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1 Introduction 

1.1 Reactive oxygen species (ROS) and cellular damage 

 

Oxygen is essential to life. The majority of intracellular oxidations of substrates results in the 

transfer of two-electrons to acceptors like NAD+ or FAD, which are subsequently oxidized by 

the electron transport chain. The terminal step for the reduction of oxygen to water is 

catalyzed by cytochrome c oxidase, which binds to molecular oxygen where stepwise 

reduction of oxygen occurs without release of intermediates in the oxidation process. 

However, a stepwise one electron reduction is mostly favoured leading to the formation of 

oxygen radicals that can cause cellular damage. 

The stepwise transfer of electrons to O2 results in the formation of the following 

intermediates namely, superoxide anion (O2
•) the partially reduced hydrogen peroxide (H2O2), 

and hydroxyl free radical (⋅OH).  

The oxidative processes in cells generally result in the transfer of electrons to oxygen 

to water without the release of any intermediates, nevertheless a small number of oxygen 

radicals are inevitably formed due to the leakage in electron transfer reactions. The major 

source of intracellular oxygen radicals is the mitochondrial electron transport chain in which 

superoxide is produced by transfer of one electron to oxygen from the stable semiquinone 

produced during reduction of ubiquinone by complexes I and II of the electron transport 

chain. The oxygen radicals produced in the mitochondria include superoxide, hydrogen 

peroxide, and hydroxyl radical. ROS are also produced in peroxisomes; they oxidize fatty 

acids and other compounds by transfer of two electrons from FADH2 to O2 with formation of 

hydrogen peroxide, which is readily converted to the hydroxyl radical. The cytochrome p450 

system localised in the ER can also produce oxygen radicals 

ROS are also produced in cells during processes such as inflammation due to bacterial 

infection. To combat microbial infections, phagocytes produce and release toxic oxygen 

radicals to kill invading bacteria in a process known as respiratory burst. The phagocytes then 

engulf killed bacteria. However in prolonged infections, phagocytes tend to die, releasing 

toxic oxygen radicals into the surroundings causing damage to cells. 

 Cosmic radiation, ingestion of chemicals and drugs, as well as smog can lead to the 

formation of ROS. Damage to tissues due to ROS also occurs during perfusion with solutions 

containing high oxygen concentrations for patients during ischemia. 
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ROS can cause damage to all major classes of macromolecules in cells. The phospholipids 

present in plasma and organelle membranes are subject to lipid peroxidation. One significant 

consequence of lipid peroxidation is increased permeability of cell membranes and organelle 

membranes like mitochondria leading to an influx of Ca2+ -ions and with subsequent swelling 

of the cell leading to apoptosis. Amino acids are susceptible to attack by hydroxyl radicals 

resulting in fragmentation, cross-linking and aggregation of proteins. The most important 

consequence of ROS is the damage to both mitochondria and nuclear DNA leading to 

mutations. The binding of Fe2+ to DNA may result in localised formation of hydroxyl radicals 

that attack individual bases and cause strand breaks. Mitochondrial DNA is more susceptible 

to ROS damage, since the electron transport chain is the major source of toxic oxygen 

radicals. 

 Cells develop various mechanisms to remove ROS from their systems. Mammals have 

three different isozymes of superoxide dismutase that catalyses conversion of superoxide to 

hydrogen peroxide Fridovich, 1995. The cytosolic form of superoxide dismutase contains Cu/ Zn at 

its active sites, as does the extra cellular form of the enzyme (EC-SOD); however a unique 

mitochondrial form of superoxide dismutase exists with Mn at its active site. Hydrogen 

peroxide is removed by catalase, a heme-containing enzyme present at high concentrations in 

peroxisomes and to lesser extends in mitochondria and cytosol. 

 A major mechanism for the protection against the damage caused by ROS is 

gluthathione peroxidase, which catalyses the reduction of both hydrogen peroxide and lipid 

peroxides. This selenium-containing enzyme uses sulfhydryl groups of glutathione (GSH) as a 

hydrogen donor with formation of the oxidized disulfide form of glutathione (GSSH). 

Glutathione reductase converts the disulfide form of glutathione back to the sulfhydryl form 

using NADPH produced in the pentose phosphate pathway as an electron donor. Protection 

against ROS may also be gained from ingestion of oxygen scavengers such as vitamin C, 

vitamin E, and β-carotene Hansford et al, 1999. Sohal, 1997. 
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1.2 Ascorbic acid and oxidative stress 

1.2.1 Oxidative stress and antioxidant protection 

 
Oxidative stress can result from increased production of reactive oxygen species and reactive 

nitrogen species (ROS/RNS). This imbalance between ROS/RNS and antioxidant defence, 

can result from numerous normal as well as pathophysiological conditions. 

1.2.2 Ascorbate as an antioxidant 

 
Vitamin C or ascorbate is known to be an essential antioxidant derived from the diet. Plant 

and animals can synthesize ascorbate from glucose in the liver or kidney. However, humans, 

other animals like guinea-pigs and fruit-bats lost the enzyme required for the terminal step (L-

gulono-γ-lactone oxidase) and so require ascorbate to be present in the diet. This inability to 

make ascorbate is a universal inborn error of metabolism in humans.  

 
Ascorbate is required as a cofactor for at least eight enzymes, of which the best known are 

proline hydroxylase and lysine hydroxylase, involved in the biosynthesis of collagen. 

Ascorbate is also required by the copper containing enzyme dopamine-β-hydroxylase, which 

converts dopamine to noradrenalin. Deficiency of ascorbate in human diet causes scurvy. 

Mammalian cells accumulate ascorbate from tissue fluids against a concentration gradient 

coupled to uptake of Na+. Gut absorption of ascorbate is also Na+-dependent. Several types of 

cells such as neutrophils take in dehydroascorbate through glucose transporters Rumsey et al, 1997. 

 
The structure of ascorbate resembles a pentose sugar with an en-diol ionizable group that 

allow the redox-chemistry characteristic for the molecule. These ionizable positions on the 

lactone ring have pK values of 4.17and 11.57, respectively. Therefore, ascorbate is largely 

present as a monovalent anion at physiological pH. One electron oxidation of ascorbate 

produces the ascorbyl radical, which is relatively unreactive. The poor reactivity of ascorbyl 

radical is the essence of many of ascorbate’s antioxidant effects: a reactive radical interacts 

with ascorbate and a much less reactive ascorbyl radical is formed, which can be detected by 

EPR spectroscopy. Ascorbyl radical has pK values of 1.10 and 4.25 present as a monovalent 
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anion. Left to itself, ascorbyl undergoes a disproportionate reaction, regenerating some 

ascorbate and dehydroascorbate. In DHA, endiol hydroxyl groups on the lactone ring are 

replaced by keto groups. Consequently, the keto bonds are highly strained and are unstable. 

Eventually, the ring sturcture of dehydroascrobate is easily hydrolyzed to a linear molecule, 

2,3-diketo-L-gulonic acid and further decomposed to oxalic and L-threonic acids (Fig. 1) Bors 

and Buettner 1997. 

The different ionized forms of ascorbate have different redox properties, so that the 

redox-chemistry of ascorbate is highly pH dependent. At higher pH, the rate of auto-oxidation 

with oxygen is much higher as a result of ascorbate dianion Buettner, 1998. Although most 

biological systems have a fixed physiological pH, some pH changes occur causing a shift in 

equilibrium.  
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Figure 1 Structure of ascorbic acid and its oxidation and degradation products. At 
physiological pH the acid form is largely ionised (ascorbate) since the pKa1 of ascorbic acid 
is 4.25. 
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The chemistry of ascorbate shows that this antioxidant is an excellent reducing agent. 

Ascorbate can literally scavenge most of free radicals having greater reductions potential. 

Therefore, both thermodynamically and kinetically, ascorbate can be considered to be an 

excellent antioxidant Buettner 1993. Although ascorbyl radicals are formed from ascorbate 

oxidation with toxic free radicals, ascorbyl radicals does not react with oxygen to produce 

harmful peroxyl radicals. Ascorbyl radicals can by recycled by enzyme systems. Ascorbate 

can also help in recycling the lipophilic α-tocopherol radical (Figure 2) Packer, Slater and Wilson 1979, 
Niki 1987. In vitro, ascorbate has been shown to have a multiplicity of antioxidant properties, 

protecting various bio-molecules against damage by both reactive oxygen species (ROS) and 

reactive nitrogen species (RNS) Buettner and  Jurkiewicz 1996. 

 
 

 
 
Figure 2   C and E recycling: Interaction of ascorbate, with the α-tocopherol radical formed 
during lipid peroxidation, to produce ascorbyl radical which may eventually be regenerated 
Buettner 1993. 

1.2.3 Ischaemia-reperfusion 
 
Damage to the heart or brain by depriving a portion of the tissue of O2 (ischemia) is a major 

cause of death in western society. Atherosclerosis, leading to the rupture of a lesion, 

thrombosis and the blockage of an essential coronary or cerebral artery is usually the culprit. 
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Severe restriction of blood flow, leads to very low oxygen concentrations (hypoxia), which 

can also result from a blocked artery Bolli 1991. 

1.2.4 Consequences of hypoxia 

Hypoxic or ischemic tissues survive for variable time, depending on the tissue and the species 

it comes from. However, any cell made ischemic for a sufficient period (except erythrocytes) 

will be irreversibly injured. Tissues respond to ischemia in a number of ways Halliwell and 

Gutteridge 2000. 

  

 

 
 
 
 
 
 
 
 
                             adenosine deaminase 
 
                             
                           inosine 
                  
 
 
 
 
                                                 reperfusion restores O2 

 
 
 
 
                                               O2

•  , xanthine, urate, H2O2 
 
                                                                      Fe, Cu release              ischaemic/ reperfusion 
                                                             ⋅OH                                            tissue injury 
 

 
Flow chart 1 A possible mechanism for tissue injury upon reoxygenation of ischaemic tissue 
McCord 1987. The enzyme that converts adenosine to inosine is adenosine deaminase. Adenosine 
modulates the activity of numerous cell types and may help to protect cells against damage 
cause by ischaemic-reperfusion.  
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Early responses usually include increased rates of 

 

• glycogen degradation and glycolysis leading to lactate production and acidosis 

• ATP levels begin to fall  

• AMP is degraded to cause an accumulation of hypoxanthine and 

• Intracellular Ca2+ levels rise, activating Ca2+-stimulated proteases and possibly 

nitric oxide synthase (NOS, if present)  

• Membrane damage   (Flow chart 1) 

 

1.2.5 Rexoygenation injury 

 

If the period of ischemia or hypoxia is insufficiently long to injure the tissue irreversibly, 

much of it can be recovered by reperfusing the tissue with blood and re-introducing O2 and 

nutrients.  In this condition, reperfusion is a beneficial process overall.  However, Parks et al 

showed in the early 1980s that re-introduction of O2 to an ischemic or hypoxic tissue could 

cause further injury to the tissue (reoxygenation injury) that is, to some extent, mediated by 

ROS Hearse and Bolli 1992. The relative significance of reoxygenation (often called reperfusion) 

injury depends on the time of ischemia or hypoxia.  If this is sufficiently long, the tissue is 

irreversibly injured and will die.  Nevertheless, if a dying tissue is reperfused in vivo, this can 

release potentially toxic agents, such as xanthine oxidase and catalytic transition-metal ions, 

into the systemic circulation, causing injury to other body tissues.  For example, gut 

ischaemia can lead to depression of heart function and xanthine oxidase can bind to 

endothelial cells.   It can produce O2 to antagonize the action of NO, as well as generating 

potentially cytotoxic species such as ONOO − and H2O2 Halliwell  and Gutteridge 2000. 

  
However, for a relatively brief period of ischemia/hypoxia, the reoxygenation injury 

component may become more important and the amount of tissue remaining undamaged can 

be significantly increased by including scavengers of ROS in the re-oxygenation fluid.  The 

meaning of `relatively brief ´ in this context depends on the tissue in question, whether one is 

dealing with ischemia or hypoxia and, if the latter, what degree of hypoxia was achieved. 

Although the enzyme xanthine oxidase is frequently used as a source of O2 in 

experiments in vitro, almost all xanthine –oxidizing activity present in healthy animal tissues 

is a dehydrogenase enzyme that transfers electrons not to O2, but to NAD+, as it oxidizes 
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xanthine or hypoxanthine into uric acid.  When tissues are disrupted, some of the xanthine 

dehydrogenase can be converted into xanthine oxidase by oxidation of essential- SH groups 

or by limited proteolysis (e.g. involving Ca2+ -stimulated proteases).  Xanthine oxidase 

produces O2
•  as intermediates by the oxidation of xanthine or hypoxanthine Schrier and Hess 1988. 

The depletion of ATP in hypoxic tissue causes hypoxanthine accumulation. This 

hypoxanthine can be oxidized by the xanthine oxidase when the tissue is reoxygenated, 

causing rapid generation of O2
• as intermediates and H2O2, which might lead to severe tissue 

damage.  Released transition-metal ions can then promote ·OH formation (Flow chart 2) Kehrer 

et al 1987. 

1.2.6 Biochemical measures of oxidative stress 

 

Free-radical species are highly reactive, short-lived and, as such, cannot be practically 

measured in human in vivo studies Gutteridge and Halliwell 1990. In the absence of a direct measure of 

free radicals, human studies have quantified the consequences of free-radical reactions 

employing methods that have significant limitations Susanna et al. To evaluate oxidative stress 

status, a wide array of methods is required to analyze antioxidants, enzymes, low-molecular-

weight compounds with biochemical essays. The past decade has seen a real outburst for 

routine clinical evaluation of oxidative stress status leading to better understanding the 

harmful effects of oxidative stress Sies 1991.   

 

Measuring lipid peroxidation: Studies in the past were based solely on the determination of 

malondialdehyde as an in vivo marker of lipid peroxidation. Polyunsaturated lipids are very 

susceptible to free-radical attack. This process, referred to as lipid peroxidation, eventually 

yields several relatively stable decomposition products, including aldehyde compounds that 

can then be measured in plasma as an indirect index of free-radical activity Gutteridge and Halliwell 

1990. Malondialdehyde, likely the most commonly measured index of oxidative stress in 

human studies, is only one of many aldehyde compounds produced by lipid peroxidation. 

Malondialdehyde is frequently measured in plasma by the thiobarbituric acid-reactive 

substances (TBARS) assay. Thiobarbituric acid reacts with malondialdehyde to produce a 

stable adduct that can be quantified using either spectrophotometry or high-performance 

liquid chromatography (HPLC). Although HPLC measures the thiobarbituric acid-

malondialdehyde adduct more specifically that spectrophotometry, several other lipid-

peroxide decomposition products and a variety of non-lipid related materials are also 
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detectedJanero 1990. Furthermore, malondialdehyde arises from the degradation of a variety of 

non-lipid molecules, including proteins, carbohydrates, DNA, and bile pigmentsGutteridge 1981. 

Therefore, although the TBARS assay is accepted as an index of oxidative stress, this method 

quantitates malondialdehyde-like material and does not specifically measure malondialdehyde 

or lipid peroxidation. Patients with coronary heart failure (CHF) and age-matched control 

subjects with normal LV (left ventriclar) function were studiedMak et al 2000. Many aldehyde 

products of lipid peroxidation in plasma were significantly elevated in the CHF patients. In 

summary, despite methodologic limitations, several studies Belch et al 1991, McMurray et al 1993, Diaz-Velez 

et al 1996, Nishiyama et al 1997, Kieth et al 1998, Mallet et al 1998 have demonstrated an association between 

human CHF and elevated plasma aldehydes, the most commonly used marker of generalized 

oxidative stress.  

 
Other biochemical assays for oxidative stress include:  

 
8-hydroxy-2´deoxyguanosine (8-OH-dG): Reaction of ROS towards constitutive bases of 

DNA resulting in the transformation of guanine to 8-hydroxy-2`-deoxyguanosine. 

Accumulation of 8-OH-dG results in DNA mutations which may lead to cancer Borek 1997 . 

 
Total antioxidant capacity (TAS): This test consists of a screening method that sums the 

various activities of all the antioxidant present in a biological medium. There exist several 

tests that differ by the ROS-generating systems used, the biological target to be oxidized and 

the chosen system for their detection Ghiselli  et al 2000. 

  
Intracellular or vascular, adhesion molecules (ICAM, VCAM): Another alternative method 

in determining oxidative stress status is to observe ICAM and VCAM levels in plasma. 

Intracellular adhesion molecule-1 and -2 (ICAM-1, ICAM-2) are cell surface glycoproteins 

found on many cell types Bevilacqua et al 1994.  Oxidative stress and expression of adhesion 

molecules, ICAM-1 and VCAM-1 are early features in the pathogenesis of atherosclerosis 

and other inflammatory diseases. Oxidation-reduction (redox) processes are known to 

regulate signal transduction leading to inducible ICAM-1 as well as VCAM-1 gene 

expression. Antioxidants have been suggested to have therapeutic potential in pathologies 

related to changes in cellular adhesionWeber and Wolfgang 1996, Adam, Jessup,and Celermajer 1997. 

 
Antioxidant vitamins: Vitamin E, vitamin C, and beta carotene remain the most widely 

studied antioxidants in the setting of large, randomized controlled trials. The largest of these 
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studies Blot et al. 1993 has investigated the efficacy of antioxidant therapy in the primary 

prevention of cancer in 20,000 subjects. In contrast, only two small trials Ghatak et al 1996, Keith et al 

2001 of vitamin E therapy in patients with CHF were available. A non-randomized, 

uncontrolled, and unblended study of vitamin E supplementation in patients with CHF 

demonstrated improvement in markers of oxidative stress. However, no effect on quality of 

life was observed. Without positive evidence from clinical trials, encouraging the use of 

antioxidants based on the rationale that they are likely to be of no harm may be inappropriate. 

Large-scale trials of vitamin C, vitamin E, and beta carotene for the primary prevention of 

cancer Blot et al 1993, Ghatak et al 1996, Hennekens 1998, Omenn 1996 and vitamin E in secondary prevention of 

acute ischemic coronary events Stephens et al 1996, Rapola et al 1998 have raised important questions 

concerning the utility of antioxidant therapy. Although evidence for the role of oxidative 

stress in the genesis of both these conditions is more clearly established than it is for CHF, 

supplementation resulted in minimal or no clinical benefit. This may have related to the 

inability of available oral supplements to provide adequate antioxidant protection in vivo 

rather than an invalidation of the oxidative stress hypothesis. It may not be possible to attain 

physiologically effective concentrations in plasma with conventional oral regimens, especially 

in the case of vitamin C Padayatty 2001. 

  For malignant disease, it may be necessary to intervene earlier and for a longer period 

of time. Of importance, the use of beta-carotene was not benign and associated with a 

significant increase in malignant disease Omenn 1996. These issues highlight the necessity of 

accumulating adequate clinical evidence prior to recommending the use of antioxidant 

vitamins for CHF. 

1.2.7 Systemic free radical activation is a major event involved in myocardial oxidative 

stress related to cardiopulmonary bypass (CPB) 

 
Cardiopulmonary bypass (CPB), a necessary and integral part of cardiac surgery, can induce 

deleterious effects, resulting in diffuse damage of several tissues. Although CPB is routinely 

performed without significant sequela, some patients can develop organ dysfunction 

involving kidneys, liver, lungs, CNS, or the cardiovascular system. Technical improvements 

achieved over the past years have contributed to the reduction of operative and postoperative 

mortality and morbidity. 

  The pathogenesis of these dysfunctions is multifactorial. It is believed to be triggered 

in part by a systemic inflammatory response to CPB, induced by the exposure of blood 
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elements to nonphysiologic surfaces Bolli 1990. As for heart damage, it could be more 

specifically associated with myocardial ischemia and reperfusion consecutive to cross 

clamping and clinically expressed as arrhythmia or “myocardial stunning,” a depressed 

contractile function of major importance in the early postoperative period Opie 1989, Lazzarino G et al 

1994, Davies 1993. Evidence suggests that ROS may play a significant role in the pathogenesis of 

these aforementioned phenomena. A systemic increase of various markers of oxidative stress 
Ferrari R et al 1990, Morse et al 1998 Hearse and Bolli 1992 has been demonstrated to occur during CPB. 

Generation of oxygen free radicals could be the result of the activation of neutrophils 

occurring in response to an inflammatory reactionBolli 1998. Moreover; it is known that ROS 

generation takes place during myocardial ischemia and reperfusion in various experimental 

models Davies 1993 and in human heart. ROS could therefore be responsible for bypass-induced 

damages or impairment of myocardial recovery Hearse and Bolli 1992, Curello et al 1995, Vergely et al 1998, 

Bendich et al 1986, Pietri et al1994. 

 
 

1.3 ESR spectroscopy 

 

1.3.1 Electron spin resonance and ascorbyl radicals  

 

Electron spin resonance (ESR) or electron paramagnetic resonance (EPR) technique is based 

on the observation of unpaired electrons in a magnetic field brought into resonance with a 

microwave electromagnetic field.  

An electron possesses a spin magnetic moment, so that in the presence of an applied magnetic 

field it can orient itself in a direction parallel or antiparallel (corresponding to the spin states 

α and β) to the field.  

An electron spin makes the transition  β → α most efficiently when the energy 

separation of the two states matches the microwave frequency or the energy of the photon (in 

a magnetic field), for then the sample and electromagnetic field are in resonance. 

 

 

 



Introduction 
 

 

 
12

 
 

  

α 

β 

hν = gβH 
α 

β 

Magnetic field

En
er

gy
 

Resonance 
transition 

First 
derivative Absorption

 
Figure 3 Based on the fundamental theory of ESR. The energies of the α and β states of an 
electron diverge in a magnetic field. When the separation of the states matches the microwave 
irradiation, there is a strong resonant absorption. 

 
 

 
In continuous wave (CW) methods, the observation is performed by monitoring the 

absorption as the applied field is changed while the sample is exposed to a constant 

microwave radiation. But in pulse ESR spectroscopy, a short and intense microwave pulse is 

applied and the signals generated by the sample’s magnetization are measured. By the 

application of Fourier transformation of the signal, a frequency spectrum from the sample is 

obtained. 

The sample, which must be paramagnetic, may be a solid, a liquid or a gas.  The 

peculiar appearance of the spectrum arises because of the detection technique, which is called 

phase-sensitive detection that monitors the first derivative of the absorption with respect to 

the field, so the point of zero slopes (where the plotted line passes through the horizontal axis) 

marks the peak of the absorption (Figure 3). 

 
Three principal pieces of information are obtained: 

- the position of the centre of the spectrum, as expressed by the g-factor, 

- the shape of the spectrum, its hyperfine structure, and 

- the width of the lines. 

 
If the microwave frequency is ν and the applied field is H, the resonance condition is hν = 

gβΗ, where the g-factor is a parameter that takes into account the possibility that the local 

field is not exactly equal to H, β is a constant known as Bohr magneton. Measuring the 
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position of the spectrum enables g to be determined and then interpreted in terms of the 

electronic structure of the paramagnetic species. 

Only ESR detects unpaired electrons unambiguously and yields incontrovertible evidence of 

their presence. In addition, EPR has the unique power to identify the paramagnetic species 

that is detected. EPR samples are very sensitive to local environments. Therefore, the 

technique sheds light on the molecular structure near the unpaired electron. Sometimes, the 

EPR spectra exhibit dramatic line shape changes, giving insight into dynamic processes such 

as molecular motions or fluidity. 

 

The EPR spin-trapping technique, which detects short-lived, reactive free radicals, very nicely 

illustrates how EPR detection and identification of radicals can be exploited. This technique 

has been vital in the biomedical field for elucidating the role of free radicals in many 

pathologies and toxicities. 

 
EPR spin-labelling is a technique used by biochemists whereby a paramagnetic molecule (i.e, 

the spin label) is used to tag macromolecules in specific regions. From the EPR spectra 

reported by the spin label, they can determine the type of environment (hydrophobicity, pH, 

fluidity, etc.) in which the spin label is located and local distance measurements can be 

studied Loesel et al 1999. Wenzel et al 1974,  Glöggle et al 1982, Fritzsche et al 1984, Reese &Trentham 1965. 

