit = npno + f | pgssz. Apparent
is the non-exponential decay of the photon number as well as the total excitation. The
numerical data is obtained from the simulation for fig. 2.11(b).
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2.3.2 Temporal evolution of momenta beyond the adiabatic elim-
ination of the difference-mode

In the previous section we have found a diffusive spreading of the field in the limit of large
optical depth were the difference mode could be eliminated adiabatically. We want to drop
the requirement of a large optical depth. The equations of motion eq. (2.63) and eq. (2.64)
for the sum and difference mode have a special property, namely they do not couple
between the even and odd share of the same field. Since any arbitrary function f(x) can
be decomposed into an even f.(x) = (f(z)+ f(—x))/2 and odd fo(z) = (f(z)—(f(—x))/2
part we can deduce a set of four equations from the above set of equations. We find the
even variant of equation (2.63)

0.E5(2,1) = veED(2,1), (2.83)
DEL(2,1) = v:E5 (2, 1). (2.84)
An analog decomposition can be found for eq. (2.64). Based on this statement we are lead
to the idea, that to determine the temporal evolution of the momenta, especially the field
width of the sum mode, it is not necessary to calculate the fields based on the egs. (2.63)

and (2.64). It might be simpler to solve the set of coupled ordinary differential equations
for the field momenta. We define the moments of an arbitrary field F(z,t) by

(F)alt) = / M F(z t)de. (2.85)

By multiplying eq. (2.63) with 2% and integrating over z,we find

o0

w&mo:/faguﬁm, (2.86)

—00

and by partial integration we find

0(Eg)a(t) = =204 (Ep)1 (1), (2.87)

where we have assumed that the first derivative vanishes at the integration limits. By
multiplying eq. (2.64) with z and integration we additionally find

o0

O(Ep)1(t) = —g;jj (Ep)i(t) + ¢ / 20,E5(z,t)
_ —glf;v (Ephi(t) — c(Es(t) (288)

and finally for the zeroth moment of the sum field

Oi(Es)o(t) = 0. (2.89)
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Hence it is a constant of motion in the case of vanishing Raman decay rate. To compare
with our numerical results we will simplify the set of equations by presuming one- and
two-photon resonance. Furthermore we will apply the initial conditions: (Eg)2(0) = dy
and (Ep)1(0) = 0, because we start with an sum field with an certain initial width, i. e. do,
and have no excitation initially in the difference mode. The last of the equations above
can be integrated immediately to find

{Es)o(t) = (E5)0(0)- (2.90)
To solve equation (2.88) we make the ansatz
(Ep)i(t) = B(t) e !/ bere (2.91)

and find a simple differential equation for B, which can easily be integrated. Using the
initial condition for the first moment (€p); of the difference field we retrieve the solution
of eq. (2.88)

(E006) = (Eol0) Lum (050 { =1t} ~1). 2.9

Integration of eq. (2.87) and applying the initial condition (£5)2(0) = Jp we find after
some calculations the solution for the second moment of the sum field

(E5)2(t) = (E4)2(0) + 204 Lans (E5)0(0) (t 4 Lo (exp {_ L:bst} - 1>) . (2.93)

C

One recognizes that a larger absorption length L, only affects the short-time evolution,
where the width increases quadratically in time. After this initial period the increase of the
field width of the sum mode is linear in time with a slope given by 2 D = 2, Laps (nor-
malized to the initial probe pulse area). Figure 2.11 compares the analytical result with a
numerical simulation. In the analytical result we have substituted the time-independent
group velocity by a time-dependent one, i. e. vy, — vg(f). Apart from the initial time
period, the agreement between analytical predictions and numerical simulation is nearly
perfect. The initial deviations are caused by non-adiabatic couplings on the numerical side
and in case of the analytical calculations by the time-dependence of the group velocity.

2.3.3 Non-equal control-field amplitudes

In the case of non-equal control-field amplitudes the trigonometric functions in eq. (2.59)
and (2.60) do not vanish. Following again the adiabatic elimination procedure given in
section 2.2.5 and thereby using (2.57) we find a closed equation for the sum normal mode.

(8; + Vg €05 20 8,) Eg = Vg Laps sin® 20 9% Es. (2.94)

Eq. (2.94) is a Fokker-Planck type equation with a finite drift and diffusion term. However,
by applying the Galilei transformation 2z’ = z — vy, cos(2¢)t to go from the initial to a
uniformly moving frame, we find again a diffusion equation with diffusion constant

D = vy, Laps sin?(20). (2.95)
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Figure 2.11: (a) Shown is the temporal dynamics of the field widthof the envelope function
of the sum mode. The red line corresponds to the analytic (see eq. (2.93)) and the
black line to the corresponding numerical result. The later is based on the numerical
propagation of the full set of Maxwell-Bloch equations after the secular approximation.
The corresponding simulation is the one shown in subfigure (b). The inset shows the ratio
of numerical and analytic solution. One recognizes nearly perfect agreement for large
times, i. e. after the switching period. (b) The figures show that it is possible to directly
convert an initial probe field pulse into a stationary pulse of light by simultaneously
applying two-counterpropagating control fields with equal amplitudes while the probe
pulse is still in the EIT-medium [87]. The diffusion behavior is suppressed compared to
fig. 2.6, which is due the smaller final group velocity. All other numerical parameters are
the same.

To summarize, the dynamics is described by a translational motion superimposed by a
diffusive part. Thus the sum mode is only a quasi-stationary field, i. e. it still propagates,
with a small but constant group velocity vy, cos(2¢p).

Let us examine this in more detail. The group velocity of the sum mode véf)

to the difference of the Rabi frequencies €)1
QP — QP
|04 2 + Q-2
Hence, propagation of the sum mode into the forward direction is achieved by choosing
the Rabi frequency €2, larger than that of the backward direction 2_. An example of
such a process is shown in the figures 2.12, 2.13 and 2.14. Corresponding to the group
velocities given in fig. 2.12 figure 2.13 shows the temporal evolution of the sum mode and
the Raman coherence. We can see by comparing fig. 2.12 with fig. 2.13, that if the group
velocity of either direction

is proportional

S _
gr

v ccos® ) cos 2 = ccos? 0 (2.96)

2
) _
o OZ + N

=ccos’ Oy = c (2.97)
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Figure 2.12: The independently controllable group velocities for the forward (vg)) and

backward (vg)) propagating modes. The subfigure at the bottom shows the group velocity

vgr = ccos? f computable by vg) and vér_).

decreases, caused for example by the reduction of the corresponding Rabi frequency, the

sum field will move into the direction defined by the wave-vector of the stronger coupling
field.

2.4 Spatially modulated retrieve fields

Spatial manipulation of photonic excitation in collective atomic ensembles

In addition to its property to slow-down electromagnetic fields to incredibly low group
velocities EIT is also a promising candidate to achieve nonlinear interaction at a low-
light level [93]. It was shown that a light pulse may experience very large nonlinearities
even at energy densities as low as one photon per atomic cross section [9, 10]. This
has important potential applications to quantum computation, for new types of nonlinear
spectroscopy [39], studies of correlation and noise at the few photon level [91] and resonant
four-wave mixing of weak fields [95, 96]. With respect to quantum computation still
one major challenge remains. To achieve a phase shift of 7 in a single-photon phase
gate it is necessary to focus the pulses close to the diffraction limit of A2, Here we
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Figure 2.13: The figure shows the dynamics of the sum mode and the spin coherence for
non-equal control-fields. The temporal evolution of the corresponding group velocities
is depicted in fig. 2.12. (a) After the sum mode is read out of the Raman coherence it
moves according to the dynamics of the control-fields first into the forward and later on
into the backward direction. In fig. 2.14 the corresonding evolution of the forward and
backward propagating modes is shown. (b) The Raman coherence follows adiabatically
the temporal dynamics of the sum mode.

propose an approach which allows to coherently and adiabatically compress the probe-
field excitation and thereby to achieve a higher nonlinear interaction energy. Compared
to earlier approaches we also take advantage of the stationary light schemes to extend the

0 100 200 300 400 500 600 0 100 200 300 400 500 600

t[1/(g N"?)] t[1/(g N"?)]

Figure 2.14: Temporal evolution of the (a) forward (+) and (b) backward (—) field modes.
If the corresponding sum mode, shown in fig. 2.13, is stationary both modes are excited.
In the case of forward propagation the backward mode is negligible (see (b)) and vice
versa.
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Figure 2.15: Field configuration for spatially varying group velocity. Shown are the lines
of equal intensity for the €2, and _-control-field with their focal points located at z, and
z_. wy is the spot size of the Gaussian beams and w4 (z) the beam width at a distance of z
from of the foci at z. The effective group velocity of the sum mode for this configuration
is indicated at the bottom. It leads to an effective force pointing towards the origin.

interaction time.

In section 2.3.3 we have shown, that it is possible to move the center-of-mass of a quasi-
stationary light field using drive fields with non-equal intensities. Due to the more likely
creation of a probe photon into the direction of the stronger coupling field, a drift motion
of the sum mode occurs, and the difference mode as well as the spin coherence follow
this motion. Hence it should be possible to move around and manipulate the probe pulse
within the EIT-medium by applying control-fields with non-homogeneous control-fields as
well as temporally and spatially varying intensity maxima. If the intensity maximum of
one control-field component approaches the localized excitation, stored in the collective
spin coherence the excitation is being pushed. The drift velocity imprinted by this process
is given, according to eq. (2.94), by the effective group velocity v, cos2¢p. If a control-
field configuration would render the value of the effective group velocity negative for
positive values of z and positive for negative values of z, the associated drift would tend
to compress the stationary field. This process may counteract the diffusive spread found
in the last section.

A manipulation of the effective group velocity in such a way can be achieved by using two
counter-propagating control-field beams with separated foci. The separation of the foci
is assumed to be along the propagation direction of the forward and backward mode.

Linear spatial profile of intensity differences

The configuration mentioned above can be realized using paraxial Gaussian beams as
shown in fig. 2.15, where the divergence of the beams is not neglected. Gaussian beams
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are given by

Wo r|
Ef(z,r))=E° exp (— ) : 2.98
( J—) wi(z) wi(2> ( )
where |r | denotes the distance from the symmetry axis z of the set-up [97]. wq is the

beam waist of the control-field and wy(z) is the width at a distance z from one of the
corresponding foci z4

we(2) = wo \/1 + (Z ;Rzi)z. (2.99)

Here 2 = 7™ w3 /). is the Rayleigh length, the length along z, after which the width of the
Gaussian beam increases to v/2w, the width at the focus. The amplitude of the control
field at the focus is denoted by EY. After some algebra we find for the cos 2¢-term in the
effective group velocity

w? (2) — wi(2)

wi(z) +w?(z)’ (2.100)

cos2p =

where we have restricted our considerations to points on the z-axis. Furthermore, we have
assumed that the peak intensities of both control-fields are equal. Since both fields drive
the same transition all other terms cancel. Assuming equal Rayleigh length for both fields
the expression simplifies to

(z—z)2—(z—2)? 2z(zp —2 )+ (2] —22)

= . 2.101
EE R e Sl ey iy e A

cos 2¢ =

For the studies in the next sections we are interested in the case of two well separated
foci and additionally assume that the entire dynamics takes place in the region of small
|z|, i. e. |z| < min{|zy|,|2—|}. Assuming finally that the foci are located symmetrically
with respect to the origin with absolute distance zy, we find

cos2p =~ —%, (2.102)

where L is the characteristic length which is given by

L= % [zo ¥ 2R (z—‘;‘)] . (2.103)

For notational simplicity we have taken here the reference to the zero point of the coor-
dinate system which is not necessary. In addition we find for the sin 2p-term

sin2p = 1. (2.104)

The linear approximation is of course only valid as long as |z| < L. The dependence of
the cos 2¢p-term and the sin 2p-term on z following eq. (2.100) is shown in fig. 2.16.
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Figure 2.16: (a) The pre-factor of the force term for the configuration of two Gaussian
beams with separated foci. The focal points of the two beams are located at z4 =
4+20¢/(gv/N) like in the simulation for fig. 2.17. The linear regime near the origin is
clearly visible. (b) The corresponding sin 2p-term, which shows the limitations of this
approximation. The area enclosed by the red lines indicates the operation region.

2.4.1 Fokker-Planck equation for the fast normal mode

Within the approximation of paraxial Gaussian control fields with separated foci the
equations of motion for the normal modes are given by

Vor A . 5 5 1 (& Z 5
(at - ngaz) Es = —gs sin® 085 + 0520 Ep + Vg (5S - ZgD) , (2.105)
C A C ~ A / A i A
(at n Zzaz) ép =~ —Ep + s —cp (5D + Lss) . (2.106)

Here we have again neglected the time dependence of the external control-fields and
hence set § = 0 as well as ¢ = 0. Furthermore we have ¢’ ~ % In order to adiabatically

eliminate the difference mode E’D, we need L,y < L and 1 < ¢T'/Laps, where T is the
characteristic time on which the difference mode changes. The characteristic length on
which the difference mode changes drops out of the considerations. By applying these
conditions we find

~ z ~ ~
Ep = —Lune (ﬁ _ az) g~ Loped.Es, (2.107)

where we have used that |z| < L. Substituting this into equation (2.105) we arrive at

(at + Ves SiIl2 0) ‘SA'S - (% + Ugr%az + Labs&?) gS~ (2108)

We can simplify the equation by making the ansatz

Es = Eg e st (2.109)
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Furthermore, introducing the abbreviations

v Vor2 v
Ay = & z<_gr>:_£ 2.11
0=5p 1O L 2L (2.110)
VerZ
A==, (2.111)
B =2D, (2.112)

eq. (2.108) can be transformed into a Fokker-Planck equation with an additional decay
term Ag Egs [98]

1
OEs = AgEs + 0. (A1 Es) + 533 (BEs). (2.113)

After the separation of the simple decay term Ay we identify the resulting Fokker-Planck
equation to be of the Ornstein—Uhlenbeck type [99, |. The constant A, is called drift
constant and B or equivalently D are called diffusion constant. The Ornstein—Uhlenbeck
process has a stationary solution which we are going to determine now. Performing
a Fourier transformation of the Ornstein-Uhlenbeck type Fokker-Planck equation with
respect to the space variable leads to

OuBs (k) = =k (9 + LLusk) Es(k, 1) = 0, (2.114)
where the last equation holds since we are looking for the steady-state solution. The

solution of the this differential equation is a Gaussian function. By a inverse Fourier
transformation we then find the following expression for the sum mode

. £l v 52
t) = ——— {— ssin® 6 + = t} — : 2.11
Es(z,t) \/mexp (7gs SIn” 6 + 2L) exp LI (2.115)

Hence in the long-time limit, the field approaches a stationary Gaussian distribution of
width o = v/LLaps, which decays in time with an effective rate veg = 745 sin? 0 + Vgr/2L.
The use of retrieve lasers with non-equal and spatially varying intensities thus acts like
an effective cavity for the probe-field with an energy ring-down time given by the time
a photon needs to travel the distance between the foci of the two control lasers. If we
take in addition also the decay of the Raman coherence into account the ring down time
decreases further.

Even though the interpretation of Fokker-Planck equations is in general not straightfor-
ward [31] it is the case for the Ornstein-Uhlenbeck process. Eq. (2.108) comprises of three
terms on the right hand side, the first one is the decay term which we have already dis-
cussed. The next two terms are more interesting and respresent two competing physical
processes. The first can be interpreted as an effective force acting on the field excitation
which tries to drag it towards the origin (more generally towards the midpoint between
the two intensity maxima of the control-fields). Hence this term acts compressing on
the probe-field excitation. The last term is responsible for diffusion as we have already
discussed in section 2.3.1, i. e. it leads to a spatial broadening of the stationary light
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Figure 2.17: Temporal evolution of the (a) forward, (b) backward, (c) sum and (d) differ-
ence mode in the case of separated foci of the control-fields. The two competing processes
of diffusion and Raman scattering towards the midpoint between the focal points lead
to a stationary state behavior with decreasing amplitude of the fields. The white lines
(a)-(c) and the black lines (d), denote the positions of the focal points of the two used
control-fields.

pulse. In the situation we have considered here the action of this two processes leads to
a stationary distribution given by (2.115).

It is noteworthy that the group velocity only appears in the decay term. The width of
the field distribution only depends on the geometrical parameter L, i. e. the distance
between the two foci, and the absorption length L, of the medium. This has an impor-
tant consequence since the group velocity is a measure for the weight of the light- and
matter-contributions in the polariton [I]. Even though the major part of the excitation
is stored in the well protected spin coherence in the regime of small group velocities, it
can be adiabaticly compressed by manipulating the tiny electromagnetic contribution of
the polariton. This is because in the adiabatic limit the spin coherence follows the sum
field. Hence by slowly reducing the distance between the two foci we can compress the
spin coherence along withthe stationary light excitation.

In fig. 2.17 a numerical simulation of stationary light generated by two fields with sepa-
rated foci is shown. Here the excitation was initially stored as a Gaussian distribution in
the spin coherence with e~/2-width given by 20(0) = 7. A small part of the distribution
was not located within the region between the foci which has a width of forty in this
example. By inspecting, e. g. part (a) of the figure, we see that initially the forward prop-
agating mode is mainly created in the vicinity of the control-field focus of the € -field
— the left white line. This is due to more probable creation of Raman scattered photons
into the forward propagating mode. The same argumentation holds for the backward
propagating mode in part (b).

Furthermore, we can see that the initial field width decreases until the field distribution
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has reached a stationary width. From that point on only the height of the distribution
decreases according to eq. (2.115). As will be discussed in the following the initial decrease
is due to the excitation of higher-order eigensolutions of eq. (2.108) which decay faster
than the lowest-order solution (2.115).

Second moment of the sum field in the adiabatic limit

If we use the definitions for the momenta, eq. (2.108), we can determine the equation of
motion for the zeroth- and second-order moments of the sum mode. These are given by

|:at + Vgs SiHQ 0+ %] <€5>2 (t) = 2Ugrlabs <ES>O (t)> (2116)
[at + 7y s e] (Es)o (1) = —%@m (). (2.117)

In the case of vanishing Raman decay rate, i. e. 74, = 0, we find the following solutions
to these equations

vgr t

(Es)o () = (Es)o (0) e 2L7, (2.118)
(E5)2 (1) = Laps L (Es)o (0) e 75 (1 - e—QULg”) +(Es)2 (0) e L, (2.119)

The zeroth moment vanishes with the same decay rate as eq. (2.115). Considering the
normalized width of the sum mode, i. e. the width divided by the time-dependent area
eq. (2.118), one recognizes that it approaches for large times (¢t > 2L/v,,) a constant
value. The constant is independent of the initial width of the wave-packet. It only
depends on the medium (Laps = 74¢/g*N) and externally adjustable parameters (L).
Numerical examples that support this statements are shown in fig. 2.18.

Spatial shift between forward/backward field distributions

For comparison with our numerical results and for a further understanding of the pro-
cesses, we want to determine the location of the maxima of forward and backward propa-
gating modes in the limit of the stationary Ornstein-Uhlenbeck solution. It will turn out,
that the two maxima are not located at the same point and their separation only depends
on the absorption length in absence of EIT.

The asymptotic solution for the sum mode is given by eq. (2.115). Hence, with the help
of eq. (2.107) one can calculate, using this function, the difference mode in the vicinity of
the origin, i. e. 2z < L,

Ep(2,) = Lapsd.Es(z,1) = —%Eg(z,t). (2.120)

To determine the forward and backward propagating modes, we use the inverse trans-
formation of eq. (2.46). By applying simple trigonometric relations we find, in the limit
z < L, that the mixing angle is given by

~T = (2.121)
LAY ’
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Figure 2.18: The figure shows the normalized variance of the sum mode as function of
time. The solid and the dashed line converge towards the same steady-state value. The
parameters used only differ in the initial value used for the sum field width (L = 10, Lps =
1, solid Az(0) = 7, dashed Az(0) = 5). The dot-dashed curve corresponds to a different
control-field configuration (L = 15/2, Az(0) = 3). The numbers denote the steady state
value of the variance given by Azg = /L Laps

This leads to the following approximate relations
1 z
COS p A —= (1 + —) , (2.122)

V2
% (1 - ﬁ> . (2.123)

sin ¢ ~

and finally to

Eolzt) = % (1 ¥ %) . (2.124)

One finds the location of the maxima for the forward and backward propagating modes
by inserting the asymptotic solution eq. (2.115) and differentiation with respect to the
spatial variable. Assuming again that we are only interested in the case L, < L, we
find

La S
2 a bs (2.125)
2
Hence the asymptotic separation between the maxima only depends on the absorption
length in absence of EIT. Fig. 2.19 shows an example of the motion of the distribution
maxima towards their steady state points 2%, . In discussing fig. 2.17 we have already
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Figure 2.19: The figure shows the normalized field distributions of the forward (solid line)
and backward (dashed line) propagating modes for different propagation times. The field
distributions are normalized using their time-dependent pulse areas. (a) With increasing
time the maxima of the field distributions move towards their steady state points 2=, .
(b) Finally the distributions stay ever after at those points. The numerical data for this
plot is based on fig. 2.17.

mentioned that the forward and backward propagating modes are created due to a higher
probability of a stimulated Raman scattering processes in the vicinity of the foci of the
Q. /Q_-fields, respectively. During the evolution they move, due to the induced drift
motion, towards their final points, which is shown in fig. 2.19 (a). In this process the field
distributions of the modes always interchange their position and move thereby through
each other.