  Another important application for quantitative EPR is radiation dosimetry. Among its uses 

are dose measurements for sterilization of medical goods and foods, detection of irradiated 

foods, and the dating of early human artifacts. 
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Figure 4 ESR spectrum of the ascorbyl radical, usually seen as a doublet, oxidized from 5 
mM ascorbate. Measured with a E580 spectrometer: 9.7 GHz, microwave power = 12 mW, 
modulation amplitude= 1G. Hyperfine splitting aH = 1.8 G. 
 
 
An additional application of ESR spectroscopy is the determination and quantification of 

ascorbyl free radicals in living systems. The ascorbate anion is oxidized to produce the 

ascorbyl radical that can be detected and quantified by ESR methods. The ESR signal of 

ascorbyl radical is usually observed as a doublet (Figure 4), which increases proportionally 

during periods of oxidative stress. Thus, the ESR signal intensity of ascorbyl radical can serve 

as an indicator of oxidative processes taking place in biological systems. 

In vivo, ascorbate behaves as a water-soluble antioxidant, reacting with reactive 

oxygen species Bendich et al 1986. This interaction yields AFR, and therefore the development of 

oxidative stress as a result of ROS. This can result in depletion of plasma and / or tissue 

ascorbate levels and at the same time increase of ascorbyl radical concentrations. Myocardial 

ascorbate consumption as a result of free radical reactions taking place during ischemia and 

reperfusion can be monitored in coronary effluents of isolated rat hearts by ESR detection of 

ascorbyl free radical. Ascorbyl radical concentration in plasma could be a reliable marker of 
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the occurrence of oxidative stress in patients undergoing aorta cross-clamping ischemiaPietri et al 

1994. 

1.4 Fluorescence spectroscopy 

The energy or electromagnetic radiation absorbed by a molecule when irradiated with light 

may be degraded into thermal motion or re-emitted. Light may be emitted at different time 

scales from an excited molecule, by processes called fluorescence or phosphorescence.  

Fluorescence decays immediately after the exciting radiation is removed. On absorption of 

light, a molecule is initially excited from the electronic ground state into the first excited state  

 
 
 

 

 

 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 5 Jablonski diagram illustrating the processes involved in the creation of an excited 
electronic singlet state by optical absorption ( ) and subsequent emission of fluorescence 
( ), phosphorescence ( ) and internal conversion ( ).  
 

S1. This occurs so rapidly (about 10-15 s) that the nuclei in the molecule do not move during 

this process. The absorption of energy reduces the degree of binding in the molecule so that 

the distances between the nuclei are now too small. As a consequence, the molecule is not 

only in the electronically excited state, but also in a vibratory excited state. Over a time scale 

of about 10-12 s, the molecule relaxes to the vibrational ground state of the first electronically 

excited state S1. After a delay of a few nanoseconds in this state, which corresponds to the 

fluorescence life time, a photon is emitted in a process which lasts only 10-15 s. Following 
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Intersystem crossing 
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emission of this photon, the nuclei are in a vibrationally or excited state in the electronically 

ground state S0, and the molecule undergoes vibrational relaxation as before.  

Because of these two vibrational relaxation processes that occur on absorption and emission, 

the energy of the emitted light is less than that of the absorbed light. Thus, for fluorescent 

groups, the wavelength of the emitted light is longer than that of the excitation light. 

Molecules that do not emit fluorescence disperse their energy in the form of non-radiative 

relaxation, or in the form of heat (internal conversion ) (Figure 5). Fluorescent studies on its 

quenching properties may provide a useful tool to study competing reactions in solutions or 

biological systems. 

 
Molecules in excited states can relax back to the ground state without any associated 

fluorescence emission. These nonradiative transactions may be due to intramolecular or 

intermolecular relaxation pathways, which quench the fluorescence. Quenching pathways 

compete with the fluorescence relaxation pathways and will reduce fluorescence emission. 

Some examples of nonradiative relaxation processes include resonance energy transfer, 

excited state chemical reactions, static quenching and collisional quenching.  Resonance 

energy transfer is a process in which an excited donor molecule transfers its energy to a 

nearby acceptor molecule through near-field electromagnetic interaction. Static quenching 

occurs when a fluorophore forms a non-fluorescent complex with another molecule. Finally, 

collisional quenching is due to the loss of the fluorophore’s excited energy state on collision 

with quenching agents (oxygen, metals, and paramagnetic molecules). 

 Fluorescence quenching can be a useful in fluorescence imaging. Resonance energy 

transfer imaging is a powerful tool for detection interaction and/ or co-localization of different 

moleculear species Clegg 1995. 

Intramolecular quenching can occur between co-valantely linked fluorophore-quencher pairs. 

Fluorescence and paramagnetic molecules as double sensors can be an important method for 

the determination of free radicals in biological systems. The energy transfer from a donor 

group (fluorophore) to an acceptor group (nitroxide) resulting in fluorescence quenching Wu & 

Brand 1994, Bystryak et al 1986, Vogel et al 1994, Green et al 1990, Herbelin & Blough 1990. Development of new double 

sensors containing fluorophore Dansyl derivatives and paramagnetic pyrrole-nitroxide 

derivatives can be introduced as indicators of oxidative stress taking place in biological 

systemsTamas Kalai et al 2002. 
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2 Tasks and objectives  

This thesis presents a study on the efficacy of heavy-dose vitamin C therapy as an anti-

oxidant in healthy subjects and in patients undergoing aorta-coronary bypass operation. 

Correlations between oxidative stress and ascorbyl free radical are explored and compared 

with other biochemical parameters for oxidative stress. Ascorbate oxidations in in vitro 

systems are investigated and various aspects of ascorbyl free radical generated in these 

systems are reviewed. A new fluorescence labelled ascorbic acid is synthesized and 

information of its anti-oxidant capacity as well as intra-molecular fluorescence quenching is 

discussed. This thesis is to be concluded with the final chapter on problems faced in the 

quantification and evaluation of ascorbyl radicals. Also, optimization methods using ESR 

spectrometers for routine measurements are considered.   

2.1 Biochemical studies of the efficacy of heavy-dose vitamin C 

supplementation on healthy subjects  

 
The tolerance of heavy doses intravenous vitamin C therapy in healthy subjects is reviewed. 

Various aspects of ascorbate oxidation using ESR spectroscopy and dose-response kinetics 

are studied in relevance to heavy doses of vitamin C in healthy volunteers. Biochemical 

parameters by various markers of oxidative stress in correlation with ascorbyl radical 

concentrations after vitamin C supplementation are discussed. In vivo and in vitro kinetics of 

ascorbyl radicals in plasma may provide some information on the redox-chemistry of 

ascorbate at physiological pH.  

2.2 Biochemical correlations of oxidative stress parameters from patients 

undergoing an aorta-coronary bypass operation after heavy doses 

vitamin C therapy 

 
Oxidative stress triggered by ROS in patients undergoing coronary aorta bypass operation 

(CABO) is studied in correlation with ascorbyl radical concentrations in blood plasma. The 

efficacy of vitamin C as a water-soluble antioxidant to systemic inflammatory response and 

organ malfunction to patients undergoing CABO are explored. Moreover, intracellular and 

extracellular maintenance of ascorbate levels in reduced and oxidized forms are studied by
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following their time-dependent changes. Thus, correlation between ascorbyl radical 

concentrations and ascorbate levels in plasma as a consequence of oxidative stress during 

surgery are investigated. In addition, results from various biochemical parameters for 

oxidative stress were compared with ascorbyl radical concentrations in order to investigate 

pro-oxidative aspects of heavy doses of vitamin C. 

2.3 Chemistry and detection of ascorbyl free radicals compared to spin 

trapping techniques are studied in vitro as markers of oxidative 

stress.  

 
Ascorbate, or vitamin C, is an important antioxidant, neutralizing oxidants and radicals 

against cellular damage. Generation of ascorbyl radicals by redox reactions and metabolism of 

ascorbate are reviewed using ESR spectroscopic techniques. 

Various ionized forms of ascorbate show different redox properties so that the redox- 

chemistry of ascorbate is pH dependent. Therefore, ascorbyl radical concentrations at varying 

pH were measured with the help of ESR spectroscopy. Redox-chemistry of ascorbate 

involved in chemical as well as biochemical assays in vitro as source of oxygen radicals was 

investigated and ascorbyl radical generated in these systems was quantified. 

In vitro ascorbate oxidation during hypoxia, anoxia and normal conditions in RKO cell lines 

are reviewed. In addition, ascorbate oxidation during reoxygenation is also investigated. Spin 

trapping techniques are introduced to confirm the results in relation to ascorbate oxidation. 

2.4 Fluorescent labelling of ascorbic acid with N-methylisatoic anhydride  

 

In order to study the dynamics of ascorbate in free radical generating systems, it would be 

appropriate to label ascorbic acid with a fluorescent marker. The two-faced character of 

fluorescent-labelled ascorbic acid can be determined using ESR and fluorescence 

spectroscopy. In the near future, in vivo and in vitro real-time measurements using 

fluorescence confocal microscopy to determine site related oxidative stress in living 

organisms might be of some significance.  Therefore, the synthesis of a new fluorescence 

labelled ascorbic acid ester that possesses the characteristics of fluorescence emission as well 
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as showing paramagnetic properties was considered. Fluorescence quenching occurs between 

covalently bound fluorescent-quencher pairs. Therefore, fluorescent derivatives of ascorbate 

are expected to quench fluorescence when oxidized to ascorbyl radicals. This ability of 

detecting fluorescence as well as ESR signals could be useful in the identification of free 

radicals in living systems. A rather small fluorophore like N-methylisatoic anhydride was 

considered as a fluorescent label. Subsequently, redox properties of this new double-labelled 

ascorbic acid fluorescent ester are determined using fluorescence and ESR spectroscopic 

techniques.   

2.5 Validation of routine ESR spectrometers with respect to the 

determination  of the ascorbyl radical concentration in plasma 

samples in comparism with the Bruker ELEXSYS E500 Series 

spectrometer (E580)  

 
 
In the course of this thesis a Bruker high-end research ESR spectrometer (E 500 Series) was 

employed for the determination and quantification of ascorbyl free radical concentrations in 

plasma. For routine measurements of plasma samples, low cost bench top spectrometers were 

to be tested and compared with the E580 spectrometer. 
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3 Results and discussion 

3.1 Biochemical studies of the efficacy of heavy-dose vitamin C 

supplementation on healthy subjects  

 

The importance of vitamin C, or ascorbate, in humans to protect the immune system, in 

collagen biosynthesis, and its antioxidant capacity are well known. Most of the animals can 

synthesize their own vitamin C from glucose except for man and certain animals and birds. 

Under stress situations animals (e.g. goat) can produce up to 7.5 g vitamin C per day, which 

may reveal the importance of this vitamin in the diet.  

The dietary recommendation from the “2000 Deutsche Gesellschaft für Ernährung 

e.V.”  (DGE 2000) for vitamin C intake is about 100 mg per day for adults Frei and Traber  2001 . 

The consumption of 100 mg/day is found to be sufficient to saturate the body pools for 

instance neutrophils, leukocyctes and other tissues Carr and Frei 1999. However, from a therapeutic 

point of view Levine et al 1996, the dietary recommendation of vitamin C was even suggested to 

reach in grams, since stress, smoking, infections and burns deplete the ascorbic acid reserve in 

the body and demand higher doses of ascorbic acid supplementation. 

There are also speculations about the benefits of higher vitamin C doses. Cu2+ and Fe3+ ion-

ascorbate mixtures stimulate free radical damage in DNA, lipids and proteins in vitro Halliwell 

and Gutteridge  1990, Porter 1995, Podmore et al., 1998,  Jenner et al, 1998. Nevertheless, in vivo studies show that 

metal ions are not freely available Bendich et al 1986, Levine 1986 but bound to proteins like transferrin, 

haemoglobin and ferretin. The pro-oxidant activity of vitamin C in the presence of metal ions 

underlies its antioxidant protection in lipid peroxidation with or without iron supplementation. 

Current evidences also suggest the protection of ascorbic acid against atherogenesis by 

inhibiting LDL oxidation. The beneficial effects of ascorbic acid in collagen biosynthesis and 

its antioxidant property may play a vital role in the eradication of many diseases in humans. 

To facilitate an overview on oxidative stress and anti-oxidant defence mechanism of 

ascorbate, healthy volunteers were intravenously given very high doses of vitamin C (Pascoe 

GmbH as Vitamin C-Injektopas®) containing 750 mg or 7.5 g ascorbic acid.  Infusion therapy 

of vitamin C allows higher dosage, since oral administration of more than 200 mg may 

prevent resorption through epithelial walls. 

Serum levels of vitamins C and E as well as biochemical parameters indicative of oxidative 

stress including thiobarbituric-acid-reactive substances (TBARS), malondialdehyde (MDA) 
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and 8-oxoguanine as determined at the University of Hohenheim* were correlated with the 

ascorbyl radical concentrations. 

3.1.1 Protocol of healthy subjects with intravenous infusion of 7.5 g and/ or 750 mg 

vitamin C 

 

Six healthy male volunteers, between 18 and 55 years old, were intravenously injected with 

either 7.5 g or 750 mg of vitamin C daily for six days. After two weeks washout phase the 

same volunteers received the alternate amounts, 7.5 g or 750 mg respectively, again for six 

days. The healthy subjects were divided into four groups and were kept under observation for 

over 29 days. 

  

3.1.2 Classification of the clinical parameters 

 

Primary parameters: Ascorbate, and ascorbyl radical, concentrations in plasma. 

 

Secondary parameters: Malondialdehyde (MDA), and vitamin E levels in plasma. 8-

Oxoguanine, 8-oxoadenine, oxalate and calcium levels in urine.  

 

3.1.3 Primary Parameter: Determination of ascorbyl radicals in blood plasma of 

healthy subjects using ESR spectroscopy 

 
After intravenous administration of 750 mg or 7.5 g vitamin C in healthy volunteers, blood 

was withdrawn before and 0.5, 1, 2, 4 and 8 hours after infusion. Ascorbyl radical 

concentrations in EDTA-plasma were determined using ESR spectroscopic methods. 

Ascorbyl radical concentrations were determined by double integration of the ESR spectra 

with a stable nitroxide radical such as 3-carboxyl-2,2,5,5-tetramethyl-3-pyrrolin-1-oxyl as a 

standard. 

 

* Institut für Biologische Chemie und Ernährungswissenschaft an der Universität 

Hohenheim. Silke Mrosek et al. 
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Figure 6 Average ascorbyl radical concentrations in blood plasma of  6 healthy subjects after 
vitamin C infusion of 750 mg (–●−) and 7.5 g (–■−) on day 1 and day 23.  Ave. stdev. 7.5 g = ± 41, 
ave. stdev. 750 mg = ± 23.  
 
Dose-response curves of ascorbyl radical concentrations in volunteers treated with vitamin C 

initially showed an increase in the concentrations (Figure 6). Maximum radical 

concentrations were seen after 30 minutes of vitamin C infusion. However, ascorbyl radical 

concentrations decreased steadily after 30 minutes with half-life of 70-100 minutes. The rate 

of free radical degradation slowed down through the last 8 hours after vitamin C infusion. 

Healthy subjects administered with 7.5 g vitamin C showed a 3-fold increase in the ascorbyl 

radical signal in the ESR spectrum in relation to subjects after 750 mg vitamin C infusion.  

What do the dose-response curves of ascorbyl radical concentrations during a time span of 8 

hours in healthy subjects after vitamin C infusion suggest? In order to pursue the dose-

response curves of ascorbyl radicals, it is first necessary to understand the chemistry of 

ascorbate oxidation. As seen in Figure 1, oxidation of ascorbate usually occurs in a two-step 

reaction resulting in the formation of ascorbyl radicals and dehydroascorbate. Moreover, two 

molecules of ascorbyl radical can disproportionate forming one ascorbate and one 

dehydroascorbate molecule, respectively. 

The presence of the en-diol group in the molecule makes it a member of a redox 

system possessing electron donating and accepting properties. Is it possible that the formation 

of ascorbyl radicals in plasma occurs as a consequence of ascorbate oxidation? Although,
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reactive intermediates during oxidative phosphorylation have been sequestered in protein 

complexes, some radical intermediates leak out during regular mitochondrial metabolism. 

Mostly, this may take place when iron proteins ferritin and transferrin that are supposed to 

sequester free irons are damaged Clark and Pearson 1989.  Therefore, free iron present in the system 

becomes available in free radical reactions causing injury to tissues.  This indicates that 

ascorbate oxidation does not end at the level of ascorbyl radical, but that it continues to DHA 

within a short time interval. Consequently, ascorbyl radical signals decrease after reaching a 

maximum at early time points. Therefore the reaction kinetics of ascorbate oxidation in 

biological systems and determination of their respective concentrations may prove to be rather 

complex.  

Under oxidative stress, the consumption of ascorbate can be high,  and without regene-

ration, ascorbate would soon be depleted. Apparently, volunteers after vitamin C infusion 

showed similar non-linear dose-dependent changes in ascorbyl radical concentrations. 

Nevertheless, it should be noted that, divergences at higher ascorbyl radical concentrations 

within healthy subjects were statistically significant with standard deviations of 80 ± 33 for 

subjects after 750 mg vitamin C and 219 ± 103 for patients after 7.5 g vitamin C dosage, at 30 

minutes. Large error bars and variability in their mean values can possibly be attributed to 

individual disparities at peak concentrations. Although numerous studies on recommended 

vitamin C intake was mostly attributed to gastrointestinal tract absorption by oral 

supplementation Levine et al 1999, Vojdani et al 2000, the results presented here were determined from 

healthy subjects using vitamin C infusions therapy.  

 

3.1.4 Stability of ascorbyl radicals in plasma under laboratory conditions at 

physiological pH in the presence of anticoagulant and ferrous irons 

 
Ascorbate is largely present as a monovalent anion at physiological pH so that the redox-

chemistry is highly pH dependent. Though most biological systems have a fixed physiological 

pH, some variations may occur in tissues and under certain pathological conditions. 

Moreover, during regular clinical procedures blood is withdrawn with monovettes containing 

EDTA as anticoagulant, which may influence plasma pH.  Although ascorbyl radical has a 

relatively long half-life stabilized by resonance of the conjugated bonds, pH and oxidants can 

largely influence its stability.   
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Figure 12 First order exponential decrease of ascorbyl radical concentrations (–■–) in blood 
plasma plotted against time from healthy subjects after the infusion of 750 m g vitamin C. The 
red line is a mono exponential fit with a half-life (τ) of 86 + 4 minutes. Inset: Verification of 
first-order equation by plotting ln [ascr] versus time. 
 

To test this, the stability of ascorbyl radicals in blood plasma containing EDTA was 

investigated under regular laboratory conditions. Kinetics of ascorbyl radical was measured at 

3 different concentrations. ESR measurements were repeated successively on the average at 

every 15 minutes until no significant changes in ascorbyl radical concentrations were 

observed. The data presented in Figures 12 and 13 shows a time-dependent exponential decay 

of ascorbyl radicals that reached equilibrium after 3 hours. Therefore, a non-linear curve fit 

was applied for all ascorbyl radical levels by assuming the reaction is first-order (Figures 12, 

13 and 14). To verify first-order kinetics, logarithmic plots of ascorbyl radical concentration 

versus time showed linearity with less than 10% -deviation. Graphical data from the 3 

different ascorbyl radical concentrations yielded straight lines confirming first-order kinetics. 

Nevertheless, higher ascorbyl radical concentrations tend to show shorter half-life decay rates 

(Figure 13). This is in clear contrast with first-order kinetic rate laws as seen in Figure 12 

and Figure 14.  
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Figure 13  1-order decrease of ascorbyl radical concentrations in blood plasma plotted 
against time from volunteers after the infusion of 7.5 g (–■–) vitamin C, τ =69 ± 3 minutes. 
Inset: Verification of first-order equation by plotting ln Cascr versus time. 
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Figure 14 First order exponential decrease of ascorbyl radical concentrations in blood 
plasma from volunteers without vitamin C infusion (–■–), plotted against time. Y = Y0 +A1 e-

x/τ,  τ =123 + 22 minutes. Inset: Verification of first-order equation by plotting ln Cascr versus 
time. 
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A further step taken to study the kinetics of ascorbate oxidation is to establish the dose-

response behaviour of the ascorbyl radical decay in vivo and to compare it with in vitro 

(Figure 15). Ascorbyl radical concentrations in vitro were determined in plasma withdrawn 

from healthy volunteers and measured at regular laboratory conditions. Decomposition of 

ascorbyl radical concentrations showed non-linear exponential kinetics with a half-life of 75 

minutes in vivo and a half-life of 55 minutes in vitro. These results reveal in vivo redox 

reactions occurring in normal metabolic processes in which, ascorbate is being recycled. In 

contrast, in vitro decomposition of ascorbyl radical in plasma occurred mainly as a result of 

disproportionation.   
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Figure 15  The  correlation between the decrease of ascorbyl radical concentrations in blood 
plasma of a healthy volunteer (–■–) and the decrease of radical concentration in blood 
plasma after the  withdrawal of blood at laboratory conditions (–●−).  
 

In general clinical procedures, venous blood drawn by Lavender Top containing EDTA as 

anticoagulant are centrifuged and haemolysed plasma samples decanted in eppendorfs and are 

immediately shock-frozen. Prior to the ESR measurements, these probes are once again 

thawed in warm water. This repeated freezing and refreezing of plasma usually did not 

influence the ascorbyl radical signal intensity (Figures 16 to 18). However, an increase in 

signal intensity was detected in some of the probes. A plausible explanation could be the 

improper handling of blood plasma after the withdrawal of blood, in which few erythrocytes 

leak into the plasma and accelerate the oxidation process in the presence of free metal ions. 
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Figure 16  Ascorbyl radical concentrations of repeatedly shock- frozen and thawed blood 
plasma. Linear fit applied for a radical concentration of 26 nM  B= -0.8 ± 0.7. 
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Figure 17  Ascorbyl radical concentrations of repeatedly shock- frozen and thawed blood 
plasma. Linear fit applied for a radical concentration of 126 nM, B= -0.5 ±  3. 
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Figure 18  Ascorbyl radical concentrations of repeatedly shock- frozen and thawed blood 
plasma. Linear fit applied for a radical concentration of 256 nM, B= -7 ±  3. 
 

To prove that traces of metal ions in plasma can influence ascorbyl radical concentrations, 

ascorbate oxidation in plasma was studied with and without the addition of free metal ions as 

seen in Figure 19. 
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Figure 19 Changes in ascorbyl radical concentrations after the addition of 24 µM Fe2+   
(–●–) in plasma containing 2.4 mM ascorbate as compared with EDTA plasma (–■–).  
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Presence of ferrous ions in plasma caused a drastic increase in ascorbyl radical signal 

intensity initially. However, the presence of plasma EDTA in moderate concentration did not 

largely influence ascorbate oxidation. The time-dependent decrease in ascorbyl radical 

concentrations as compared to untreated plasma showed the involvement of the ferrous iron-

catalyzed oxidation of ascorbate. Ascorbyl radical concentrations treated with ferrous irons in 

plasma decreased by at least 50 % in 5 minutes. The presence of EDTA in the monovettes still 

allows for metal-dependent oxidation due to the remaining traces of the metal in plasma 

(Figure 19). 

 

It has been suggested that DETAPAC proved to be a better metal chelator as compared to 

EDTABuettner and Jurkiewicz 1996. Therefore, changes of ascorbyl radical concentrations against time 

were investigated in the presence of EDTA and DETAPAC (Figure 20). Both of the metal 

chelators reduced the rate of free-radical oxidation of ascorbate as compared to the plasma 

containing PBS. However, DETAPAC in the plasma reduced the rate of ascorbate oxidation 

considerably. These results showed that DETAPAC is considered a better choice of a 

chelating agent in studies of ascorbate oxidation in human plasma. Also, the initial ascorbyl 

radical concentrations of plasma containing DETAPAC were much lower than in EDTA 

plasma. 
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Figure 20 Influence of metal-chelators such as EDTA (–■–) and DETAPAC (–●–) on the 
free radical oxidation of ascorbate in plasma at physiological pH under regular laboratory 
conditions in relation to PBS plasma (–▲–). 
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Ascorbyl radical formation by ascorbate oxidation is also dependent on pH (section 3.3.1). 

Although the experiments performed in this study were done at physiological pH (7.4), 

plasma left standing for some time at laboratory conditions altered its pH. Though the pH 

changes in plasma were small, they influenced the rate of ascorbate oxidation considerably. 

To prove this, studies on ascorbate oxidation to free radicals were performed at two separate 

pH values. Figure 21 show that an increase in plasma pH by 1 unit raises the ascorbyl radical 

concentration by at least 140 %. 
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Figure 21 Changes in ascorbyl radical concentrations in plasma at pH 7.64 (–●–) and 

pH 8.63 (–■–). 

 
Subsequently, the effect of plasma pH on ascorbyl radical intensities during time-dependent 

measurements was investigated. The Data in figures 22 and 23 show that the decreases in 

ascorbyl radical concentration cross correlates with increasing pH in plasma. This increase in 

plasma pH, although very small, obviously plays an important role in studies of ascorbate 

oxidation kinetics.  
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Figure 22 Time-dependent cross correlations between ascorbyl radical concentrations 
 (–■–) and the pH (–●–) of plasma measured under laboratory conditions. 
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Figure 23 Time dependent cross correlations between ascorbyl radical concentrations  
(–■–) and pH (–●–) 7.64 of plasma under laboratory conditions. 

3.1.5 Primary Parameter: ascorbic acid concentrations in blood plasma  

The results presented in the previous section 3.1.3 provide some information on reactions of 

ascorbyl radicals in healthy subjects. Is it possible to observe correlations between ascorbyl
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Figure 24 Ascorbate levels in blood plasma of 6 healthy subjects after infusion of 750 mg  
(–●–) and 7.5 g (–□–) vitamin C on day 1 and day 23. Ave. stdev. 7.5 g = ± 793, ave. stdev. 
 750 mg = ± 230. Courtesy: Silke Mrosek.  
 

 
radical and ascorbate concentrations? To prove this, ascorbyl radical concentrations during a 

time course of 8 hours were compared with the ascorbate plasma concentration as determined 

at the University of Hohenheim*. 

The ascorbate and ascorbyl radical concentrations in plasma of healthy subjects after 

vitamin C infusion followed similar non-linear pathways (Figure 24). However, vitamin C 

infusion induced a sharp increase in ascorbate plasma concentration initially. This was 

followed by a continuous decrease after 5 minutes. Subsequently, ascorbate plasma 

concentrations relatively stabilized after 2 hours of vitamin C infusion. Nevertheless, even 

after 8 hours ascorbate levels in plasma had not completely disappeared.  

 
In order to study the correlation between ascorbate concentrations and ascorbyl radical 

formation in plasma after vitamin C infusion, their concentrations were compared at different 

doses of vitamin C over the course of 8 hours (Figures 25 and 27). Data were replotted for 

cross correlation between ascorbate and the radical concentrations before and after 1, 2, 4 and 

8 hours of vitamin C infusion from healthy subjects (Figures 26 and 28). 
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Figure 25 Ascorbate (–□–) and ascorbyl radical (–●–) concentrations in blood plasma of 6 
healthy volunteers after the infusion of 7.5 g vitamin C on day 1 and day 23. 
 
 

0 200 400 600 800 1000 1200 1400

40

60

80

100

120

140

 

 

as
co

rb
yl

 ra
di

ca
l c

on
c 

[n
M

]

ascorbic acid conc. [µM]

 
Figure 26 Correlation between ascorbate levels versus ascorbyl radical concentrations in 
blood plasma before 7.5 g vitamin C infusion and 1, 2, 3, 4, hours (–■–) after infusion of 
healthy volunteers. Slope B = 0.07 + 0.003, R = 0.99. 
 

* Institut für Biologische Chemie und Ernährungswissenschaft an der Universität 

Hohenheim. Silke Mrosek et al. 
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Figure 27 Ascorbate (–□–) and ascorbyl radical (–●–) concentrations in blood plasma of 6 
healthy volunteers after infusion of 750 m g vitamin C on day 1 and day 23. 
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Figure 28   Ascorbate concentrations versus ascorbyl radical concentrations in blood 
plasma before 750 mg vitamin C infusion and 1, 2, 3, 4, hours  (–■–) after infusion of healthy 
volunteers. Slope B = 0.17 + 0.04, R = 0.92. 
 
The results show that positive linear correlations exist between ascorbate and ascorbyl free 

radicals for both the groups supplemented with vitamin C. Healthy subjects supplemented 

with 7.5 g vitamin C revealed a correlation slope of B = 0.07 (Figure 26), whereas 750 mg
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vitamin C supplements showed slopes of B = 0.17 (Figure 28). Apparently, good linear 

correlations between the plasma ascorbate and ascorbyl radical concentrations after vitamin C 

infusion in healthy subjects reveal the relationship between ascorbate oxidation and the 

formation of ascorbyl radicals in the plasma. 

3.1.6 Biochemical correlations between secondary parameters in blood plasma and 

urine from healthy subjects with ascorbyl radical concentrations 

To review the controversies on the effects of pro-oxidative damage due to heavy doses of 

vitamin C exceeding the recommended dietary allowance in humans, the results obtained 

from the biochemical secondary parameters for oxidative stress measured at the university of 

Hohenheim* were compared with ascorbyl radical concentrations. They include vitamin E 

and malondialdehyde (MDA) levels in plasma and 8-oxoguanine, oxalate and calcium levels 

in urine. Secondary parameters were correlated with ascorbyl radical concentrations before 

and at days 1 and 6 after vitamin C infusion. 

0 1 2 3 4 5 6

0.4

0.5

0.6

0.7

0.8
 

day

M
D

A
 c

on
c.

 [µ
M

]

0

10

20

30

40

50

60

70

80

90

ascorbyl radical conc. [nM
]

 

Figure 29 Correlation between the ascorbyl radical (–▲–), (–●–) and MDA (–∆–), (–○–) 
concentrations before and after 750 mg, 7.5 g vitamin C infusion on days 1 and 6.  
 
 
 
* Biologische Chemie und Ernährungswissenschaft der Universität Hohenheim. Silke Mrosek 

et al. 
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One of the widely used methods to determine lipid peroxidation during oxidative stress is the 

thiobarbituric acid-reactive substances (TBARS) assay. Production of reactive oxygen species 

on the onset of oxidative stress can directly attack lipids and proteins in the biological 

membrane at the local site of generation and cause their dysfunction. MDA is the degradation 

product of the major chain reactions resulting from the oxidation of polyunsaturated fatty 

acids and thus serves as a marker of oxidative stress.  
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Figure 30 Inverse linear correlations between ascorbyl radical and MDA concentrations 
before and after 750 mg (–●–), 7.5 g (–■–) vitamin C infusion on days 1 and 6. 
 

Malondialdehyde (MDA) levels in blood plasma were observed at days 1 and day 6 after 

vitamin C infusion (Figure 29). A systemic decrease in MDA concentration was seen in 

relation to ascorbyl radical concentrations after 6 days of vitamin C supplementation. Pro-

oxidative properties, as a consequence of ascorbyl radicals in plasma, would have favoured an 

increase in MDA levels. However, MDA concentrations decreased during 6 days of vitamin C 

infusion. Indeed, a linear inverse correlation between ascorbyl radical and MDA 

concentrations could be observed as shown in Figure 30, with a steeper slope for subjects 

with higher doses of vitamin C.  This may reaffirm the antioxidant efficacy of ascorbic acid 

by inhibiting lipid peroxidation.  
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Figure 31 Relationship between ascorbyl radical formation (–▲–), (–●–) and a marginal 
decrease in vitamin E concentration (–∆–), (–○–) in plasma after 750 mg, 7.5 g vitamin C 
infusion.  
  
Comparison of the ascorbyl radical concentration with vitamin E levels showed that in spite 

of significant increase of the ascorbyl radical concentrations, vitamin E levels decreased only 

marginally in the course of 6 days of vitamin C infusion (Figure 31). 

No significant effects on oxidative stress were observed with other parameters such as 

8-oxoguanine, calcium and oxalate (Figures not shown) as a result of high ascorbyl 

concentrations in plasma after vitamin C supplementation. Consequently, from this study it 

can be concluded that increasing vitamin C intake in the form of an infusion exhibits no short-

term effects of pro-oxidative stress in healthy subjects.   

 
In summary, studies on healthy subjects showed significant increase in ascorbyl radical 

concentrations immediately after infusion, which decreased steadily after reaching a 

maximum. This time-related pattern in the increase of ESR signal intensity followed by its 

decrease corresponds to the two-step oxidation of ascorbate in which single electrons are 

transferred. The oxidation pattern of ascorbate oxidation showed similarities to various 

reactions of ascorbate in this thesis. In healthy subjects there are many possibilities that result 

in an increase in ascorbyl radical concentrations. They include radical intermediates resulting 

from mitochondrial metabolism, auto-oxidation of haemoglobin and free metal-catalyzed 

reactions. In normal subjects, ascorbate concentration in plasma is determined by dietary
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intake, renal loss, and absorption by tissues and redox processes. Thus, the generation of 

ascorbyl radicals may be taken to be equal to the total rate of reactions of free radicals with 

ascorbate during regular metabolic processes and/or through periods of oxidative stress. 

Therefore, the oxidation of ascorbate to ascorbyl radical in healthy subjects may allow to 

indirectly estimate the rate of oxidative transformations.  

 Correlations of free radical oxidation of ascorbate with secondary parameters of 

oxidative stress determined at the University of Hohenheim did not show prooxidative 

properties of heavy doses vitamin C. Indeed, MDA levels decreased with an increase in 

ascorbyl radical concentrations and ascorbate oxidation did not influence vitamin E, 8-

oxoguanine and oxalate levels.    
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3.2 Biochemical correlations  of oxidative stress parameters from patients 

undergoing an aorta-coronary bypass operation after heavy doses 

vitamin C therapy 

 
The main aim of this project was to study the efficacy of heavy doses of vitamin C during 

periods of oxidative stress as a consequence of reperfusion and reoxygenation of patients 

undergoing an aorta-coronary bypass operation (CABO). 

Oxidative stress plays a central role in the pathogenesis of ischemic heart diseases and 

atherogenesis, for cancer and other chronic diseases in general, and it is also an important 

factor in aging processes. Therefore the role of antioxidants like vitamin C may indicate a 

correlation between ascorbyl radical concentrations and oxidative stress in the blood plasma 

of patients undergoing CABO. Moreover, pro-oxidative effects if arising due to very high 

vitamin C concentrations are to be studied. Also secondary parameters of oxidative stress in 

relation to vitamin C dosage for example ABTS for total antioxidant capacity, TBARS to 

determine MDA levels, sICAM and VCAM determined at the university of Hohenheim* are 

to be compared with the controversial pro-oxidative aspects of high ascorbyl radical 

concentrations.   

3.2.1 Classification of patients in treatment groups  

Patients given ascorbic acid intravenously were classified into three groups. Group one was 

treated with placebo, patient group two given 7.5 g ascorbic acid as bolus and continuous 

infusion of 22.5 g for 24 h and the third group with 15 g as bolus and continuous infusion of 

30 g ascorbic acid for 24 h (Table 2).  

 

 
*  Vitamin C, TAS und TBARS: Marina Langer, Universität Hohenheim, Institut für Biologische Chemie und      

Ernährungswissenschaft 

* VCAM und ICAM: Beate Schlegel, Universität Hohenheim, Institut für Biologische Chemie 

und Ernährungswissenschaft 
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Group group 1 group 2 Group 3 Total 

Patients 17 20 20 57 

 
Table 2 Patients were divided into three groups: Group 1; placebo, group 2; 7.5 + 22.5 g 
and group 3; 15 + 30 g treated with vitamin C infusion. 
 
Ascorbyl radical concentrations were compared with other parameters for oxidative stress, 

such as total antioxidant capacity, MDA, sICAM and sVCAM assays. Ascorbyl radical 

concentrations were measured at the time points given below: 

 
Time points B 

1. Morning before surgery 

2. Immediately before stenosis 

3. 1 minute after reperfusion 

4. 5 minutes after reperfusion 

5. 20 minutes after reperfusion 

6. Immediately after surgery 

7. 2 hours after surgery 

8. 4 hours after surgery 

9. 1 day after surgery 

10. 3 days after surgery 

 

3.2.2 Determination of ascorbyl radical concentrations using ESR spectroscopy and its 

relation to ascorbic acid concentrations 

Aorta-coronary bypass can induce injury as a result of inflammatory processes induced by 

reactive oxygen species and tissue damage can also be a product of reperfusion or 

reoxygenation injury. In order to study ascorbate oxidation during surgery, a correlation 

between the ascorbyl radical concentration and ROS formed during periods of oxidative stress 

was established. Since ascorbic acid is considered a natural indicator of oxidative stress, 

redox reaction of ascorbate is studied in patients undergoing CABO. One way to achieve this 

is by comparing time-dependent changes in ascorbyl radical concentrations with ascorbate 

concentrations and other parameters of oxidative stress. In addition, pro-oxidative aspects of 
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heavy doses of ascorbate were studied with respect to other biochemical parameters of 

oxidative stress. 
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Figure 32  Ascorbyl radical concentrations after placebo (–■–), 22.5 + 7.5 g (–●–) and 30 
+15 g (–▲–)  vitamin C infusion of  patients during CABO and reperfusion. Placebo ave. 
stdev. = ± 8, 30 g ave. stdev. = ± 49, 45g,  ave. stdev. = ±  67. 

 

Ascorbyl radicals that are formed by ascorbate oxidation were determined using ESR 

spectroscopy as seen in the previous chapter. In patients after vitamin C infusion, plasma 

ascorbyl radical concentrations increased significantly compared to placebo patients as seen in 

Figure 32. Ascorbyl radical concentrations remained relatively stable during reperfusion and 

surgery. However, a marginal increase in radical concentrations was observed particularly 

during reperfusion and immediately after surgery. After 2 hours of surgery ascorbyl radical 

concentrations decreased steadily as seen in healthy subjects after vitamin C infusion. 

Consequently, does ascorbate follow similar kinetics as observed in ascorbyl radicals? As 

shown in Figure 33, ascorbate and ascorbyl radical concentrations exhibit similar dose-

response curves after vitamin C infusion. A significant increase in ascorbate and ascorbyl 

radical concentrations was observed immediately after vitamin C infusion. Maximum 

ascorbate concentrations were seen immediately after reperfusion, which decreased steadily 

after  
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Figure 33  Ascorbate levels in plasma from patients during CABO after placebo (–■–), 7.5 + 
22.5 g(–●–), and 15 + 30 g(–▲–) vitamin C infusion before and after reperfusion and surgery. 
Placebo ave. stdev. = ± 9, 30 g ave. stdev. = ± 307, 45 g ave. stdev. = ± 670. Courtesy: Marina 
Langer. 
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Figure 34  Relationship between ascorbic acid (–●–) and ascorbyl radical concentrations  
(–□–) in blood plasma of patients undergoing CABO after 7.5 + 22.5 g vitamin C infusion. 
 
 
surgery. It is known that, under oxidative stress, the consumption of ascorbate can be high, 

and without regeneration, ascorbate would soon be depleted. Nevertheless, by comparing
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ascorbate and ascorbyl radical concentrations, some changes in their levels were seen in 

relation to placebo patients and patients after vitamin C treatment (Figures 34, 35 and 36).
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Figure 35 Correlation between ascorbic acid levels (–●–) and ascorbyl radical 
concentrations (–□–) in blood plasma of patients undergoing CABO after 15 + 30 g vitamin C 
infusion. 
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Figure 36 Average ascorbic acid levels (–●–) in relation with ascorbyl radical concentrations  
(–□–) in blood plasma of placebo patients undergoing CABO during a course of 3 days. 
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The changes in their plasma concentrations occurred predominately during reperfusion and 

immediately after surgery. Interestingly, both ascorbyl radical and ascorbate concentrations 

increased slightly during reperfusion. However, ascorbyl radical concentrations increased still 

further, whereas ascorbate levels fell marginally. The superimposed time-dependent curves of 

ascorbyl radical and ascorbate levels in plasma showed inverse correlations 20 minutes after 

reperfusion and immediately after surgery in all the examined patients with and without 

vitamin C treatment (Figures 34, 35 and 36). However, concentrations of ascorbate and the 

ascorbyl radical differ by 4 orders of magnitude. 

Nevertheless, the changes in ascorbyl radical concentrations were more prominent in 

patients after vitamin C treatment. What is the physiological relevance of ascorbate in patients 

after vitamin C treatment? Also, does the increase in radical concentration during reperfusion 

and surgery imply oxidative stress? To understand the mechanism of ascorbate oxidation it is 

necessary to gain some background information on the intra- and extracellular accumulation 

of ascorbate in vivo. 
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Figure 37 Increase in ascorbic acid (–●–) and ascorbyl radical plasma concentrations (–□–) 
during 20 minutes reperfusion from patients undergoing CABO after 15 + 30 g vitamin C 
infusion.  A further increase in ascorbyl radical concentration was seen in relation to 
ascorbic acid concentration. 
 

In several publications dealing with studies on ascorbate oxidation, ascorbate concentrations 

were followed both, in whole blood as well as white blood cells. It was shown that the blood 

cells contain ascorbic acid even when it is not present in plasma.  
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Symptoms of scurvy were apparent only when a total depletion in the cellular ascorbic acid 

level was observed and the cellular values are closely related with the total body ascorbic acid 

concentration. In these studies both ascorbic acid as well as dehydroascorbate concentrations 

were determined Butler and Cushman 1940,  Crandon et al 1940,  Heineman 1938, Lowry et al 1946, Roe et al 1947, Roe and 

Kuether 1946 .         

Therefore, an increase in ascorbyl radical and ascorbate concentrations observed 

immediately after surgery may involve intracellular ascorbate released during periods of 

oxidative stress and subsequent oxidation of ascorbate to ascorbyl radicals. This increase in 

ascorbyl radical concentrations overlays the existing radical concentrations already present in 

plasma. This may result in an overall elevation in ascorbyl free radical concentrations after 

reperfusion and surgery. An approximately 2-fold increase in ascorbyl radical concentrations 

in plasma was detected, after vitamin C supplementation, during reperfusion that further 

increased after surgery (Figures 37, 38, and 39). Maximum ascorbyl radical levels were 

observed immediately after surgery. These results may reveal that tissue cells saturated with 

ascorbate tend to release it into the blood plasma during reperfusion and surgery. This 

phenomenon may be a consequence of oxidative stress generated during reperfusion and 

surgery that may trigger the release of intracellular ascorbate in agreement with existing 

literature Sylvia et al 1994. 
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Figure 38 An increase in ascorbic acid levels (–□–) and ascorbyl radical plasma 
concentrations (–●–) over a period of 20 minutes of reperfusion from patients undergoing 
CABO after 7.5 + 22.5 g vitamin C infusion. A marginal decrease in ascorbic acid 
concentrations was seen after reperfusion. 
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Figure 39 An increase in ascorbyl radical plasma concentrations (–●–) was seen after 
reperfusion and surgery of placebo patients undergoing CABO.  Ascorbic acid concentrations 
(–□–) decreased after 5 minutes reperfusion. 
 
 
Subsequently, ascorbate and ascorbyl radical plasma concentrations decreased steadily for 2 

hours and baseline concentrations were observed after 3 days.  

In conclusion, the evidence suggests that reperfusion and cardiac bypass surgery 

resulted in the release of free oxygen radicals. Ascorbyl radical concentrations before, during 

and after reperfusion and surgery were followed using ESR and compared with ascorbate 

concentrations in plasma. An increase in ascorbyl radical concentrations particularly after 

reperfusion and surgery may indicate the presence of free radical species, which were 

ultimately scavenged by vitamin C administered to patients in large doses. Although the 

amount of vitamin C administered was far above the recommended dietary allowance by 

RDA, evidence acquired using biochemical parameters of oxidative stress as mentioned in the 

previous chapter literally showed no adverse effects on healthy subjects. To prove these 

results, the efficacy of vitamin C in large doses for patients undergoing CABO is to be 

investigated by comparing the above data with other biochemical parameters for oxidative 

stress. 
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3.2.3 The relationship between ascorbyl free radical concentrations and secondary 

parameters of oxidative stress; TBARS, sICAM and sVCAM and total 

antioxidant capacity assays determined in Hohenheim 

 
Polyunsaturated lipids are very susceptible to free-radical oxygen species. This process, 

referred to as lipid peroxidation, eventually yields several relatively stable decomposition 

products, including aldehydes that can then be measured in plasma as an indirect index of 

free-radical activity. Malondialdehyde, likely the most commonly measured index of 

oxidative stress in human studies, is only one of many aldehyde compounds produced by lipid 

peroxidation. Malondialdehyde is frequently measured in plasma by the thiobarbituric acid-

reactive substances (TBARS) assay. Thiobarbituric acid reacts with malondialdehyde to 

produce a red stable adduct that was quantified using fluorescence spectroscopy in 

Hohenheim*. 
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Figure 40 MDA concentrations between the group of placebo patients (–□–) and patients 
after vitamin C infusion (–▲–) in relation to ascorbyl radical concentrations (–●–). Placebo 
average stdev = ± 0.16 and ± 0.11 for vitamin C traeated patients.  Courtesy: Marina Langer. 
 

MDA and ascorbyl radical concentrations of patients after vitamin C infusion were averaged 

and compared with MDA concentrations of placebo patients undergoing CABO as shown in 

Figure 40. MDA concentrations of placebo patients compared to patients after vitamin C 

infusion were considerably higher.   
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Highest MDA concentrations were seen in placebo patients particularly 4 hours after surgery. 

Patients treated with 30g vitamin C showed lowest MDA concentrations during reperfusion 

and surgery (Figure not shown).  

The above results reveal that patients treated with heavy doses of vitamin C show 

lower MDA concentrations. This may signify the vital role of vitamin C at higher 

concentrations, which may act as a consistent water-soluble antioxidant. Ascorbic acid is 

known to prevent the oxidation of LDL by scavenging ROS in aqueous medium. High 

ascorbate concentrations in plasma can strongly inhibit LDL oxidation by vascular 

endothelium cells. Controversial to a suggested vitamin C supplementation of about 75 to 500 

mg/ day, much higher doses of ascorbic acid caused no pro-oxidative effects on patients after 

undergoing a coronary aorta bypass operation. 

 
Inflammation due to oxidative stress is accompanied by an increase in cell adhesion 

molecules (ICAM and VCAM). There are several different structural groups of adhesion 

factors which have been identified on endothelial cells and which interact with receptors of 

leukocytes and platelets. Intracellular adhesion molecule-1 and -2 (ICAM-1, ICAM-2) are cell 

surface glycoproteins found on many cell types. ICAM-1 is inducible on cultured endothelial 

cell by inflammatory mediators as interleukin-1 (IL-1), tumour necrosis factor (TNF), 

interferon-γ (IFN-γ) and endotoxin. ICAM-1 can bind lymphocytes, monocytes and 

neutrophils to endothelium. Vascular cell adhesion molecule-1 (VCAM-1) is also induced by 

cytokines and binds selectively to lymphocytes and to some monocytes, but not to neutrophils 
Bevilacqua et al 1994. 

Oxidative stress and expression of adhesion molecules, ICAM-1 and VCAM-1 are early 

features in the pathogenesis of atherosclerosis and other inflammatory diseases. Antioxidants 

have been suggested to have therapeutic potential in pathologies related to changes in cellular 

adhesion. Antioxidant, at micromolar concentrations (achievable in human/animal plasma 

following nutritional supplementation) down-regulates agonist-induced adhesion of 

leukocytes to endothelial cells. Although it has been consistently documented that 

antioxidants potently suppress inducible ICAM-1 as well as VCAM-1 expression, 

understanding of the molecular mechanisms involved is vague at best. At present, studies in 

humans have investigated the role of ascorbate in inhibiting cell-cell adhesion Weber and Wolfgang 

1996, Adam, Jessup,and Celermajer 1997. 
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To study the correlation between ascorbyl radical concentrations and sVCAM/ sICAM levels 

in plasma after vitamin C infusion, their results were compared with placebo patients.  It was 

found that sVCAM/ sICAM levels in plasma were higher in placebo patients as compared to
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Figure 41 Correlation between free radical ascorbate oxidation (–●–), sVCAM levels of 
patients after vitamin C infusion (–■–) and those of placebo patients (–∆–). Courtesy: Beate 
Schlegel. 
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Figure 42 Correlation between free radical ascorbate oxidation (–●–), sICAM levels of 
patients after vitamin C infusion (–■–) and those of placebo patients (–∆–). Courtesy: Beate 
Schlegel. 
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patients after vitamin C infusion (Figures 41 and 42). 