2.4.2 Initial value problem of Ornstein—Uhlenbeck process

Given an initial distribution for the sum mode, how does the distribution evolve in time,
when we consider the configuration with stationary, displaced foci? For this we have to
solve the initial value problem for the Ornstein—Uhlenbeck process with decay. Before
we deal with the specific problem, let us briefly review the general theory behind this.
Assume that we want to solve an initial value problem of the form

5.0(5:1) = Lo(z,1) with 6(2,0) = ¢o(2) (2.126)
where L is some time-independent hermitian (differential) operator. Then the general

solution of the problem is given by

o0

o(z,t) = Z cn € (2), (2.127)

n=0

where the A\, and ¢,, are eigenvalues and eigenfunctions of L, i. e. we have

(ﬁ + >\n> b = 0, (2.128)
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where the ¢, form a complete, orthonormal set of functions with respect to a scalar
product (¢,v) = [w(z)¢*(2) ¢(z) dz with w(z) being some real-valued integral kernel.
Finally the coefficients ¢,, are, because of this orthonormality, given by

cn:/w(z) or(2) p(z,0)dz. (2.129)

Hence our problem can be solved by making use of the eigenfunctions {x,(z), A, } of the
backward (eigenvalue) equation of the Ornstein—-Uhlenbeck type Fokker-Planck equation

(2.113) (without trivial decay term ) [98]. The backward equation is given by
9, Es = % Es+ %z@z Es + DO? Eg (2.130)
by making an ansatz like eq. (2.127), we find the corresponding eigenvalue equation
y Vgr 2, An Ugr
Var 2 An (2) =0, 2.131
o)+ BT+ (T 1) ou) (2.131)

where the prime denotes again differentiation with respect to z. This differential equation
can be transformed into the differential equation for Hermite polynomials by using ¢,,(z) =
©on(2) exp(—a? 2?%) to find

Pi(z) — Azl (2) + (B2 4 C) pul2) = 0, (2.132)
where
v
A= —40? 2.13
oDL (2.133)
B=2a(a?~ ) 2.134
a (o =557 ), (2.134)
A, Vgr 9
== —2a”. 2.1
C (D + DL> o (2.135)
Setting B = 0 to eliminate the quadratic term, we can use the corresponding condition
2 Ugr 1
= = 2.136
“ T ODL T 2L Lan (2.136)

to simplify the expression for A and C. Using furthermore the variable substitution
z = [fx, we can reformulate the differential equation above to find

T )\n
Px) = B, (x) + B Bn(z) = 0. (2.137)
By comparing this equation with the differential equation for the Hermite polynomials
H,, [101], we can eliminate the factor § and finally find the eigenvalues \,, and normalized
eigenfunctions ®,, to eq. (2.131)
Ao = 1B (2.138)

L Y
D, (2) = (2"n!\/T L Las)

2
_1/2 z Z
H, | ——— — , 2.139
<\/2—LLabs> eXp{ 2LLabs} (2.139)
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with n € Ny. Asis well known from various textbooks do the functions ®,, form a complete
set of functions [101]. Hence the general solution to the initial value problem including
the global decay term reads

22 }
exp § — X
0=Y <t {5

x H, <ﬁ) exp {—M} . (2.140)

The expansion coefficients ¢, are determined by the initial field Es(z,0)

Cp = 7E5(z, 0) H, (ﬁ) dz. (2.141)

—0o0

Apart from the overall damping term and a factor of two in the exponent of the Gaussian
is eq. (2.140) very similar to a damped harmonic oscillator with an oscillator length given
by /L L.ns. If the initial light pulse, i. e. the stored excitation, is Gaussian and if the
separation of the foci of the two retrieve lasers is chosen such that the width of the
excitation is less than the effective oscillator length /L L.y, only the fundamental mode
®, gets excited in the retrieve process. In this case a spatially constant field distribution
is created as shown in fig. 2.20. The field, however, has a finite lifetime determined by
the overall damping rate v = vg/2L. As a consequence the photonic excitation nph ~
|Es(t)|* decays in time and since the spin coherence follows adiabaticly the dynamics of
the sum mode the total excitation decays according to

Mo () = 40r (0) exp (—% t) . (2.142)

In order to have negligible losses, the time over which the stationary light pulse can be
maintained is limited by the same expression as in the diffusion case
L AZ*(0)

<< — :
Ugr Ugr Labs

(2.143)

If the separation between the focal points during the retrieve process is much smaller
than the width of the stored excitation, the theory presented here is only applicable to
the part of the pulse which is located between the focal points, i. e. in the region given by
the linear slope in fig. 2.16 (a). The rest of the excitation is lost, since it separates from
the initial distribution or it leads to excitation of the higher-order Gauss-Hermite modes.
These decay very fast compared to the fundamental mode, see eq. (2.140)[102].

2.5 Spatial compression of stationary light pulses

2.5.1 Basic concept

In the last section we have seen that it is possible to manipulate the shape of the regenerate
probe field by means of control field beams with spatially modulated intensities. In
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Figure 2.20: Storage of a Gaussian pulse and subsequent retrieval with two control beams
with spatially varying intensity profiles. The maxima of the intensities of {2 are indicated
by the two white lines. Close to the midpoint between these lines the normalized intensity
difference |Q19|?/Q0]% — [2-0]?/|Q0|* varies linearly with z. The generation of fields with
constant spatial shape is apparent. The parameters are given by: 6 = A = Aw = 0 and
Yge = N = ¢ =1 and the width of the initial Gaussian wave-packet is Az(t = 0) = /10.
The separation of the foci is 40 ¢/(gv/N) which leads to L =~ 10 for a Rayleigh length of
zr = 1.6. The dependence of the control-field is given by € (¢) = 100%0.5%[1 —tanh{0.1x
(t —60)}] + 0.5 % [1 + tanh{0.1 % (¢ — 200)}]. For the minus direction a similar term was
used consisting only of the second term.

this section we want to extend this ansatz and use it to actively compress the retrieved
stationary probe field pulse.

To avoid losses the compression of a photonic excitation should start with a mode
matched wave-packet, i. e. with an initial width smaller than the oscillator length v/ L L.
Then only the fundamental mode ®, gets excited and experiences in the small group
velocity limit, i. e. the regime of interest, an unavoidable small loss with an effective
decay rate of

2

Vg € cCOS”0
L _ 2.144
T T 9L T 2L (2.144)

Compression of ®¢, respectively gs, can be achieved, according to eq. (2.140) by decreasing
adiabatically the characteristic length L, i. e. by decreasing the distance between the
control-field foci. If the process is sufficiently adiabatic, the width of the fundamental
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Figure 2.21: Retrieval of a stored pulse using drive fields with separated foci and subse-
quent reduction of their separation. The position of the focal points is indicated by white
lines. One clearly recognizes a compression of the probe-field associated with an increase
of the field density. However, the whole compression procedure is accompanied by strong
losses. The parameters are the same as for fig. 2.20 except for v = 0.05. The foci move
like: z4(t) = £20 F 10 % 0.5 * [1 4 tanh(0.0125 * (¢ — 700))].

mode should follow this motion without excitation of higher order modes. This is shown
in fig. 2.21, where the location of the focal points is again denoted by the white lines.
Apparent is the decreasing width of the photonic as well as the spin excitation. The
compression is however accompanied by strong losses. This is shown in fig. 2.22 where
the temporal evolution of the peak excitation density and the total excitation, i. e.

Niot = /dz [Ic‘f’s|2 + |Ep|? + |64 (2.145)

are depicted. In the next section we give a more quantitative discussion of the relevant
loss mechanisms and discuss conditions for their minimization.

2.5.2 Nonadiabatic effects

In this section we want to consider nonadiabatic effects which may occur when compressing
the stationary light pulse by adiabatically decreasing the distance between the two control
field focal points. We will derive conditions which should be fulfilled to achieve adiabatic
dynamics. To this end, we again consider eq. (2.51) and (2.52). For simplicity we assume
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Figure 2.22: Peak excitation density (solid line) and total excitation (dashed line) as a
function of time for the numerical simulation of fig. 2.21. Both quantities are normalized
to their value at t = 200 (gv/N)~".

one- and two-photon resonance, i. e. § = A = 0 and a vanishing decay rate of the
Raman coherence (7,5 = 0). Furthermore, we assume that 9,6 = 0 holds which is true
in the present configuration if the group velocity stays constant in time. Using these
assumptions the considered equations read

[at - ”g[rjzaz} = vy, E + az} Ep + v [és - %5,3] , (2.146)
[at + %az} ) = — L:bséD g — D) s — e [%55 + éD} . (2.147)

Using ¢’ = 1/2L and the conditions Tp ¢ > L., and z < L Lp/Laps, where T and Lp
and are the characteristic time and distance in which the difference mode changes, we
can adiabatically eliminate the same. These conditions are easily fulfilled. We also used
L > L, which is only justified if we do not compress the stationary light pulse down to
the order of the absorption length L,ps. Laps is usually on the order of a few millimeter
in a dilute vapor cell or down to few micrometer in a Bose-Einstein condensate. The
adiabatically eliminated difference field reads

5 _ Y. 5le
Ep = —Labs L + 573 az] Es. (2.148)
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Substituting this into the equation of motion for the sum field (2.146) and, recalling that
the mixing angle ¢ is time- as well as space-dependent, we find

O\ 2
Ugr vgrz B f i 2 5| &
|:at 27, I 8:|ES_UgrLabs[ (C) +(2L2> +6Z gS"‘
.4 z A 1
+Ugr abs |: 8 85 - —8 (@85) - ﬁ@&q 2L28 <Z(€S>:| . (2149)
With the help of

) z
p=—g570InlL (2.150)

this can furthermore be evaluated and leads with the condition \/L/L.sL > |z| to the
following Fokker-Planck equation

5 Vgr Labs z Labs
0, = ——= |1 — O:1n 1
18 c (9 )+ 2Lc?

2L

(6t In L) :| 55—}-8 [ et 55] + Vgr Labs(? 5,5'
(2.151)

One recognizes that apart from the explicit time dependence of L nonadiabatic corrections
lead to two additional loss terms. The first can be neglected compared to v, /2 L since

|8t In L| <

c

: 2.152
Labs ( )
The second term leads to losses for large values of z. The corresponding loss rate

z Labs Ugr

(@ L) (2.153)

can also be neglected for

< | Lo (Lo | (2.154)
Z 2L c t 1N . .

Since the typical scale of the width of the field distribution is Az = /L L, this is again
well justified because of |0;In L| < ¢/Laps. We thus can safely ignore the two additional
loss terms. With the help of the ansatz

t

N . X B Ugr
Es(z,t) = Es(z,t)exp /dTQL(T) (2.155)
0

equation (2.151) simplifies to the earlier found Fokker-Planck equation (2.113) for the
Ornstein-Uhlenbeck process except for the time-dependence of the characteristic length
L. We thus see that the losses during compression, found in the example of the last
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section, cannot be attributed to the nonadiabatic corrections in eq. (2.151) but must
be explained from the Ornstein-Uhlenbeck dynamics itself. To this end we reexamine
eq. (2.140) for the general solution of the Ornstein-Uhlenbeck process but now, however,
with time-dependent parameters. From eq. (2.140) we recognizes that higher order modes
have a faster decay. Thus the most likely reason for the observed losses is a population
of higher-order modes.

We now want to derive a set of rate equations, for the expansion coefficients of the
general Ornstein-Uhlenbeck solution. Our intention is to study the population of higher-
order modes during the compression process and to show how we can minimize their
population. The general solution of the Fokker-Planck equation (2.113) with a time-
depending characteristic length L is given by

Es(z1) Zd (2.156)

where we have included all temporal dynamics except for the overall loss rate v, /2 L into
the expansion coefficient d,(t). For those we want to derive a system of rate equations.
From section 2.4.2 we know that the functions ®,,, see eq. (2.139), solve the eigenvalue
problem eq. (2.131). Hence, we have

Vgr Laps 9*Es + 0. (“gr 5s) = “[gf n®,(z,1) (2.157)

n=0

and on the other hand

[o.9]

0Es =Y _[(0ndn)®n(2,1) + dn0®pn(2,1)]. (2.158)
n=0
The two expressions eq. (2.157) and (2.158) have to be equal due to the Fokker-Planck

equation for gg. To determine the expansion coefficients we have to find the time-
derivative of ®,(z,t). After some algebra and using well known relations for Hermite
polynomials we find

1 1 z
0a(e0) = e Mo ()

z 2
+2n H, (— e = /CLLas) (9, In L),  (2.159)
V 2L Labs):|

With the help of this we can finally use the orthonormality of the Hermite polynomial to
determine the rate equation for the expansion coefficients

drdy — —n {% + %(at In L)} d, %\/n =100 L) dy » (2.160)

The first term n v, /L corresponds to the already found decay behavior of the Ornstein-
Uhlenbeck solution eq. (2.140) without adiabatic corrections. The other two terms only
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Figure 2.23: This figure compares the numerical results (black solid lines) with the
analytical predictions (dashed red lines) for the expansion coefficients dy (upper curves)
and dy (lower curves). The agreement of both approaches is quite good. The numerical
results are based on the solution of the full set of Maxwell-Bloch equations after the secular
approximation where as the analytical graphs are based on eq. (2.161) and (2.162). The
difference between the numerical and the analytical result for dy at the beginning is due
to the read-out procedure which is not taken into account in the analytic theory. For the
simulation we used the following parameters: v, = 755 = 0.05, g = N = ¢ = 1, one-
and two-photon resonance conditions, i. e. A = § = 0, Rayleigh length zp = 7/2 and
21 (t) = F30 £ 25 % 0.5 % [1 + tanh(1.5625 * 1073 * (¢ — 1000))] and Q. (t) = 0.1 % 0.5 * [1 +
tanh(0.05 * (t — 80))].

occure if the distance between the two focal points of the control-fields is changed in time.
For the lowest coefficients we find

Bidy = 0 (2.161)

Thus dy is constant while the higher-order modes are build up in time. In figure 2.23
an example is given where the coefficients dy(t), da(t) are calculated from the numerical
solution of the full Maxwell-Bloch equations and compared to the solution of egs. (2.161)
and (2.162). One recognizes very good agreement.

It is important to note that the eigenmodes of the Ornstein-Uhlenbeck process are
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not orthogonal in the usual sense but that their orthogonality relation reads
/ dz ez2/2LLabs(I>n(z) D, (2) = Snm. (2.163)

—0o0

Thus the increase of the coefficients d,, for higher modes and dy = const. and hence of
the expansion coefficients of the Orstein-Uhlenbeck solution

t

en(t) = dp(t) exp { — / gig—_idT , (2.164)

0

does not mean that the photon number in the field increases. The latter is proportional
to

/dz|€g\2~2/dz<bn(z) D, (2) ¢ . (2.165)

—0o0

The population of higher order modes eventually leads to increased losses. We notice that
during the compression 0,In L is negative and thus can compensate the term 2w, /L or
even overcompensate it. Overcompensation leads to an exponential increase of higher-
order modes and would thus prevent compression. For this reason we require

(2.166)

On the other hand the compression should be as fast as possible and the stationary light
should be transferred back to a spin excitation as fast as possible since losses occur only
when a nonvanishing stationary light field is present. Thus it seems natural to consider
the case

InL =8 (2.167)

Noting that the sum mode &g is related to £y via eq. (2.155) we see that there is in
addition an overall effective decay rate
v (t)  ccos? 6(t)

TS0 T 2L (2.168)

Thus when reducing L we should also reduce vg, to keep 7eg small. If y.q is for example
chosen to be constant we find with eq. (2.167)

Oy In L(t) = —4yeq (2.169)
and thus

L(t) = L(0) e~ *7et, (2.170)
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Figure 2.24: Retrieval of a stored pulse using drive fields with separated foci and subse-
quent reduction of their separation. The position of the focal points is indicated by white
lines. One clearly recognizes a compression of the probe-field associated with an increase
of the field density. The parameters are v = 0.05, and the width of the initial Gaussian
distribution Az = 5. The foci move like: 2z (¢) = £20F10%0.5%[1+tanh(0.0125%(t—500))]

In this case one finds for the coefficients d,, with do(t = 0) = dy and d,,(t = 0) = 0 for
m # 0

do(t) = do, (2.171)
dy(t) = 2V 27er t d, (2.172)
dy(t) = 2V24~% 12 dy. (2.173)

To illustrate that keeping ~.g small leads to substantially reduced losses we present in
fig. 2.24 and fig. 2.25 a numerical example. The figure shows an increase of the peak
excitation density by a factor of 3 whereas the photon number in the probe field pulse
decreases only by 5%-10%.

Hence, we have shown that the present approach is suitable to compress the long-
lived stationary photonic excitation by adiabatically decreasing the distance between
the control-field foci and dynamically keeping the overall effective damping rate veg
small. This leads to less loss since higher order modes are only minimally excited, see
eqs. (2.172,2.173).
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Figure 2.25: The plots given here show relevant parameters for the simulation of fig. 2.24.
(a) gives the temporal evolution of the group velocity at z = 0. (b) shows the effective
decay rate for the same cut. (c) presents the peak excitation density (solid line) and the
total number of probe field photons 7. (dashed line) as a function of time. Even though
the peak excitation denstiy can be increase by a factor of 3 only little photon loss occurs.

2.6 Conclusion

In this chapter we have identified the phenomenon underlying the diffusive spreading of
stationary light, i. e. the phenomenon of pulse matching, using a self-consistent set of field
equations and introducing new normal modes. Moreover, we showed that in addition to
diffusion also a drift motion may occur in the same scheme. The drift motion can be
tailored in such a way that an effective force is created which points towards the midpoint
between the focal points of the two control-field Gaussian laser beams used to create the
stationary pulses of light. Using the effective force the stationary pulses of light can be
coherently compressed. This compression is however accompanied by losses. In addition
we have identified the main loss mechanism, i. e. the excitation of higher-order modes of a
general Orstein-Uhlenbeck solution, and pointed out ways to suppress those excitations.
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Finally, a new stationary light scheme was introduced at the beginning of the chapter
which does not require a secular approximation. The new scheme leads to the same effects
pointed out here, however, it also opens up new ways for the coherent manipulation of
stored spin coherences and stationary light pulses by using the possibility to manipulate
the single-photon detunings of the two different control-fields separately. Furthermore,
this new scheme shows that neither a spatial periodic structure of the absorption profile
[12] nor a periodically modulated refractive index [11] is necessary for the creation of
stationary light.



Chapter 3

Sagnac-interferometer based on
slow-light in ultra-cold quantum
gases

3.1 Introduction

In contrast to inertial motion, rotation of an object is absolute in the sense that it can
be defined intrinsically, i.e. independent of any inertial frame of reference. Moreover, all
types of acceleration of the local frame of reference can be distinguished and determined
by local measurements [55]. Rotation can be detected by means of the Sagnac effect [57],
i.e. the relative phase shift A¢, of counterpropagating waves in a ring interferometer
of area A attached to the laboratory frame rotating with angular velocity €2. The phase
shift is given by
A

Aot = )\UQ A, (3.1)
where ) is the wavelength and v the phase velocity of the corresponding wave phenomenon.
Depending on the nature of the wave, one distinguishes two basic types of Sagnac inter-
ferometers: light and matter wave gyroscopes [103]. Both wave phenomena require a
sufficient coherence length to be used in an interferometer. It is interesting to note, that
the Sagnac phase shift per unit area in a matter wave device exceeds that of laser based
gyroscopes by the ratio of rest energy per particle to photon energy mc?/hw. This factor
is for alkali atoms and optical photons on the order of 10!, which was first noted by L.
A. Page [104]. Despite this very large number, matter wave gyroscopes have only recently
reached the short-time sensitivities of laser based devices [105, ]. This is primarily
because of two reasons: First, fiber-optic interferometers can have a much larger area
than matter wave systems [65]. Secondly, the large photon flux achievable in optical sys-
tems, leads to a much lower shot noise level [107] as compared to matter wave set-ups.
Thus, in order to make full use of the much larger rotational sensitivity per unit area of a
matter wave device one needs to find ways to increase (i) the interferometer area and (%)

85
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the particle flux. While a substantial increase of the interferometer area in matter wave
devices is difficult, the use of novel cooling techniques has led to high-flux atom sources
which have been employed to substantially improve the performance of atom interferom-
eters [103]. Even though the particle throughput can now reach 10® s~! as compared to a
few atoms per second in the first interferometers, the noise level is still much higher than
that achievable in optical fiber gyroscopes [109]. The latter has photon rates on the order
of 10'% s7! [109]. Continuously loaded Bose-Einstein condensates (BEC) could provide a
source for coherent atoms with higher flux values. Substantial progress has been made
over the past few years in this direction [110].

We here propose a gyroscope based on the propagation of dark-state polaritons in an
ultra-cold gas of A-type 3-level atoms [15]. We argue that this interferometer combines
the large rotational phase shift of matter wave systems with the large area typical for
optical gyroscopes. The idea is based on the simultaneous coherence and momentum
transfer associated with the Raman transition in EIT-systems under slow-light conditions
[27]. The reduction of the group velocity of light in EIT media is based on the change
of character of the dressed eigenmodes of the systems from electromagnetic to atomic
excitations [1]. In the course of the velocity reduction electromagnetic excitations are
coherently been transformed into spin excitations (waves). The current chapter presents
a detailed theoretical description of the proposed gyroscope.

A naive interpretation of eq. (3.1) would suggest that an optical gyroscope with a
reduced phase or group velocity would pick up an enhanced Sagnac phase per unit area.
This issue has been discussed in the past quite controversial [111, , , |. The
controversy has been settled however and it has been shown that the observed phase
shift does not depend on the presence of a comoving refractive medium in the beam path
[115, , 117]. As shown by Dufour and Prunier it also does not depend on whether the
observation takes place in the rotating frame or not [113]. As a consequence proposals
for laser gyroscopes, using EIT-media to reduce the group velocity of light, do not allow
to detect rotation intrinsically with an enhanced sensitivity [13]. The conclusion that
EIT-media are not suitable at all is however not true. We will show that a simultaneous
coherence and momentum transfer can be used to overcome the problems encountered
when we disregard the motion of the medium constituents but only allow for the disper-
sive properties of the medium. The momentum transfer creates a coherent matter wave
that will pick up a Sagnac phase shift in an appropriate medium of ultra-cold atoms.

In the most relevant type of light-matter-interaction, namely dipole interaction, the
electromagnetic field couples to the atomic polarization in which case the field phase cou-
ples to the phase difference of the two involved atomic states. In order for a rotational
phase shift of the center-of-mass wavefunction to affect the polarization, it is necessary
that the matter fields corresponding to the two atomic states acquire different rotational
phases. We will show that this can be achieved if the atoms in the initial, highly pop-
ulated state of the EIT-system form a superfluid in a ring configuration [119, ]. We
will calculate the rotationally induced phase shift emerging in such a hybrid light-matter
gyroscope. We will show that for a vanishing momentum transfer the Sagnac phase shift
is equal to that of a light interferometer as given by eq. (3.1) while with the momen-
tum transfer matter wave sensitivity can be reached. We will discuss the necessity of



CHAPTER 3. SLOW-LIGHT GYROSCOPE 87

a superfluid in a ring-type confining potential and show that in other cases there is no
enhancement effect as compared to the pure light case.

The necessity of a ring-type superfluid reduces the potential advantages of a large-area
hybrid interferometer stated in [15]. We will show however, that the minimum detectable
rotation rate at the shot noise limit corresponds to that of a matter wave gyroscope with
a rather large particle flux given by the density of the ultra-cold gas, e.g. a BEC, mul-
tiplied by the recoil velocity. To determine the quantum sensitivity limit of the hybrid
interferometer, the saturation of the Sagnac phase shift with the probe-light intensity and
the probe-field absorption are taken into account. The Sagnac phase attains a maximum
value for a certain probe-field power. We determine the optimum parameter values for a
maximum signal-to-noise ratio (SNR) and derive the minimum detectable rotation rate
Qin per unit area.

3.2 The Sagnac-Hybrid Interferometer

3.2.1 The Principle

An intrinsic sensor attached to the laboratory detects the rotation of the frame without
any reference to some other non-rotating frame of reference. It is most natural to describe
the system from the point of view of a co-rotating observer [121]. We will give a micro-
scopic description of the gyroscope in which we consider an ensemble of three-level atoms
with internal states |1), |2), and |3). These states are coupled by two laser fields with
(complex) Rabi frequencies 2. and €2, in a Raman configuration as shown in Fig. 3.1.
The probe-field €2, is assumed to either co- or counter-propagate to the rotation, while
., which is assumed to be much stronger than (2, propagates in a different, ideally per-
pendicular direction. The ensemble and the laser sources are assumed to be attached to
the laboratory frame rotating with an angular velocity , Q(t) = Q(t)e,. The center-of-
mass motion of the atoms shall be confined to the periphery of the circular loop with
radius R. It is assumed that |[Q|R < ¢ such that non-relativistic quantum mechanics
applies. Under conditions of two-photon resonance, the control-field (2. generates EIT
for the probe-field associated with a substantial reduction of the group velocity [14, 46].
The group velocity reduction is due to the coupling of the weak probe light to the atomic
Raman coherence. In the quasi-particle picture of dark-state polaritons, introduced by
M. Fleischhauer and M. D. Lukin. [1], the processes corresponds to an adiabatic rotation
from the light to the matter degree of freedom. In the Introduction we have seen that
the smaller the group velocity of the dark-state polariton the larger its admixture of the
matter- or spin-wave component thus making slow-light a natural candidate for a hybrid
light-matter interferometer [1, 122].

3.2.2 Dynamics in a rotating frame

The dynamics seen by a co-rotating observer can be deduced by transforming the sys-
tem Hamiltonian to the rotating frame. We start our description from the standard
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Figure 3.1: left: setup of light Sagnac interferometer with vapor cell or trap attached to
rotating body with angular velocity €2. right: level scheme of atoms. p denotes momentum
along the peripheral direction z. k, is the wavenumber of the probe field propagating
parallel to z. Ak =k, — k!, where k! is the component of the control-field wave vector in
z direction.

atom-light interaction Hamiltonian of quantum optics in Coulomb gauge after the Power-
Zienau-Wolley transformation [18, 23]. Adding the free Hamiltonian of a 3-component
nonrelativistic Schrodinger field the system Hamiltonian reads in the non-rotating frame
and in second quantization

g:gw+gm+gm
—Z/d?’rllﬁ { —V? + hw, + VI, )]\ifu(r)

+ %0 d3r (%)2 + 2 (V X AL(I')>2 (32)
b3 [ [d - (10) — B )| ).

H® describes the motion of atoms in an external, possibly state- and time-dependent
trapping potential Vth(r, t). The three internal states are described by the three Schro-
dinger fields Wy (r,t), Wy(r,t), and Ws(r,t) corresponding to the states of the A-system
shown in fig. 3.1. H® is the free Hamiltonian of the radiation field, where A | (r) is the

transverse part of the vector potential and f[(r) =-D=-— (eOEL + lADL> is its conjugate

momentum, which corresponds to the electric displacement field. For notational simplicity
we will drop the subscrlpt " 1" that denoted the transversality on the vector fields, in
the following. Finally H® describes the interaction of the atoms with the quantized field
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as well as an additional external field in the dipole approximation. The transition to a
rotating frame, having an angular velocity €(¢) with respect to the initial frame, is done
via the unitary transformation

U(t) = exp —% /dTQ(T) ‘L, (3.3)

to

where L is the total angular momentum operator of light and matter [123]. Restricting
ourselves to a rotation about a fixed axis, the z axis, only the z component of L is relevant

h N A
=-Y / d*rvio, v, (3.4)

The index p denotes summation over the three internal states and the index ¢ over the
three spatial dimensions. The Hamiltonian operator in the rotating frame is then given
by

Hyoo = U)HU () + Q(t)L.. (3.5)

Since L& and L commute, the unitary transformation (3.3) can be decomposed into

two operators which act on the matter wave and on the electromagnetic field respectively.
One finds

2 7 T / hQ ex / T /
A = Q)L™+ / &Pl (r) [——vﬂ + hw, + Ve (x )] U, (r'), (3.6)
17

2m
N ~ o 1 ~ ~ ~
) = 0 + B0+~ 3 / & W (x) [dm, - (H(r’) — B (1, t))] b, (r').
0
v
(3.7)

Here the prime denotes that the variables are given with respect to the rotating frame
coordinates

t
W /dTeSORQ(T), (3.8)

to

with R being the distance from the rotation axis. For all field operators F € {\if, I, A}
we have

UF(r)UT = f‘<r + /th e, RQ(T)) = F(r). (3.9)

to
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The dynamics of the matter fields is governed in the rotating frame by the following
Heisenberg equations of motion where we omitted the primes for notational simplicity

« h2 A
m(at + Q(t)&p) U, (r, t) = {—%W + huw, + Vi"t(r)} U, (r, t)

b LS 110 B (r,0) |t (3.10)

Correspondingly the equations of motion for the conjugate momentum II and the trans-
verse vector potential A read

(at + Q(t)@w)ﬂ(r,t) - —Miv X (V x A(r, 1)) (3.11)
and
(90 + 1), ) Ae.1) = 6iﬂ(r, £+ ;f’(r, . (3.12)

Here we have introduced the transverse polarization

P(r,t) =) Wi(r,t)d,U,(r,1). (3.13)

It is immediately obvious that the transformation to the rotating frame just amounts to
the replacement 0; — 0; + €)(t) 0,, in the equations of motion with respect to the initial
frame.

In the Coulomb gauge we have II(r,t) = —D(r,t) [18]. Using this and D(r) = ¢, E(r) +
P(r) we find for the wave equation in the rotating frame

[A _ é(at + Q(t)aq,)Q} B(r.1) = o) + ()2, Pr.t). (3.14)

In the following we are going to apply the slowly-varying envelope approximation, which
still holds in the rotating frame. The approximation is applicable as long as the rate of
change of the field is negligible on the distance of a wavelength of the field. Thus we
introduce slowly-varying variables for the transverse field as well as the polarization by
E(r,t) = ED(z,ry, t) e @ik £ b g and P(r,t) = PO (z, 1, t) e @iho) 4 h g
where © = Ry is the arclength of the circle. Restricting ourselves to propagation along the
periphery of the interferometer we find within the slowly-varying envelope approximation
and neglecting terms O(Q2 R/c)

~ 1Wn A

(at +edy + ikaR)s<+> (0,1) = 52P O (a,1) (3.15)
€0

The term proportional to the rotation rate €2 is responsible for the rotationally induced

Sagnac phase shift in the pure light case, i. e. without any influence from the medium. As

shown in [15] and in the next section the polarization term leads to an additional phase
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shift if we fulfill the conditions mentioned section in 3.1.

Introducing also slowly-varying amplitudes for the matter fields U, = Dy, Uy = &y e wpt—kpa)
and Uy = g e (Awi=Ak2) with Ay = wp —w, and Ak =k, — k:ﬂ, where k:! is the wave
vector projection of the control-field on to the z-axis, we find

(132 V() + i(Ag — kaR))cig = 1, &, + hQ.bs, (3.17)
(Dg — Va(2) + h(As — nkaR))ég = 1 by, (3.18)
with
1202
D,=1iho, + 2m$ + 1A (QR + 1yVcec) Oy (3.19)

Here we have used the definitions Ay = w, — wy — Wyee and Az = Aw — w3 — N?wye. for the
one- and two-photon detuning including the recoil shift (wyee = hkg /2m). Additionally we
have introduced the dimensionless parameter n = Ak/k, which describes the momentum
transfer from the light fields to the atoms in state |3) as well as the abbreviation 7, = ¢, 2+

10,3 The control and probe-field Rabi frequencies are defined by Q, . = —d,, - Eg(f) /h.

3.3 Sagnac phase shift and influence of external trap-
ping potentials

In this section we calculate the stationary Sagnac phase shift obtained in the hybrid
interferometer in the perturbative limit of low probe light intensities. In particular we
will take into account the effects of the confinement of the atoms along the direction of
the interferometer path. In what follows we perform a perturbation theory in powers of
the probe-field, i. e. our general solution may be expanded in powers of {27

O, (r,t) =) ®M(r,1). (3.20)

Furthermore, we assume that all atoms are initially in the internal state |1). Therefore,
we have <(i>éo)(x, t=0)) = (Ci)go) (x,t = 0)) = 0. The stationary state is described in zeroth
order according to eq. (3.16) by

292

(7”’;895 + ihQR, + (€1 — v1<x>>)<i>g°> (z) =0, (3.21)

m

where € is the energy (chemical potential) of the internal state |1). This equation holds
also in first order of the perturbation theory due to the initial conditions mentioned
above. Assuming || > |Aq], k,|QR, Va(z)/h, QR/L, vrec/L, €2/h and h/(2mL?*) one
finds in first order from eq. (3.17)

oM (2) = 50 (), (3.22)
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which amounts to an adiabatic elimination of the excited state. Using this, eq. (3.18) and
the two-photon resonance condition Az = 0, we find

b e, R g0, L[ ey & = Va@)] 20
P, —T]kpm—clg@l Q, — 0. {%@c +1(QR 4 Nrec) 0y + — "0,
(3.23)
$© | »
=7 |Q1]2 [kszR — Vpec (0 In <I>§ ))} Q,(x)
o tho? N . )
_ 07 |2m + Z(QR + Npee — ZE(@C In ®; ))é?gC Q, ().

In deriving the second equation, which is useful for later discussions, we have made use of
(3.21) and assumed equal trapping potentials for the internal states V; = V3. Furthermore,
an unimportant constant energy term proportional to €; — €3 has been dropped. One
recognizes that the fields @gl) and i)g) and thus the medium polarization

P () = dio (D] () Py (2)) (3.24)

follow in a straight forward way from the solution of eq. (3.21). In the next two sections
we will consider two important and fundamentally different cases. In the first case no
longitudinal confining potential for atoms in state |1) is assumed. This is equivalent to
a system with periodic boundary conditions such as a ring trap. In the second case a
trapping potential in the peripheral direction is taken into account.

3.3.1 Periodic boundary conditions in state |1)

Let us consider the case that atoms in state |1) do not experience any confining potential
in the x direction. Since z is the coordinate along the periphery of the interferometer,
this amounts to considering a ring-trap configuration with periodic boundary conditions
as shown in fig. 3.2. With Vj(z) = 0, eq. (3.21) has the solutions

. o €1 =20
(0) _ 0 1
(Dl (ZL') - { qA)O e—imQRr/h € = mQQRQ/Q ) (325)

where @, is constant. We assume that the atoms in state |1) form a Bose condensate
and can thus be described by a coherent c-number field (or order parameter), i. e. we can
substitute ® — ®. The ring-trap configuration then implies periodic boundary conditions

®(z + 27R) = ®(x). (3.26)

As a consequence only the solution with ¢, = 0 applies as long as mQR?*/h < 1. This
reflects the fact that the BEC forms a superfluid which is irrotational and thus will not
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Figure 3.2: The picture shows the proposed setup of a ring-shaped trap configuration
supporting a superfluid ultra-cold gas (BEC). The red arrow corresponds to the crossing
probe-field laser. It is not necessary to use the symmetric set-up as shown on the left hand
side, however, this approach allows for a distinction of rotational from linear acceleration.

pick up any rotational phase. This yields with eq. (3.23)

QR Z QR"—T]Urec @
2" (@) = Mhp 1790 Y (@) - ( TONE 29,0, (3.27)
1 ho,

Equation (3.27) allows us to finally determine the linear response of the medium. By sub-

stituting the expressions for (IDS) and <1>§°) into eq. (3.24) and subsequently into the station-
ary, shortened wave equation, eq. (3.15), we find using the definition g = di2/w),/2heg F
for the coupling constant

<cé7gC + ik:pQR) Q(z) = —ngQ)gO)*@gl)(az). (3.28)

Here d;2 denotes the dipole matrix element of the |1) < |2) transition and F the transver-
sal cross section of the probe beam. The last two equations allow us to determine the
equation for the weak probe-field

h 2
{ [c cos? 0 + (Nyee + QLR) sin® 9] 9, —isin?6 28‘” }Qp
m
- —@'k;pQR(cosQ 0 + nsin? 0) 0, (). (3.29)

For notational simplicity we have introduced the mixing angle # through the definition
tan? 0 = ¢*n/|Q.|?, where n = ®§®, is the density of atoms in state |1). Eq. (3.29) has
a very intuitive interpretation. It describes the propagation of the probe-field with the
group velocity

Vgr = € €08 0 + 1) Vye. 8I0° 0 (3.30)

in the rotating frame [124]. The propagation of light in an EIT medium is associated with
the formation of a dark-state polariton, a superposition of electromagnetic and matter
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wave components. If we neglect the motion of the atoms, the group velocity of this
quasi-particle is proportional to cos?#, which is the square of the weight factor of the
electromagnetic part of the polariton [1]. If the coherence transfer from light to atoms is
accompanied by a finite momentum transfer of 7 m vy, then there is also a matter wave
contribution to the total group velocity. This contribution is again proportional to the
square of its weight factor in the polariton. Thus in the limit tan? 0 > ¢/vec = tan? Oy,
the light wave is turned into a propagating spin-polarization with velocity nv... As a
consequence of the admixture of a matter wave excitations, the equation of motion (3.29)
also obtains a term corresponding to the kinetic energy of the matter wave. The right hand
side of eq. (3.29) describes the light and matter wave contributions to the rotationally
induced phase shift. Noteworthy is that the group-velocity term corresponding to the
light part has no rotational admixture. The matter wave contribution to the phase shift
is non-zero only if there is a finite momentum transfer, i.e. if n # 0. Eq. (3.29) can
easily be solved in the limit of small rotation, |Q2|R < vgy, which is the case of interest.
Neglecting the second-order derivative, eq. (3.29) reduces to eq. (11) of ref. [17]

L 2TQR [ &(2) mc®

0y InQ(z) = e |E@) +7 T hw, &(z) +1n

(3.31)

where

cot? 0 vg(w)

2 ~~
cot ecrit Urec

&(x) = —n. (3.32)
The last approximate equation is only valid for ve, < ¢. When ¢ is large the group
velocity is much larger than the recoil velocity, while ¢ approaching zero means that the
group velocity is comparable to the recoil velocity. Eq. (3.31) describes the rotationally
induced phase shift of the probe-field without taking its absorption into account, i. e. in
the regime of perfect EIT. Two counterpropagating probe-fields will experience the Sagnac
phase shift

- 2mQR &(z) QR n
Bosie = =3 /§<x>+nd“h/m E(x) +1

This is the result obtained in [15]. The Sagnac phase has two terms, a light-contribution
and, if 7 # 0, a matter wave contribution. If the group velocity becomes comparable to
the recoil velocity, i.e. for & — 0, the Sagnac phase approaches the matter wave value!

The assumption of periodic boundary conditions for <i>§°) practically requires a ring

dz. (3.33)

trap configuration and the solution <i>§°)(g;) = &, = const. means that the atoms do not
follow the motion of the rotating trap. This is strictly speaking only possible if the gas
is superfluid. In a normal gas collisions with wall roughness’s and between atoms, which
are not taken into account here, would accelerate the vapor atoms in the initial phase of
rotation. Eventually a stationary state would be reached where the atoms co-rotate with
the trap. Whether the above given arguments can be applied to normal gases strongly
depends on the time scales to reach the stationary state. Thus the extention to thermal
gases made in [15] is problematic and needs more careful considerations. Secondly the
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Figure 3.3: Sagnac phase-shift of the EIT hybrid interferometer relative to the phase shift
of an optical gyroscope of the same area, a ratio of medium length to circumference of
107% and n = 1; for £ > nmc?/hw, we are in the light and for £ < 7 we are in the matter
wave regime. A recoil velocity vy = fuw,/mc of 4 cm/s was assumed.

need for a superfluid gas (e.g. BEC) in a ring trap puts restrictions to the achievable
interferometer area. Although recently there has been substantial progress in realizing
ring traps for BEC [119], the area achieved is only on the order of 107! em?, which cannot
compete with the values reached in fiber-optical gyroscopes.

3.3.2 Effect of longitudinal confinement

Let us now discuss the case of a longitudinal trapping potential for atoms in state |1), i.e.
Vi(z) # 0 in eq. (3.21). In this case the substitution

OV (z) = Dy f(x) e mix/h (3.34)
leads to the steady-state equation
n*o: m .,
( o + 5&2 R*+¢ — Vl(as)) f(z) =0. (3.35)

If one disregards the small centrifugal energy shift proportional to 2, this equation is just
the stationary Schrodinger equation for a particle in the trap potential V;. The solution of
this equation is independent of the rotation rate except for the trivial centrifugal energy
term. If we substitute (3.34) into the second equation of (3.23), one recognizes that all
terms containing the rotation rate €2 in first order vanish exactly:

(0) ho?
8(0) =~ (0utn S 00) - oz 0))
(0)
- ~‘1’|19§|l“> (nvm - i%@r In f(x)) 0,9, (3.36)
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Substituting this into the shortened wave equation for €2, yields

h ho?
2 o . . 2 - . . 2 x —
[c cos“ 0 + <77?Jrec 1—0, In f(a:)) sin 9} 0,8, (z) — isin” 0 5 Q,(z) (3.37)

— ik, QR cos® 082, (z) — Ny sin* 0 <8w In f(x)) Qp,(z).

Neglecting the term with second derivatives as well as those containing derivatives of
f(z), i. e. taking into account that f(z) is a slowly-varying ground-state wave function of
a smooth potential, eq. (3.37) reduces to

21QR cos? 0 21QR 1
—i

= f—— 3.38
Ac cos? 6 + 2= sin* 0 e 1+n/¢ (3:38)

0, InQ,(x) =

It is obvious that only the light part of the Sagnac phase survives, as we see from discussing
the two limits of the parameter . If & tends to zero, i. e. in the matter case, the right
hand side vanishes and so does the Sagnac shift. On the other hand, if ¢ tends to infinity,
i. e. in the pure light case, the second term in the denominator of the right hand side of
eq. (3.38) vanishes and only the pure light rotational phase shift survives. Thus in the
EIT hybrid gyroscope a matter wave contribution to the Sagnac phase only emerges in
the absence of a confining potential i. e. if periodic boundary conditions apply as e.g. in
a ring trap.

The physical interpretation of this result is straight forward. In the presence of a confining
potential the atoms trapped in this potential, especially the atoms in state |1), are bound
to the motion of the confining potential. Hence they acquire a rotationally induced phase
shift by following the motion of the potential which is attached to the rotating frame.
The atoms in state |2) acquire the same phase shift since they are in the same frame.
Therefore, the polarization eq. (3.24) attains no Sagnac phase since it is a sesquilinear
function in terms of the wave-functions of the states |1) and |2). In the case of a superfluid
BEC in a ring trap the order parameter does not pick up any phase as long as the rotation
is sufficiently slow. This is due to the periodic boundary conditions and the superfluidity
of the condensate [125, , 127].

3.4 Quantum limited sensitivity of the slow-light gy-
roscope

The aim of this section is to determine the sensitivity of the slow-light Sagnac interfer-
ometer in the case of periodic boundary conditions, i.e. in the absence of any confining
potential in the propagation direction. We restrict ourselves to the case n = 1, i. e. to the
configuration of perpendicular wave vectors of probe and control field. We assume that
the error in determining the Sagnac phase is entirely determined by quantum fluctuations.
If coherent laser light or Poissonian particle sources are used the shot noise limit of the
phase measurement is given by [21]

Agbnoise = (339)
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where np = I,ytp is the total number of photons or atoms counted at the detector during
the measurement time tp. I,y is the photon or atom flux, i. e. the number of particles per
time unit. The assumption that the quantum noise limit is set by shot noise is justified by
two observations: First of all, it is known that using non-classical light or sub-Poissonian
particle sources in interferometry does in general not lead to an improvement of the signal-
to-noise ratio. This is because losses are usually already quite substantial at the optimum
operation point. These tend to quickly destroy the fragile nonclassical and sub-Poissonian
properties. Secondly, as has been shown in [31, ], atomic noise contributions in EIT-
type interferometer set-ups are small and can be neglected.