The above results prove that patients after vitamin C dosage showed reduced sICAM 

and sVCAM levels during reperfusion and surgery. High ascorbyl radical concentrations did 

not cause an increase in sVCAM and sICAM levels as compared to placebo patients. Indeed, 

a marginal decrease in sICAM and sVCAM levels was seen after surgery.  

 
An additional biochemical parameter for oxidative stress to study the pro-oxidative effects of 

vitamin C is the TAS assay. This method, which applies a simple direct antioxidant assay, 

based on the reduction of the ABTS.+ radical cation, and compares it with the 

myoglobin/ABTS.+ assay. The ABTS radical cation reacts quantitatively and instantaneously 

with several antioxidants, such as Trolox, ascorbic acid, uric acid, cysteine, glutathione and 

bilirubin. This procedure can provide an independent and simultaneous evaluation of the low 

molecular weight and protein antioxidants present in biological samples such as serum Romay, 

Pascual and Lissi 1996. 
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Figure 43 Correlation between ascorbyl radical concentrations (–●–), total antioxidant 
capacity based on ABTS.+ radical cation levels  of placebo patients (–□–) and the patients 
after vitamin C therapy (–▲–). Courtesy: Marina Langer. 
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The total antioxidant capacity of patients after vitamin C infusion increased significantly in 

relation to those of placebo patients (Figure 43). The increase in total antioxidant status 

correlates well with ascorbyl radical concentrations in plasma during reperfusion and surgery. 

 

3.2.4 Discussion on the effects of heavy doses of vitamin C on healthy subjects and 

patients undergoing bypass surgery 

 

Vitamin C, an important water-soluble antioxidant in biological systems can significantly 

reduce or eliminate the adverse effects of reactive oxygen species and reactive nitrogen 

species on normal physiological functions in humans. The current dietary recommendation of 

vitamin C of about 60 - 100 mg per day based on threshold urinary excretion was initially 

applied for the prevention of scurvy. Nevertheless, antioxidant activity of vitamin C and its 

importance as cofactor in collagen, carnitine and neurotransmitter metabolism is not 

completely explored. Since most animals synthesize their own vitamin C and their dosage 

increases significantly during stress situations, new dietary allowance of vitamin C should be 

considered. Much higher doses might be appropriate in preventing vitamin C deficiency with 

a margin of safety, backed with biochemical parameters to eliminate controversies on pro-

oxidative effects. Therefore, further studies were carried out by intravenous supplementation 

of heavy doses of vitamin C on healthy subjects and patients undergoing CABO. 

Healthy volunteers were alternatively intravenously supplemented with 750 mg and 

7.5 g vitamin C. The changes of ascorbyl radicals reveal the complex chemistry of free radical 

ascorbate oxidation in healthy subjects. The non-linear pathways of ascorbate and ascorbyl 

radical concentrations showed a systemic increase followed by a decrease that stabilized after 

8 hours. Good linear correlations observed between ascorbate and ascorbyl radical 

concentrations confirm ascorbate oxidation. Moreover, the stability of ascorbyl radicals in 

plasma from healthy subjects at different concentrations was studied at normal laboratory 

conditions. Interestingly, higher ascorbyl radical plasma concentrations tend to show shorter 

half-lives. The redox processes responsible for this non-linear kinetics were influenced by pH 

changes in plasma containing EDTA as chelator. Also, metal mediated oxidation of ascorbate 

occurred after thawing of plasma probes caused by the release of free metal ions. An 

incomplete chelation of metal ions by EDTA resulted in an additional increase in ascorbate 

oxidation.   
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Alternatively, dose response curves of ascorbyl radicals in plasma in vivo revealed longer 

half-lives than in vitro experiments. This may be a consequence of ascorbate oxidation during 

regular metabolic processes and the reduction of dehydroascorbate. These processes show 

ascorbate as an efficient recycling antioxidant during oxidative stress. Correlations of 

ascorbyl radical concentrations with secondary parameters for oxidative stress determined at 

the University of Hohenheim revealed no significant changes before and after vitamin C 

treatment. Indeed MDA concentrations decreased after vitamin C supplementation supporting 

the relevance of vitamin C in diet as a water-soluble antioxidant.  

 
Subsequently, the results obtained from the vitamin C treatment of healthy subjects enabled 

further investigations on oxidative stress with patients undergoing CABO. Bypass is an 

indispensable ingredient of cardiac surgery, but it can also inflict damage to several tissues 

and some patients can develop organ malfunction. It is believed to be activated by systemic 

inflammatory response to CABO, induced by the exposure of blood elements to 

nonphysiological surfaces Morse et al 1998. Furthermore, heart damage could also be associated 

with myocardial ischemia and reperfusion as a result of cross clamping which is clinically 

expressed as arrhythmia or “myocardial stunning”, a depressed contractile function of major 

importance in the early postoperative period Morse et al 1998, Bolli 1990, Opie 1989. Therefore, ROS may 

play a significant role in these processes. An increase of various markers of oxidative stress 

Lazzarino G et al 1994, Davies 1993, Ferrari et al 1990 has been demonstrated to occur during CABO. 

Generation of oxygen free radicals could be the result of the activation of neutrophils 

occurring in response to an inflammatory reactionMorse et al 1998. Moreover, it is known that 

ROS generation takes place during myocardial ischemia and reperfusion in various 

experimental modelsLazzarino G et al 1994 and in human heart. ROS could therefore be responsible 

for bypass-induced damages or impairment of myocardial recoveryCurello et al 1995, Vergely 1998. 

 
Patients undergoing coronary bypass operation (CABO) were treated with heavy doses 

vitamin C. Ascorbyl radical concentrations formed during reperfusion and surgery were 

correlated with other biochemical parameters of oxidative stress. Patients were classified into 

3 groups: placebo, vitamin C treated patients with 7.5 g bolus and 22.5 g continuous-infusion 

and 22.5 g bolus and 30 g continuous-infusion. Dose-dependent changes in the ascorbate and 

ascorbyl radical levels in plasma were investigated as primary parameters of oxidative stress.
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Ascorbyl radical and ascorbate concentrations before and after vitamin C infusion showed 

rather similar time courses. However after reperfusion and surgery, the increase in ascorbyl 

radical concentration was accompanied by a decrease in ascorbate concentration. This may 

prove the relationship between oxygen free radical formation and ascorbate oxidation during 

periods of oxidative stress  

Secondary parameters for oxidative stress, i.e., MDA, sICAM and sVCAM and TAS 

assays were determined at the University of Hohenheim and were correlated with ascorbyl 

radical concentration after heavy doses of vitamin C infusion.  These secondary parameters 

showed no significant pro-oxidative effects during reperfusion and surgery for treated patients 

in relation to placebo patients. Indeed, MDA, sICAM and sVCAM levels were lower than 

those of placebo patients after vitamin C treatment.  
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3.3 Chemistry and detection of ascorbyl free radicals and spin trapping 

techniques in vitro as markers of oxidative stress.  

 

The dynamic chemistry of ascorbate makes it very interesting to reveal ascorbate oxidation 

and its oxidation products in the form of ascorbyl free radicals using ESR. Problems arising 

by the determination of ascorbyl free radical changes in varing concentrations and kinetics in 

non-physiological or cellular environment were to be studied. The indispensable function of 

ascorbic acid in its anti-oxidant defence mechanism lies on the endiol functional group on the 

lactone ring. Ascorbic acid has two ionisable hydroxyl groups (AscH2) with pK1 of 4.25, 

ionized at position 3, and at position 4 with a pK2 of 11.8. Ascorbate easily donates a 

hydrogen atom to an oxidising radical to produce a resonance-stabilised tricarbonyl ascorbate 

radical (Ascr• ) with a pKa of -0.86; thus, it is not protonated at physiogical environment 
Buettner and Schafer. 

Redox inter-conversions between ascorbate, ascorbyl radicals and dehydroascorbate in vitro 

were studied to monitor time-dependent changes in ascorbyl radical concentrations. 

Concentration dependent ascorbate oxidations can cause some problems in assessing ascorbyl 

radical concentrations. Fenton’s reagent and xanthine-xanthine oxidase enzyme complex were 

used as source of oxygen centered radicals in experiments for ascorbate oxidation. Since the 

formation of ascorbyl free radical vastly depends on pH and ascorbate concentrations, redox 

behaviour was investigated under these conditions. Model systems with cell cultures were 

investigated, in the presence of ascorbate, under hypoxia, anoxia and reoxygenation and 

changes in ascorbyl radical intensities were followed up using ESR spectroscopy.  

3.3.1 Redox reactions of ascorbate as a function of pH 

The instability of the oxidized form of ascorbic acid is responsible for the variation in 

antioxidant potency and for the complex behaviour of ascorbate – ascorbyl radical and 

dehydroascorbate interaction in vivo and in vitro. To study the complex kinetics of ascorbate 

oxidation in biological systems, additional information are to be gathered in more simple 

systems and compared under the same conditions. 

 
 

 

 
 



Results and Discussion 

 

55

 
In this present work, ascorbate oxidation using hydrogen peroxide/ferrous ammonium 

sulphate as source of oxygen free radicals was studied as a function of pH. Buffers were 

prepared according to their pH ranges, with sodium phosphate-citrate buffer (pH 3.6 to 5.4), 

sodium phosphate buffer (pH 5.8 to 8.0) and borax buffer (pH 8 to 10). To determine ascorbyl 

radical concentrations, ascorbate was oxidized with 6 mM Fenton’s reagent at different pH 

values and measured by ESR spectroscopy (Figure 44).  
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Figure 44  Degree of free radical ascorbate oxidation as a function of pH. 6 mM of ascorbate 
was oxidized with 0.6 mM Fenton’s reagent. pH range: 3.6 – 5.4 sodium phosphate-citrate 
buffer, 5.8 – 8.0 sodium phosphate buffer and 8.0 – 10 borax buffer. Stdev., min =± 0.02 at 
pH 3.7, max =± 0.4 at pH 9.8.  
 

The results shown in Figure 44 reveal the dependence of ascorbyl radicals in the pH range 

from 3 to 10. At low pH, minimal ascorbyl radical intensity was seen which remained 

unaffected till pH 6. Between pH 6 and 8, radical concentrations increased moderately, 

probably as a consequence of ionization at position 3 on the hydroxyl group. Above the pH 

range of 8, a significant increase in ascorbyl radical intensity was seen, which reached a 

maximum at pH 8.8. Therefore, these results suggest that pH can greatly influence ascorbate 

oxidation caused by the step-wise ionization of the en-diol group on the lactone ring. At pH 

values above 8, the dianionic form of ascorbic acid may outweigh the mono anionic form 

shifting its equilibrium to dehydroascorbate. A rapid decrease in ascorbyl radical 

concentrations was observed at pH above 9. However, a previous paper showed Wang et al  2002 a
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decrease in ascorbyl radical levels only above pH 10.  This decrease in ascorbyl radical 

concentration may be the result from the choice of the buffer used for this study.  

Investigations on the dependence of pH on ascorbyl radical intensity are of great importance, 

since blood withdrawn in monovettes containing EDTA influenced plasma pH. Therefore, 

ascorbate oxidation must be carefully scrutinized by verifying the pH subsequently after 

measurments to eliminate experimental errors in studies on oxidative stress in vivo and in 

vitro. 

 

3.3.2 Ascorbate oxidation with hypoxanthine/ xanthine-xanthine oxidase (XOD) in 

vitro as source of ROS 

 

Xanthine oxidase is a highly versatile enzyme that is widely distributed among species and 

within various tissues of mammals. XOD plays an important role in the catabolism of purines. 

It belongs to the group of enzymes called molybdenium iron-sulphur flavin hydroxylases. 

XOD catalyses the hydroxylation of purines such as hypoxanthine, which is oxidized to 

xanthine with the release of superoxide anion as intermediates. Eventually, xanthine is further 

oxidized by XOD forming uric acid.  

 
 
                                                                        XOD 

Hypoxanthine + O2 + H2O                                     Xanthine + H2O2 +  ·O2 

 
        Xanthine + O2 + H2O                                     Uric acid + H2O2 +  ·O2 

 
 
 
Xanthine oxidase is a major source of oxygen free radicals. The enzyme catalyzes the 

reduction of oxygen to superoxide radical anion and hydrogen peroxide. This enzyme may 

play an important role in oxidative injury and/ or ischemia/ reoxygenation injury. Under 

hypoxia the depletion of the cell ATP results in elevated levels of AMP, which is further 

degraded to adenosine, inosine and hypoxanthine. Simultaneously xanthine dehydrogenase is 

decomposed to xanthine oxidase by a protease activated by excess cytosolic calcium levels 

during ischemia. The generation of superoxide radical anion as intermediates in xanthine

   

 

XOD
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oxidase/ xanthine may be used as a source for in vitro and in vivo generation of free radicals. 

Incubation of hypoxanthine in xanthine oxidase PBS medium at physiological pH in labortory 

conditions led to a sequential depletion of hypoxanthine along with formation of uric acid. 

Time-dependent changes in hypoxanthine oxidation and uric acid generation were detected by 

UV spectroscopy at wavelength of 252 nm and 283 nm respectively as seen in Figure 45. By 

adding 0.312 mM ascorbate in hypoxanthine/xanthine oxidase systems, it was possible to 

follow ascorbate oxidation, as a result of the formation of superoxide radical anion 

intermediates. 
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Figure 45  Xanthine oxidase as a source of superoxide radical anion showing the kinetics of 
10 mM hypoxanthine oxidation at λmax=252 nm (–□–) and the formation of uric acid  at 
λmax=283 nm (–●–) in PBS at pH 7.4. 
 

Results in Figures 46 and 47 demonstrate in vitro oxidation of ascorbate leading to the 

formation of ascorbyl radicals. Non-linear time-course of ascorbyl radical formation and its 

decay may reveal some information about oxidative stress in biological systems. In this study, 

0.312 M ascorbate was incubated in 10 mM hypoxanthine substrate and the enzyme xanthine 

oxidase was used as free radical generating system. 
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Figure 46 Oxidation of 1mM ascorbate with hypoxanthine/ xanthine oxidase system in PBS at 

pH 7.4 after the removal of metal ions.  

 

Time-dependent studies showed an increase in ascorbyl radical concentrations within the first 

few minutes, which decreased steadily after that (Figure 46). This non-linear pathway 

suggests the oxidation of ascorbate following a two-step reaction that yields an ascorbyl 

radical at the first step and a dehydroascorbic acid in the second step. To study the changes in 

ascorbyl radical concentrations, hypoxanthine breakdown and uric acid formation, diagrams 

were superimposed as seen in Figures 47 and 48.  These reactions show a poor linear 

correlation between ascorbyl radical and uric acid formation and inverse correlation between 

the ascorbyl radical formation and the hypoxanthine decomposition measured using ESR and 

UV spectroscopy. 
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Fig. 47 Time-dependent correlation between ascorbyl radical (–□–) and uric acid (–●–) 
concentrations in a hypoxantine/ xanthine oxidase system Inset: positive correlations 
regression between ascorbyl radical conc. and uric acid level. 
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Fig. 48 Time-dependent inverse correlation shown between an increase in ascorbyl radical 
concentration (–●–) and decrease in hypoxanthine concentration (–□–). Inset: negative 
correlation regression between ascorbyl radical conc. and hypoxanthine levels. 
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Since the dependence of ascorbyl radical concentration on pH has been already established, 

studies on the influence of ascorbate on ascorbyl radical concentrations may help to acquire a 

better picture of oxidative stress. To show time-dependent free radical oxidation of ascorbate, 

xanthine oxidase was added to 2 levels of ascorbyl radical concentrations. Generally, 

ascorbate in millimolar concentrations shows background ascorbyl radical signals in untreated 

neutral buffers due to the presence of trace metal ions that promote ascorbate oxidation.  

Incubation of xanthine oxidase (XOD 1) resulted in an increase in ascorbyl radical 

concentrations as seen in Figure 49, but this reaction was relatively abrupt occurring in a time 

span of 2 minutes. Apparently ascorbate oxidation caused a decrease in ascorbyl radical 

concentrations far below its initial concentration. Further addition of xanthine oxidase (XOD 

2) in this system resulted in a significant increase of the radical concentrations in relation to 

initial reaction condition (XOD 1). The results show that the kinetic pathway of redox 

reactions of ascorbate is also vastly dependent on ascorbyl radical concentrations present in 

the system. Therefore, experimental setups using ascorbate with low background signals tend 

to produce better results by studies on oxidative stress. Results show that ascorbyl radical 

signal intensity as a function of pH, in the presence of trace catalytic metals, oxygen levels, 

and ascorbate concentrations. Under these circumstances, ascorbyl radical concentrations can 

be determined easily when background levels are hardly visible in the ESR spectrum. This is 

achieved by removing traces of metal ions by passing the ascorbate medium through chelex-

100 resin columns and active coal. The background ascorbyl radical signal intensities 

decreased significantly and baseline signal were barely visible at ascorbate concentrations 

below 1 mM. Therefore, by the quantitative evaluation on ascorbate oxidation in vivo and in 

vitro is to provide an appropriate experimental method to determine free radical 

concentrations.  
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Figure 49  Changes in ascorbyl radical concentration in xanthine PBS buffer after 2 
additions of xanthine oxidase.  
 

 

3.3.3 Spin trapping methods in hypoxanthine/ xanthine-xanthine oxidase (XOD) 

systems  

 

Alternative detection methods for the determination of ROS in vivo and in vitro are 

demonstrated using spin trapping techniques. DMPO is a widely used spin trap in which 

oxygen centered radicals like hydroxide and hydrogen peroxide radicals are easily trapped to 

form nitroxide radical adducts. These radical adducts can be detected by ESR spectroscopic 

methods and hyperfine splitting observed in the spectrum may give some information of the 

kind of radical spin adducts trapped by DMPO. However, hydrogen peroxide DMPO radical 

spin adducts are rather unstable and easily decomposed forming relative stable hydroxyl 

DMPO radical adducts. The ESR spectrum of DMPO-OH radical adducts shows a quartet 

with a hyperfine splitting constant of 15 G. 
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As in previous experiments, superoxide radical anion intermediates in xanthine/ XOD assays 

were determined using spin traps such as DMPO and the resulting DMPO-OOH/ DMPO-OH 

radical adducts formed were determined and quantified using ESR spectroscopy (Figure 49) 
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Figure 50  Increase in nitroxide radical concentration of DMPO-OH adduct in the xanthine, 
xanthine oxidase system in PBS during a time period of 105 minutes. 
 

 

Incubation of DMPO in xanthine / xanthine oxidase in PBS buffer caused an increase in 

DMPO-OH spin adduct concentration. Time-dependent studies show the involvement of 

oxygen free radical intermediates. Data in Figure 50 show an increase in nitroxide 

concentrations after 6 minutes that remained relatively stable even after 100 minutes. Figure 

51 show non-linear kinetics with cross-correlation between xanthine oxidation and DMPO-

OH formation.  
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Figure 51  Cross-correlation between spin trap nitroxide radical concentrations (DMPO-
OH) (–■–) and xanthine levels (–●–) against time after the introduction of xanthine oxidase in 
PBS at pH 7.4.  
 
 
In summary, superoxide radical anions which were efficiently generated from xanthine/ 

xanthine oxidase complexes were detected using ascorbate and DMPO spin traps. From free 

radical oxidation patterns under similar conditions, xanthine or hypoxanthine breakdown and 

free radical generation could be established using UV and ESR spectroscopy with fairly good 

correlation. It can be concluded that further studies on ascorbate oxidation and spin trapping 

in the presence of free radicals could be used to determine oxidative stress in vitro.    

 

3.3.4 Vitamin C and vitamin E interactions in biphasic systems 

 

Vitamin C and vitamin E (α-tocopherol) are naturally occurring antioxidants in biological 

systems. Vitamin E plays a vital role in the prevention of free radical-mediated oxidation of 

low-density lipoproteins believed to be major factor in the development of atherosclerosis. 

Vitamin E, a lipophilic antioxidant is mostly located on lipid membrane surfaces and in 

lipoproteins. Studies on the interaction of vitamin C, a water-soluble antioxidant, and vitamin 

E in biological systems may show some interesting redox properties of these antioxidants 
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during periods of oxidative stressschnieder et al 2003.  The cooperation between ascorbate and α-

tocopherol, allow the oxidized α-tocopherol radical in lipid phase is to be reduced back by 

ascorbate to α-tocopherol, in the cytoplasm. The ascorbyl radical can spontaneously 

disproportionate, or be reduced by cellular enzymes. In summary, free radicals originating 

from the lipid membrane can be removed from the system using two different anti-oxidants. 

To asses the possible reactions of α-tocopherol and ascorbate interaction in biphasic systems, 

experiments were conducted in aqueous/ ethyl acetate medium. Since the oxidation of the 

lipophilic α-tocopherol is not favourable in aqueous medium, 10 % Triton-X 100 detergent 

was added forming an α-tocopherol suspension. For the generation of α-tocopherol radical, 

Fenton’s reagent was added as source of oxygen radicals. The oxidized α-tocopherol radical 

was extracted with ethyl acetate and shaken vigorously with 10 mM ascorbate in aqueous 

solution for some time. Kinetic correlation measurements were conducted using ESR 

spectroscopy to study redox reactions of α-tocopherol radical and ascorbyl radicals in 

biphasic systems. 
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Figure 52 The decrease of tocopherol radical concentration in organic medium (–●–) and the 
increase in ascorbyl radical concentrations (–□–) in aqueous medium after vigorous shaking 
of both immiscible mixtures.  
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The results in Figure 52 show cross-correlations with a 10-fold depletion of α-tocopherol 

radical in the organic phase and a 3-fold increase in ascorbyl radical concentrations in 

aqueous solution over a period of 10 minutes. This interesting phenomenon of one-electron 

redox transfer from α-tocopherol to ascorbate might be used as model systems to show 

similar cascades of recycling processes taking place to eliminate radicals in biological 

systems.  

 
 

3.3.5 Ascorbate and spin trapping studies on oxidative stress observed under 

ischemia/anoxia and reoxygenation conditions. 

 

Over the past decade direct observations on the production of ROS produced during ischemia 

and reperfusion has been determined using ESR spectroscopy with spin trapping techniques. 

These methods showed an increase in ROS production during periods of ischemia, but even 

more during periods of reoxygenation accompanied by a sudden burst of free radical species.  

Identifying the types of free radicals was accomplished by determining the hyperfine splitting 

constants of spin trapped radical adducts. An additional method for the identification and 

quantification of free radicals was carried out using ascorbate for studying oxidative stress. 

Moreover, ascorbate as a non-toxic antioxidant can be easily monitored over a broad range of 

concentrations without showing any toxic effects in cells.   

In order to study oxidative stress under normoxia, hypoxia and reoxygenation in vitro, 

ascorbate oxidation was monitored with the help of ESR spectroscopy. Human colon 

carcinoma cell (RKO) cultures were incubated in DMEM serum medium at 37°C. Prior to the 

experiment, cells were treated with 1 mM ascorbate and incubated under normoxia, hypoxia, 

anoxia and reoxygenation. Subsequently, under these experimental conditions ascorbyl 

radical concentrations were determined after 30, 60, 90 and 120 minutes (Figures 53 to 56).  

During 60 minutes ischemia and hypoxia a marginal increase in ascorbyl radical 

concentrations was observed that increased significantly after 30 minutes reoxygenation. 

However, under normoxia an increase in ascorbyl radicals were seen after 60 minutes. 