In the weak-signal limit discussed in the previous section, the Sagnac phase accumulated is
independent of the signal field strength [15], hence the signal-to-noise ratio could become
arbitrarily large when the input laser power is increased. This argumentation only holds as
long as the lowest order of the perturbation theory in the signal field intensity used in the
derivation of eq. (3.33) is applicable. In reality the Sagnac phase approaches a maximum
value at a certain optimum probe laser power and decreases for larger intensities. As we
will see later on, the optimum intensity is reached when the number density of photons
in the EIT medium approaches that of the atoms. In order to calculate the maximum
sensitivity and to find the optimum operation conditions we have to calculate the Sagnac
phase to all orders of the signal Rabi frequency. In higher order perturbation the excited
state |2) attains a finite population, therefore decay out of the excited state needs to
be taken into account. In general the decay leads to a population redistribution among
the states of the A system, see Fig. 3.4. It can also lead to loss out of the system.
We will disregard the latter process. This allows us to describe the system by a set
of equations for the single-particle density matrix p,,(z,2',t) = (@L(x,t)@,,(x’,t)) =
Tr{pi)L(x, t)®, (2, )} in the internal states p, v € {1,2,3}. Since the medium polarization
of the |1) —|2)-transition is determined by the local density-matrix element pia(z, z,t) we
consider only local quantities. For the density matrix elements diagonal in the internal
states we find the equations of motion

dpui(z,t) = mpaa(x,t) —1Qp(z, ) pa (2, 1) +1Q(z, ) pr2(w, 1)

8tp22 (‘T’ t) = —7Y2022 (,CE, t) + IQ;(*T’ t)p21 (.T, t) - iQP(x> t)p12(xa t)
+1Q%(x, t)pas(x,t) —iQe(x,t)psa(x,t) — (QR + Vyee)Opp2a(z,t),  (3.41)

Oipss(,t) = y3paz(x,t) — i (2, 1) pas(x,t) +1Qc (2, 1) p3a(, t)
— (2R + Vyec) O pss(x, t). (3.42)

Likewise we find for the local coherence’s
(9tp12(x, t) = —[I(Ag — QRkp) + 72/2]p12(1'7 t) + IQ:(I, t)p13<l’, t)
— 15 (@, 1) (pa2(, 1) — pu1(z, 1)) — (QR + Vrec) Oupra(a, 1)
+ Urec<q3£(amci>l)> (343)
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8tp13(x, t) = —[I(Ag - QRk’p) + 713],013(:1:, t) — IQ;(I', t)pgg(l', t)
+iQ(z, ) pra(x, ) — (AR + Vrec)Depr3(2, ) + Vpee (P8, P1)) (3.44)

Orpaz(w,t) = [i(Ag — Ag) — 72/2]pas(x,t) — iQp(x, ) pr3(x, 1)
—1Qc(,t)(p33(z,t) — paz(x,t)) — (R + Vyee ) Oupas(x, t) (3.45)

where 75 = v + 3. For the derivation of the decay terms we refer to the Appendix
A.1. One recognizes that the local nondiagonal matrix elements are coupled to non-local
quantities of the form (®f(z)(8,®,(x))). These terms cause the build-up of coherences
between different internal states and different positions. The coherences are zero at the
beginning, due to the initial conditions. We now argue that the above terms can be ne-
glected. From eq. (3.16) we find that in steady-state and ignoring second-order derivatives
(remember that there is no longitudinal confining potential, i. e. V; = 0)

In the adiabatic limit where the atoms are in the dark state defined by (3.22)

()

@3(37) = — QC

D, (2) (3.47)

we have (see eq. (3.23))

k,QR QR + ree
- G’)—P(blﬁp i T (9462,). (3.48)

)
? E

Substituting this into eq. (3.46) yields

B QR = i(QR A Ve ) (0: In€2))]
0, P1(z) = —is OR (11 3)+ e s P, (z), (3.49)

where s = [Q,]?/|Q|?. Since the slowly-varying envelope of €, picks up a Sagnac-phase
shift according to eq. (3.38) we arrive with

0, In QY ~ —i%k:pQR (3.50)
at

833(1)1 - —l

SR (10" g, 4 0((QR)) (3.51)

UI‘GC &

As a consequence the term vye.(®39,®,) in eq. (3.43) is of the order of

Ve (PO, D) = —ik, QR (1 - ozUm) P (3.52)

C
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and is thus negligible as compared to y2p12/2. Similarly the term vrec@gﬁmtbﬁ in eq. (3.44)
is of the order of

Ve (B0, D)) = ik QR (1 - a“?") . (3.53)
Since in the ideal case the ground-state coherence is long lived, one has 7,3 — 0, neglecting
this term is not as straight forward as above. However, adiabatically eliminating the fast
decaying optical coherence py5 in eq. (3.43) and substituting into eq. (3.44) yields a term
proportional to |Q.|?/y2p13 which is much larger than k,Q2Rp;3. Thus also this term can
be safely neglected.

In the following we assume one- and two-photon resonance, i.e. Ay = Ag = 0, and

2 713

Figure 3.4: A configuration in which the Rabi frequency €2, drives the 1 < 2-transition
and €. the 3 < 2-transition (solid lines). Radiative decay from the excited level to |1)
or to |3) goes as 1 or 73 respectively (dashed lines). The dephasing rate of the 1 — 3
coherence is denoted by vi3.

solve the above system of equations in steady state for the coherence of the 1 < 2-
transition.

3.4.1 Perturbation theory with respect to characteristic length

The density matrix equations (3.40-3.45) without the non diagonal terms <(8x¢>L(x))@>V(x)>
can be written in compact form as

Oip(x,t) = (M(2) + tree D) p(, 1) (3.54)

where M and D are 9 x 9 matrices. Even under stationary conditions we are left with a set
of first order linear differential equations with space dependent coefficient. Thus in order
to find an analytic solution further approximations are needed. We neglect at this stage
terms of the form 2RO, since they lead to higher order corrections with respect to the
rotation rate. The Sagnac effect is a first order effect in 2, see eq. (3.1). Furthermore, we
make use of the fact that the off-diagonal density matrix elements are only slowly-varying
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in space: Let [ and T be characteristic length and time scales of changes. Normalizing
time and space to these units by £ = z/l and 7 = t/T, eq. (3.54) reads

Urec '

Orp = (1\71 + f)&g) p (3.55)
where typical matrix elements of M = MT read as QT, with |Q7] > 1 and those of
D = DT are of order unity. Since the dimensionless parameter v,,.1'/l is typically small
compared to unity we can apply a perturbation expansion in the recoil velocity.

In zeroth order we disregard the term containing D. Hence in steady state we have to
solve Mpl? = 0 with the constraint > Pup(x) = n(x), which reflects the conservation of
probability. Up to first order in v, we find

Bii)(m) = (1 - vpeeM'D3,) Bég) (). (3.56)
Here M is a reduced 8 x 8 matrix obtained from M by incorporating the constraint
> Pup(®) = n(z) and ng) is the corresponding zeroth order density matrix. The explicit
expressions of all matrices and vectors can be obtained from (3.40)-(3.45) in a straight
forward manner. They are however lengthy and will not be given here.

3.4.2 Steady state Maxwell-Bloch equation

To obtain the rotationally induced phase shift we expand eq. (3.56) up to first order in
the angular velocity €2 and use the stationary, shortend wave-equation for the probe-field
in the rotating frame

<08x + ik:pQR> 0,(z) = —ig*nps. (3.57)

Furthermore, we neglect terms O(v3;) and 71382 with m € N since we assume a long-
lived coherence between the two lower states |1) and |3). In addition we make use of the
EIT condition 92 > 7137, [27] and assume for simplicity v, = v3 = 7.

With these assumptions we find the following expressions for the real and imaginary part
of the susceptibility, which determine the dispersion and absorption of the medium

QR Q2
X'(Qp) =571 — (1 + anW) (3.58)
X"(2) = —ﬁ‘lﬁg%% (3.59)
¢ (Q+ %)
with
B() =1+ ¢%n % (3.60)

c” (R +I[BP)P
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In the following we are interested in the correct description of the phase shift induced
on the probe-field. Hence we may use a simplified description of the absorption of the
probe-field, i. e. of the imaginary part of the susceptibility x(€2,) = x’ +ix”. One can
easily see that the absorption constant is bounded from above by

" Y13 927’L 713 0

X —hK=—"—"5 =—tan

.61
S (3.61)

This equation does not take into account the saturation of the absorption in the limit of
large probe-field intensities |€2,| ~ €. and thus overestimates the losses slightly. In this
limiting case the following stationary equation for the signal field arises

0, InQp(z) = — 2 tan? 0 — ik, x'(Q(@)). (3.62)
c
This is a non-linear differential equation, which does not lead to a simple integral. One

may reformulate it in terms of an integral equation

T

Qp(x) = Q,(0) e exp —ik;p/x’ (Q,(2")) da’| . (3.63)

0
The first term in eq. (3.62) describes absorption losses, the second term the rotationally
induced or Sagnac phase. The same is true for eq. (3.63). An approximate solution to

these equations will be given in the next section. We will persue an approach which allows
us to derive analytical expression that are more suitable for interpretation.

3.4.3 Quantum limits of gyroscope sensitivity

Using the results from the last section we can now determine the minimum detectable
rotation rate (), of the slow-light gyroscope. We do so by maximizing the signal-to-noise
ratio (SNR) of the interferometer with respect to the system parameters and set it equal
to unity. The phase difference of two polaritons propagating in opposite directions is
given by

Boas = [ Aok, [(2.0,(0) = X (-0, 2,()]. (3.64)

where we have ignored for notational simplicity the overall minus sign. Using this and
eq. (3.58) we find

Agbsig - Agblight + AQbmatter

47TQR / 20R 77<1+s<x>>
&(x 1+sm h/m 5( )17 1+s(w))

, (3.65)

where s(z) = |Q,(2)|?/Q2 is a saturation parameter, and £(z) was introduced in (3.32).
One recognizes that the matter wave component of the signal phase shift — the second
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Figure 3.5: Schematic dependence of SNR on input probe-field Rabi frequency. The
dash-dotted line indicates the contribution of the matter wave term, the dashed line that
of the light term. The solid line is the sum of both contributions.

term on the right hand side of eq. (3.65) — decreases for increasing input probe intensity.
The light component — first term in the same line of eq. (3.65) — approaches a constant
in the same limit. At the same time the shot noise phase error

1
V1D

is inversely proportional to [€2,(0)|exp(—~L), where L is the length of the medium.
The source of the probe-field is located at * = 0. As a consequence of the different
dependence of Adg, and Adpeise on the signal field strength, the signal-to-noise ratio
SNR = A¢sig/Adnoise has the qualitative behavior shown in Fig. 3.5. For very large
laser fields the SNR becomes arbitrarily large. This is because the light contribution to
the Sagnac phase Agjigne becomes independent on 2,(0) while the shot noise becomes
arbitrarily small as was shown in the Introduction part of this thesis.

For small probe intensities the SN R has a local maximum due to the saturation of the
matter wave phase shift. As the matter wave contribution to the Sagnac shift is orders of
magnitude larger than the light contribution, extremely large input intensities would be
required to exceed the sensitivity value at the first local maximum. We thus consider only
this first maximum when determining the quantum-limited sensitivity of the slow-light
gyroscope.

Although it is rather straight forward to calculate the minimum detectable rotation
rate determined by SNR = 1 numerically, we are interested here in an analytic esti-
mate. To derive a corresponding analytic expression we make a number of simplifying
assumptions. We consider the propagation of polaritons through a homogeneous medium
of length L. Furthermore, we ignore the space dependence of the functions &(x) and
s(x) in the expression (3.65) for the signal phase, replacing |§2,(z)| by its input value
1€2,(0)| = |€2,]. As will be seen later on this only slightly overestimates the saturation of
the signal at the optimum operation point. We also ignore the saturation of the probe-
field absorption, which again only slightly overestimates the probe-field absorption at the

Adpoise = (3.66)
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Figure 3.6: Signal-to-noise ratio (SNR) in units of the first two factors of eq. (3.72) as a
function of the saturation parameter s and the light-matter-transition parameter £. The
three graphs correspond to three different values of the loss parameter a. a = 0.5 (left),
a =5 (middle) and a = 50 (right) which are some of the values used for fig. 3.7. The
middle and right plot support the statement that the location of the SNR-maximum is
given, in the large a limit, by the expressions (3.73).

operation point. Finally, we only consider the dominant matter wave contribution to the
signal phase. Thus we have

2QRL  (1+ )

h/m £(1+s)P+1 (3.67)

AQbsig =

Here s = |€2,|/€). is again the saturation parameter and the parameter ¢, introduced in
eq. (3.32), describes the transition from a light-dominated (£ > 1) to a matter-dominated
(€ < 1) operation of the hybrid gyroscope.

In order to estimate the signal-to-noise ratio SNR=Adg;y / Apoise We rewrite the shot noise
expression (3.66) in terms of the parameters £ and s. The number of probe photons at
the detector can be written in terms of the probe-field Rabi frequency at the source via

PDt 2€0FC <th(O>>2 —oxl
np = = te =", (3.68)
hwp h’wp |dp|

where F'is the cross-section of the signal beam, ¢ the detection time interval, and xk =
M3/ (vrec€) the absorption coefficient introduced before. The radiative decay rate v = v,
and the dipole matrix element |d,|, contained in the Rabi frequency €2,(0), are related

through
_ = " 7 (3.69)
4d7eg \3 hc?
i. e. according to the Einstein A-coefficient [123]. After a straight forward calculation we
find

np = F 0Vt E 5728 (3.70)
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Figure 3.7: Optimum values of s = [€2,(0)]/Q. and § = vy /vec — 1 for different values of
the loss parameter a = y13L /v (= 0.05,0.5,5,50,500,5000). For large values of a the
optimum values are s = 1/3 and &y = 2a. For small values of a there is only a small
deviation in the optimum parameters.

where p is the density of atoms in the EIT medium, and

Y3L

UI‘GC

(3.71)

characterizes the absorption due to a finite lifetime of the ground-state coherence. Since
typical values of y13 are in the kHz regime and v,ec ~ 1 cm/s, a is typically large compared
to unity for L > 1072 ecm. With the above expressions we find for the signal-to-noise
ratio

1/2¢1/261/2(1 + s)
E1+s)3+1

SNR = %<F 0 Vrec t) exp(—a/f). (3.72)

h/m

The fist two factors in eq. (3.72) are the expression for the signal-to-noise ratio of a pure
matter wave gyroscope with interferometer area A = RL and flux j = F 0y, 1. €. J
is the number of atoms per second penetrating the cross section F' [21]. In conventional
atomic interferometers based on cold or ultra-cold atoms the flux that contributes to the
interference signal of the device is considerably low, i. e. it is on the order of 10% atoms/s in
comparison with 10'® photons/s in a conventional fiber optics gyroscope [109]. However,
in the case studied here, the flux can be at least two orders of magnitude higher than the
atom interferometer flux. In fig. 3.6 the dependence of the signal-to-noise ration is shown
for typical values of the absorption parameter a.

The last two factors can be changed by optimizing the probe-field strength (s) and the
group velocity in the medium (¢). In Fig. 3.7 we have plotted the optimum values of s
and ¢ for different values of the loss parameter a. One finds that in the typical parameter
regime a > 1 the maximum SNR is attained for

1
Sopt = 3 and  &pr = 2a. (3.73)
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This approximation is still quite good even when a is about one as can be seen form
fig. 3.6. Thus the optimum group velocity is according to eq. (3.32) given by

UOpt = 2’}/13[/ + Vrec ~ 2713[/, (374)

gr

where the last approximate equation holds if a is much bigger than unity. Thus we find
a maximum SNR if the velocity is chosen such that during the propagation over the
entire medium length L, a fraction of 1/4/e of the initial polaritons got absorbed. Setting
SNR=1, we eventually arrive at the minimal detectable rotation rate

- h/m 1
A (F QUTGC t)

72/ e (3.75)

where f a~ 7.19 is a numerical prefactor. Apart from the term /a and the unimpor-
tant numerical prefactor f, the minimal detectable rotation rate corresponds to that of a
matter wave interferometer where all atoms propagate with recoil velocity. The densities
achievable in the present set-up are however much larger than those in a typical beam,
e.g. if we consider a BEC in a ring trap configuration.

To be more specific we give two estimates based on the already existing circular waveg-
uides for Bose-Einstein condensates [119, ]. To this end, we assume that the atomic
density is p = 1014 cm™ with a cross-section F' ~ 1072 cm? (smaller circle of the toroidal
BEC). In case of the work of S. Gupta et al. the diameter of the waveguide is dgupta =~ 3
mm and in the case of A. S. Arnold et al. it iS damea &~ 96 mm. Hence, we find in
the first case the minimum detectable rotation to be Q™ ~ 1.4 x 107 s~' Hz~'/? and
in the latter case Q2o ~ 1.4 x 107'2 7! Hz7'/2. These values compare very well to
the state-of-the-art which for optical gyroscopes is 2 x 107'° rad s~! Hz~/2 [63] and for
matter wave gyroscopes is 6 x 10710 rad s~' Hz /2 [(4].

3.5 Conclusion

We have proposed a novel type of light-matter wave hybrid Sagnac interferometer based
on ultraslow light. We have shown that unlike in earlier proposals of slow-light gyroscopes,
it is not sufficient to utilize the dispersive properties of the media to achieve an enhance-
ment of the rotational sensitivity of an EIT-based Sagnac interferometer. According to
the studies presented it is necessary to harness simultaneous coherence and momentum
transfer in the associated Raman transition of the EIT-medium. Moreover, the medium
has to be prepared initially in a state in which it does not acquire any rotational phase
shift. This can be achieved, for example, by using a superfluid BEC in a ring trap. The
latter requirement reduces the potential benifit of the hybrid interferometer idea as com-
pared to the statements in [15]. It is not possible to build large area interferometers under
this conditions with current technology. However, the potential large flux of the proposed
interferometer leads to a reduction of the acquired shot noise as compared to present day
pure matter wave gyroscopes and thus still leads to a sensitivity enhancement.



3.5. CONCLUSION 106




Chapter 4

Studies on transient Velocity
Selective Coherent Population
Trapping

This chapter is the result of a joint experimental and theoretical project within the
Graduiertenkolleg 792: | Ultrakurzzeitphysik und nichtlineare Optik”. In the course of
the project I worked in the group of Prof. Dr. Dr. h.c. K. Bergmann together with Dr. F.
Vewinger [129]. The aim of the project was the first experimental verification of the so-
called transient trapping states (dark states) predicted by E. Arimondo et al. [130] for
the scheme of velocity selective coherent population trapping (VSCPT).

4.1 Introduction

The idea of coherent population trapping (CPT) [21, | and especially of VSCPT
[132, | is to prepare atoms in special superposition states in which there is no ab-
sorption or induced emission of the incident light fields even in the presence of a resonant
coupling. In the present case these dark states are superpositions of different tensor
products of internal and external states, i. e. of atoms in Zeeman sublevels with fixed
momenta. The preparation of the system in these states is reflected by the generation of
certain momentum distributions. In an atomic beam experiment the momentum distri-
bution, which we want to measure, is translated into a spatial distribution at the detector
which is sufficiently far enough downstream from the preparation or interaction region.
Transient velocity selective dark states were discussed first theoretically by E. Ari-
mondo et al. [130] for the case of a J;, = 2 < J. = l-transition coupled by counter-
propagating o and o~ laser-fields. Beside a stable dark state this scheme also possesses
a transient dark state, i. e. a dark state that has a finite lifetime. The transient dark
states have been experimentally used before [134] but have so far not been studied for
their own sake. In this chapter we will present our experimental results and compare the
experimental momentum distributions corresponding to the transient dark state with a

107
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full numerical solution of the generalized optical Bloch equations. To our knowledge this
is the first direct experimental observation of the transient velocity-selective dark state.

4.2 Principles of VSCPT

4.2.1 VSCPT in a A-configuration

In this section we follow references [132, 133] to give a brief explanation of the mechanism
of velocity selective coherent population trapping. We consider two Zeeman manifolds
with total angular momentum J, = 1 of the ground state-manifold and J, = 1 for

the excited state-manifold. Atoms of this configuration are irradiated by two counter-
propagating circular-polarized classical electric fields as depicted in fig. 4.1 (a).

In the first stage of the description we do not take spontaneous emission into account
except for the optical pumping process into the A-type subsystem of the J, =1« J. =1
-transition given by the states {|g_1) = |J;,my = —1),]le) = |Je;me = 0),]g41) =
|Jy,my = 1)}. Due to the applied 6 — o~ -laser fields and the vanishing Clebsch-Gordon
coefficient of the |J;, = 1,m, = 0) < |J. = 1,m. = 0) -transition spontaneous emis-
sion leads to the depopulation of the V-configuration represented by the set of states
{|Je;me = —1),|Jy,my = 0),|Je,me = 1)}. Hence, it is only necessary to consider in
the following the A-subsystem. The Hamiltonian which describes the motion of atoms,
stimulated emission and absorption processes is given by
p?

H=-—
2M

+ hwele)(e| — d - E(z,t), (4.1)

where M is the mass of the atoms and P, = |e){e| the projector on the excited state
le) = |Je,m. = 0). This state has an energy of hw, with respect to the ground state
manifold J,. Here d is the electric dipole moment operator. The representation of the
classical electric field propagating in the £ z-direction is given by

E(z,t) = = (Erepe ™™ + € e_e e ™ + cc) | (4.2)

N[ —

where €4 are the unit vectors of the left (—) /right (+) circular polarized fields [135].
The carrier frequency is denoted by w, its corresponding wave number by k and &1 are
the slowly varying field amplitudes (positive frequency part) for the forward respectively
backward propagating component of the applied electric field. The Rabi frequencies for
these fields are defined via Q. = —d €. /h with dy = (e|es - d|gz). Due to the selection
rules we have (e|ex - d|g+) = 0. Furthermore, because of linear momentum conservation
the dipole interaction Hamiltonian leads only to an interaction between states belonging
to a closed momentum family

F(q) ={le,q), |9, q — hk), |g4,q + hk)}. (4.3)
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1D(q))

Figure 4.1: (a) Solid lines represent the possible coupling due to the radiation field. The
dashed lines illustrate the pathways allowed by selection rules for spontaneous decay. The
my, = 0 — my, = 0is forbidden due to these. (b) The relevant A-system in an appropriate
dressed state picture. The excited states |e, ¢) couples to |B(q)) due to the radiation field
Va, which itself is coupled to |D(q)) by the kinetic energy part of the Hamiltonian. Only
in the case, =0, the state |D(q)) does not participate to the absorption and fluorescence
cycles; in this case it is a true trapping state.

Following this line one finds the interaction Hamiltonian in the momentum family basis
after the rotating wave approximation

h .
Vy = Z 5 (Q+|€7 qQ){g_,q — hk| +Q_|e,q){gs,q+ h/{:|>e*“"t +h.a.. (4.4)
q

Here |u,p) = |u) ® |p) denotes that the atom is in the internal state |u) and has a
momentum p along the z-axis, i. e. the quantization axis of the system defined by the
propagation direction of the external laser field. The family momentum ¢ is, according to
the above definition, the real momentum p of the excited state |e). In a later section we
will give a more detailed derivation of the above expressions.

4.2.2 Dynamics in dark- and bright state basis

One can understand VSCPT in a simple way by introducing the so-called dark and bright
states of the A-configuration. The dark state of the Hamiltonian (4.4) with family mo-
mentum ¢ is defined as

Q_ Q
D(0)) = " L9 — Rk} — ol q + hk) (15)
and the bright state as

Q Q-
1B(q)) = ﬁ|9—7q—hk>+ﬁ|g+7Q+hk>, (4.6)
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where the effective Rabi frequency Q is Q = /0% + Q2. The Rabi frequencies Q. are
chosen to be real which can always be done by choosing an appropriate coordinate system.
The dark and bright states are called like this because of the following properties

(0. cVAlD(@) =0 and (g,elVilBlg)) = o0 (4.7

Consequently, the atoms in the dark state do not couple to the laser field for any family
momentum, whereas the atoms in the bright state absorb a laser photon irrespectively of
their family momentum. If we suppose that initially the atoms are prepared in the dark
state, than the subsequent time evolution of the corresponding density matrix element is
determined by

kq2Q, 0

0.(D()lplD(q)) = —i 5 —a5—(D(@)lplB(g)) + c.c. (4.8)

Now suppose that the initial dark state has zero family momentum, i. e. ¢ = 0, in this case
the right-hand side of eq. (4.8) vanishes. Hence, atoms prepared in the dark state cannot
leave it due to their free motional evolution. Even spontaneous emission does not lead to
a destruction of the dark state because it is, according to eq. (4.5), a superposition of two
ground states which are radiatively stable. The use of meta-stable states is also possible
as long as the lifetime of the states is much longer than the interaction and measurement
time. In summary, the state |D(q = 0)) is a perfectly trapped state. Because of this
|D(0)) is also called stable VSCPT state.

In the case of ¢ # 0, eq. (4.8) results in a coupling induced by the free evolution of the
dark state |D(q)) to the bright state |B(q)). The states |D(q # 0)) thus participate in the
absorption and fluorescence cycles. This dynamics is sketched in fig. 4.1 (b), where we
have also noted that the coupling rate between the dark- and bright state is proportional
to kq/M.

4.2.3 Transient VSCPT states

As predicted by Papoff et al. [130] the interaction of freely moving atoms with two
counter-propagating right and left circular polarized laser beams on a J, = 2 < J, =1
-transition leads to the creation of transient VSCPT-states. These are not exact eigen-
states of the kinetic energy Hamiltonian as was the case for the stable dark state in a
Jg =1+ J. = l-configuration discussed in the last section. Even for a vanishing family
momentum the corresponding state does not turn into a stable dark state.

The coupling scheme of a J;, = 2 < J. = 1 -transition, shown in fig. 4.2, suggests
the introduction of two distinct subsystems. Both systems are coupled to each other only
by optical pumping. By inspecting fig. 4.2, we see that these systems are the already
discussed A-configuration (blue, dashed-line) and the so-called inverted-W-configuration
(red, solid line). The transient dark state, which we are interested in, is an eigenstate
of the inverted-W system. The nomenclature of the states used here has to be read in
analogy to the one used in the last section.

As mentioned before, the dipole interaction with the radiation field only leads to a
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|€_,q—hk’> |607Q> |6+,q—|—hl€>

‘]g
|9-2,q — 2hk)|g—,q — hk) 190.q) |9+, q+ hk) |g42,q + 2hk)

Figure 4.2: Coupling scheme of the J; = 2 < J, = l-transition for the classical laser
field in a ot — 0~ - configuration. The A-system consists of the family of states Fj(q) =
{leo, q), lg—, q— hk),|g+,q+ hk)} and the inverted-W system of Friy(q) = {|eo, q), |9+, ¢+
hk),|g+2,q £ 2hk)}.

coupling between states of the same momentum family. Since there are now two subsys-
tems two momentum families emerge

FA(Q) = {’67q>7’gqu_hk>7’g+aq_|’hk>}> (4-9)
Frw(q) ={l9,9), lex, ¢ £ hk), g2, q £ 2hk)}. (4.10)

With the assumption of equal field amplitudes of the counterpropagating electric fields
and using the appropriate Clebsch-Gordon coefficients, the interaction Hamiltonian of the
inverted-W configuration reads

hQ2 6
Viw = 5 [\/ 1o/6-ta-nk) (92, ¢ — 2hk]
q

/1
+ E(|6—1’q_hk><90aq|+ |€+17Q+hk><go,(]|)

/6 .
+ E\e+1,q+hk><g+2,q+hk]] e_“"t—i—h.a. (411)

By diagonalization of this interaction operator we can transform the momentum family for
the inverted-W configuration into a new representation Fry (q) = {|¥nc), |Ve1), |Pe2),
lex, q = hk)} with

1

Une) = 7 <|g_2, q — 2hk) — V6|go, q) + |g42,q + 2hk>> ; (4.12)
1

er) = —— (g, g — 2hk) — |gya, q + 25k)) 413

[Wer) ﬁ(lgw ) = 1942, 4 )) (4.13)
1

o) = —— (3|92, q — 2hk) + V6|90, @) + 3|g42, q + 2hk) ) . 4.14

Wez) = = (319-2: = 20k) + Vlo, ) + 3112, + 200)) (414)

The state vector |V ) has a vanishing eigenvalue with respect to the interaction Hamilto-
nian (4.11) and does not involve excited states hence it is the dark state of the inverted-W
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configuration. Yet, it is not an exact eigenstate of the kinetic energy Hamiltonian. This
can be seen by considering the free evolution of the state in the Schrodinger picture, which
is given by

L OWne) P
o T o

2 21.2
q Rk | 1 \F

= —|Unc) + —=— | —=|Unc) + 1/ 5|¥
517 YAe) % [ﬁ‘ o) 5| Wer)

Hence, even for a vanishing family momentum, ¢ = 0, there exists a coupling of the dark
state to one of the bright-states of the system, i. e. the dark state |V yc) = [Yno(q)) is
not a real trapping state for any q. As we see from eq. (4.15) the lifetime of the dark state
is maximal if the family momentum ¢ is zero. Because of this, the state |V yc(q = 0))
is called transient trapping state. The transient dark state is characterized, as we can
see from eq. (4.12), by three peaks in the momentum distribution which are located at
p =0 and p = £2hk. From eq. (4.15) we see, furthermore, that the lifetime of the state
is on the order of the recoil time Tyec = N/ Erec = 2M/Rk?. In the most relevant cases this
time scale is sufficiently long for an experimental verification of these states. In the next
sections we will give a more detailed calculation of the corresponding lifetime.

Wne)

hkq

+ o7 Vo). (4.15)

4.3 Theoretical description

This section gives a derivation of the interaction Hamiltonians mentioned in the intro-
duction of the chapter. In addition we review the derivation of the generalized optical
Bloch equations that we used for the simulation. As stated above we want to study the
evolution of freely moving atoms irradiated on the J; = 2 < J. = 1 transition by two
counter-propagating laser fields in a o™ — o~ -laser configuration. The coupling scheme is
shown in fig. 4.2. The total Hamiltonian of the system

H = Hyyo + Hy + Hiy, (4.16)

consists of three parts, the first part ffsys describes the free motion of the atoms and the
interaction with the classical laser fields, the second part the free quantized electromag-
netic field H ¢ (bath) and the last part the interaction of the quantized electromagnetic
field with the atoms Hiy.

4.3.1 Interaction with the classical laser field

In the 0" —o~-configuration [135] the laser radiation E(z,t) = €(z, t)+&€*(z, t) is composed
of two counterpropagating beams with left- (67) and right-circular (o) polarization

E(z,t) = = (Erese ™™ + E e e e ), (4.17)

N =
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where £ denote the corresponding slowly varying amplitudes. Since the classical laser
field couples two Zeeman manifolds we have to apply the Wigner-Eckart theorem [136],
i. e. we can write the dipole operator as

d= )" (di + h.a.), (4.18)
i=0,+

where the sum runs over all possible polarizations (linear (0), left circular (-) and right
circular (+)) of the electromagnetic field. The dipole operators with respect to the polar-
ization axis are thus given by

do=d Y CRI [ me)(myg, Ty, (4.19)
—Je<me<Je
—Jg<mg<Jg

The C’;{fjﬁ’g{m are the Clebsch-Gordan coefficients, and d = (.J|d|.J,) is the reduced dipole
matrix element. By inserting eq. (4.18) and the expression for the electric field into the
Hamilton operator in dipole approximation we find

h

Jo,Jg,J Lot
VoL = 5 Z Cmemig7+1\<]e,me><mg, Jg|2te wt ikz
—Je<me<Je
—Jg<mg<Jg
+ Z Cﬁ;ﬁ;{_ﬂJm Me) (Mg, Jg|Q_e_i“’t6_ikz +h.a. |, (4.20)
_JegmeSJe
—Jg<my<Jy
where the Rabi frequencies 0y = —d€. /h. Since we want to study subrecoil dynamics we
have to quantize both internal and external degrees of freedom of the atoms [137]. Hence

we represent the interaction Hamiltonian operator (4.20) in the basis of the eigenfunctions
of the momentum operator, i. e.

Vit = / &p / 4/ |p) (0’| (p|Vaclp'). (4.21)

Using the relation e**?|p) = |p & hke.) and the orthonormality of the eigenfunctions of
the momentum operator (p|p’ + hke,) = §(p F hke, — p’) one finds

h .
VAL = 5 Z d3p CJe,Jg’J Jeame><mg7 Jg| ® ’p> <p - hkeZ|Q+€71Wt

—Jg<mg<Jy o
—Jg<mg<Jg
(4.22)
+ Z d*p C;,]fe’ﬁ’g{mue, me) (Mg, Jg| @ |P)(p + hke.|Q_e ™ + h.a.
_JegmeSJe

—Jg<mg<Jy
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In the rest of this paragraph we will restrict our considerations to the motion of atoms
along the z-axis. The Clebsch-Gordan coefficients show that, especially in the case of
the examined J; = 2 < J, = 1 transition, only states within the A- and inverted-W
subsystems are coupled to each other. To transform the above interaction Hamiltonian
in his present representation into the one given in the last sections we replace the integral
by the sum over momenta, i. e. [dp, — V, sz, where V), is the corresponding integra-
tion volume. In this case we also have to redefine the corresponding state vectors. The
state vector in the discrete case are related to the ones in the continuous case through:
\/_ |DYcon — |P)ais- For notational simplicity we drop however the distinction using the
subscripts. If we instead of using the standard momentum representation of the state
vectors introduce the family momentum representation we find the interaction Hamilto-
nian given below. The usage of the family momentum notation transforms the sum over
the real momenta p, into a sum over the family momenta ¢, e. g. |e_){go| ® |p.){p. + hk|
transforms to |e_)(go| ® |g— hk){g|. Our interaction Hamiltonian V41, = Vs + Viw consists
of two parts. One describes the interaction within the A-system, the other one within the
inverted-W configuration

h
Vo= 5y io{leo a)g1.q — Bk (4.23)
q
+ Q_leg, ¢){(g+1,q + hk|} exp(—iwt) + h.a.,

h
Viw = Z 2 [\/ 168tele—1,q — k) (g2, q — 2hk| (4.24)
q

AF\/;IO(Q_|6_17 q— hk> + Q+|€+17 q + hk>) <go, q|
/SO es1,q+ hk){(gin,q + 2hl<:|] exp(—iwt) + h.a.,

where we note again that Q. = —d &L /h are the Rabi frequencies of the coupling laser
fields. This interaction Hamiltonian has been used for the numerical simulation of the
system in terms of the generalized optical Bloch equations and for calculations in the
context of a resolvent approach.

4.3.2 Derivation of the generalized optical Bloch equation

The generalized optical Bloch equations (GOBE), which we will derive in this section,
form the basis for our numerical simulations of the experiment. Therefore, we here give
a brief derivation. To derive the GOBE we use the master equation (A.17) deduced in
appendix A.1

0p =35 [ Toy ((Hal0), 7). (1) © s O]} (1.25)

The density matrix of the electromagnetic field is given by ps and we assume that the
interaction starts at ¢ = 0. Furthermore, Tr;{} denotes tracing over the bath states,
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i. e. the states of the electromagnetic field. To evaluate this expression we write the
interaction Hamiltonian with the quantized electromagnetic field in dipole approximation
in the form

Hini(t) = =N [A”) CEMelet + A E(—)e—iwet]

= [A§+)E§ et 1 A E) —lwet], (4.26)
s=0,%+

where we have already applied the rotating wave approximation and included the atomic
dipole matrix element into the definition of the quantized electromagnetic field. Hence,
E) = (]?](*))T now have the meaning of a Rabi frequency. The second equal sign holds
if we represent the vector operators in the orthonormal basis of left-, right- and linear-
polarized light with respect to the propagation direction of the laser field. The A®) are
vectorial raising and lowering operators which have the form

AT = 3" o) | me)(myg, Jyle, = > ALY Nt (4.27)

Me,Mg,S
s=0,% s=0,%

To evaluate the Master equation 4.25, it is necessary to make some assumptions about
the bath. To this end, we assume that the field modes are d-correlated in time [21, 123],
i. e. we have

(B 0B (0,)) = S0(t ) (4.28)
(ED (e, ) B (r,)) = (B (0, ) ES (x,8)) = (B (e, ) ES ) (v, 0)) = 0, (4.29)

for s, € {0,4+1}. By determining the double commutator of (4.25) we find that it is
necessary to consider four terms. Two of these include the product of the interaction
Hamiltonian with itself but for two different moments in time. Using eq. (4.26) and the

relations AgﬂAgT) = Ag_)Ai,_) = 0, which hold for all s and s, we find for these products

s

H(0) i () = 12 3 [AIAG) B (0B (¢

FADAPEC B (e 0] (4.30)

In the following we will give the results after tracing over the bath variables. To evaluate
these terms we have used eq. (4.28) and (4.29). The result is
/ RT (t—t') ! (+) (-)
Tt p{ Hing (t) Hine (1) p(t) @ ps} = Te‘“e o(t —t') (A - A p(t), (4.31)
Tes{p(t)  py Hing(#) e (8)} = "oleme 0050 — )p(t) (A - A (4.32)

These two terms represent the loss from the excited state manifold due to spontaneous
emission. The other two terms of the double commutator represent the feeding terms
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of the ground state manifold. To evaluate them we have to determine the following
expression

Trp{ Hins (') p(t) @ py Hin (1) }
= 12T, { (AH CEC)(r, t)> p(t) @ py <A<+> B (r, t’)) } g iwe(t=t), (4.33)

Using the mode expansion of the quantized electromagnetic fields with the coupling con-
stant gr = @/ wk/2hegV of mode k in a quantization volume V/

N ) A T
BO(r,1) = 3 granserac ™0 = (B (1)) (4.34)
k,s

and Trf{pfak,SaLS,} = Ok k05,5, we find

Tr i { Hine (¥ ) p(t)@p s Hine (1)} = B? Zgi (A(*) Ceis) e KT p(t)eT (AH)  €Exs) ellw=we)(t=t)

k,s

(4.35)

This can be furthermore simplified if we replace the sum over the field modes in eq. (4.35)
by an integral. Doing this we assume that the modes are closely spaced in frequency space

[21]

[e.9]

d = (2‘/7)3 / dQ / dkk?. (4.36)

k

Using eq. (4.36) we finally arrive at
Trf{Hint( p(t) @ prHin (1)}

27T 3h€0 Z/d@/ k3 A( 6k,s) e—ik.f-p(t)eikf- (A(+) ] 6k,s)} pielh—he)(t—t')
(4.37)

Since the term in the square brackets of eq. (4.37) is slowly varying with respect to the wave
number we can make the replacement k£ — k., where k. is the wavenumber corresponding
to the transition frequency w.. Furthermore, we can extend the lower integration limit
in the k-integration to —oo. This amounts to a Wigner-Weisskopf approximation [21].
Identifying the definition of the delta-function

I N2
/ ke = 25 ), (4.38)

—00
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we finally find

Tr{Him(t)p(t) ® print( )}
— —FZ / dQ [(AT) - e ) e FFp(t)e™ ™ (AT - g )] o(t —1'). (4.39)

with the free-space spontaneous emission rate

2 3
B We

T = 4.40

3mheyc? ( )

from Wigner-Weisskopf theory [24, |. One finds the same result for the fourth term

Tr i { Hint(t)p(t) ® pyHint(t')}. By collecting the results of eq. (4.31), (4.32) and (4.39) we
finally find the generalized optical Bloch equation in the Schrodinger picture [138, ]

pQ
— th
{2M+ —|—V,0}

[(A(+) . A(_))p—}- p(A(+) . A(‘))}

4+ — /dQ Z [(A(’) . (—:k78) e R p(t) ekt (A(H . (—:kﬁ)] , (4.41)

where V = Vi 4+ Viw. In order to simplify the notation we have omitted subscripts that
denote the difference between Schrodinger and interaction picture. This should, however,
not lead to any confusion. The first line represents the unitary evolution of the atomic
system whereas the second line corresponds to the decay out of the excited state manifold
and the last line to the feeding of the ground state manifold by spontaneous emission. A
derivation of the equations of motion for the density matrix elements in the momentum

family basis [138, 139] can easily be found from eq. (4.41)
. . kq / . th 2 12
8tpme,m’e (Q> - |:_F - 1M(me - me) - 1m(m —m, ) pme,m’e (Q>
- —Z (2 Gt mngani (@) = s G e, (0)) (1.42)
: ' kg  hk?
O () = i = = 380, = ) =002 = 2) e 0
= DG Pty (1) = 2 O o (@) (4.43)
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Figure 4.3: Emission characteristics for linear (blue solid line) and left/right circular
polarized (red dashed line) light as a function of the family momentum ¢. Linear polarized
light leads to momentum change which is more probable for small family momenta whereas
in the case of circular polarized light it is more probable for high momenta.

kq :
8tpmg,m27 (Q) = |:_1M(mg - mg) - 1_(m9 My

Je,Jg,J
Z Qs Crﬁ;{fzg s Pme,my, 1 (q) — Z Q, Cme,ni;,s Pmg,me (¢)

+T Z / dq'Cee pemy (4 — hsk + ¢ )Cri 0 0(q). (4.44)
—hk

The functions ®4(q) are called dipole radiation pattern and are given by [135]

Po(q) = % (1 - (,;]T)Q> : (4.45)

Oo(q) = 8% (1 + (th)z) . (4.46)

These are probability density distributions for spontaneous emission with polarization
0 or £1 with z-projection g of the wave vector, i. e. the probability to find a linear
polarized, spontaneously emitted photon with a momentum along z between ¢ and ¢+ dq
is given by ®y(q)dg. The probability distributions are shown in fig. 4.3. The above set
of equations can in general not be solved analytically. However, we can discretize them
in space and time and integrate them numerically. Results of simulations based on this
approach will be given in section 4.5.
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4.3.3 Effective Hamiltonian and ground states loss rates

The transient VSCPT-state discussed in section 4.2.3 is given by the dark state of the
corresponding interaction Hamiltonian Vyy,. Due to the decomposition found by Morris
and Shore [110], we know that two further states exist that only include bare ground
state eigenfunctions. These couple, however, due to the radiation field, to the excited
state manifold.

We will show now using resolvent theory that due to the free motional evolution the
dark state with respect to the interaction Hamiltonian is not a perfect trapped state,
i. e. it couples to the bright states of the system. This occurs, in contrast to the former
A-system, even for a vanishing family momentum.

The resolvent theory is based on the adiabatic elimination of the excited state manifold
[17]. This is justified as long as the Rabi frequency is small compared to the decay rate of
or the detuning from the excited state, i. e. as long as |Q2| < [il'/2+ Al. In this case the
evolution of the ground state manifold is isolated from the rest of the system. Moreover,
there exist two isolated subsystems of the ground state manifold which correspond to the
ground states of the A- and inverted-W configuration respectively [130]. Mathematically
this means that the matrix representation of the full effective Hamiltonian is in block
diagonal form. Hence, the resolvent theory allows for the derivation of two effective, non-
hermitian Hamiltonians corresponding to these subsystems.

The momentum family basis allows the diagonalization of these non-hermitian Hamil-
tonians for the determination of the complex eigenvalues as a function of the family
momentum. In particular it is possible to calculate the decay rates of the eigenstates of
these subsystems. In lowest order of the resolvent theory one finds [130]

1

Hres - VAL Pe_h(lF/Q _ A)

P.Var (4.47)

Here P. is the projector on the excited state manifold, which in the case of the Jg =

2 < J, = 1 -transition is given by P, = |e_,q — hk){e_,q — hk| + |eo, q){eo, q| + |e+,q +
hk)(e+,q+ hk|. The atom-light interaction Hamiltonian in the interaction picture reads

f}AL = GiwLﬁet VAL e_iwLpet. (448)

The effective Hamiltonian is then only acting on the ground state manifold

A2
p

He = 35 Hres- 4.49

=507 + ( )

It is non-hermitian since the absorption of a photon leads to loss of population. In order

to understand the more involved results of the J, = 2 < J. = 1-system we will present

first the results for the A-subsystem. To this end we normalize the effective Hamiltonian

with respect to Al'

A\ 2
(%) + onALPe_h

1
(i/2—A/T)
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Figure 4.4: The subfigures show the real and imaginary parts of the complex eigenvalues
E;(q) +ihI'j(q) of the A-subsystem effective Hamiltonian 4.49 as a function of the family
momentum. (a) and (b) show the case a =~ 15 > 1 and the (¢) and (d) show the opposite
case a ~ (.15 < 1. For a physical explanation see main text. The calculations are
based on a fictitious A-system with the physical parameters given in section 4.4 for the
Jy = 2 < J. = l-transition studied in the experiment.

where Vap, = Var/(h§2/2) is the normalized interaction Hamiltonian. The factor

B2 Q2T
_ _ 451
T B dwwe (4.51)

is the ratio of the resonant optical pumping rate Q?/T' to the recoil frequency defined
by wree = h?k*/(2M). This factor determines whether the dynamics of the system is
dominated by the radiation field (o > 1) or by the free motional evolution (o < 1)
[130]. This distinction can be understood qualitatively by the following discussion. By
considering the absorption spectrum of one of the applied fields we see that it shows a
transparency window at two-photon resonance of width Aw;, = Q2/T" (see Introduction
chapter section 1.2.1). The case o > 1 implies now that the transparency window is
much larger than the recoil frequency. Hence, atoms which are frequency shifted due to
motion by a few recoil frequencies nw,e. < Awy, (n € N) do not participate to the cycles
of absorption and spontaneous emission but are in a dark state and are hence long-lived.
On the other hand if wye. > Awyy, 1. €. a < 1, all states contribute to the cycles except
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Figure 4.5: The figure shows the real (a) and imaginary (b) part of the complex eigenval-
ues for the inverted-W subsystem. The figure of merit @ & 1 and corresponds to a later
on shown numerical simulations with €2 = 0.3I".

for the stable dark state |Ux(¢ = 0)) which does not couple to the radiation field. This
discussion is supported by the following consideration of the complex eigenvalues of the
effective Hamiltonian (4.49) as a function of the family momentum.