Therefore, the overall trend was a marginal increase in ascorbyl radical concentrations during 

ischemic and normoxic conditions and a significant increase after reoxygenation.  
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Figure 53  Changes in ascorbyl radical concentrations under normal (–■–), anoxia (–▲–) and 
ischemia (hypoxia) (–●–) conditions  treated with 1mM ascorbate in RKO cell lines during a 
period of 120 min. 
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Figure 54 Ascorbyl radical concentrations in RKO cells treated with 1 mM ascorbate under 
ischemia (–■–) and reoxygenation (–●–). 
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Figure 55 Ascorbyl radical concentrations in RKO cells treated with 1 mM ascorbate under 
anoxia (–■–) and reoxygenation (–●–).  
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Figure 56 Comparing figures 41 and 42 in studying non-linear changes of ascorbyl radical 
concentrations in RKO cell under anoxia (–▲–),  ischemia (–■–) and reoxygenation  
(–■– ,–▲–). 
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Since ascorbate is a major water-soluble antioxidant showing little or no toxic effects at high 

concentrations, it was an ideal choice as a natural non-invasive marker of free radical 

oxidations taking place in biological systems. In vitro studies showed time-dependent 

ascorbate oxidation in RKO cell lines during hypoxia, anoxia and reoxygenation.  

Interestingly, ascorbyl radical reactions during periods of oxidative stress revealed similar 

kinetic patterns in healthy subjects and for patients after reperfusion and surgery as described 

in the former chapters. Generally, an increase in ascorbyl radical concentrations was observed 

after a 30-minute period of ischemia and reoxygenation. Therefore, observations of ascorbyl 

radical reactions in vivo and in vitro suggest the efficacy of ascorbate for the determination of 

oxidative stress.  

An alternative strategy for determination of ROS in vitro was the application of spin trapping 

methods with the help of ESR spectroscopy. This indeed is considered by some authors to be 

superior to ascorbate, because, analytical and quantitative results can be achieved with 

experiments on spin traps. In the following experiments, the involvement of spin traps to 

determine radical species during anoxia, ischemia and reoxygenation is considered and 

compared with ascorbyl radical reactions. The important criterion for the selection of a good 

nitrone spin trap in biological investigations is to know about its cellular penetration and 

resistance to metabolism, specificity towards the free radical of interest, and slow decay rate 

of the generated nitroxide. To evaluate free radical species during ischemia and 

reoxygenation, DMPO was considered a spin trap of choice. DMPO was incubated in RKO 

cell medium following the same experimental procedure as with ascorbate. Paradoxically, all 

the collected spin trapped probes were ESR silent showing no nitroxide signals even after 

increasing its concentrations in the cell medium. To assess for loss of ESR signal intensity, 

kinetic studies were conducted with DMPO in serum free and serum DMEM medium. 

 DMPO-OH spin adducts were obtained by reacting hydrogen peroxide and ferrous ion in 

serum free DMEM medium. As shown in Figure 57, kinetics of DMPO-OH radical adducts 

was determined by ESR spectroscopy. Based on kinetic observations of DMPO-OH 

decomposition, depletion of nitroxide concentrations followed first-order exponential decay 

with a half-life period of 18 minutes. However, as the above experiments were repeated in 

serum DMEM medium, nitroxide signal intensity of DMPO-OH disappeared rapidly with 

half-life of 3 minutes. From these kinetic observations, it can be assessed that FBS serum in 

DMEM medium enhanced paramagnetic nitroxide decomposition significantly (Figure 58).
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Therefore, spin trapping experiments with DMPO carried out in FBS DMEM medium were 

inadequate for studies on ischemic and reoxygenation using RKO cells.  

Since experiments carried out in serum-containing medium were unsuccessful, further 

investigations were carried out using serum-free Quantum 263 medium under similar 

experimental conditions. On one hand kinetic curves showed that nitroxide radicals were 

relatively stable, but on the other hand RKO cells showed retarded growth and apoptosis. 

Therefore, spin trapping of ROS in biological systems carried out in serum free Quantum 263 

medium was also inadequate to estimate oxidative stress during ischemia and reoxygenation 

(Figure 59).       
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Figure 57  1st -Order decrease of  DMPO-OH signal intensity in DMEM medium at pH 7.8 
with a half life time of 18.3 minutes. Inset: Verification of first-order equation by plotting ln 
DMPO-OH conc. versus time. 
 
 

In summary, ascorbic acid was seen to be an excellent scavenger of free radical oxygen 

species during ischemia and reoxygenation. An increase in ascorbyl radical concentration was 

seen during reoxygenation after anoxia and hypoxia. However similar experiments 

determined with the help of spin traps were not successful.   
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Figure 58 The decrease in 100 mM DMPO radical adduct of the 1st-Order in DMEM serum 
medium at pH 8.3, with a half life of 3.2 minutes. 
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Figure 59  The decrease in 100 mM DMPO radical adduct in serum-free Quantum 263 
medium at pH 7.8 with a half life  of 9.77 minutes. 
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3.3.6 Nitroxide activity of fluorescent-labelled spin probes in the presence of ROS 

New double sensors involving fluorescent dansyl derivatives and paramagnetic pyrrole-

nitroxide derivatives were developed in the past and applied in biological systems as 

indicators of oxidative stress kalai, Hideg et al 2002. It has been suggested that the paramagnetic 

nitroxide radical fluorophore, is reduced to hydroxyl amine derivatives with Fe2+ as catalyst. 

This reaction deserves special attention, since time-dependent patterns are observed with ESR 

as well as fluorescence spectroscopy. Paramagnetic nitroxide groups attached to fluorophores 

are shown to exhibit characteristics of fluorescence quenching. Therefore, reactions of 

fluorescent labelled spin probes in the presence of reactive oxygen species can be investigated 

using ESR as well as fluorescence spectroscopy Hideg et al. Correlations between fluorescence 

quenching and nitroxide reduction may reveal some information about the involvement of 

ROS in vivo during periods of oxidative stress. 
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Figure 60 Cross correlation between nitroxide reduction (–■–) and fluorescence intensity  
(–●–) from a spin label-dansyl derivate with a wide range of Fe2+ concentrations. 
 
 

To study the effects of nitroxide reduction and fluorescence quenching, 50 µM dansylamide 

spin label was added to various ferrous II ammonium sulphate concentrations in PBS 

medium. Results in Figure 60 show the influence of increasing Fe2+ concentrations on 

nitroxide levels and fluorescence intensity. The ferrous-ion-dependent nitroxide reduction and 

fluorescence intensity showed inversely correlated nonlinear curves. Interestingly, at Fe2+ 
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concentrations higher than 100 µM, a decrease in fluorescence intensity was observed. It can 

be assumed that oxidation reactions at the aromatic ring results in the breakdown of 

conjugated systems. Apparently, addition of Fe2+ concentrations higher than 100 µM to spin 

labelled fluorophores may lead to artefacts. Therefore, studies on fluorescence quenching 

deserve special attention at metal-ion concentrations far exceeding physiological values.   

The two-faced character of fluorescent labelled nitroxide determined by ESR and 

fluorescence spectroscopy can be considered for in vivo investigations in the near future. 

Moreover, their involvement in life-time measurements using fluorescence confocal laser 

microscopy to determine site related oxidative stress in living organisms may be of some 

significance.  Therefore, methods are to be proposed for the synthesis of a new fluorescent- 

labelled ascorbic acid, which can turn out to be an efficient indicator for free radicals in 

biological systems. 
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3.4 Fluorescent-labelling of ascorbic acid with N-methylisatoic anhydride  

 

In the last decade, extensive studies on oxidative stress using ESR spectroscopy were 

achieved with the help of spin trapping techniques to detect and identify free radicals in 

biological systems. However, numerous studies on spin trapping previously and in this work 

showed its limitations in the determination of free radicals. Spin trapped radical adducts 

decomposed rapidly during in vivo studies and artefacts observed may presumably complicate 

the assessment of free radicals.  

An alternative method for the determination of radical intermediates is to develop methods for 

the synthesis of new fluorescence labelled ascorbic acid derivates. These antioxidant 

fluorescent labels may open new pathways in determining free radical species using ESR as 

well as fluorescence spectroscopy, in which the latter may overcome the detection limits of 

ESR spectroscopy. Moreover, due to reduced (almost no toxic capacity) toxicity of ascorbic 

acid, live-time measurements in the detection, interaction and co-localization of ROS using 

fluorescence confocal laser microscope can be achieved in the near future.  

 

3.4.1 Acylation of hydroxyl groups of ascorbic acid with DMAP as catalyst in organic 

solvents 

N-methylisatoic anhydride (IA) (1 in Figure 61) was considered an ideal choice as a 

fluorescent label for the synthesis of ascorbic acid ester. The N-methylanthranilate group is 

one of the smallest known fluorophores that emit relatively intense fluorescence upon UV 

excitation.  

Moreover it reacts with nucleophiles like alcohols at its oxazine ring with the 

influence of base catalyst forming anthranilate ester derivatives at ease. For the synthesis of 

N-methylanthranilate group analogs, 4-dimethylaminopyridine (DMAP) (3) was chosen as a 

hyper-nucleophilic acylation catalyst on less reactive alcohols under basic conditions. DMAP 

has two distinct advantages as a catalyst; it enhances the yield and rate of reactions and it 

allows sensitive reactions to be carried out under milder conditions thereby reducing 

unwanted side effects. Searching for a method to label ascorbic acid that would not hinder its 

antioxidant functional capacity is to acylate the less reactive 6-OH (6d) position. This may 

prove to be relatively persistent, since the ene-diol at positions 2-OH (6a) and 3-OH (6b) on 

the lactone ring of ascorbic acid is more accessible to nucleophilic attack. The catalyst DMAP  
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may make this process easier by forming acyl pyridinium ion intermediates (3) at position 5-

OH (6c) or 6-OH (6d) and therefore easily accessible to acylation. 

Based on the collected information, a novel approach for the synthesis of fluorescent- 

labelled ascorbic acid esters was achieved by stirring equimolar ascorbic acid (2) and N-

methylisatoic anhydride (1) with DMAP (3) in DMF. Triethylamine, an organic base was 

added to remove the intermediate acid formed during the reaction and the mixture was 

allowed to be heated up to 65 °C for 3 h until carbon dioxide evolution ceased. The solvent 

was evaporated and the raw product dissolved in a basic medium containing sodium 

carbonate solution. The aqueous mixture was allowed to stand for 10 minutes and was 

subsequently re-acidified with diluted phosphoric acid. With this method, acyl groups tend to 

migrate in the direction away from the neighbouring carbonyl group and interact with 

hydroxyl groups positioned within the lactone side chain Nomura & Sugimoto 1965, Reese & Trentham 1966.  

The ascorbate ester at neutral pH was re-acidified to form ascorbic acid ester, which was 

eventually extracted with an organic solvent and evaporated under vacuum.  

The possible mechanism for the acylation of alcohols is the formation of an intermediate acyl 

pyridinium ion (4) by the reaction of DMAP (3) with N-methylisatoic anhydride (1) (Figure 

61). This step is more rapid than for pyridine because DMAP is a stronger base due to the 

electron donating effect of the p-dialkylamino group. With alcohols as nucleophiles and the 

organic base triethylamine, DMAP is released from its salts leading to nucleophilic attack of 

alcohols (2a-d) to form anthranilate esters (6). 
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Figure 61 The possible mechanism for the acylation of alcohols (2a-d) is the formation of a 
relative stable intermediate acyl pyridinium ion (4) by the reaction of 4-
dimethylaminopyridine (DMAP) (3) with N-methylisatoic anhydride (1). The second step is 
promoted by the presence of the strong organic base triethylamine that is known to release 
DMAP from its salts.  
 

3.4.2 Thin layer chromatography (TLC), HPLC and MPLC 

As a result of competing reactions of the fluorescent label at positions 2-OH (2a) and 3-OH 

(2b) on the lactone en-diol ring with 5-OH (2c) and 6-OH (2d) on the lactone side chain of
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ascorbic acid to from esters, fluorescent label ascorbic acid ester derivatives were determined 

by the application of thin layer chromatography. The ester derivatives were eventually 

separated by HPLC for qualitative analysis and MPLC for quantitative separations.  

Reversed phase thin layer chromatographic (TLC) plates were applied for pre-analytic 

separations of various fractions. The raw product extracted with ethyl acetate was dissolved in 

acetonitrile and two TLC tests were conducted before and after extraction with ethylacetate 

with acetonitrile water mixture (30:70) as moving phase (Figure 62). The separated fractions 

from the raw product extract were observed under a UV-lamp with excitation wavelength of 

254 nm and 366 nm respectively (Figure 63).  

 

 
Figure 62 TLC-RP 18, raw product and N-metyl isatoic anhydride (IA) (1) with a moving 
phase of 30: 70 % acetonitrile/ water. After the extraction of the raw product with ethyl 
acetate (2nd lane) from water (1st lane) (2). 
 
 

Fractions of the raw product on the TLC plate showed a wide range of Rf values in relation to 

the educts (Figure 63). Raw fractions produced larger Rf values (0.93 and 0.67) than the less 

polar N-methylisatoic anhydride (Rf 0.53).  
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Figure 63 TLC-RP 18  of raw product (raw), N-methyl isatoic anhydride (IA)  and fractions 
1-6 with a moving phase of 30:70 % acetonitrile and water. The TLC-plates were observed 
under UV at 333 nm (1) and 254 nm (2). 
 
Since TLC separation methods using reversed-phase were relatively successful, the high-

performance liquid chromatographic (HPLC) method was chosen as a subsequent strategy to 

separate the fractions of the raw product. A reversed-phase column was chosen for separation 

using acetonitrile and water as moving phase. Therefore, chromatographic separation of 

  

 

 

 

 
 
 

 
 
Figure 64 Reverse-phase HPLC with a UV detector set at 357 nm (left) and at 277 nm (right)  
showing the fractions after elution using water and acetonitrile as moving phase. 
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the raw product was achieved by passing it through a reversed- phase 250 mm HPLC column. 

The fractions were separated using water/acetonitrile as eluent with a flow rate of 1ml/min 

and monitored by a UV-detector set at 277 and 357 nm (Figures 64).   
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Figure 65 A 2D spectrum of fractions 1 to 4 separated from a reverse-phase HPLC column. 
Protruding absorptions band (arrow) from fraction 3 of ascorbic acid derivative detected at 
265 nm. 

 

 
Figure 66  The same HPLC elution’s spectrum as above with a 3D view. A more detailed 
view of ascorbic acid derivative (arrow), showing a shoulder of the absorptions band. 
 
Also, a 2 D and a 3 D spectrum is presented in Figures 65 and 66 to highlight the absorption 

band of ascorbic acid at 265 nm protruding out in fraction 3. Furthermore, 2D and 3D spectra

   



Results and Discussion 

 

79

 
showed absorption bands of ascorbate and N-methylisatoic anhydride, so that additional 

information could be gathered from these fractions. As for the purification of fractions after 

HPLC separation of the raw product, they were collected and lyophilized overnight. The 

fractions 2 and 3 gave yields of 32 wt. % and 21 wt. % respectively. 

However, it is hardly possible to quantitatively determine the fractions through HPLC 

methods due to insufficient yield. Therefore, further quantitative separations were achieved 

through MPLC techniques. Here, a larger column of middle pressure liquid chromatographic 

column (MPLC) was exchanged for an HPLC. The UV-detector was set at 277 nm with a 

flow rate of 2 ml/min and showed separation peaks similar to those of HPLC. Dried fractions 

were characterized analytically by 1H-NMR, Mass, UV, ESR and fluorescence spectroscopy. 

 

3.4.3 1H-NMR spectroscopy of the fractions 2 and 3 

 

For the structural determination of fractions 2 and 3 after chromatographic separations, 1H-

NMR spectra were taken of the fractions dissolved in D6-DMSO and CDCl3. The data 

obtained from the 1H-NMR spectra were studied and compared with the educts.  

Subsequently for the educt N-methylisatoic anhydride (Figure 67), the chemical shifts in 

CDCl3 of aromatic protons appeared at low field between 8.18 − 7.20 ppm and the high field 

proton signal at 3.61 ppm could be identified as N-methyl group. By the characterization of 

ascorbic acid in D6-DMSO (Figure 68), the protons at the ene-diol lactone ring showed 

characteristic resonance signals at low fields of 11.01 and 8.30 ppm respectively. The 

resonance signal of the proton at the lactone ring at position C4 appeared at 4.72 ppm. The 

chemical shifts of the two hydroxyl groups on the lactone side chain at positions C5 and C6 

overlapped each other resulting in a broad signal at 4.87 ppm and the 3 protons attached to the 

carbon side chain at positions C5 and C6 showed signals at 3.73 and 3.44, ppm respectively. 

The NMR spectrum of ascorbic acid was identical to literature values obtained from 

Integrated Spectral Data Base System (SDBS) for Organic Compounds by the National 

Institute of Advanced Industrial Science and Technology, Japan. 
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Figure 67 1H-NMR 400 MHz, N-methylisatoic anhydride in CDCl3, 4*CH-aromatic ring (m) 
8.18-7.20 ppm, N- CH3 (s) 3.61 ppm. 
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Figure 68  1H-NMR 400 MHz, Ascorbic acid DMSO-D6, 2-OH (s) 11.01 ppm,3-OH (s) 8.30 
ppm,  6-OH (s) 4.87ppm, 4-CH (d) 4.72 ppm, 5-CH (t) 3.73 ppm, 6-CH2 (m) 3.44 ppm. 
 
 
For the characterization of the fractions with 1H-NMR spectroscopy, fractions 2 (Figure 69) 

and 3 (Figures 70 and 71) were investigated in D6-DMSO and CDCl3 solvents respectively.  
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Figure 69  1H-NMR 400 MHz, Fluorescent- labelled ascorbic acid of  fraction 2 in DMSO-
D6, 4*CH-aromatic ring (m) 7.92-6.65,2* OH  (s) 5.08 ppm, CH (s) 4.94 ppm, CH (t) 3.82 
ppm, CH2 (d) 3.48 ppm, N-CH3 (q) 2.87ppm.   

 

The ascorbic acid derivate of fraction 3 (Figure 69) in D6-DMSO showed characteristic en-

diol resonance signals at low fields of 11.13 and 8.43 ppm respectively. However, 1H-NMR   

resonance peaks of the hydroxyl groups of ene-diol were not seen in CDCl3 (Figure 71) 

which may suggest proton exchange with the deuterated solvent. Chemical shifts between 8.0 

and 6.5 ppm identified, as aromatic proton peaks were present in both the deuterated solvents. 

The resonance signal of the 4-CH atom on the lactone ring and the 5-CH, 6-CH2  (Figures 70 

and 71) atoms on the side chain were shifted towards lower field with an increasing X-CHn (X 

= 4, 5, and 6) numerical order  (Table 24) as compared to CH proton signals of ascorbic acid 

(Figure 68).  Presumably, this is a consequence of deshielding, due to the proximity of the 

ester group, which largely influences the 6-CH2 and 5 CH-OH protons resulting in chemical 

shift to lower field. Chemical shifts of the N-methyl amino group on the aromatic ring were 

identified at high field at 2.9 ppm present in both deuterated solvents.  
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Figure 70  1H-NMR 400 MHz, Fluorescence labelled ascorbic acid product of  fraction 3 in 
DMSO-D6, OH (s) 11.13 ppm, OH (s) 8.43 ppm, CH-aromatic ring (m) 8.43-6.56 ppm, OH 
(d) 5.45ppm, CH (s) 4.8 ppm, CH2 (m) 4.27 ppm, CH (q) 4.14 ppm, N-CH3 (d) 2.85 ppm. 
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Figure 71  1H-NMR 400 MHz, Fluorescence labelled ascorbic acid product of fraction 3 in 
CDCl3, CH-aromatic ring (m) 7.9-6.67, -OH (s) 4.78, CH (s) 4.49, CH2 (d) 4.3, N-Me (d) 
2.89. 
 
However, in the characterization of fraction 2 (Figure 69), the absence of ene-diol proton 

peaks at low field in relation to fraction 3 and ascorbic acid were taken into consideration.
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This indicates the acylation at 2 C-OH or 3 C-OH of the ene-diol group at the lactone ring of 

ascorbic acid. Moreover, proton resonance peaks at position C4, C5 and C6 showed no 

evidence of deshielding which may have been influenced by acylation at these positions if 

they had occurred.  

 
In a short summary, special attention was given to ene-diol and side chain protons of the 

fluorescent-labelled ascorbic acid for the determination and characterization of fractions 2 and 

3 using 1H-NMR spectroscopy (Figures 69 to 71).  

Absence of chemical shifts of fraction 2 at low fields revealed acylation at the ene-diol 

group as seen in Figure 69. Moreover, protons on the side chain in fraction 2 were hardly 

influenced by electronegativity, signifying the absence of a carbonyl group in its vicinity. 

Therefore, this may rule out acylation at positions 5 CH-OH or 6 CH2-OH on the side chain of 

the lactone ring. Whereas for fraction 3 (Figures 70 and 71), chemical shifts of the ene-diol 

group were seen at low field similar to ascorbic acid resonance signals. Apparently the 

protons on the short carbon side chain of ascorbic acid derivate were significantly affected by 

de-shielding, resulting in low field chemical shifts predominantly observed at protons 

positioned on the 6th carbon atom (see Table 24).   

These results suggest acylation reactions were successfully achieved in the synthesis 

of fluorescent-labelled ascorbic acid at positions C-2, C3, C5 or C6 (Figure 61). Acylation at 

position C2 or C3 are not relevant for this study, since ester formation at these positions 

blocks the antioxidant capacity of ascorbic acid. Conversely, acylation at position C5 or C6 

may not interfere with the redox activity of the fluorescent labelled ascorbic acid and 

therefore, may be considered as an effective indicator for oxidative stress by means of ESR 

and fluorescence spectroscopic studies. However, acylation at 5-CH-OH may prove to be 

disadvantageous, as a consequence of steric hindrance at this position. Thus, a newly 

synthesized fluorescent-labelled ascorbic acid from fraction 3 acylated at position 6 C-OH can 

be effectively used for further studies. 

3.4.4 Mass spectroscopy of fractions 2 and 3 

 

Determination of molecular weights of fractions 2 and 3 using mass spectroscopic techniques 

can be very helpful for the characterization of fluorescent-labelled ascorbic acid and to 

provide information on the mode of acylation. By ionization of fraction 2 or 3, the molecular

   



Results and Discussion 

 

84

 
ions (M+ ion) had identical peaks at m/z 309 in their mass spectra. The complete mass spectra 

for both the fractions are given in Figures 72 and 73.  

 

 
Figure 72 Mass-spectroscopy: The fraction 2 showed peaks at m/z 308.8 in their mass 
spectrum. 
 

The plausible fragmentation process for fluorescent-labelled ascorbic acid of fraction 3 

(Figure 73) involves the loss of carbon dioxide and carbon monoxide from the lactone ring to 

give the peaks at m/z 44, m/z 28 and the fragmentation of ascorbic acid (m/z 265). However, 

fragmentation can also occur at the attachment points to the aromatic ring producing elements 

of methylamino phenyl (m/z 106), phenyl cation (m/z 77), and methylamine (m/z 30). 

Another important fragmentation pattern involves α- and β-cleavage relative to the carbonyl 

group of ester to give the N-methylamino benzoyl (m/z = 134) and methylamino benzoxyl 

(m/z 150).  

However, ionization of the fluorescent-labelled ascorbic acid ester of fraction 2 (Figure 72) 

showed almost similar fragmentation patterns, but with changes in their intensity ratios and 

fragmentations void between m/z 151 and 309. The most apparent fragmentation process was 

the loss of N-methlamino benzyl (m/z = 134) and to a lesser extend the loss of N-

methylamino benzoxyl (m/z = 150). Moreover, molecular ion M+ of fraction 2 showed a 

strong peak at m/z 309, which was the mass of the original compound.  
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Therefore, the information obtained from MS spectra confirms the molecular weight of both 

the fractions. From the fragmentation pattern, it was possible to assign the distinct molecular 

ion peaks of aromatic derivatives from the cleavage of the carbonyl groups of the esters. 

Furthermore, elements of carbon monoxide and carbon dioxide could also be traced from the 

MS spectra. These results confirm the modification of ascorbic acid with fluorescent label in 

fractions 2 and 3 acylated at two separate positions. 

 

 
 
Figure 73 Mass spectroscopy: The fraction 3 showed peaks at m/z 308.8 in their mass 
spectrum. 
 