In appendix A.2 a mathematica-code is given that allows, based on the scaled version
of the Hamiltonian eq. (4.50), to determine the complex eigenvalues

Ej(q) +ihl';(q) (4.52)

for the inverted-W configuration. The results for the A-system are given in fig. 4.4 for the
limiting cases discussed above. By diagonalizing the effective Hamiltonian for the ground
state manifold we find in that case two different eigenstates i. e. j = 1,2. As suggested by
the Morris-Shore transformation [140] and depicted in fig. 4.1 (b), one of the states is the
dark state (red dashed line in fig. 4.4) which is stable for ¢ =0, i. e. I'(¢ = 0) = 0, and
the other the bright state (blue solid line). If the coupling of the radiation field dominates
the system dynamics (upper row in fig. 4.4), the loss rate is almost independent of the
family momentum ¢. This is in contrast to the weak field regime (o < 1) shown in the
lower row of fig. 4.4. One clearly sees that in both cases the dark state turns into a real
trapped state if the family momentum approaches zero. On the other hand the bright
state destabilizes in the small family momentum regime. In the interaction free case the
two ground states |g_1,q — hk) and |g1,q + hk) are represented by two parabolas with
minima located at ¢ = +hk respectively. The atom-laser interaction leads, as depicted in
fig. 4.4 (a) and (c), to a splitting of the two eigenvalue parabolas. Figure 4.5 gives the
real and imaginary part of the complex eigenvalues for the inverted-W subsystem. The
shown example corresponds to parameters used later on for a numerical simulation based
on the generalized optical Bloch equations. Similar to the A-configuration the parabolas
corresponding to the free motional evolution (see real part) split up, i. e. show an avoided
crossing (they have different colors), due to the interaction of the atoms with the radiation
field. Furthermore, we see that the meta-stable transient dark state, corresponding to
the eigenvalue with the smallest imaginary part, has no vanishing decay rate for ¢ = 0.
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Furthermore, we can read of fig. 4.5(b) that the lifetime of the bright state of the inverted-
W subsystem is shorter by a factor 1/3 as compared to the lifetime of the transient dark
state.

4.3.4 Conditions for detectability of meta-stable, transient trap-
ping states

We now discuss the conditions under which the metastable transient trapping state
[WNC (g = 0)) can be observed in the experiment. To this end we discuss three lim-
its. On one hand there is the case of large Rabi frequency {2 with respect to the natural
linewidth I' of the transition. This corresponds to the regime a > 1 since typically we
have for optical transitons I'r..c > 1. i. e. motional evolution is unimportant and can be
neglected. In the second case we have () ~ I which will turn out to be the most interesting
situation and finally we have () < I'. In the last case the number of fluorescence cycles
passed through is not sufficient to transfer the initial population into the final dark state.
We do not consider this limit any further.

In the first case (2 > T'), the contribution of stimulated emitted photons is much
bigger than the spontaneously emitted photons. Absorption and stimulated emission lead
to an absolute momentum transfer from the radiation field to the atomic system of 2hk
as the initial state |go,q) is coherently coupled to the bare states |gio,q £ 2hk). The
state generated by this coupling has three peaks in the momentum distribution, similar
to |[¥NC(q = 0)), and thus can be mistaken with the transient dark state. Only the height
of the corresponding peaks in the distribution is different compared to the ones given by
the metastable dark state |UAY,).

We give in fig. 4.6 a numerical example of the case 2 > I" to show its characteristic
features in momentum space. Since in the strong drive limit € > I' population redis-
tribution due to spontaneous emission is negligible the population of the transient dark
state |UAY) as well as that of the bright state |¥¢s) stay actually constant.

Hence, for transient VSCPT to become visible there has to be a certain balance be-
tween stimulated and spontaneous processes. One should keep in mind, that the longer
the coherence build-up process takes, the more probable will be a destruction of the dark
states due to decoherence processes. Even in the intermediate case €2 =~ I" the observation
of transient VSCPT will be difficult.

To understand the dynamics of VSCPT in more detail we now discuss the numerical
solution of the generalized optical Bloch equations for experimental relevant parameters
(Q~T, a=1). In what follows we disregard however decay out of the system. This is
different to the real physical situation where spontaneous emission from the 3P;-state into
the 3Py-state is allowed. This restriction is necessary to keep the problem numerically
tractable but will lead to differences between simulation and measurement. The numer-
ical simulation consisted of the integration of 64 times the number of family momentum
states ordinary differential equations. The equations were integrated stepwise with a time
increment of 1/20T~! and a momentum increment of 7k/20. The considered momentum
interval was |[—8hk,8hk|. The initial momentum distribution was given by a Gaussian
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momentum [k]

Figure 4.6: This figure gives a simulation for the case of strong optical pumping, i.e. o > 1
(2 = 10T"). The red-lines at I't = 0 represent the initial momentum distribution. The
figure clearly shows that the stable dark state, represented by two peaks at p = £hk, is
not populated up to I't &~ 1000. The curve is normalized with respect to the maximum
of the initial distribution.

profile of width Aq = 0.15hk centered at p = 0. This corresponds to the experimental
value as we will see in the next section. Initially all Zeeman states in the *P, manifold
are equally populated without any coherence between them. Even though the atoms ex-
perienced in the experiment a time-dependent Rabi frequency, because the atomic beam
crossed the laser beams, we assumed it to be constant in the simulation.

The result of the simulation is shown in fig. 4.7 for Q ~ 0.3I". Initially all atoms have a
momentum in the vicinity of zero momentum. For a short interaction I't < 50, (see 4.7(a))
the momentum diffusion process is still suppressed. The main processes are absorption
and stimulated emission. This leads, as discussed above, to a change in momentum of
Ap = £2hk and to peaks in the momentum distribution at p = 0 and p = £2hk re-
spectively. It is important to note that the stimulated process described does not lead
to a broadening of the considered momentum peaks in contrast to spontaneous emission.
Since here 2 < IT' stimulated and spontaneous processes occur in parallel. Due to the
latter the population of the transient dark state increases.

The slower process of spontaneous emission leads to a random walk in momentum
space as spontaneous emission of photons goes in an arbitrary direction. This causes a
spreading of the distribution in momentum space [111]. The Clebsch-Gordan coefficients
shown in fig. 4.8 lead to an enhancement of this effect. Due to them spontaneous emission
of circular polarized photons is more likely, which have a larger projection of their mo-
mentum on the z-axis. The accompanied diffusive process eventually leads to a successive
preparation of the stable dark state of the A-subsystem |¥3¢(q = 0)). The characteri-
zation of the stable dark state in momentum space is given by two peaks at p = +hk.
Due to the accumulation of the atoms in that state the width of these peaks decreases for
longer interaction time, I't > 200.
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Figure 4.7: (b) shows the result of simulation corresponding to the experimental parameter
with © = 0.3T" (b) gives cuts through the momentum distribution shown in part (c) of
the figure for certain values of the interaction time. For I't = 10 we see the transient dark
state, for I't = 600 the stable dark state and for I't = 150 we see a five peak structure
corresponding to the five peak structure given by the experimental data of fig. 4.11. (d)
shows the cut through a simulation we a slightly different Rabi frequency of 2 ~ 0.45I".
The signatures of the bright state |W¢o) are clearly visible by the peaks at +2hk with the
same width as the initial distribution.

For intermediate times, i. e. between I't = 100 and 200 the stable dark state of the
A-configuration U1 (g = 0)) and the meta-stable transient dark state of the inverted-W
system |[UNC (g = 0)) as well as the bright state [¥co(q = 0)) are visible. The momentum
distribution shows in this case five peaks at p = 0, p = +hk and p = £2hk respectively.
Fig. 4.7(c) shows a simulation where the bright state appears as narrow peak with the
same width as the initial momentum distribution. Hence, a distinction of bright and
transient dark state should be achievable with a sufficiently narrow initial momentum
distribution. The bright state is short-lived due to strong optical pumping out of this
state. Since |U4%(q = 0)) is only metastable all population will eventually be lost from
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Figure 4.8: The figure shows the Clebsch-Gordon coefficients relevant for J, = 2 < J, = 1-
transition. The lead to a less probable emission of linear polarized photons than circular
polarized photons. Due to the different emission characteristics of these photon types does
spontaneous emission lead to a pronounced broadening of the momentum distribution.

that state and in the long time limit only two momentum peaks survive which correspond
to the stable dark state |U4,). Finally, we note that for intermediate interaction times
the five peak structure corresponding to the simultaneous occurrence of stable dark state
and transient dark state and/or bright state can not be resolved very well in fig. 4.7(c).

We note that the notion of dark states makes sense only in the interaction region.
After leaving this region the atoms are fixed in momentum eigenstates. Since momentum
and kinetic energy Hamiltonian commutate these are also eigenstates of the latter. Hence,
free motional evolution does not lead to a modification of the states after the interaction
region. This allows us to measure later on both transient and stable dark state even
though the time of flight to the detector is much longer then the decay time of the excited
state or the recoil time.

In summary we have seen that an observation of [UN¢ (g = 0)) requires Rabi Q ~ I’
and intermediate interaction times.

4.4 Experimental background

This section gives a brief overview of the experimental setup and the procedure to mea-
sure the (transient) VSCPT dark state. For a more detailed description of the setup we
refer to [129] and [142].

Experimental setup and preparation

The setup consists of three major parts: (a) a source of meta-stable neon atoms, (b) a
free-flow area for the atomic beam with a preparation- and a interaction-region and (c)
the detection unit. The neon discharge nozzle source, cooled by liquid nitrogen, excites
a fraction on the order of 10~* atoms to the metastable states 3P, or *P, of the 2p°3s
electronic configuration [143]. In fig. 4.9 the neon level scheme is shown. The neon beam is
formed using differential pumping, where the pumping stages are separated by a skimmer
with 1 mm diameter. The transversal velocity distribution of the beam is controlled via a
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Figure 4.9: Level scheme of neon including the relevant levels for the experiment.

geometrical collimation of the beam using two slits 120 cm apart, leading to a FWHM of
the momentum distribution of about 0.15hk. This results in a Doppler broadening with
respect to the transversal laser beams of less than 1 MHz. Hence, Doppler broadening
is less than the natural linewidth (= 8-9 MHz) of the used transitions. Finally, at the
end of the setup, about 120 c¢m behind the experimental region, one finds a movable
channeltron detector. It is used to determine the spatial distribution of the atoms in
the states 2Py and 2P, which corresponds, due to their induced transversal motion, to
their momentum distribution. The response of the detector is neither state nor isotope
specific. Since the detector is located behind a comoving slit of width 25 um and height
3mm, the resolution of the momentum measurement is given by Ap ~ 0.2hk. The
used gas is a mixture of three neon isotopes, i. e. 2*Ne (90,5%), ?'Ne (0,27%) and ?*Ne
(9,2%). The measurements shown in this chapter correspond to the ?°Ne isotope. The
isotope frequency shift of the considered transition is on the order of 2 GHz which is
much larger than the natural linewidth of the transition. This circumstance allows for a
isotope selective addressing of the transition. In addition to the metastable atoms also
VUV-photons, created by the discharge source, are detected by the channeltron. All these
contributions, i. e. isotopes, VUV-photons and atoms in other metastable states lead to
a background in the measurement data.

For the preparation of the experiment the population of the metastable state 3Py is
depleted by optical pumping in a preparation region which is about 60 cm upstream of the
interaction region. Furthermore, in the interaction region the magnetic field is actively
compensated to less than 1 uT to assure the degeneracy of all Zeeman states to better
than 130 kHz.

Experimental procedure

To prepare transient velocity selective dark states proposed by E. Arimondo et al. [130]
we apply light fields in a 0% — o~ -configuration to a J, = 2 < J, = l-transition. This
configuration was created in our case by the optical setup given in fig. 4.10. The laser beam
passes through a polarizer, two quarter wave plates and optionally two cylindrical lenses
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Figure 4.10: Schematic setup of the experiment. The cylindrical lenses have a focal length
of 250 mm and they are in a confocal arrangement. Further details can be found in the
text.

before being retroreflected. The polarizer and the first quarter wave plate establishes a
right circular polarized laser beam incident perpendicular onto the atomic beam. The
second quarter wave plate turns the laser beam into a linearly polarized beam, that is
retroreflected by the mirror. The same quarter wave plate transforms this beam finally
into a left circular polarized beam and establishes then the o — o~ -configuration of two
counter-propagating beams with orthogonal, circular polarization.

To study the temporal dynamics of the stable dark state |U4(¢ = 0)) and the
transient dark state |47 (¢ = 0)) we used three different laser beam width configurations.
This corresponds to three different interaction times due to the constant longitudinal
velocity of the atoms given by 470 m/s. The width of the longitudinal velocity distribution
is about 100 m/s (FWHM) which is a measure of the interaction time error [129].

In a first setup we used cylindrical lenses in a confocal arrangement with the atomic
beam crossing the laser beams in the vicinity of the foci. The transit time of the atoms
is estimated to be a few 100ns; corresponding to I't &~ 10, where I' is the linewidth of
the transition between the 3P, and the P, state. The laser beam profile is not measured
directly but inferred from the the dimensions of the optical setup. Hence the above value
is only a lower bound for the interaction time, which is only reached for ideal optical
elements.

In a second step we removed the cylindrical lenses to increase the interaction time between
the atoms and the laser light. This leads to an approximate interaction time of I't & 200.
Using a telescope in front of the polarizer, the beam diameter can be widened further to
8 mm, resulting in I't ~ 800.

We estimated that the laser beams were parallel to within 107° rad and that the reachable
peak Rabi frequency is of the order of 500 MHz. The laser was detuned form the |J, =
2,my, =0) < |J. = 1,m, = 0) -transition by 100 MHz to reduce the influence of stray
light from the windows.
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In the next section we will compare the experimental results measured in collaboration
with F. Vewinger [129] with the simulations based on the full numerical solution of the
generalized optical Bloch equations.

4.5 Comparison: experimental and theoretical results

This section will give a comparison of the measured data with the data obtained by the
numerical integration of the generalized optical Bloch equations as derived in section 4.3.2.
The section consists of two subsections including a more detailed explanation of (a) the
short- and intermediate-time dynamics and (b) the long-term dynamics of the system.

4.5.1 Short and intermediate interaction time

In the short interaction time limit, i. e. t < 20I'"!, we anticipate from our simulation,
see fig. 4.7, that only the transient dark state is prepared by optical pumping out of the
bright state |¥oo). This is a very fast process, it occurs on the time scale of Q. Since we
have Q ~ I" emptying |U¢s) only takes a few inverse lifetimes I'"*. The optical pumping
process leads to an increase of population not only of |¥4Y,) but also of [U4). The latter
process is however somewhat slower due to the Clebsch-Gordon coefficients.

The transit time of the atoms through the beam is estimated by geometric arguments
from the experimental setup. In the case of short interaction time we focused the laser
beams onto the atomic beam. For ideal optical elements we find a minimum transit time
corresponding to I't ~ 10.

Fig. 4.11 shows a measured momentum distribution. The initial momentum distri-
bution is given by the grey area which is appropriately scaled down to fit into the plot.
The initial peak contains contributions from population of the 3Py, which is populated by
spontaneous emission from the upper state 3Py, as well as contributions of other neon iso-
topes whose momentum distributions are not changed due to the laser interaction because
they are sufficiently far off resonant. The contribution due to other isotopes is on the or-
der of 10% of the initial peak. The momentum distribution in the VSCPT-configuration
clearly shows five maxima located at p ~ nhk with n = —2,..- 2. These correspond
to contributions from the transient and the stable dark state. In addition there should
also be contributions from the bright state |U¢o) since the interaction time is very short.
In contrast to the simulation, shown in fig. 4.7, the symmetry of the distribution is bro-
ken with respect to p = 0. This is due to the not perfectly collinear setup of the laser
beams in the creation of the o™ — o~ -configuration by retroreflection. The retroreflected
beam passes twice through a window and the (uncoated) cylindrical lens before crossing
the atomic beam again. Thus also the Rabi frequencies of the two laser beams are not
equal, i. e. Q, # Q_, which leads to an asymmetric population distribution within the
dark states. By comparing experimental, fig. 4.11 (a), with numerical results, fig. 4.7(c)
, we see that we can resolve the experimental peaks much better. The broad nature of
the peaks in the simulation is due to possible momentum change of —hk < p < hk in a
spontaneous emission process. We anticipate that the strong broadening in the simulation
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Figure 4.11: (a) Transverse atomic momentum profile after a short interaction time
(I't ~ 10). The grey area shows the initial momentum distribution (scaled down) created
by cooling the source and collimation of the atomic beam. The dashed lines are Gaussian
fits to the individual peaks. The full line is the sum of the Gaussian fits. (b) Transversal
momentum distribution for atoms that passed a o~ -beam after they traveled through the
oT-o~-configuration. The asymmetry of the distribution is an indicator for the observa-
tion of VSCPT. The dashed lines are Gaussian fits to the individual peaks, the solid line
is their sum.

is due to neglection of spontaneous emission from the upper state *P; into other states
than 3P,. However, it also leads to lower signal-to-noise ratio which we observed during
the experiment.

Supplementary tests

As suggested by A. Aspect et al. [132] we conducted a consistency check to confirm the
observation of VSCPT. We arranged the counter-propagating laser beams in such a way
that they do not exactly overlap at the end of the o -0~ -interaction region.

To this end we tilted the retroreflected beam slightly. At the end of the interaction zone
only the o~ -beam interacted with the atoms after passing the o™-o~-region. The dark
states formed in the o™-o~-interaction region are no-longer dark in this configuration and
are therefore destroyed. In this configuration only the states |g_2), |g—1) and |go) couple
to the excited state manifold and are hence depopulated by optical pumping. Due to the
correlation between the internal m j-Zeeman sublevels and the momentum family states
|+ mhk), found in section 4.3, this leads to the decrease of the peaks height at negative
family momenta. The measurement with tilted lasers, shown in fig. 4.11 (b), shows a good
agreement with the expectations, except for the zero momentum peak. This peak shows
no depletion which indicates that it is mainly given by other neon isotopes which have a
negligible coupling to the radiation field. Their motion is thus not modified by the radi-
ation field and hence the zero momentum peak mainly represents the initial momentum
distribution of these isotopes. An additional contribution to the zero momentum peak
is given by atoms in the 3Py-state of 2°Ne which is populated by spontaneous emission
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Figure 4.12: Transverse atomic momentum profile after an interaction time of 8us (I't ~
800). The lines are Gaussian fits to the peaks. The peaks at p = +hk reflect the stable
dark state |¥ho(q = 0)).

and which are also detected by the channeltrons. However, the latter contribution should
be much smaller than the former. A more thorough discussion on the dependence of the
dark states on the overlap of the counterpropagating beams can be found in [111].
There are further supplementary tests [132] that may support the observation of
VSCPT. The replacement of the o~ and o~ -polarized beams by two orthogonal linearly
polarized beams should lead to the observation of the same momentum distributions
since the field configurations are equivalent. On the other hand, by applying two parallel
linearly polarized beams the peak structure should disappear because the nonabsorbing
atomic superpositions are not veloctiy selective. These test were, however, not performed.

4.5.2 Long interaction time

In the long interaction time limit we expect from our simulation and our earlier consider-
ations that the momentum distribution only reflects the existence of the stable dark state
|W (g = 0)). This is due to the accumulation of the atoms in the course of velocity
selective coherent population trapping in the corresponding state. In fig. 4.12 a measured
momentum distribution for an interaction time of 8us (I't &~ 800) is shown which clearly
reflects the characteristic features of the stable dark state |[U4(¢ = 0)). The asymmetry
in the momentum profile is again due to asymmetry in the laser beam setup.