Acylation of ascorbic acid with N-methylisatoic anhydride occurred mainly at position 3-C 

(fraction 2) on the ene-diol and position 6-C (fraction 3) on the side chain. For further studies 

only fraction 3 was considered because the acylation at position 6-C may probably not 

interfere with the antioxidant property of ascorbic acid. The redox activity occurs at the ene-

diol group. Therefore further information on the chemistry of fraction 3, 6-O-(N-

methylanthraniloyl) ascorbic acid or MANTA, is required to study its antioxidant capability. 

3.4.5 UV spectroscopy of 6-O-(N-methylanthraniloyl) ascorbic acid (MANTA)  

 

To assess the dynamics and stability of MANTA under various conditions, this new product 

was compared with educts and studied by UV spectroscopy. Superimposed spectra of 

ascorbate, N-metylisatoic anhydride and MANTA dissolved in 10 % acetonitrile/ PBS buffer
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at pH 7.4 are characterized by their specific absorption bands as shown in Figure 74. 

Ascorbate showed a strong absorption band at 265 nm and N-methylisatoic anhydride at 250 

nm and 330 nm respectively. Whereas the product MANTA showed at least 2 absorption 

peaks at 256 and 350 nm with an additional hump at 268 nm. Therefore, MANTA can be 

characterized by its specific absorptions band in reference to ascorbic acid and N-

methylisatoic anhydride.  
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Figure 74 UV spectra of ascorbate (), N-methylisatoic anhydride () and MANTA () in 
PBS at pH 7.4 dissolved in 10 % acetonitrile as solvent. 
 
As discussed in the previous chapter, the chemistry of ascorbate oxidation vastly dependents 

on pH, concentration and oxidants present in a system. Therefore, it is possible to observe 

similar characteristics with MANTA exposed to acidic and weak basic medium. Firstly, 

absorbance of MANTA was investigated using UV spectroscopy at pH 4.6 and pH 7.2 

respectively. Results obtained from UV spectra reveal a 33 % decrease in acidic environment 

as compared to the basic medium at the same concentrations (Figure 75). UV studies of 

MANTA clearly show the pH dependence of this newly synthesized molecule. 
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Figure 75 UV spectra of the MANTA at pH 4.6() in sodium PCB medium and at pH 7.2() 
in PBS medium dissolved in 10 % acetonitrile. Absorbance maximum observed at 256 nm and 
350 nm with a barely visible shoulder at 268 nm resulting from the absorption band of 
ascorbate. 
 
3.4.6 Fluorescence and ESR studies on redox reactions of fluorescence labelled 

ascorbic acid ester (MANTA) 

 

Intramolecular quenching between covalently linked fluorophore quencher (paramagnetic 

molecules) pairs can be considered as an important method for the determination of free 

radicals in biological systems. During periods of oxidative stress, ROS occurring at hot spots 

in a radius of barely 20 Å are released to the surroundings. Subsequently, antioxidant capacity 

is only effective at these regions making it difficult to determine and quantify ROS in a living 

organism. Here, the newly synthesized fluorescent label may serve as a water-soluble 

antioxidant showing multifaceted characteristics with its involvement in biological systems. 

The dynamic redox chemistry of ascorbic acid makes it one of the most effective water- 

soluble antioxidant in living systems. Therefore, labelling it with a fluorescent marker may 

further help with investigations on oxidative stress. In addition, the involvement of ascorbate 

in intra and extra cellular reactions and regeneration can be followed efficiently with 

fluorescence.   

Here, confocal laser fluorescence spectroscopic techniques may prove to be very 

valuable in localizing hot spots in plasma membrane redox systems. To assess the chemistry 

of MANTA in relation to its antioxidant capacity, several studies in the presence of ROS were 

carried out using fluorescence and ESR spectroscopy.  
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Figure 76 Excitation (λexc = 350 nm()) and emission (λem = 446 nm()) spectra of 
MANTA in PBS at pH 7.4 in 10 % acetonitrile. UV and fluorescence spectra were normalized 
to fit absorbance and emissions scale.  
 

From the results obtained so far, further investigations were required to study fluorescence 

quenching and ascorbyl free radical generation of MANTA in phosphate buffers. Excitation 

and emission spectra of MANTA showed absorptions band at 350 nm and 446 nm 

respectively in 10% acetonitrile and PBS at pH 7.4 (Figure 76). To study the dynamics of 

MANTA in correlation with fluorescence quenching and MANTA free radical generation, 

chemical and enzymatic oxidants as source of ROS were incubated with this system. 

Formation of ROS was accomplished by adding 80 µM Fenton’s reagent to 2.5 mM MANTA 

and the time-dependent decrease in fluorescence intensity was studied (Figure 77). Oxidation 

of MANTA induced changes in the fluorescence intensity resulting in a 10-fold decrease. This 

effect is likely attributed to fluorescence quenching as a consequence of a paramagnetic 

compound in the vicinity of a fluorescent molecule. Similarly, an ESR study on the oxidation 

of MANTA was carried out by adding 10 mM Fenton’s reagent. A typical ESR signal was 

seen, consisting of a doublet with a hyperfine splitting aH4 = 1.8 G, which confirms the 

presence of the ascorbyl free radical derivative (Figure 78). 
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Figure 77 Fluorescence quenching (−■−) of MANTA at λemm = 446 nm against time in 10 % 
acetonitrile after oxidation with 80 µM Fenton’s reagent in PBS medium at pH 7.4.  
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Figure 78  ESR spectrum of product 6-O-(N-methylanthraniloyl) ascorbic acid or MANTA in 
PBS medium after oxidation with 10 mM Fenton’s reagent. 
 
 
These results suggest that ESR and fluorescent studies on MANTA were successful. 

Fluorescence quenching and ascorbate oxidation could be established in reactions involving 

oxygen free radicals that showed the presence of a double labelled paramagnetic fluorescent
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molecule at very close proximity. Therefore, further studies are able to show the redox-

chemistry of MANTA as a function of pH as observed in the previous chapter on the 

chemistry of ascorbate. For ESR investigations, MANTA was oxidized with 1 mM Fenton’s 

reagent as source of oxygen free radicals with a wide range of pH dependent buffers. Under 

the same experimental setup, fluorescence studies were also conducted with a 10-fold lower 

concentration of Fenton’s reagent. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 79 Oxidation of MANTA in Fe2+/ H2O2 observed under fluorescence (−■−) and ESR 
spectroscopy (−•−) against pH. Inset: negative correlations regression between fluorescence 
intensity, and radical concentration of MANTA. 
 
The data in Figure 76 showed that the MANTA radical concentrations increased as a function 

of pH, whereas the fluorescent intensity decreased continually. Therefore, pH-dependent 
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cross-correlation pathways could be established within the same molecule. Based on the 

collected data, oxidation of MANTA revealed a strong pH dependency in the same way as 

seen with ascorbate in the previous chapter.  

 

3.4.7 in vitro ESR, fluorescence and UV spectroscopic studies on the oxidation of 

fluorescence-labelled ascorbic acid (MANTA) using the hypoxanthine and 

xanthine oxidase (XOD) system  

 

As described in the previous section 3.3.2, decomposition of purines to hypoxanthine or 

xanthine and finally to uric acid resulted in the release of superoxide radical anion as 

intermediate. As for ROS generating systems, hypoxanthine/xanthine oxidase assays were 

found to be an ideal choice for studying MANTA oxidations. Moreover, correlation studies 

using ESR and fluorescence spectroscopy can be applied to monitor time-dependent changes 

during oxidation. The results from these studies using fluorescence-labelled ascorbic acid may 

turn out to be appealing in the near future by observing hot spots in cell lines during periods 

of oxidative stress. 
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Figure 80 Kinetics of 1 mM hypoxanthine oxidation after addition of 1 mg/ ml XOD in 5% 
DMF (−•−) and acetonitrile (−□−), measured using UV spectroscopy at 252 nm. 
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To assess the role of MANTA as an antioxidant, hypoxanthine/ xanthine oxidase enzymatic 

reactions were utilized as source of oxygen free radicals and monitored using UV, ESR and 

fluorescence spectroscopic methods. Firstly, time-resolved hypoxanthine decomposition in 

xanthine oxidase complex incubated in PBS at pH 7.4 was monitored by UV spectroscopy at 

252 nm.  The data in Figure 80 demonstrates the behaviour of hypoxanthine oxidation to uric 

acid in DMF and acetonitrile. Apparently, the kinetic rates were hardly affected after adding 

5% of the above solvents to the reaction processes.  
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Figure 81  The fluorescence quenching of MANTA at λem= 446 nm in 5% DMF (•) and  
acetonitrile (□) after oxidation with hypoxanthine/ xanthine oxidase. 
 

 

Under similar experimental setup as mentioned above, addition of hypoxanthine/ XOD in 3.3 

mM MANTA induced a time-dependent decrease in fluorescence intensity at 446. 

Apparently, solvents like acetonitrile and DMF did not significantly affect fluorescence signal 

intensities. Nevertheless, some changes were observed during the first 3 minutes (Figure 81). 

To determine correlations between hypoxanthine oxidation and fluorescence quenching of 

MANTA, their kinetic data were superimposed and compared as seen in Figures 82 and 83.  
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Figure 82 Time-dependent hypoxanthine oxidation at λexc = 252 nm (−□−) in relation to 
fluorescence quenching of fraction 3 in 5 % DMF detected using fluorescence spectroscopy at 
λexc = 446 nm (−•−). 
 

0 60 120 180 240 300 360 420 480 540 600
0.7

0.8

0.9

1.0

1.1

1.2

1.3

 

time [sec]

Ab
s.

580

600

620

640

660

680

fluor. intensity

 
Figure 83  Time-dependent hypoxanthine oxidation at λexc = 252 nm(□) measured under UV 
spectroscopy in relation to fluorescence  quenching from fraction 3 in 5 % acetonitrile 
detected using fluorescence spectroscopy at λexc = 446 nm (•). 
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Figures 82 and 83 showed good correlations between substrate decomposition using UV 

spectroscopy and MANTA oxidation observed by fluorescence spectroscopy. The results 

suggest a close relationship between hypoxanthine decomposition and MANTA oxidation as 

a consequence of superoxide radical anion intermediates. The experiments also showed that 

the enzymatic reactions were not affected by organic solvents. To access the possible 

relationship between fluorescence intensity and oxidation of MANTA, time-dependence of 

this fluorescent-labelled ascorbic acid ester was observed using ESR spectroscopy. An 

increase in the MANTA free radical concentrations was seen for the first 3 minutes followed 

by a decrease in radical signal intensity (Figure 84).   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 84  Time-dependent oxidation of MANTA in a hypoxanthine/xanthine oxidase system. 
Correlations observed between the radical concentrations (–■–) and fluorescence quenching 
(−•−) of MANTA.  
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Therefore, MANTA oxidation in radical environment followed a time-dependent pattern 

similarly to that of ascorbate oxidation as seen in Figure 46. Fluorescent intensity of 

MANTA on the other hand decreased continuously with time and remained stable after 10 

minutes (Figure 84). 

The data in Figure 84 showed a cross-correlation for the first 3 minutes as a result of 

MANTA free radical oxidation and fluorescence quenching. Nevertheless, after 3 minutes of 

MANTA oxidation, fluorescence intensity dropped still further in relation to MANTA radical 

concentrations. A plausible explanation for the subsequent decrease in fluorescent intensity is 

the oxidation of fluorescent-labelled ascorbyl radical to dehydroascorbate. Apparently, 

dehydro MANTA can induce quenching similar to studies observed with quinone derivatives, 

that act as effective quenchers. 

The results in this study provide evidence that a new fluorescent-labelled ascorbic acid ester 

(MANTA) was successfully synthesized from N-methyl isatoic anhydride and ascorbic acid. 

The multifaceted character of MANTA showing antioxidant properties was established using 

UV, ESR and fluorescence spectroscopy. MANTA is relatively stable in 5 % organic solvents 

like acetonitrile and DMF, unstable in DMSO and partly soluble in water. This fluorescent- 

labelled ascorbic acid ester was isolated by HPLC, purified and characterized using 1H-NMR 

and mass spectroscopic methods. As for the aspects of MANTA oxidation with the help of 

fluorescence and ESR spectroscopy, time-dependent studies on fluorescence intensity and 

radical concentrations revealed unique structural and dynamic information. MANTA showed 

that it’s modified structure, and redox properties towards oxidants do not differ from those of 

ascorbate. Particularly, both the compounds demonstrated similar properties such as pH 

dependency, type of ESR structural information of radical species and time-dependent 

oxidation kinetics. MANTA could also be easily oxidized by chemical and enzymatic 

reactions as source of oxygen free radicals.  Another unique feature of MANTA is the 

emission of an intense blue colour at 446 nm, which could be useful in the future for real-time 

detection in cells using fluorescence confocal laser microscopic techniques. Moreover ROS 

can be easily targeted by observing areas of fluorescence quenching. Therefore by the 

application of ESR and fluorescence spectroscopic methods for targeting and determining 

ROS, MANTA probe may enhance and open new pathways for studies on oxidative stress 

responses in biological systems. Nevertheless, limitations of MANTA in the detection of ROS 

lie in its poor stability in aqueous medium. MANTA was relatively stable in reaction medium 

containing more than 5% organic solvents, but very unstable in DMSO. Therefore, studies on
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the antioxidant activity of MANTA in organic solvents may turn out to be inadequate in 

biological systems in response to cell viability.  

A possible reason for its instability could be the highly strained lactone ring caused by 

the acylation on 6 C-OH side chain of MANTA. Adding carbon spacers between the ascorbic 

acid and the fluorophore might solve this problem.  
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Figure 85  Proposed structure and name of fluorescence labelled ascorbic acid ester of 
fraction 3: 6-O-(N-methylanthranilate) ascorbic acid or  2-(3,4-dihydroxy-5-oxo-2,5-
dihydrofuran-2-yl)-2-hydroxyethyl 2-(methylamino)benzoate. Molecular formula, C14H15NO7 
and molecular weight, 309.271. 
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3.5 Validation of routine ESR spectrometers with respect to the 

determination  of ascorbyl radical concentration in plasma samples in 

comparism with the Bruker ELEXSYS E500 Series spectrometer 

(E580)  

 

3.5.1 Ascorbyl free radical as a marker of oxidative stress: Quantitative analysis with 

e-Scan and E580 ESR spectrometers  

 

In the course of this thesis a Bruker high end research ESR spectrometer (E 500 Series) was 

employed for the determination and quantification of ascorbyl free radical concentrations in 

plasma. The costs of such an instrument are certainly prohibitive for routine clinical 

applications, i.e., routine determination of the radical. Hence, two low cost bench top 

spectrometers were tested in this respect: The MiniScope MS 200 from MagnetTech and the 

e-scan from Bruker Biospin. The results for the former have already been submitted in a 

report for Pascoe Pharmazeutische Präparate GmbH, the company sponsoring the clinical trial 

of high dose vitamin C infusion in patients undergoing cardiac bypass surgery. In the 

following, corresponding data for the e-scan spectrometer are described. 

 

3.5.2 e-scan Spectrometer 

 

The e-scan has initially been designed for food irradiation control and the determination of 

radicals formed in beer during shelf life. It is a desktop X-band ESR spectrometer optimised 

for measurements around g = 2 with a fully automated tuning bridge and thus, significantly 

reduced tuning time. Moreover, it can be equipped with an automatic sample changer. Probes 

enter the cavity rather conveniently by means of a capillary tube of 0.6 mm in diameter. If 

used manually, samples as well as washing solutions can e.g., be sucked into the cavity by 

means of a water aspirator. The minimum volume required for reproducible signal intensities 

is 27 µl. 
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For the quantitative determination of ascorbyl radicals in plasma, two methods for spectral 

quantification were considered. With one method, spectral analysis was accomplished by 

reading the signal heights in relation to stable nitroxide standards using the integrated 

software. The other method was double integration of the ascorbyl radical signal by either 

exporting the data to the Origin plot program or directly with the integrated Bruker software. 

Figures 86 and 87 show typical raw ESR spectra taken either with the the e-scan or E 580  

spectrometer, respectively. 
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Figure 86 Raw ESR spectrum of the ascorbyl radical, with a concentration of 137 nM, in 
human blood plasma recorded with the e-scan spectrometer. 
 
 
 
 

3.5.3 ELEXSYS E 580 ESR spectrometer 
 
The ELEXSYS E 580, Fourier Transform (FT)-ESR spectrometer of the E 500 series is a 

front end research spectrometer with signal to noise (S/N) ratios up to 5000 and field accuracy 

of 500 mG over the full range. The blood plasma probes were inserted in a 1.1 mm quartz 

capillary requiring a minimum volume of 20 µl. Figure 80 illustrates the centre of maximum 

signal intensity for such a probe placed in the dielectric cavity that required a length of 4.5 

cm. However, for routine measurements a quartz capillary was used with a length of 5.5 cm 

below the lower opening of the spacer from the sample rod and filled with 50 µl plasma 

sample. 
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Figure 87 ESR spectrum of the ascorbyl radical, with a concentration of 114 nM, in human 
blood plasma recorded with the E 580 spectrometer.  
 

 
Table 1 Quantification and comparison of ascorbyl radicals in human blood plasma, 
measured with the e scan and E 580 spectrometer. The spectral area of ascorbyl radicals was 
calculated with the Origin plot software. 

 
ascr. conc. 
levels [nM] 

double measurements 
of plasma probes 

Microcal Origin 
ascr conc. [nM]  

Bruker 
ascr conc. [nM] 

Factor 

 
≤ 100 

 
3 

 
50 ± 7 

 
49 ± 6 

 
1.03 ± 0.00 

 
100 ≤ c ≤ 300 

 
4 

 
240 ± 73 

 
232 ± 71 

 
1.03 ± 0.00 

 
≥ 300 

 
4 

 
366 ± 15 

 
354 ± 15 

 
1.03 ± 0.00 

 
Table 2 Ascorbyl radical concentrations measured with the E 580 spectrometer. 
Concentrations were determined from the spectral area using integrated or the Origin plot 
software. 
 

ascr. conc. 
levels [nM] 

double measurements  
of plasma probes 

e-scan 
ascr conc. [nM] 

E580 
ascr conc. 

[nM] 

Factor 

    
  ≤ 100 

 
32 

 
36 ± 16 

 
31 ± 13 

 
1.15 ± 0.18 

 
100 ≤ c ≤ 300 

 
8 

 
243 ± 25 

 
216 ± 37 

 
1.20 ± 0.2 

 
           ≥ 300 

 
13 

 
406 ± 112 

 
336 ± 64 

 
1.20 ± 0.19 
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Figure 88 Dependence of the signal intensity upon the vertical position of the probe in the 
Bruker dielectric cavity as determined with the E 580 spectrometer. Measurements were 
carried out using few TEMP-COOH nitroxide crystals fixed in silicone grease as point 
sample. 
 

ascr. conc. 
levels [nM] 

no. of 
measurments 

Quant: area 
 

ascr conc. [nM] 

Quant: signal 
intensity 

ascr conc. [nM] 

Factor 

 
≤ 100 

 
3 

 
36 ± 16 

 
136 ± 87 

 
3.58 ± 0.79 

 
100 ≤ c ≤ 300 

 
4 

 
167 ± 73 

 
638 ± 373 

 
3.81 ± 0.14 

 
≥ 300 

 
3 

 
402 ± 99 

 
1485 ± 402 

 
3.68 ± 0.09 

 
Table 3 Quantification of ascorbyl radicals achieved by integration of spectral areas in 
relation to values derived from the signal intensities using an e-scan spectrometer.  
 

As can be seen in Table 1, the radical concentrations determined with the e-scan spectrometer 

are consistently higher by about 20 % as compared to the values determined with the E 580. 

At first look, this is rather surprising in consideration of the high sensitivity of the research 

instrument. However, as described in Chapter 3.1.4, the stability of the ascorbyl radical at 

room temperature is rather low, i.e., spectra need to be recorded within 10 min at latest after 

thawing in order to avoid considerable decreases in signal amplitude. Apparently, the rapid 

sampling through the tubing system is not only compensating for the lower sensitivity of the 

routine instrument but even allows for better detection of the initial radical concentration. 
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Quantification by double integration is the method of choice and there are no differences 

whether the integrated software or the Origin program is employed (Table 2). Obviously, 

values based instead on the signal amplitude are highly in error (Table 3), most likely because 

of  different line widths and shapes of the ascorbyl radical in relation to the nitroxides used as 

a standard in these experiments. 

 

3.5.4 Instrument settings for the e-scan and E 580 spectrometers 
 

e-scan E580 

Resonator                       : scc_0143.cal 
Microwave frequency    :  9.74 GHz 
Microwave power          :  7.06 mW 
Receiver gain                 :  3.17e+03 
Mod. frequency              :  86 KHz 
Mod. amplitude              :  0.99 G 
No. of scans                    :  80 
Center field                     :  3462 G 
Sweep width                   :  8 G  
Resolution                      :  512 points 
Conversion time             :  10.24 ms 
Time constant                 :  10.24 ms 
Sweep time                     :  5.24 s 
 

Resonator                       : diel. 
Microwave frequency    :  9.69 GHz 
Microwave power          :  20.17 mW 
Receiver gain                 :  85 
Mod. frequency              :  100 KHz 
Mod. amplitude              :  1 G 
No. of scans                    :  5 
Center field                     :  3451 G 
Sweep width                   :  8 G  
Resolution                      :  512 points 
Conversion time             :  163,84 ms 
Time constant                 :  81.9 ms 
Sweep time                     :  80 s 
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4 Material and methods 

4.1 Biochemical studies of the efficacy of heavy-dose vitamin C 

supplementation on healthy subjects  

 

4.1.1 Protocol of healthy subjects with intravenous infusion of 7.5 g and/ or 750 mg 

vitamin C 

 

Number of male healthy volunteers    : 6 

Intravenous infusion of Vitamin C-Injektopas®  : 7.5 g and 750 mg 

Time taken for intravenous    : 30 min/day in the morning 

Duration of vitamin C infusion    : 6 days 

Period under observation     : 29 days 

Washout phase      : 14 days 

Withdrawals of blood on following days  : 0 and 22/30 ml blood, once 

         1 and 23/160 ml blood, 8 times 

         2 to 6 and 24 to 28/50 ml blood, 5 times 

Moreover urine probes taken at    : 0, 1, 22, 23 and 28  days respectively. 

4.1.2 Vitamin C-Injektopas® dosage and clinical parameters 

 

Division of healthy subjects    : 2 × 2 groups 

Subdivision of healthy volunteers   : A1 and A2 

Group A: day1       : 750 mg vitamin C intravenous  

              days 2-6      : 750 mg vitamin C intravenous  

Group A subdivided into two groups: 

Group A1         : observation day 1 

Group A2         : observation day 1-6 
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The procedure with 7.5 g vitamin C is repeated analogue experimental setup A 

 

The vitamin C infusion with Vitamin C-Injektopas® was prepared and executed as follows: 

1. Vitamin C-Injektopas® 750 mg: The infusion was administrated over a period of 

10 minutes through a vena cubitalis diverted vein catheter. 

2. Vitamin C-Injektopas® 7.5 g: Diluted in 50 ml flask with a 50 ml Ampuwa®. The 

infusion was passed over a period of 30 minutes through a vena cubitalis diverted 

vein catheter.  

4.1.3 Withdrawal and storage of blood  

 

Venous blood was drawn by venipuncture with an evacuated Vacutainer®. Blood tubes were 

drawn by 1 ml Lavender Top containing 15%Liquid K3 EDTA as anticoagulant. Sample tubes 

were transferred and centrifuged at 1500 X g for 5 minutes at 4° C.  The non haemolysed 

plasma sample was decanted into 4×50 µl eppendorfs using transfer pipette and immediately 

shock frozen by liquid air. The samples were stored at -80° C or lower (transported on dry 

ice).  

   

 

ascorbic acid ascorbyl radical Vitamin E 

500 µl EDTA-

plasma, meta-

phosphoric acid, 2 

* Eppendorfs, 

- 20°C 

1 ml EDTA plasma, 

centrifuge, 

4 * Epi´s, - 80°C 

1ml EDTA 

plasma,  

2 * Epi´s, 

- 20°C 

 

Table 4 Collection and storage of blood plasma.  
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4.1.4 Separation and classification of biochemical  parameters 

 
Primary parameters Secondary parameters 

Ascorbic acid,  ascorbyl radical 

conc. in plasma 

MDA, 8-Oxoguanine, oxalat 

calcium 

 

Table 5 Classification of biochemical parameters into primary and secondary parameters. 

4.1.5 Primary Parameter: Determination of ascorbyl radicals in blood plasma of 

healthy subjects using ESR spectroscopy 

Plasma probes frozen at -80°C were thawed immediately in 30°C water, vortexed shortly and 

inserted into a 1 mm quartz capillary tube with a 1 ml syringe. The probe was immediately 

inserted into the ESR cavity and measured at 25°C using a Bruker E 580-X band spectrometer 

operating at 9.4 GHz with a 100-kHz modulation frequency, equipped with a TE01 dielectric 

cavity. The concentrations of ascorbyl radical were determined by double integration of ESR 

spectra with TEMP-COOH as a standard. The nitroxide spectra of the standard were obtained 

with the same instrumental settings as used for ascorbyl radicals, except for the sweep width. 

 

time [min] 0 5 15 30 60 120 240 480 
7.5 g vit. C         

average ascr [nM] 47 137 132 219 130 107 77 56 
stdev 13 89 57 103 52 27 19 15 

         
750 mg vit. C         

average ascr [nM] 37 70 78 80 66 63 45 45 
stdev 7 24 31 33 22 26 20 24 

 
Table 6 Time-dependent changes of ascorbyl radical concentrations from 6 healthy subjects 
after7.5 g and/or 750 mg vitamin C infusion.  
 
 

Vit. C 750  mg 7.5 g 0 
time 
[min] 

ascr 
[nM] 

ascr 
[nM] 

ascr 
[nM] 

12 151 265 30 
30 145 225 29 
45 123 175 28 
60 94 152 29 
75 85 120 25 
90 69 98 22 

105 61 75 9 
120 46 49 15 
135 40 39 9 
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150 27 26 10 
165 25 18 9 
180 23 14 -- 
195 17 14 -- 

 

Table 7 Ascorbyl radical decay in plasma at laboratory conditions against time. 

 

4.1.6 Primary Parameter: Determination of ascorbic acid concentrations in blood 

plasma*  

 

The refrozen plasma-EDTA-phosphoric acid mixture was added to 200 µl BHT-solution 

(buthylhydroxytoluene), vortexed gently for 1 min and centrifuged. 1:1 supernatant of the 

plasma mixture and moving phase (acetonitrile/ phosphate buffer at 70:30), once again 

centrifuged and injected through a GromSil 120 Amino-2pA 5 µM column at 12 mPa with a 

flow rate of 1.5 ml/ min. 

 
 

time [min] 0 5 15 30 60 120 240 480 
7.5g vit. C         

average ascOH [µM] 58 7061 2148 1837 1278 806 425 209 
stdev 15 5202 280 288 164 160 116 59 

         
750 mg vit. C         

average ascOH [µM] 73 1905 311 243 204 160 118 91 
stdev 27 1508 93 76 29 47 28 30 

 
Table 8 Time-dependent changes of ascorbate concentrations of 6 healthy subjects in plasma 
after vitamin C infusion. 
 

 

 

 

 

 

 

 

 

*Silke Mrosek at the university of Hohenheim 
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4.1.7 Secondary parameter in plasma: MDA, vitamin E, 8-Oxoguanine, calcium, and 

oxalat levels in blood plasma (determined at the university of Hohenheim) 

 
Protocol: MDA 
 

Plasma TBARS mixture was incubated, heated and the complex eventually extracted with 

butanol. Measured under fluorescence spectroscopy: λexc = 530 nm and λem = 590 nm. The 

MDA concentrations obtained were proportional to lipid peroxidation equivalent levels. 

 
Protocol: Vitamin E  
 
For the determination of α-tocopherol in plasma, the plasma probes were added with ethanol 

for protein precipitation and extracted with n-hexane. The organic phase was directly injected 

into a Cyano 2PR HPLC column with n-hexane/isopropanol as moving phase and detected at 

λ = 293 nm. Quantifications were carried out with given standards of tocopherol 

concentrations  

 
Protocol:  8-oxoguanine  
 

8-OHdG and 8-OH-G excreted in urine was separated through a C18 ODS 2 column in 

neutral medium and once again separated with a nucleoside specific column and 

electrochemically detected in acid medium. 

Protocol:  Oxalate  
 

For the determination of oxalate concentration, it was oxidized to carbon dioxide and 

hydrogen peroxide by oxalate-oxidase. Hydrogen peroxide in turn reacted with 3-methyl-2-

benzothiazolium-hydrazone (MBTH) and 3-dimethylamino-benzoeic acid in the presence of 

peroxidase, in which an indamine-chromophore complex appeared with absorptions 

maximum of λ = 590 nm which is proportional to the oxalate concentration in the probe. 

 

 
Sec. parameter in urine Vit. C dosage Day 0 Day 1 Day 6 

vitamin E [µM] 750 mg 25.7 + 4.3 26.2 + 4.7 25.1 + 7.3 

 7.5 g  27.8 + 8.5 26.9 + 3.8 24.4 + 4.7 

MDA [µM] 750 mg 0.53 + 0.13 0.46 + 0.07 0.36 + 0.03 
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 7.5 g  0.58 + 0.15 0.43 + 0.11 0.40 + 0.08 

8-oxoguanine 750 mg 35.9 + 35.2 19 + 19,5 29.9 + 14.6 

 7.5 g  34.4 + 23.3 45,5 + 33 35.3 + 25.9 

Oxalat 750 mg 27.3 + 9.2 30 + 6.3 35.2 + 5.1 

 7.5 g  37.7+ 9.2 28.8 + 7.6 52.3 + 11.7 

Calcium [mM] 750 mg 5.33 + 1.53 5.03 + 2.25 3.68 + 3.14 

 7.5 g  5.53 + 1.54 5.42 + 1.59 2.55 + 1.53 

 
Table  9  Secondary parameters for oxidative stress in urine after vitamin C supplementation. 

 

4.2 Biochemical correlations of oxidative stress parameters from  patients 

undergoing an aorta-coronary bypass operation after heavy doses 

vitamin C therapy  

 

4.2.1 Classification of patients in treatment groups 
 

group 1 placebo- patients 
group 2 patients with bolus: 7.5g ASC und continuous infusion: 22.5g ASC 
group 3 Patients with bolus: 15g ASC und continuous infusion: 30g ASC 

 

Table 10 Patients classified into 3 groups treated with placebo and vitamin C.  
 
 
 

 group 1 group 2 group 3 total 

no. of patients 17 20 20 57 

 
 
Table 11 Total number of patients classified into 3 groups. 
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4.2.2 Determination of ascorbic acid and ascorbyl radical, MDA, TAS, sICAM and 

sVCAM concentrations in patients after placebo, 30 g and 45 g vitamin C 

infusion. 

 

4.2.2.1 Protocol : Ascorbyl radical determination using ESR spectroscopy 
 
Frozen plasma probes were thawed immediately in 30°C water and measured at 25°C e with a 

Bruker E 580-X band spectrometer fitted with a TE01 dielectric cavity. The quantification of 

ascorbyl radicals was performed, by plotting the concentrations of a stable nitroxide radical 

(3-carboxyl-2,2,5,5-tetramethyl-3-pyrrolin-1-oxyl) as standard, against the area of ESR 

spectra after double integration. To fit the data a linear regression was applied. Ascorbyl 

radical concentrations were determined after double integration.  

 
 
 

ascr [nM] placebo 22.5 + 7.5 g 30 + 15 g 
B1 34 + 8 32 + 14 48 + 35 
B2 22 + 12 188 + 58 237 + 87 
B3 33 + 9 224 + 67 280 + 98 
B4 34 + 8 227 + 64 271 + 94 
B5 36 + 10 245 + 71 284 + 83 
B6 37 + 8 249 + 70 302 + 77 
B7 29 + 8 209 + 48 279 + 67 
B8 29 + 7 179 + 48 247 + 66 
B9 27 + 7 126 + 43 173 + 49 

B10 27 + 5 48 + 12 46 + 18 
  

Table 12 Ascorbyl radical concentrations after vitamin C infusion from placebo patients and 
patients after vitamin C infusion. B1 to B10 (see chapter 3.2.1) 
 

4.2.2.2 Protocol:  Ascorbic acid determination*  
 

The total ascorbic acid as well as dehydroascorbate was determined by a photometric method. 

Dilute m-phosphoric acid was added to 10 times the volume of EDTA-plasma and stored at -

80°C. The plasma was thawed and oxidized with TEMPO to dehydroascorbate which in turn 

reacts with o-phenylenediamine to a coloured product with an absorptions maximum at λmax = 

340 nm.  
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ascOH 
[µM] 

placebo 22.5 + 7.5 g 30 + 15 g 

B1 45 + 12 48 + 41 51 + 9 
B2 33 + 9 965 + 380 1875 + 611 
B3 40 + 9 1197 + 472 2575 + 893 
B4 41 + 10 1190 + 444 2420 + 841 
B5 39 + 10 1232 + 504 2500 + 883 
B6 36 + 10 1160 + 479 2406 + 994 
B7 31 + 7 912 + 373 1845 + 769 
B8 31 + 7 827 + 347 1579 + 832 
B9 32 + 9 758 + 433 1386 + 855 

B10 22 + 9 60 + 33   61 + 15 
 
Table 13 Ascorbate concentrations after vitamin C infusion from placebo patients and 
patients after vitamin C infusion.  
 
 
 
 

4.2.2.3 Protocol:  Determination of MDA levels in plasma 
 
See section 4.1.7 
 

MDA 
[µM] 

placebo 22.5 + 7.5 g 30 + 15 g 

B1 0.33 + 0.10 0.34 + 0.1 0.37 + 0.08 
B2 0.30 + 0.08 0.21 + 0.05 0.26 + 0.05 
B3 0.40 + 0.11 0.32 + 0.07 0.44 + 0.11 
B4 0.40 + 0.11 0.33 + 0.07 0.42 + 0.11 
B5 0.42 + 0.10 0.34 + 0.06 0.46 + 0.13 
B6 0.52 + 0.17 0.39 + 0.10 0.55 + 0.22 
B7 0.75 + 0.26 0.49 + 0.17 0.60 + 0.20 
B8 0.80 + 0.34 0.48 + 0.19 0.51 + 0.10 
B9 0.45 + 0.14 0.30 + 0.10 0.39 + 0.11 

B10 0.48 + 0.18 0.35 + 0.09 0.37 + 0.09 
 
Table 14 MDA concentrations after vitamin C infusion from placebo patients and patients 
after vitamin C infusion.  

4.2.2.3 Protocol: TAS 
 
The TAS was measured using a colorimetric assay. The chromogen ABTS is incubated with 

peroxidase and hydrogen peroxide to produce the ABTS radical cation. The ABTS radical is 

detectable from its blue-green colour which is measured at 600 nm at 37°C. Antioxidants in 

the sample suppress the formation of the radical cation to a degree which is proportional to 

their concentration. 
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TAS [mM] placebo 22.5 + 7.5 g 
B1 1.34 + 0.14 1.35 + 0.14 
B2 1.06 + 0.15 1.60 + 0.06 
B3 1.26 + 0.18 1.61 + 0.05 
B4 1.26 + 0.15 1.62 + 0.05 
B5 1.27 + 0.16 1.61 + 0.04 
B6 1.32 + 0.14 1.61 + 0.04 
B7 1.31 + 0.15 1.61 + 0.05 
B8 1.32 + 0.16 1.61 + 0.06 
B9 1.29 + 0.14 1.60 + 0.06 

B10 1.34 + 0.13 1.34 + 0.17 
 
Table 15 Total antioxidant status after vitamin C infusion from placebo patients and patients 
after vitamin C infusion.  
 

*  Vitamin C, TAS und TBARS: Marina Langer, Universität Hohenheim, Institut für Biologische Chemie und      

Ernährungswissenschaft 

 
4.2.2.4 Protocol: sICAM, sVCAM* 
 

A monoclonal antibody specific for sVCAM/sICAM was pre-coated into microplates. 

Standards, samples, controls and conjugates were pipetted into the wells and any sVCAM/ 

sICAM present was sandwiched between by the immobilized antibody and the enzyme-linked 

monoclonal antibody specific for sVCAM. After washing a substrate solution 

(tetramethylbenzidine) was added into the wells. After 30 minutes the colour development 

was observed at 450 nm which is proportional to the amount of sVCAM/sICAM bound. The 

unknown concentration of sVCAM/sICAM in plasma was determined from the quantification 

of the standards. 

 
ICAM 
[ng/ml] 

placebo 22.5 + 7.5 g 30 + 15 g 

B1 208 + 57 196 + 48 158 + 31 
B2 119 + 36 113 + 35 79 + 31 
B3 115 + 31 115 + 33 79 + 14 
B4 119 + 33 112 + 33 81 + 14 
B5 127 + 36 121 + 44 86 + 19 
B6 147 + 44 135 + 44 93 + 19 
B7 176 + 50 159 + 41 115 + 10 
B8  180 + 61 163 + 43 107 + 11 
B9 243 + 75 193 + 51 147 + 36 

B10 311 + 113 246 + 59  211 + 29 
 
Table 16  sICAM levels after vitamin C infusion of  placebo patients and patients after 
vitamin C infusion.  
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VCAM 
[ng/ml] 

placebo 22.5 + 7.5 g 30 + 15 g 

B1 308 + 136 296 + 109 266 + 110 
B2 146 + 59 152 + 49 111 + 34 
B3 169 + 96 159 + 67 135 + 38 
B4 176 + 78 171 + 62 141 + 46 
B5 200 + 81 182 + 74 155 + 38 
B6 268 + 121 240 + 155 158 + 75 
B7 336 + 121 325 + 144 236 + 30 
B8  352 + 184 293 + 128 219 + 53 
B9 392 + 261 318 + 136 310 + 69 

B10 486 + 264 421 + 233  399 + 164 
 
 
Table 17  sVCAM levels after vitamin C infusion from placebo patients and patients after 
vitamin C infusion.  
 

* VCAM und ICAM: Beate Schlegel, Universität Hohenheim, Institut für Biologische Chemie 

und Ernährungswissenschaft 

 

4.3 Chemistry and detection of ascorbyl free radicals and spin trapping 

techniques in vitro as markers of oxidative stress 

 

4.3.1 Dependence of ascorbyl radical concentration with varying pH’s  

Materials: hydrogen peroxide 30% Merck, ammoniumferrous (II) sulphate hexahydrate 

Merck, L(+) ascorbic acid, Riedel-de Haen. 

 
Experiments were performed at 25°C by incubating 6 mM ascorbate concentration in pH 

dependent buffers with 0.6 mM hydrogen peroxide and 0.06 mM ammonium ferrous sulphate 

and eventually vortexed for 15-30 seconds. ESR spectra of ascorbyl radicals were obtained 

using an E580 spectrometer from Bruker operating at 9.4 GHz equipped with a TE01 dielectric 

cavity. 

 
 
 
 

 pH conc [µM] 
3.7 0.023 + 0.02 
4.4 0.069 + 0.03 
4.9 0.11 + 0.02 
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5.6 0.154 + 0.02 
6.0 0.135 + 0.03 
6.4 0.291+ 0.04 
6.8 0.563 + 0.05 
7.0 0.612 + 0.04 
7.2 0.726 + 0.07 
7.6 0.932 + 0.08 
7.7 0.956 + 0.1 
8.1 2.188 + 0.3 
8.8 3.104 + 0.6 
9.4 1.919 + 0.4 
9.7 1.289 + 0.6 
9.8 0.938 + 0.4 

 
 
Table 18  Ascorbyl radical concentrations  in a wide range of pH Buffers. 
 
 

Ascorbyl radical concentrations were determined in pH dependent buffer mediums. Sodium 

phosphate-Citrate buffers were used pH’s 3.6 to 5.4. At higher pH’s 5.8 – 8.0 Sodium 

phosphate buffers were mixed whereas Borax buffers were used at pH above 8.0 to 10. 

 

4.3.2 Oxidation of ascorbate in hypoxanthine and xanthine systems 

Materials: Xanthine was obtained from Sigma Aldrich Germany and hypoxanthine was 

obtained from Fluka. Xanthine oxidase 10.7 mg/ml was purchased form Serva. 

 
PBS 10X stock solution at pH 7.4 

2.2 g KH2PO4   20 mM 

11.36 Na2HPO4  80 mM 

1.86 KCl   25 mM 

81.8 g NaCl   1.4 M 

 
Xanthine/ xanthine oxidase assay 
 
1.07 mg/ ml xanthine oxidase catalyst in 10 mM xanthine substrate concentration was used as 

source of free radical generating system in 0.312 mM ascorbate medium in PBS at pH 7.4 and 

measured using ESR spectroscopy. 

 

Xanthine 

- 15.2 mg Xanthine 

- 1 ml Na2CO3 solution 1 M 
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- add to 10 ml PBS 7.4 

 

 
EDTA-Na2 

- 37 mg EDTA-Na2 

- add to 10 ml PBS 7.4 

(NH4)2SO4 solution 

- 26. 4 g (NH4)2SO4 solution 2M 

- add to 100 ml H2O (deionised) 

Enzyme sample 

- 180 µl (NH4)2SO4 solution 2M 

- 20 µl XOD stock solution 

 

Substrate buffer solution 

- 19.4 ml PBS buffer 

- 0.4 ml xanthine suspension 10 mM 

- 0.2 ml EDTA-Na2 solution 10 mM in PBS 

 

For UV spectroscopic measurements, 50 µl enzyme sample was added to 2.95 ml buffer 

substrate solution and measured at λmax = 283 nm every 2 second for 2 minutes or otherwise 

specified. 

 

Kinetics of ascorbyl radical concentrations in xanthine/ XOD systems after repeated 

introduction of XOD 

 

Experimental procedure same as before, additionally 1.07 mg/ml xanthine oxidase was added 

after 20 min.  

 

4.3.3 Spin trapping Methods using DMPO 
 
Materials: DMPO was purchased from Sigma Aldrich, Germany. 
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Purification procedure for DMPO 

 
1g commercial DMPO was purified by dissolving it in 5 ml de-ionised water. After addition of 

5 ml toluene, the biphasic mixture were shaken vigorously and allowed to separate. The top 

toluene phase was pipetted out and discarded. This procedure was repeated twice before 

blowing in nitrogen to remove traces of toluene. 

Meanwhile 1g of charcoal was stirred with 25 ml de-ionised water and filtered at the pump to 

remove traces of metal ions and eventually washed with 1L de-ionized water. The wet 

charcoal was added to a plastic centrifuge tube along with the toluene washed DMPO solution.  

The mixture was shaken vigorously for a minute or two and then centrifuged. The colourless 

DMPO was pipetted out and filtered through a syringe filter. The concentration of the resulting 

solution was determined by UV spectroscopy, λmax = 227 nm, ε = 7700, which was about 1.5 

mol DMPO. The stock solution was eventually stored at – 20°C. 

In vitro determination of ROS was performed using 44 mM DMPO in 10mM Xanthine PBS 

medium. Before starting the reaction, 1.07 mg/ml xanthine oxidase was added and 

immediately measured with ESR with 100 G scan width. 

 

4.3.4 Vitamin C and vitamin E interactions in biphasic systems 
 
Materials: Tocopherol, Triton-X 100 from Sigma 

 

1M α-Tocopherol was added to 10 % triton-X 100 and PBS buffer at pH 7.4 and vortexed 

with 10 mM H2O2 and  1 mM Fe(NH4)2(SO4)2⋅6H2O  for 10 min. The tocopherol radicals 

were extracted with equal volume of ethyl acetate. Meanwhile, 10 mM of ascorbate was 

prepared in PBS medium at pH 7.4. The biphasic mixture was vortexed vigorously for 2 min 

and the aqueous phase was separated from the organic phase.  The organic phase containing 

tocopherol radicals was dried over with MgSO4 and measured using ESR spectroscopy along 

with aqueous phase containing ascorbyl radical. 

4.3.5 Ascorbate and spin trapping studies on oxidative stress observed under ischemia/ 

anoxia and reoxygenation 

Materials: Fetal bovine serum (FBS) was purchased from Biochrom (Berlin, Germany), 

medium and supplements came from PAA (Linz, Austria). 
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Cell culture 

Human colon carcinoma cells (RKO) were cultured in Dulbecco’s modified eagle medium 

(DMEM) with 4.5 g/l D-glucose. Medium was supplemented with 10% FBS, 2 mM L-

glutamine, 100 units/ml penicillin, and 100 µg/ml streptomycin. Cells were transferred twice 

a week, and seeded 1 x 106 per 10 cm dish one day prior to the experiment. Cells were kept in 

a humidified atmosphere of 5% CO2 in air at 37°C. Hypoxia (0.5% O2, 5% CO2, 94.5% N2) 

incubations were performed in a 3-gas incubator IG750 (Jouan, Unterhaching, Germany), and 

anoxia (0% O2, 5% CO2, 95% N2) treatments were carried out in a flow-through manner in 

plexiglass chambers connected to a DIGAMIX 5KM 402 gas pump (Woesthoff GmbH, 

Bochum, Germany). 

 
Experiment 

 
Prior to the experiments medium was changed, and the cells were treated with 1 mM ascorbic 

acid (in PBS). The experiments were either conducted in normal DMEM medium (see above) 

or in serum-free Quantum 263 medium. Oxygen depletion treatment was conducted for 30, 

60, 90 or 120 min. Alternatively, cells were reoxygenated after 60 min of anoxia treatment for 

additional 30 or 60 min. After the respective incubation the cells were harvested by washing 

them off the plates in medium and directly freezing them in liquid nitrogen. Measurements 

were performed using ESR spectroscopy 
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time [min] 0 30 60 90 120 60+10 60+30 60+60
30 45 52 28 37

normoxia 35 43 73 34 36
34 46 93 37 34

ave. 33 45 73 33 36
stdev. 2.6 1.5 20.5 4.6 1.5

hypoxia 30 52 50 37 38 73 157 67
35 56 48 92 45 43 40 58
34 49 48 65 49 57 101 60

ave. 33 52 49 65 44 58 99 62
stdev. 2.6 3.5 1.2 27.5 5.6 15.0 58.5 4.7

anoxia 30 42 43 40 43 62 72 60
35 45 58 54 52 66 102 120
34 53 52 48 58 68 136 61

ave. 33 47 51 47 51 65 103 80

reoxygenation

 
Table 19 Ascorbyl radical concentrations [nM] during normal, anoxia, hypoxia and 

reoxygenation conditions in RKO cell lines DMEM serum medium.   

 

 
ESR spectroscopy 

Measurements were performed using E580 spectrometer from Bruker. The quantification of 

ascorbyl radicals was carried out by plotting the concentrations of a stable nitroxide radical 

(3-carboxyl-2,2,5,5-tetramethyl-3-pyrrolin-1-oxyl) dissolved in fresh 1% DMF as standard, 

against the area of ESR spectra after double integration. The resulting slopes were used to 

correlate ascorbyl radical concentrations, from its corresponding area after double integration. 

The area from ESR spectra was evaluated using commercial Microcal Origin software.  

 

ESR : Scan time were varied in kinetic experiments and sweep width was changed to 100 G 

for DMPO and 8 G for ascorbyl radicals 
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E580 

Resonator                       : dielectric 
Microwave frequency    :  9.69 GHz 
Microwave power          :  20.17 mW 
Receiver gain                 :  85 
Mod. frequency             :  100 KHz 
Mod. amplitude             :  1 G 
No. of scans                   :  5 
Center field                    :  3451 G 
Sweep width                  :  8 G  
Resolution                     :  512 points 
Conversion time            :  163.84 ms 
Time constant                :  81.9 ms 
Sweep time                    :  80 s 
 

 
Table 20 Instrumental setting used for ESR experiments. 
 

4.3.6 Fluorescent spin label (Dansyl-tempamine) 

Materials: Dansyl chloride, tempamine from Sigma Aldrich Germany. Fluorescence 

spectrometer LS-5 luminescence Perlin Elmer. 