As in the short time limit the peak at p = 0 is caused by the atoms in state 3P, and
contributions from other neon isotopes, i. e. *!Ne (0,27%) and **Ne (9,2%). The long in-
teraction time limit shows excellent qualitative agreement with our numerical simulation
of the generalized optical Bloch equations.
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4.6 Summary

The present chapter discussed the first observation of the transient dark state of VSCPT
predicted by E. Arimondo et al. [130]. We compared the measured data with the nu-
merical solution of the generalized optical Bloch equations which showed a qualitative
agreement between theory and experiment. Finally we note once more that we can not
distinguish very well the bright state |¥cs) and the transient dark state |U4,) using mo-
mentum distribution measurement. Even though the former has a much shorter lifetime,
due to optical pumping, further experiments would be necessary for an unambiguous
experimental verification.
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Appendix A

Appendix

A.1 Spontaneous emission in the presence of atomic
motion

In this Appendix we deal with spontaneous emission in the presence of atomic motion. The
motion of the atoms is described in the formalism of second quantization. For notational
simplicity we perform all calculations for a two-level system. The generalization to the
three level system under consideration is straight forward. The system is described by
the Hamiltonian

H:Hat+Hf+Hinta (Al)

where H,, is the Hamiltonian, that describes the atom, H is responsible for the quantized
field and H;,; is the interaction Hamiltonian. We restrict ourselves to dipole-interaction
between the radiation field and the atom. For simplicity we assume that the field vector
direction coincides with the unit vector of the dipole-moment, hence we can write the
interaction Hamiltonian in first quantization in the form

Hipe = —h [&eg B + h.a.} . (A.2)

We have already applied here the rotating wave approximation and assumed resonance
condition. The quantized electromagnetic field is given by

n Y Tw ~ ikx
EF) (x,t) = E ﬁ” 5e Vak(t)e g (A.3)
k o

where @ is the dipole moment of the transition, w the frequency of the field and V' the

quantization volume. We introduce the coupling constant for each mode gy = %4/5.¢-
With the ansatz

@(I’t): Z \ijlt(w?t”:u)? <A4>

pre{g,e}
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we can rewrite eq. (A.2) in the formalism of second quantization
Hine = —h / [\ifi(x,t)\ifg(x,t) EM 4 h.a.} dz. (A.5)

We note, that the system Hamiltonian reads in the formalism of second quantization

H:Hat+Hf+Hint

A

- 1)
- Z Ul (2,1) [—%53 + hw, + V,(z, t)] U, (z,t)de + Hf + Hine.  (A6)

Master equation

If a quantum mechanical system is in a mixed state, one describes it in general by a

statistical operator x [115]. In the Schrédinger picture, the atom+field system is described
[21] by
1hoyx(x,t) = [H, x] - (A.7)

To simplify the discussion and to use the fact, that the states of the field and the atomic
system can be calculated at least approximately, we transform each operator O via

@::exp[%cnw-thy{]oexp[—%cnm-thﬁﬂ (A.8)

into the interaction picture. Here the interaction picture is denoted by the tilde over the
operator. With the help of this definition the von Neumann equation is given by

N@ﬂw:wm@@@} (A.9)

This equation can formally be integrated, and one obtains
ﬂwzﬂm——/me%ﬂﬂ}M (A.10)

Here t; is the time, when the interaction between the system and the bath starts. Substi-
tuting this equation into eq. (A.9), we find an integro-differential equation for the density
matrix x .

0 (0) = [Fan®) 10 = 5 [ [P0 [t 5] . (A1)

Before we proceed a few essential assumptions should be summarized [34]:
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(a) at t = t;, when there is no interaction yet, the atomic part and the field part are
independent, i. e. there is no correlation between them. Mathematically this can be
expressed as

X(ti) = Xat(ti) ® Xf(ti)- (A.12)

(b) We assume that the state of the field part is not changed due to the interaction
with the atomic system. This means that the reservoir part is so large that its
statistical nature stays the same during the whole process. Mathematically this can
be formulated as follows. In general the density matrix can be decomposed as

X (1) = Xat(t) @ xf(ti) + Xeorr (1) (A.13)

Here .o denotes the part that is responsible for the correlation between atomic
and field system. The requirement mentioned above is fulfilled if

Tri{Xcorr} =0 (A.14)
for all ¢t. This is the so-called Born approzimation.

(c¢) The final assumption will turn eq. (A.11) into a differential equation. Physically
we assume that the atom-field correlation time is negligible as compared to the
evolution time of the atomic system. Hence we perform the following replacement

X — x(¢). (A.15)

This Markov approrimation means that the knowledge of x(t) at time ¢ = t; is
sufficient to determine x(¢) for all ¢t > t,.

In general we are only interested in the atomic observables, which depend only on the
atomic density operator, hence we define the reduced density operator by tracing over all
field states

p=Tr{x}. (A.16)

Applying this to eq. (A.11) we finally find the master equation for the reduced density
operator after Born-Markov approximation

t

Oy fur = —% Tr, { [ﬂmt(t), [ﬂmt(t’), pur(t) ® pf(ti)H } dt'. (A.17)

0

To derive this equation we have furthermore used that
Tr{Hine ()X (t:)} = 0, (A.18)

which means that we assume that the interaction has no diagonal elements in the rep-
resentation in which H; is diagonal. This is not a very serious assumption since it can
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always be accomplished by redefining H; and H,, in such a way that the diagonal elements
are included in H,. For the further evaluation we will use the following relations

(B ) B (@) 1) = 50— )3(t — ) by, (A.19)
T, ) B (1)) = (B (2, ) BN (2, 1)) = (B (a0, t) B (27, 1)) = 0.

(2

(A.20)

To simplify eq. (A.17) further, we expand the double commutator and make use of the
relation eqs. (A.19-A.20). After some tedious algebra one finds for the reduced density
matrix in the interaction picture (we omitted the tilde for notational simplicity)

o) = =3 [ do {Wiw 00 (. W00 (o Dol0)
+ ()i, 1) Wy, ) W] (2, 1) Ve, 1)
— 20l (a, )Ty (2, t)p ()q/;(x,t)qze(x,t)}. (A.21)

The structure of the equation does not change when we transform it to the Schrodinger
picture except for the occurrence of additional terms which describe the unitary dynamics
and the substitution W,(z,t) — W,(z). The density matrix elements are calculated in
the same way as in section 3.4

P, 2, 1) = (Ul (2) 0, (2")) = Tr{p(t) ¥}, (2) ¥, («)} (A.22)
Unfortunately this approach with continuous variables leads to diverging contribution due
the quantum field theoretical nature hence we use a similar ansatz as in [116] and discretize

the problem. To do this we introduce a equidistant grid, with grid constant Az and Ap,
respectively. The position and quasimomentum constants should fulfill: AxAp = 27h/M,
with M being the number of grid points. This means we consider a system in a box with
length L = M Az and assume periodic boundary conditions. The quasimomentum is
restricted to an interval of length L, = M Ap. The Liouville equation then becomes using
the replacement

With by = —=—= Y a6 (A.23)

and the substitution of the integrals by summations
M-1

. g S 2t o3
P(t) = TOAr Z {bl,kbg,kb;kbe,kp(ﬂ

+ ()] by adl yber — 26;1(1;&1{/)(25)6;1(3671{} . (A.24)

Here the Bose field with discretized modes a; and wave-number k; = p;/h is related to local
bosonic operators, eq. (A.23) and [b,;, b,;] = 0,,,0;;, via a discrete Fourier transformation.
With the help of the definition for the density matrix elements in the discretized model

. 1 - -
Puv(g, 7' t) = E@lbu,w(t)blylm (A.25)
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one arrives at the following equations for the density matrix elements

atpg,g(j, j/a t) =7 pe,e(ja j/> t) 5j7j’7 (A26)
8tpe,e(j7j,7 t) - _'Y pe,e(j7j/7 t)? (A27>
) . 1 .
Pl j',t) = —37 Pee(JsJ'st). (A.28)

One should not that the decay leads to a decoherence of the spatial off-diagonal elements,
i. e. j # j/, of the excited state and of the internal coherence. In the case of the A-type
3-level system as discussed in section 3.4 the equation have the form

P11 =" p22(5, 7' t) 6.
po2 = (=1 —2) p22(J, 5, ),
P33 ="Y2p22(7. 7' t) iy,

) 1 o
proe=—=(11+72) /)2,2(%]/775);

2
p13 =0, A.33
) 1 .
P12 = 3 (71 +72) p22(7, 5, 1) A.34

By adding these equations to the von-Neumann equations one arrives at the proper density
matrix equations for this system under consideration. In addition to the two state system
there is also decay of the Raman spin coherence. In our model we assume that this is
equal to zero.

A.2 mathematica-code for resolvent theory calculations

This appendix reports the mathematic-code used to calculate the complex eigenvalues
of the effective Hamiltonian operators (4.49) or (4.50) for the case of the inverted-W
subsystem. The programm can easily be rewritten to be suitable for the simpler A-
subsystem.

<< LinearAlgebra‘Orthogonalization®
% free motional evolution of 8 state system

hfree[p_] = SparseArray[{{1, 1} -> p~2, {2, 2} > (p + 1)"2,
{3, 3} > (p - 1)°2, {4, 4} —>p~2,

{56, 5} > (p + 1)"2,{6, 6} > (p - 1)"2,

{7,7Fr -> (p + 2)°2, {8, 8}—> (p - 2)°2},{8, 8}];

% decay out of the excited state with equal
% probability; only decay out of the system
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hdecay = SparseArray[{{1, 1} -> 1, {2, 2} -> 1, {3, 3} -> 1}, {8, 8}];
% projection operator on excited state manifold

pjl = SparseArray[{{1, 1} -> 1, {2, 2} -> 1, {3, 3} -> 1}, {8, 8}];

% definition of classical dipol interaction Hamiltonian

helpl = SparseArray[{{2, 4} -> Sqrt[1/10], {2, 7} -> Sqrt[6/10],
{3, 4} -> Sqrt[1/10], {3, 8} -> Sqrt[6/101}, {8, 8}1;

hdipoleinteractionInvertedW = helpl + Transposelhelpl];

help2 = SparseArray[{{1, 5} ->Sqrt[3/10], {1, 6} -> Sqrt[3/10]}, {8, 8}];
hdipoleinteractionLambda = help2 + Transpose[help2];

hval = hdipoleinteractionInvertedW + dipolinteractionLambda;

% definition of resolvent operator

help3[Deltas_] = Inverse[-(I/2*hdecay - Deltas*IdentityMatrix[8])];

% definition of resolvent operator

hresolvent [alpha_,Delta_] = alpha*vAL.pjl.help3[Delta].pjl.vAL;

% definition of effective operator

heff[q_, Delta_, alpha_] = Erec/(hbars*Gammas) *

(hfree[q] +hresolvent[alpha,Deltal);

/» projection on ground states of inverted-W subsystem
% (using the mathmatica command: part)

heffredIW[q_, Delta_, alpha_] = heff[q,Delta, alphal [[{4, 7, 8}, {4, 7, 8}]];
% definition of physical parameter

(* standard parameters *)

1.66053886%10" (-27); (xkg*)
1.0545%10" (-34) ; (* kg m"2/s *)

u
hbar

(* neon parameter *)
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Gamma 1/(20%107(-9))/2/Pi; (*s~(-1)*)
Lambda = 589%10~(-9); (*mx)
M = 20%u; (xkg*)

(* scaled parameter *)
hbars = 1;

Gammas = 1;

Deltas = 0.000001;
OmegaOptimals = 0.45;

(* compute needed numbers *)
k = 2+Pi/Lambda; (*m~-1%)

Erec = hbar~2xk~2/(2xM)/(hbar*Gamma) ;
% definition of function which calculates complex
% eigenvalues as a function of the Rabi frequency Omega and the

% family momentum q

f[Omega_, q_] := N[Eigenvalues[
hEffRediW[q,Delta, hbar*Omega”2/(4*Gamma*Erec)]]];

% ordering of the resulting eigenvalues with respect to
% the value of their imaginary part

ordiW[Omega_, q_] := Ordering[Im[f[Omega, qll];



A.2. MATHEMATICA-CODE FOR RESOLVENT THEORY CALCULATIONS 140




Bibliography

1]

(6]

7]

[10]

[11]

M. Fleischhauer and M. D. Lukin. Dark-state polaritons in electromagnetically
induced transparency. Phys. Rev. Lett., 84(22):5094-5097, 2000. (document), 1.3,
1.3.3,2.1,2.2.3, 2.2.4, 2.4.1, 3.1, 3.2.1, 3.3.1

S. E. Harris. Electromagnetically induced transparency. Physics Today, 50:36, 1997.
(document), 1.2.1

M. Fleischhauer and M. D. Lukin. Quantum memory for photons: Dark-state
polaritons. Phys. Rev. A (Atomic, Molecular, and Optical Physics), 65(2):022314,
2002. (document), 1.2.2, 1.2.2, 1.3, 1.3.3, 2.1, 2.2.3

M. Masalas and M. Fleischhauer. Scattering of dark-state polaritons in optical
lattices and quantum phase gate for photons. Phys. Rev. A (Atomic, Molecular,
and Optical Physics), 69(6):061801, 2004. (document)

I. Friedler, D. Petrosyan, M. Fleischhauer, and G. Kurizki. Long-range interactions
and entanglement of slow single-photon pulses. Phys. Rev. A (Atomic, Molecular,
and Optical Physics), 72(4):043803, 2005. (document), 2.1

M. D. Lukin and A. Imamoglu. Nonlinear optics and quantum entanglement of
ultraslow single photons. Phys. Rev. Lett., 84:1419, 2000. (document), 1.2.2

H. Schmidt and A. Imamoglu. Giant Kerr nonlinearities obtained by electromag-
netically induced transparency. Opt. Lett., 21:1936, 1996. (document), 1.2

S. E. Harris and Y. Yamamoto. Photon switching by quantum interference. Phys.
Rev. Lett., 81:3611, 1998. (document), 1.2.2

S. E. Harris and L. V. Hau. Nonlinear optics at low light levels. Phys. Rev. Lett.,
82:4611, 1999. (document), 1.2.2, 2.1, 2.4

D. A. Braje, V. Balic, G. Y. Yin, and S. E. Harris. Low-light-level nonlinear
optics with slow light. Phys. Rev. A (Atomic, Molecular, and Optical Physics),
68(4):041801, 2003. (document), 2.1, 2.4

A. André and M. D. Lukin. Manipulating light pulses via dynamically controlled
photonic band gap. Phys. Rev. Lett., 89(14):143602, 2002. (document), 2.1, 2.2.2,
9.2.4, 2.6

141



BIBLIOGRAPHY 142

[12]

[13]

[14]

[15]

[16]

[22]

[23]

[24]

[25]

M. Bajcsy, A. S. Zibrov, and M. D. Lukin. Stationary pulses of light in an atomic
medium. Nature, 426:638-641, 2003. (document), 2.1, 2.2.2, 2.2.4, 2.6

U. Leonhardt and P. Piwnicki. Ultrahigh sensitivity of slow-light gyroscope. Phys.
Rev. A, 62:055801, 2000. (document), 3.1

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi. Light speed reduction to
17 metres per second in an ultracold atomic gas. Nature, 397:594-598, Feb 1999.
(document), 1.1.1, 1.2, 1.2.2, 3.2.1

F. Zimmer and M. Fleischhauer. Sagnac interferometry based on ultraslow polari-
tons in cold atomic vapors. Phys. Rev. Lett., 92(25):253201, 2004. (document), 3.1,
3.2.2,3.3.1,3.3.1, 3.3.1, 3.4, 3.5

M. S. Shahriear, G. S. Pati, R. Tripathi, V. Gopal, M. Messal, and K. Salit. Ul-
trahigh precission absolute and relative rotation sensing using fast and slow light.
quant-ph/0505192. (document)

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg. Atom-Photon-Interactions:
Basic Processes and Applications. John Wiley & Sons, Inc, 1992. 1.1, 1.1.1, 1.1.1,
1.1.1, 1.2, 1.2.1, 4.3.3

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg. Photons and Atoms: In-
troduction to Quantum Electrodynamics. John Wiley & Sons, Inc., 1997. 1.1, 1.1.1,
1.1.1, 3.2.2, 3.2.2

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau. Observation of coherent optical
information storage in an atomic medium using halted light pulses. Nature, 409:490—
493, 2001. 1.1.1, 2.1

D. F. Phillips, A. Fleischhauer, A. Mair, and R. L. Walsworth. Storage of light in
atomic vapor. Phys. Rev. Lett., 86:783-786, 2001. 1.1.1, 2.1

M. O. Scully and M. S. Zubairy. Quantum Optics. Cambridge University Press,
Cambridge, 1997. 1.1.1, 1.1.1, 1.2, 1.2.1, 1.2.2, 1.4.2, 2.2.1, 2.2.1, 2.2.3, 3.4, 3.4.3,
4.1,4.3.2,4.3.2,4.3.2, A.1

D. Ebert. Fichtheorien: Grundlagen der Elementarteilchenphysik. Akademie-Verlag
Berlin, Berlin, 1989. 1.1.1

E. A. Power. Introductory Quantum Electrodynamics. Longmans, London, 1964.
1.1.1, 3.2.2

W. H. Louisell. Quantum Statistical Properties of Radiation. Wiley, New York,
1973. 1.1.1, 4.3.2

P. W. Milonni and C. Eberlein. The quantum vacuum: An introduction to quantum
electrodynamics. American Journal of Physics, 62(12):1154-1154, 1994. 1.1.1



BIBLIOGRAPHY 143

[20]

[27]

[30]

[31]

[32]

[33]

[38]

[39]

P. W. Milonni. The Quantum Vacuum. Academic Press, 1994. 1.1.1

M. Fleischhauer, A. Imamoglu, and J. P. Marangos. Electromagnetically induced
transparency: Optics in coherent media. Rev. Mod. Phys., 77(2):633, 2005. 1.2,
1.2.1,2.1,2.2.3, 2.2.3, 3.1, 3.4.2

K. J. Boller, A. Imamoglu, and S. E. Harris. Observation of electromagnetically
induced transparency. Phys. Rev. Lett., 66:2593-2596, 1991. 1.2

S. E. Harris, J. E. Field, and A. Kasapi. Dispersive properties of electromagnetically
induced transparency. Phys. Rev. A, 46:R29-R32, 1992. 1.2, 1.2.1, 1.2.2

S. E. Harris. Refractive-index control with strong fields. Optics Lett., 19:2018-2020,
1994. 1.2

M. O. Scully and M. Fleischhauer. High-sensitivity magnetometer based on index-
enhanced media. Phys. Rev. Lett., 69:1360-1363, 1992. 1.2, 3.4

R. W. Boyd. Nonlinear Optics. Acad. Press, Amsterdam, 2. edition, 2003. 1.2

A. Imamoglu and S. E. Harris. Lasers without inversion - interference of dressed
lifetime-broadened states. Optics Lett., 14:1344-1346, 1989. 1.2.1

C. W. Gardiner and P. Zoller. Quantum Noise. Springer Series in Synergetics.
Springer, third edition, 2004. 1.2.1, 2.2.1, 2.4.1, A.1

M. Sargent III, M. O. Scully, and Jr. W. E. Lamb. Laser Physics. Addison-Wesly
Publishing Company, Inc., Reading, Mass. 01867, 1987. 1.2.1, 1.2.1, 1.3.3, 2.2.1

M. D. Lukin. Colloquium: Trapping and manipulating photon states in atomic
ensembles. Rev. Mod. Phys., 75(2):457, 2003. 1.2.1, 1.2.1

A. Javan, O. Kocharovskaya, H. Lee, and M. O. Scully. Narrowing of electromag-
netically induced transparency resonance in a Doppler-broadened medium. Phys.
Rev. A, 66, 2002. 1.2.1

S. H. Autler and C. H. Townes. Stark effect in rapidly varying fields. Phys. Reuv.,
100(2):703-722, Oct 1955. 1.2.1

M. D. Lukin, M. Fleischhauer, A. S. Zibrov, H. G. Robinson, V. L. Velichansky,
L. Hollberg, and M. O. Scully. Spectroscopy in dense coherent media: Line nar-
rowing and interference effects. Phys. Rev. Lett., 79:2959-2962, 1997. 1.2.1, 2.2.3,
2.4

M. Fleischhauer, C. H. Keitel, M. O. Scully, C. Su, B. T. Ulrich, and S. Y. Zhu. Res-
onantly enhanced refractive-index without absorption via atomic coherence. Phys.
Rev. A, 46:1468-1487, 1992. 1.2.1



BIBLIOGRAPHY 144

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[51]

[52]

[53]

J. D. Jackson. Classical Electrodynamics. John Wiley & Sons, Inc., New York, third
edition, 1999. 1.2.1

J. Kastel.  Strahlungswechselwirkung von Atomen in Medien mit negativem
Brechungsindex, Dezember 2004. 1.2.1

A. Kasapi, Maneesh Jain, G. Y. Yin, and S. E. Harris. Electromagnetically in-
duced transparency: Propagation dynamics. Phys. Rev. Lett., 74(13):2447-2450,
Mar 1995. 1.2.2

M. Xiao, Y.-q. Li, S.-z. Jin, and J. Gea-Banacloche. Measurement of dispersive
properties of electromagnetically induced transparency in rubidium atoms. Phys.
Rev. Lett., 74(5):666-669, Jan 1995. 1.2.2

D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk. Nonlinear magneto-
optics and reduced group velocity of light in atomic vapor with slow ground state
relaxation. Phys. Rev. Lett., 83(9):1767-1770, Aug 1999. 1.2.2

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin,
Y. Rostovtsev, E. S. Fry, and M. O. Scully. Ultraslow group velocity and enhanced
nonlinear optical effects in a coherently driven hot atomic gas. Phys. Rev. Lett.,
82:5229, 1999. 1.2.2, 3.2.1

J. Oreg, F. T. Hioe, and J. H. Eberly. Adiabatic following in multilevel systems.
Physical Review A (General Physics), 29(2):690-697, 1984. 1.2.2

S. E. Harris and Z. F. Luo. Preparation energy for electromagnetically induced
transparency. Phys. Rev. A, 52:R928-R931, 1995. 1.2.2, 2.2.1

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner. Maximum time delay
achievable on propagation through a slow-light medium. Phys. Rev. A (Atomic,
Molecular, and Optical Physics), 71(2):023801, 2005. 1.2.2

K. Bergmann, H. Theuer, and B. W. Shore. Coherent population transfer among
quantum states of atoms and molecules. Rev. Mod. Phys., 70(3):1003-1025, 1998.
1.3

M. Fleischhauer, S. F. Yelin, and M. D. Lukin. How to trap photons? Storing single-
photon quantum states in collective atomic excitations. Opt. Comm., 179:395-410,
2000. 1.3.3

M. D. Lukin, S. F. Yelin, and M. Fleischhauer. Entanglement of atomic ensembles
by trapping correlated photon states. Phys. Rev. Lett., 84(18):4232-4235, 2000.
1.3.3

R. H. Dicke. Coherence in spontaneous radiation processes. Phys. Rev., 93(1):99-
110, 1954. 1.3.3



BIBLIOGRAPHY 145

[54]

[55]

[61]

[62]

[63]

[64]

M. Gross and S. Haroche. Super-radiance - an essay on the theory of collective
spontaneous emission. Phys. Reports-review Section Phys. Lett., 93:301-396, 1982.
1.3.3

A. S. Zibrov, A. B. Matsko, O. Kocharovskaya, Y. V. Rostovtsev, G. R. Welch, and
M. O. Scully. Transporting and time reversing light via atomic coherence. Phys.
Rev. Lett., 83(10):103601, 2002. 1.3.3

F. Harres. Die Geschwindigkeit des Lichtes in bewegten Korpern. PhD thesis,
Universitat Jena, 1911. 1.4

M. G. Sagnac. L’éther lumineux démonstré par l'effect du vent relatif d’éther dans
un interférometre en rotation uniforme. Comp. Rend. Acad. Sci., 157:708, 1913.
Paris. 1.4, 3.1

E. J. Post. Sagnac effect. Rev. Mod. Phys., 39(2):475-493, Apr 1967. 1.4.1, 3.1

O. Avenel, Y. Mukharsky, and E. Varoquaux. Superfluid gyrometers. J. Low Tem-
perature Phys., 135:745-772, 2004. 1.4.3

K. F. Woodman, P. W. Franks, and M. D. Richards. The nuclear-magnetic-
resonance gyroscope - a review. J. Navigation, 40:366-384, 1987. 1.4.3

T. W. Kornack, R. K. Ghosh, and M. V. Romalis. Nuclear spin gyroscope based on
an atomic comagnetometer. Phys. Rev. Lett., 95(23):230801, 2005. 1.4.3

S. Buchman, C. W. F. Everitt, B. Parkinson, J. P. Turneaure, and G. M. Keiser.
Cryogenic gyroscopes for the relativity mission. Physica B, 280:497-498, 2000. 1.4.3

G. E. Stedman, K. U. Schreiber, and H. R. Bilger. On the detectability of the
Lense-Thirring field from rotating laboratory masses using ring laser gyroscope in-
terferometers. Classical Quantum Gravity, 20:2527-2540, 2003. 1.4.3, 3.4.3

T. L. Gustavson, A. Landragin, and M. A. Kasevich. Rotation sensing with a dual
atom-interferometer Sagnac gyroscope. Classical Quantum Gravity, 17:2385-2398,
2000. 1.4.3, 3.4.3

B. Culshaw. The optical fibre Sagnac interferometer: an overview of its principles
and applications. Measurement Science € Technology, 17:R1-R16, 2006. 1.4.3, 3.1

D. P. DiVincenzo. The physical implementation of quantum computation.
Fortschritte der Physik - Progress Phys., 48:771-783, 2000. 2.1

J. I. Cirac and P. Zoller. Quantum computations with cold trapped ions. Phys.
Rev. Lett., 74:4091, 1995. 2.1

N. A. Gershenfeld and I. L. Chuang. Bulk spin-resonance quantum computation.
Science, 275:350, 1997. 2.1



BIBLIOGRAPHY 146

[69]

[70]

[72]

[73]

[74]

[75]

[76]

[77]

G. P. Berman, G. D. Doolen, P. C. Hammel, and V. I. Tsifrinovich. Solid-state
nuclear-spin quantum computer based on magnetic resonance force microscopy.

Phys. Rev. B, 61(21):14694-14699, Jun 2000. 2.1

G. P. Berman, G. D. Doolen, P. C. Hammel, and V. I. Tsifrinovich. Magnetic
resonance force microscopy quantum computer with tellurium donors in silicon.
Phys. Rev. Lett., 86(13):2894-2896, Mar 2001. 2.1

H. J. Kimble. Strong interactions of single atoms and photons in cavity qed. Physica
Scripta, T76:127-137, 1998. 2.1

A. Kuhn, M. Hennrich, and G. Rempe. Deterministic single-photon source for
distributed quantum networking. Phys. Rev. Lett., 89(6):067901, Jul 2002. 2.1

T. Pellizzari, S. A. Gardiner, J. I. Cirac, and P. Zoller. Decoherence, continuous
observation, and quantum computing: A cavity QED model. Phys. Rev. Lett.,
75:3788, 1995. 2.1

Y. Makhlin, G. Schoén, and A. Shnirman. Quantum-state engineering with
Josephson-junction devices. Rev. Mod. Phys., 73:357, 2001. 2.1

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller. Long-distance quantum com-
munication with atomic ensembles and linear optics. Nature, 414:413-418, 2001.
2.1

B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurasek, and E. S. Polzik. Experimental
demonstration of quantum memory for light. Nature, 432:482-486, 2004. 2.1

M. D. Eisaman, A. André, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D.
Lukin. Electromagnetically induced transparency with tunable single-photon pulses.
Nature, 438:04327, December 2005. 2.1

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J.
Kimble. Measurement-induced entanglement for excitation stored in remote atomic
ensembles. Nature, 438:832, December 2005. 2.1

T. Chaneliere, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and
A. Kuzmich. Storage and retrieval of single photons transmitted between remote
quantum memories. Nature, 438:836, December 2005. 2.1

E. Knill, R. Laflamme, and G. J. Milburn. A scheme for efficient quantum compu-
tation with linear optics. Nature, 409:46-52, 2001. 2.1

J. L. O'Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning. Demon-
stration of an all-optical quantum controlled-NOT gate. Nature, 426:264-267, 2003.
2.1



BIBLIOGRAPHY 147

[82]

S. Gasparoni, J.-W. Pan, P. Walther, T. Rudolph, and A. Zeilinger. Realization
of a photonic controlled-[small-caps not| gate sufficient for quantum computation.
Phys. Rev. Lett., 93(2):020504, 2004. 2.1

M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, and
P. Zoller. Dipole blockade and quantum information processing in mesoscopic atomic
ensembles. Phys. Rev. Lett., 87:037901, 2001. 2.1

D. Tong, S. M. Farooqi, J. Stanojevic, S. Krishnan, Y. P. Zhang, R. Cote, E. E.
Eyler, and P. L. Gould. Local blockade of rydberg excitation in an ultracold gas.
Phys. Rev. Lett., 93(6):063001, 2004. 2.1

K. Singer, M. Reetz-Lamour, T. Amthor, L. G. Marcassa, and M. Weidemdiller.
Suppression of excitation and spectral broadening induced by interactions in a cold
gas of rydberg atoms. Phys. Rev. Lett., 93(16):163001, 2004. 2.1

A. André, M. Bajcsy, A. S. Zibrov, and M. D. Lukin. Nonlinear optics with sta-
tionary pulses of light. Phys. Rev. Lett., 94(6):063902, 2005. 2.1, 2.2.4

A. André. private communication, 2005. 1, 2.3.1, 2.11

A. André. Nonclassical states of light and atomic ensembles: Generation and New
Applications. Phd thesis, Harvard University, Departement of Physics, Harvard
University, Cambridge, Massachusetts, May 2005. 2.2.1, 2.2.4

P. D. Drummond and M. G. Raymer. Quantum-theory of propagation of nonclassical
radiation in a near-resonant medium. Phys. Rev. A, 44:2072-2085, 1991. 2.2.1

V. Chaltykyan, G. Grigoryan, and G. Nikogosyan. Dark-state evolution and self-
phase modulation in a lambda medium. Phys. Rev. A (Atomic, Molecular, and
Optical Physics), 68(1):013819, 2003. 2.2.3

S. E. Harris. Electromagnetically induced transparency with matched pulses. Phys.
Rev. Lett., 70:552, February 1993. 2.2.5

E. Cerboneschi and E. Arimondo. Transparency and dressing for optical pulse pairs
through a double-lambda absorbing medium. Phys. Rev. A, 52:R1823-R1826, 1995.
2.2.5

M. D. Lukin and A. Imamoglu. Controlling photons using electromagnetically in-
duced transparency. Nature, 413:273, 2001. 2.4

M. D. Lukin, P. R. Hemmer, M. Loffler, and M. O. Scully. Resonant enhancement of
parametric processes via radiative interference and induced coherence. Phys. Rev.
Lett., 81:2675, 1998. 2.4

S. E. Harris, J. E. Field, and A. Imamoglu. Nonlinear optical processes using
electromagnetically induced transparency. Phys. Rev. Lett., 64:1107-1110, 1990.
2.4



BIBLIOGRAPHY 148

[96]

100]

[101]

[102]

[103]

[104]

[105]

[106]

107]

[108]

109

[110]

K. Hakuta, L.. Marmet, and B. P. Stoicheff. Electric-field-induced second-harmonic
generation with reduced absorption in atomic hydrogen. Phys. Rev. Lett., 66(5):596—
599, Feb 1991. 2.4

A. E. Siegman. Lasers. University Science Books, 20 Edgehill Road, Mill Valley,
CA 94941, 1986. 2.4

C. W. Gardiner. Handbook of Stochastic Methods. Springer Series in Synergetics.
Springer, third edition, 2003. 2.4.1, 2.4.2

G. E. Uhlenbeck and L. S. Ornstein. On the theory of the brownian motion. Phys.
Rev., 36:823, September 1930. 2.4.1

H. J. Carmichael. Statistical Methods in Quantum Optics 1. Texts and Monographs
in Physics. Springer Verlag, Berlin and Heidelberg, 1999. 2.4.1

N. N. Lebedev. Special Functions and their applications. Dover Publications, Inc.,
1972. 2.4.2, 2.4.2

F. E. Zimmer, A. André, M. D. Lukin, and M. Fleischhauer. Coherent control of
stationary light pulses. Optics Comm., 264:441-453, 2006. 2.4.2

G. E. Stedman. Ring-laser tests of fundamental physics and geophysics. Rep. Prog.
Phys., 60:615, 1997. 3.1

L. A. Page. Effect of earth’s rotation in neutron interferometry. Phys. Rev. Lett.,
35(8):543, Aug 1975. 3.1

T. L. Gustavson, P. Bouyer, and M. A. Kasevich. Precision rotation measurements
with an atom interferometer gyroscope. Phys. Rev. Lett., 78(11):2046-2049, 1997.
3.1

J. M. McGuirk, M. J. Snadden, and M. A. Kasevich. Large area light-pulse atom
interferometry. Phys. Rev. Lett., 85(21):4498-4501, 2000. 3.1

W. W. Chow, J. Gea-Banacloche, L.. M. Pedrotti, V. E. Sanders, W. Schleich, and
M. O. Scully. The ring laser gyro. Rev. Mod. Phys., 57:61, 1985. 3.1

C. Orzel, A. K. Tuchman, M. L. Fenselau, M. Yasuda, and M. A. Kasevich. Squeezed
States in a Bose-Einstein Condensate. Science, 291(5512):2386-2389, 2001. 3.1

M. A. Kasevich. Coherence with Atoms. Science, 298(5597):1363-1368, 2002. 3.1,
3.4.3

A. P. Chikkatur, Y. Shin, A. E. Leanhardt, D. Kielpinski, E. Tsikata, T. L. Gus-
tavson, D. E. Pritchard, and W. Ketterle. A Continuous Source of Bose-Einstein
Condensed Atoms. Science, 296(5576):2193-2195, 2002. 3.1



BIBLIOGRAPHY 149

[111]

[112]

[113]

114]

[115]

[116]

[117]

[118]

[119]

[120]

121]

[122]

[123]

[124]

[125]

A. Einstein. Bemerkungen zu P. Harzers Abhandlungen: Uber die Mitfithrung des
Lichtes in Glas und die Aberation. Astronomische Nachrichten, 199(4753), 1914.
3.1

A. Einstein. Antwort auf eine Replik Paul Harzers (Nr. 4753, S.10 und 11). As-
tronomische Nachrichten, 199(4755):47, 1914. 3.1

P. Harzer. Uber die Mitfithrung des Lichtes in Glas und die Aberation. Astronomis-
che Nachrichten, 198(4748):26, 1914. 3.1

P. Harzer. Bemerkungen zu meinem Artikel in Nr. 4748 im Zusammenhange mit
den vorstehenden Bemerkungen des Herrn FEinstein. Astronomische Nachrichten,
199(4753):10, 1914. 3.1

B. Pogany. Uber die Wiederholung des Harress-Sagnacschen Versuches. Annalen
der Physik, 80:217, 1926. 3.1

B. Pogany. Uber die Wiederholung des Harress-Sagnacschen Versuches. Annalen
der Physik, 85:244, 1928. 3.1

A. Dufour and F. Prunier. Sur un deplacément de franges enregistré sur une plate-
forme en rotation uniforme. J. Phys. Radium, 3:153, 1942. 3.1

A. Dufour and F. Prunier. Comp. Rend. Acad. Sci., 204:1322, 1937. 3.1

S. Gupta, K. W. Murch, K. L. Moore, T. P. Purdy, and D. M. Stamper-Kurn. Bose-
einstein condensation in a circular waveguide. Phys. Rev. Lett., 95(14):143201, 2005.
3.1, 3.3.1, 3.4.3

A. S. Arnold, C. S. Garvie, and E. Riis. Large magnetic storage ring for Bose-
Einstein condensates. Phys. Rev. A (Atomic, Molecular, and Optical Physics),
73(4):041606, 2006. 3.1, 3.4.3

B. H. W. Hendriks and G. Nienhuis. Sagnac effect as viewed by a co-rotating
observer. Quantum Optics: Journal of the European Optical Society Part B, 2(1):13—
21, 1990. 3.2.1

A. B. Matsko, O. Kocharovskaya, Y. Rostovtsev, G. R. Welch, A. S. Zibrov, and
M. O. Scully. Slow, ultraslow, stored, and frozen light. Adv. In Atomic, Molecular,
Opt. Physics, Vol 46, 46:191-242  2001. 3.2.1

L. Mandel and E. Wolf. Optical coherence and quantum optics. Cambridge Univer-
sity Press, Cambridge, 1995. 3.2.2, 3.4.3, 4.3.2, 4.3.2

I. Carusotto, M. Artoni, and G.C. La Rocca. Atomic recoil effects in slow light
propagation. JETP Letters, 72(6):289-293, 2000. 3.3.1

K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard. Vortex formation in a
stirred Bose-Einstein condensate. Phys. Rev. Lett., 84(5):806-809, Jan 2000. 3.3.2



BIBLIOGRAPHY 150

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

134]

[135]

[136]

[137]

138

J. R. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle. Observation of vortex
lattices in Bose-Einstein condensates. Science, 292:476-479, 2001. 3.3.2

M. W. Zwierlein, J. R. Abo-Shaeer, A. Schirotzek, C. H. Schunck, and W. Ketterle.
Vortices and superfluidity in a strongly interacting Fermi gas. Nature, 435:1047—
1051, 2005. 3.3.2

M. Fleischhauer and M. O. Scully. Quantum sensitivity limits of an optical mag-
netometer based on atomic phase coherence. Phys. Rev. A, 49:1973-1986, 1994.
3.4

Frank  Vewinger. Manipulation  und  Charakterisierung  kohdrenter
Uberlagerungszustdnde i Mehrniveausystemen. Dissertation, Technische
Universitat Kaiserslautern, Fachbereich Physik, 67663 Kaiserslautern, Erwin-
Schrodinger-Strasse, Dezember 2004. 4, 4.4, 4.4

F. Papoft, F. Mauri, and E. Arimondo. Transient velocity-selective coherent popu-
lation trapping in one dimension. J. Opt. Soc. Am. B, 9(3):321, march 1992. 4, 4.1,
4.2.3,4.3.3, 4.3.3, 4.4, 4.6

E. Arimondo. Coherent population trapping in laser spectroscopy. Progress In
Optics, Vol 35, 35:257-354, 1996. 4.1

A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji.
Laser cooling below the one-photon recoil energy by velocity-selective coherent pop-
ulation trapping. Phys. Rev. Lett., 61(7):826, August 1988. 4.1, 4.2.1, 4.5.1

A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji.
Laser cooling below the one-photon recoil energy by velocity-selective coherent pop-

ulation trapping: theoretical analysis. J. Opt. Soc. Am. B, 6(11):2112, November
1989. 4.1, 4.2.1

M. Weitz, T. Heupel, and T. W. Hansch. Multiple beam atomic interferometer.
Phys. Rev. Lett., 77(12):2356-2359, Sep 1996. 4.1

H. J. Metcalf and P. van der Straten. Laser Cooling and Trapping. Springer, 2002.
4.2.1,4.3.1

A. R. Edmonds. Angular momentum in Quantum Mechanics. Princeton University
Pres, Princeton, 1957. 4.3.1

C. Menotti, G. Morigi, J. H. Miiller, and E. Arimondo. Scaling laws in velocity-
selective coherent population trapping in the presence of polarization-gradient cool-
ing. Physical Review A (Atomic, Molecular, and Optical Physics), 56:4327, 1997.
4.3.1

Y. Castin, H. Wallis, and J. Dalibard. Limit of doppler cooling. J. Opt. Soc. Am.
B-optical Phys., 6:2046-2057, 1989. 4.3.2, 4.3.2, 4.3.2



BIBLIOGRAPHY 151

[139)]

[140]

141]

142]

143

144]

[145]

[146]

H. Wallis. Quantum-theory of atomic motion in laser-light. Phys. Reports-review
Section Phys. Lett., 255:204-287, 1995. 4.3.2, 4.3.2

J. R. Morris and B. W. Shore. Reduction of degenerate 2-level excitation to inde-
pendent 2-state systems. Phys. Rev. A, 27:906-912, 1983. 4.3.3, 4.3.3

S. Stenholm. Redistribution of molecular velocities by optical processes. Appl.
Phys., 15:287-296, 1978. 4.3.4

H. Theuer. Anwendung von STIRAP in der kohdrenten Teilchenoptik am Beispiel
eines laserpraperierten Ne*-Atomstrahls. Dissertation, Universitiat Kaiserslautern,
January 2000. 4.4

J. M. Weber, K. Hansen, M.-W. Ruf, and H. Hotop. Penning ionization of Cgy and
Cr9. Chem. Phys., 239:271-286, 1998. 4.4

T. Esslinger, F. Sander, M. Weidemiiller, and T. W. Hansch. Subrecoil laser cooling
with adiabatic transfer. Phys. Rev. Lett., 76:2432-2435, 1996. 4.5.1

A. Klein. Wechselwirkung von Storstellenatomen in Bose-Einstein-Kondensaten,
2004. A1

B. Schmidt, L. I. Plimak, and M. Fleischhauer. Stochastic simulation of a
finite-temperature one-dimensional Bose gas: From the Bogoliubov to the Tonks-

Girardeau regime. Phys. Rev. A (Atomic, Molecular, and Optical Physics),
71(4):041601, 2005. A.1



Personal data:

Date of birth:
Place of birth:
Nationality:

Marital status:

School education:

1981-1985
1986-1990
1990-1991

1991-1994

Curriculum vitae

Frank Egon Zimmer

July 3rd, 1974
Hermeskeil
German

single

Grundschule in Thalfang

Hauptschule in Thalfang

Hauptschule in Hermeskeil

leaving certificate: qualifizierter Sekundarabschluf 1
Balthasar-Neumann-Schule Trier

Berufliches Gymnasium Bildungsgang Technik

school leaving certificate: Allgemeine Hochschulreife (Abitur)

University education:

1996-1998
1998-2001

10/26,/2001

2001-2006

Grundstudium at the University of Kaiserslautern

(major subject: physics, subsidiary subject: computer sience)
Hauptstudium period at the University of Kaiserslautern
(major subject: physics, subsidiary subject: mathematics)
Diploma in Physics, title of diploma thesis:
Resonanzstrukturen in Wannier-Stark Systemen

Supervisor: apl. Prof. Dr. H.-J. Korsch

Doctoral Program, Technical University of Kaiserslautern

Supervisor: Prof. Dr. M. Fleischhauer

152



Danksagung

Ich mochte nicht eine Reihe von Menschen auflisten, die zum Gelingen dieser Arbeit
beigetragen haben, sondern méchte mich mit einem kurzen Gedicht bei allen herzlich fiir
die letzten Jahre und Thre Unterstiitzung bedanken.

Demut

Seh ich die Werke der Meister an,
So seh ich das, was sie getan;
Betracht ich meine Siebensachen,
Seh ich, was ich héatt sollen machen.

J. W. v. Goethe



	Kurzfassung
	Abstract
	Introduction
	Hamiltonian of quantum optics
	Interaction of neutral atoms with electromagnetic fields

	Electromagnetically induced transparency (EIT) and slow-light
	The model system of EIT
	Slow-light and its limitations

	Storage of light in an optically dense medium
	Definition of dark- and bright-state polaritons
	Dynamics in the adiabatic limit
	Coherent and adiabatic storage of photonic wave-packets

	The Sagnac effect
	A brief explanation
	Quantum limit of laser and matter-wave gyroscopes
	Overview: state-of-the-art gyroscopes


	Coherent spatial control of stationary light
	Motivation
	The stationary light system
	The absorptive stationary light scheme
	The 2V-scheme for stationary light
	Self-consistent probe-field equations
	Normal modes
	Pulse matching and adiabatic elimination

	Spatially homogeneous retrieval beams
	Equal control-field amplitudes
	Temporal evolution of momenta beyond the adiabatic elimination of the difference-mode
	Non-equal control-field amplitudes

	Spatially modulated retrieve fields
	Fokker-Planck equation for the fast normal mode
	Initial value problem of Ornstein--Uhlenbeck process

	Spatial compression of stationary light pulses
	Basic concept
	Nonadiabatic effects

	Conclusion

	Slow-light gyroscope
	Introduction
	The Sagnac-Hybrid Interferometer
	The Principle
	Dynamics in a rotating frame

	Sagnac phase shift and influence of external trapping potentials
	Periodic boundary conditions in state |1"526930B 
	Effect of longitudinal confinement

	Quantum limited sensitivity of the slow-light gyroscope
	Perturbation theory with respect to characteristic length
	Steady state Maxwell-Bloch equation
	Quantum limits of gyroscope sensitivity

	Conclusion

	Transient VSCPT
	Introduction
	Principles of VSCPT
	VSCPT in a -configuration
	Dynamics in dark- and bright state basis
	Transient VSCPT states

	Theoretical description
	Interaction with the classical laser field
	Derivation of the generalized optical Bloch equation
	Effective Hamiltonian and ground states loss rates
	Conditions for detectability of meta-stable, transient trapping states

	Experimental background
	Comparison: experimental and theoretical results
	Short and intermediate interaction time
	Long interaction time

	Summary

	Publications
	Appendix
	Spontaneous emission in the presence of atomic motion
	mathematica-code for resolvent theory calculations

	Bibliography
	Curriculum vitae
	Acknowledgment