Dansyl-tempamine was synthesized according to the modified procedure of kalai, 

Hideg et al 2002. 0.1M dansyl chloride and 0.1M TEMP-amine in chloroform was allowed to  

stay overnight. The raw product was dried over MgSO4 and separated through an Al2O3 

chromatographic column with CHCl3/CH2Cl2 as moving phase. 

To determine nitroxide reduction of fluorescent labelled spin probes in the presence of ROS, 

varying concentrations of ferrous ammonium sulphate was added to 50 µM of Dansyl-

tempamine.  

 

4.4 Fluorescent-labelling of ascorbic acid with N-methylisatoic anhydride 

 

Materials: N-methylisatoic anhydride, Aldrich Germany. L(+)-ascorbic acid Riedel-de Haen, 

4-(dimenthylamino) pyridine Fluka Germany. 
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4.4.1 Experimental protocol  

 
0.1 M ascorbic acid and 0.1 M N-methylisatoic anhydride with catalytic amounts of 0.05 M 

DMAP in DMF containing 0.1 M triethylamine. The reaction was allowed to be heated up to 

65 °C for 3 h in a reflux cooler until carbon dioxide evolution ceased. DMF was evaporated 

and the raw product mixed with sodium carbonate solution. The aqueous mixture was allowed 

to stand for 10 minutes and acidified with dilute phosphoric acid. The raw product was 

dissolved with ethyl acetate, dried over magnesium sulphate and evaporated under vacuum.  

4.4.2 Thin layer chromatography, HPLC and MPLC 

RP-18 TLC   :  5 × 7.5 cm,  RP-18 F254 s (Merck) 

Moving phase  : acetonitrile / water  30: 70 % 
 
 
 
 

fractions Rf , λ = 254, 366 nm  

raw 0.93, 0.67 and 0.52 

fraction 2 0.93 

fraction 3 0.67 

  

Table 21 TLC RP-18 of  fractions of the raw product with acetonitrile/ water as moving 

phase. 

 

 
HPLC: Beckman, System Gold, 168 Detector, 125 Solvent Mode. Column; Lichrosorb RP-

18 5 µm, 4×210mm, LKG Germany. Flow rate 1ml/min with acetonitrile/water as moving 

phase 

MPLC: Pharmacia Biotech Pump P-50. Column; Lichrosorb RP-1810 µm, 18×2 cm, 

Merck. Flow rate 3 ml/min with acetonitrile/water as moving phase 

4.4.3 1H-NMR spectroscopy of fractions 2 and 3 
For the structural determination of fractions 2 and 3 after chromatographic separations, 1H-

NMR spectrum was recorded with a 400 MHz Bruker spectrometer with tetramethylsilane 

(TMS) as an internal standard. Fractions 2 and 3 were dissolved in deuterium solvents like
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D6-DMSO or CDCl3. The recorded 1H -NMR spectra obtained were compared with the 

educts. 

 
1H-NMR 

 
N-CH3 
[ppm] 

4H aromatic ring 
[ppm] 

N-methylisatoic 
anhydride 

3.61 8.18 - 7.20 

 

Table 22 1H-NMR of N-methylisatoic anhydride in CDCl3. 

 
1H-NMR 

[ppm] 
2 C-OH 3 C-OH 4 C-H 5 C-H 5 C-OH 6 C-H2 6 C-OH N-CH3 4H 

aromatic 
ring 

fr. 2 
DMSO-D6 

- 8.42 4.94 3.82 5.09 3.48 5.09 2.87 7.92-6.65 

fr. 3 
DMSO-D6 

11.13 8.43 4.8 4.14 5.45 4.27 
 

- 2.85 8.43-6.56 

fr.3 
CDCl3 

- - 4.78 4.49 - 4.30 - 2.89 7.90 -6.67 

 
Table 23 1H-NMR of fraction 2 and 3 respectively. Chemical shifts in ppm.  

 
1H-NMR 

[ppm] 
 2 C-OH   3 C-OH   4 C-H 5 C-H   5 C-OH   6 C-H2  6 C-OH  

ascoh 11.01 8.3 4.72 3.73 4.87 3.44 4.87 
         

fraction 2  8.42 4.94 3.8 5.09 3.5 5.09 
∆δ H   0.12 0.23 0.04 0.22 0.06 0.22 

         
fraction 3 11.13 8.43 4.8 4.14 5.45 4.27  

∆δ H  0.12 0.13 0.09 0.36 0.58 0.83   
 
Table 24 1H-NMR of fraction 2 and 3 respectively in relation to difference in the chemical 

shifts (ppm).    
 

4.4.4 Mass spectroscopy 
 
Materials:  
Mass spectrometer Finnigan MAT. EI-pos QT 200 70eV 1mA 
 
 

no. mass intensity % RA 
 

1 
2 
3 
4 
5 

 
75.9 
77.0 
78.0 
79.0 
91.0 

 
3.77 × 104 

3.42× 105 

2.22× 105 

6.70× 104 

7.70× 104 

 
2.5 

22.4 
14.5 
4.38 
5.03 
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6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

91.9 
103.9 
105.0 
106.0 
107.0 
131.9 
132.9 
133.9 
134.9 
150.9 
151.9 
264.8 
308.8 

 

6.02× 104 
5.61× 105 

6.11× 105 

1.92× 105 

4.91× 104 

3.38× 105 

2.10× 105 

8.08× 105 

6.24× 104 

6.57× 105 

6.66× 104 

8.52× 104 

1.99× 105 

3.94 
36.71 
40.02 
12.55 
3.22 

22.12 
13.75 
52.92 
4.08 

42.99 
4.36 
5.8 

13.02 

 
Table 25 Mass spectroscopy of the fraction 3. 
 

no. Mass intensity % RA 
 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

 
73.0 
76.9 
78.0 
79.0 
91.0 
103.9 
105.0 
106.0 
115.9 
115.9 
131.9 
132.9 
133.9 
134.9 
149.9 
150.9 
308.8 
309.8 

 
6.29 × 106 

1.81× 107 

8.34× 106 

5.04× 106 

4.88× 106 

2.58× 107 
2.84× 107 

1.24× 107 

2.89× 106 

5.12× 106 

2.56× 107 

1.61× 107 

1.15× 108 

9.54× 106 

4.41× 106 

6.05× 107 

7.38× 107 

1.19× 107 

 
5.45 

15.68 
7.24 
4.37 
4.24 

22.42 
24.61 
10.74 
2.51 
4.44 

22.22 
13.94 
100.00 
8.28 
3.83 

52.45 
67.94 
10.36 

 
 
Table 26 Mass spectroscopy of the fraction 2. 
 
 

 

4.4.5 Hypoxanthine/ xanthine oxidase assay used for the oxidation of MANTA with the 

help of UV, fluorescence, and ESR spectroscopy 

 
Materials: UV-spectrometer  DU 640 Beckman. Fluorescence spectrometer LS-5 

luminescence Perlin Elmer. 
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Protocol 

1.07 mg/ml xanthine oxidase catalyst in 10 mM hypoxanthine substrate concentration was 

used as source of free radical generating system in 2.5 mM MANTA PBS medium dissolved 

in DMF or acetonitrile at pH 7.4 and measured using ESR spectroscopy as described in 

section 4.3.5 

 

Hypoxanthine  

- 14 mg hypoxanthine 

- add to 10 ml PBS 7.4 

 
EDTA-Na2 

- 37 mg EDTA-Na2 

- add to 10 ml PBS 7.4 

(NH4)2SO4 solution 

- 26. 4 g (NH4)2SO4 solution 2M 

- add to 100 ml H2O (deionised) 

Enzyme sample 

- 180 µl (NH4)2SO4 solution 2M 

- 20 µl XOD stock solution 

 
Substrate buffer solution 

- 9.8 ml PBS buffer 

- 0.1 ml hypoxanthine suspension  

- 0.1 ml EDTA-Na2 solution 10 mM in PBS 

 
For UV spectroscopic measurements, 50 µl enzyme sample was added to 2.95 ml buffer 

substrate solution and measured at λ = 252 nm for hypoxanthine every 2 second for 2 minutes 

or otherwise specified. 
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4 Summary and general discussions 
 

Under physiological conditions oxygen is constantly being converted to reactive oxygen 

intermediates, in mitochondria, peroxisomes, cytochrome p450 systems, macrophages, 

neutrophils and in plasma membranes. These reactive oxygen species (ROS) are toxic and 

therefore alter cell integrity leading to cell damage. To protect itself against this toxic effect of 

ROS, living systems have developed defence systems that scavenge ROS formation. These 

systems include some enzymes, transporting proteins and small antioxidant molecules for 

instance vitamin C and E. This thesis describes a study on the antioxidant chemistry and 

activity of vitamin C in vivo and in vitro systems using ESR spectroscopy. Also, a new 

method was designed to label ascorbic acid with a fluorescent marker. Moreover, some 

important criteria were considered for the evaluation and quantification of ascorbyl radicals in 

human blood plasma using two types of ESR spectrometers. 

 
 
The efficacy of heavy-dose vitamin C supplementation on healthy volunteers and 

patients undergoing coronary bypass surgery  

 
The relevance of vitamin C in humans to protect the immune system, in collagen biosynthesis, 

and its antioxidant activity are well known. Although most of the animals can synthesize their 

own vitamin C, men among few other living creatures need it in their diet. Under stress 

conditions animals can produce a lot more vitamin C than normal values produced per day. 

This may show the requirement of vitamin C in the diet for living subjects that cannot 

produce it. A lot of controversies still exist on the amount of vitamin C required on a daily 

basis.  

 
Although the dietary allowance of vitamin C intake recommended from US and European 

health authorities was about 100 to 200 mg per day, from a therapeutic point of view, the 

dietary recommendation of vitamin C was suggested to reach grams. Heavy doses of vitamin 

C are required mostly due to factors such as environmental influence, pregnancy and illness. 

Such heavy doses of vitamin C may also show pro-oxidant effects resulting from reactions 

with metal ions. Pro-oxidative effects of vitamin C stirred out a lot of discussions after a 

publication in Nature Podmore et al 1998, Jenner 1998. However other clinical trials showed 

inconsistent results showing antioxidant activity outweighing pro-oxidant effect. 
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The studies presented in the earlier stages of this thesis were to determine the efficacy of 

heavy-dose of vitamin C supplementation on healthy volunteers. The anti-oxidant defence 

mechanisms of free radical ascorbate oxidation were investigated using ESR spectroscopy 

and correlated with biochemical parameters for oxidative stress which were determined at the 

University of Hohenheim. In this study, healthy volunteers were intravenously given 750 mg 

or 7.5 g vitamin C. Ascorbyl radicals in plasma showed time-dependent changes before and 

after vitamin C infusion. These changes of ascorbyl radical concentration in plasma were 

compared with those of ascorbate during a time course of 8 hours. Apparently, ascorbate and 

ascorbyl radical concentrations showed similar time-dependent changes. Both these 

concentrations increased significantly at initial stages in relation to their respective doses that 

subsequently decreased steadily. Non-linear pathways showed that ascorbate oxidation did 

not end at the level of ascorbyl radical, but oxidized further to DHA within a short time 

interval. Therefore it is plausible that an increase in ascorbyl radical concentration as a result 

of ascorbate oxidation occurs during regular metabolic processes. The oxidation of ascorbate 

to ascorbyl radicals in healthy subjects may allow indirect estimation on the rate of oxidative 

transformations. Nevertheless, it should be noted that background ascorbyl radical ESR 

signals are usually seen at high ascorbate concentrations. This is consistent with the view that 

EDTA monovettes used for the removal of blood influenced plasma pH. Moreover, freezing 

and thawing of plasma resulted in an increase in ascorbyl radical concentrations caused by the 

presence of free metal ions.  

Also, the time-dependent stability of ascorbyl radicals in plasma was investigated 

under laboratory conditions. Kinetic curves demonstrated that ascorbyl radicals decreased via 

first-order. Although, higher ascorbyl radical concentrations tend to show shorter half-lives. 

The changes in ascorbyl radical concentrations before and after vitamin C supplementation 

suggest ascorbate oxidations during normal metabolic processes in healthy subjects. 

 
To prove the antioxidant and / or pro-oxidant activity of heavy doses vitamin C, secondary 

biochemical parameters for oxidative stress determined at the University of Hohenheim were 

compared with ascorbyl radical concentrations. However, the presence of higher levels of 

ascorbyl radicals in humans did not significantly affect Vitamin E, 8-oxoguanine and calcium 

levels in plasma. Indeed, malondialdehyde (MDA) levels decreased steadily after vitamin C 

therapy. These results suggest that, heavy doses vitamin C supplementation did not show any
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pro-oxidant activity. Therefore, vitamin C can be considered to be a powerful antioxidant, 

implicating its importance in the protection against various oxidative stress-related 

complications. 

Subsequently, the results acquired from healthy subjects after vitamin C 

supplementation enabled further research on oxidative stress with patients undergoing 

coronary aorta bypass operation (CABO). Previous publications have shown that bypass 

cardiac surgery can inflict damage to several tissues caused by the release ROS in response to 

inflammatory reactions. Moreover it is known that ROS generation takes place during 

myocardial ischemia and reperfusion in various experimental models and in human heart. 

ROS could therefore be responsible for bypass-induced damages or impairment of myocardial 

recovery. Therefore, the efficacy of vitamin C therapy was studied using ESR spectroscopy 

and compared with other parameters of oxidative stress. 

Patients undergoing CABO were classified into placebo patients and those treated with 30g 

and 45 g vitamin C therapy in the form of bolus and continuous-infusion. Time-dependent 

ascorbyl radical levels in plasma as primary parameters of oxidative stress were correlated 

with ascorbate concentrations. Ascorbyl radical and ascorbate concentrations before and after 

vitamin C infusion showed rather similar time-dependent pathways. However, a marginal 

increase in ascorbyl radical concentrations in relation to ascorbate concentrations was seen 

during reperfusion and surgery. These results may reveal that ascorbate oxidation was 

induced by reactive oxygen species as a consequence of reperfusion or reoxygenation injury. 

Therefore, a correlation between ascorbyl radical concentration and ROS generation during 

periods of oxidative stress could be proved. To study pro-oxidative damage as a result of 

excess vitamin C therapy, secondary parameters for oxidative stress determined at the 

University of Hohenheim, such as MDA, intracellular adhesion molecules (sICAM), vascular 

adhesion molecules (sVCAM) and total antioxidant status (TAS) assays were correlated with 

ascorbyl radical concentrations. No adverse pro-oxidative effects on patients during 

reperfusion and bypass operation were observed. Indeed, MDA, sICAM and sVCAM levels 

were lower than placebo patients after vitamin C treatment.  

 
Chemistry of ascorbate 

In order to acquire an overview on the antioxidant activity of vitamin C, it is important to 

study the dynamic chemistry of free radical ascorbate oxidation using ESR spectroscopy. The 

different ionized forms of ascorbate have different redox properties and therefore the redox 

chemistry of ascorbate is highly pH dependent.  
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The data obtained by the studies on ascorbate oxidation in pH dependent buffers showed the 

dependence of ascorbyl radicals on the pH. Ascorbyl radical intensities increased steadily 

with increasing pH and increased significantly above physiological pH. Therefore, these 

results suggest that pH can greatly influence ascorbate oxidation caused by the step-wise 

ionization of the ene-diol group at the lactone ring. At pH values above 8, the dianionic form 

of ascorbate may outweigh the mono anionic form shifting its equilibrium to 

dehydroascorbate.  Investigations on the dependence of pH on ascorbyl radical intensity are of 

great importance, since blood withdrawn in monovettes contains EDTA influenced plasma 

pH. Therefore, ascorbate oxidation must be carefully scrutinized by controlling the pH 

subsequently to eliminate experimental errors. 

This part of the thesis discusses the ascorbate oxidation using chemical and enzymatic 

reactions as major source of oxygen free radicals. Generally, similar time-dependent changes 

in ascorbyl radical concentrations were observed during oxidation processes. However, the 

results show that the kinetics of redox reactions of ascorbate is also dependent on ascorbyl 

radical concentrations in the system. The data from ESR spectra showed that ascorbyl radical 

signal intensity as a function of pH, presence of trace catalytic metal ions, and ascorbate 

concentrations. This was in agreement with published papers in the past, e.g. Buttner et al 

1993 and 1998. Under these circumstances, free radical ascorbate oxidation was easily studied 

when background levels are hardly visible in the ESR spectrum. This is achieved by removing 

traces of metal ions by passing ascorbate through resin columns and active coal. In 

experiments using hypoxanthine/ xanthine oxidase enzyme complexes as source of ROS, 

ascorbate oxidation showed more or less similar time-dependent patterns as seen in in vivo 

studies with healthy subjects. Also, the synergic effect of vitamin C and vitamin E in 

scavenging ROS was interesting enough to observe this mechanism in regular laboratory 

conditions. Time-dependent studies showed cross correlations, where the α-tocopherol radical 

concentrations formed after oxidation decreased in the presence of ascorbate in aqueous 

medium. This interesting phenomenon of one-electron redox transfer from α-tocopherol to 

ascorbate might be useful in a model system to show similar cascades of recycling processes 

taking place to eliminate radicals in biological systems.  
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Ascorbate oxidation during hypoxia, anoxia and reoxygenation  

Since ascorbate is a major water-soluble antioxidant showing little or no toxic effects at high 

concentrations, it was an ideal choice as a natural non-invasive marker of free radical 

oxidations taking place in biological systems. In vitro studies showed time-dependent changes 

of ascorbate oxidation in RKO cell lines during hypoxia, anoxia and reoxygenation.  

Interestingly, ascorbyl radical reactions during periods of oxidative stress revealed 

similar free radical ascorbate oxidation curves as seen in healthy subjects and patients after 

reperfusion and surgery. Generally, an increase in ascorbyl radical concentrations was 

observed after 30 minute periods of ischemia and reoxygenation. This reconfirms studies on 

oxidative stress that results in the release of free radicals during ischemic and reoxygenation 

injury. 

 
Oxidative stress and spin trapping 

An alternative method for determination of ROS in vitro was the application of spin trapping 

methods using ESR spectroscopy. DMPO was incubated in RKO cell medium following the 

same experimental procedure as with that of ascorbate. Paradoxically, all the collected spin 

trapped probes showed negative results. Time-dependent studies showed that FBS Serum in 

DMEM medium significantly enhanced paramagnetic nitroxide reduction. Further 

investigations carried out in serum-free medium turned out to be unsuccessful. In the last 

decade, extensive studies on oxidative stress using ESR spectroscopy were investigated with 

the help of spin trapping techniques to detect and identify free radicals in biological systems. 

However, numerous in vitro studies on spin trapping previously and in this work showed its 

limitations in the determination of free radicals.  

 
Fluorescent-labelled ascorbic acid and its redox chemistry 

An alternative strategy to determine ROS is the synthesis of new fluorescent-labelled ascorbic 

acid. This modified compound may open new pathways in determining free radical species 

using ESR as well as fluorescence spectroscopy. In addition, fluorescence spectroscopy may 

overcome the detection limits of ESR spectroscopy. Moreover, due to reduced or no toxicity 

of ascorbic acid, real-time measurements in the detection, interaction and co-localization of 

ROS using fluorescence confocal laser microscope can be achieved in the near future.  

A new fluorescent-labelled ascorbic acid ester (MANTA) was successfully 

synthesized from N-methyl isatoic anhydride and ascorbic acid. The multifaceted antioxidant 

character of   
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MANTA makes it challenging for studies using UV, ESR and fluorescence spectroscopy. 

MANTA is relatively stable in organic solvents like acetonitrile and DMF, unstable in DMSO 

and partly soluble in water. This fluorescent-labelled ascorbic acid ester was isolated by 

HPLC, purified and characterized using 1H-NMR and mass spectroscopy. Time-dependent 

fluorescence intensity and radical concentrations after oxidation revealed unique structural 

and dynamic information. MANTA showed that it’s modified structure, and redox properties 

towards oxidants do not differ from those of native ascorbate, particularly, since both 

compounds demonstrated similar properties such as pH dependency, type of ESR structural 

information of radical species and time-dependent oxidation kinetics. ROS can be easily 

detected by MANTA using chemical and enzymatic reactions.  Another unique feature of 

MANTA is the emission of an intense blue colour, which can be useful in future for real-time 

detection in cells using fluorescence confocal laser microscopic techniques. Moreover ROS 

can be easily targeted by observing areas of fluorescence quenching. Therefore by the 

application of ESR and fluorescence spectroscopic methods for targeting and determining 

ROS, MANTA may enhance and open new strategic pathways for studies on oxidative stress 

responses in biological systems. Nevertheless, studies on MANTA showed that this molecule 

was labile in aqueous medium. MANTA was relatively stable in reaction medium containing 

more than 5% acetonitrile or DMF and very unstable in DMSO. Therefore, studies on the 

antioxidant activity of MANTA in organic solvents may turn out to be inadequate in 

biological systems in response to cell viability.  

 
Quantification and evaluation of ascorbyl radicals using ESR spectrometers  

In the course of this thesis a Bruker high-end research ESR spectrometer (E 500 Series), 

employed for the determination and quantification of ascorbyl free radical concentrations in 

plasma was compared with two low cost bench top ESR spectrometers. The radical 

concentrations determined with the e-scan spectrometer were consistently higher as compared 

to the values determined with the E580. The rapid sampling method of e-scan in relation to 

the E580 spectrometer helped in gaining measuring time and thus compensated the low 

stability of ascorbyl radicals. 

 
 
 
 
 
 



List of references 

 

128

6 List of references 

Adam M. R., Jessup W., Celermajer DS., Cigarette smoking is associated with increased 

human monocyte adhesion to endothelial cells: reversibility with oral L-arginine but not 

vitamin C. J Am Clin Cardiol 1997; 29: 491-497. 

 
Alcain, F. J., Buron, M. I., Villalba, J. M., and Navas, P. (1991) Biochim. Biophys. Acta. 

1073, 380-385 

 
Bolli R: Mechanism of myocardial “stunning,” Circulation 1990; 82; 723-38 

 
Bendich, A; Machlin l. J.; Scandurra, O: Burton, G. W.; Wayner, D. D. M.  The  antioxidant 

role of vitamin C. Adv. Free Rad. Biol.. Med. 2: 419-444; 1986 

 
Bystryak I. M,; likhtenshtein, G. I.; Kotelnikov, A. I.; H. O.; Hideg, K. Russian Journal of 

phys. Chem. 1986, 60 1679.   

 
Belch JJF, Bridges A, Scott N, et al. Oxygen free radical and congestive heart failure.  

Br Heart J 1991; 65:245–248 

 
Blot WJ, Li JY, Taylor PR, et al. Nutrition intervention trialsin Linxian, China: 

Supplementation with specific vitamin/ mineral combinations, cancer incidence and disease 

specificmortality in the general population. J Natl Cancer Inst 1993; 85:1483–1492 

 
Bolli R., Oxygen-derived free radicals and myocardial reperfusion injury: An overview. 

Cardiovasc. Drugs Ther. 5: 1991, 249-268 . 

 
Borek C., Antioxidant and cancer. Science & Medicine 52:60, 1997 

 
Bors W., Buettner G.R., The vitamin C radical and its reactions, 1997 

 
Buettner G. R., Jurkiewicz B.A., Catalytic metals, ascorbate, and free radicals: combinations 

to avoid. Rad. Research 145: 1996, 532-541 

 
Bendich, A., Machlin, L. J.,Scandurra, O., Burton, G.W., and Wayner,D. D. M., Adv. Free 

Radicals Biol. Med. 1986, 2:419-444 

 
Bevilacqua M. P., Nelson R. M., Mannori G., Cecconi O., Endothelial-leukocyte adhesion 

molecole in human disease.  1994, Annu Rev Med 45;361-378 



List of references 

 

129

 
Buettner GR The pecking order of free radicals and antioxidants: Lipid peroxidation, α-

tocopherol,and ascorbate. Arch. Biochem Biophysis 300,535-543, 1993 

 
Buettner G. R., In the absence of catalytic metals ascorbate does not oxidize at pH 7: 

ascorbate as a test for catalytic metals. J Biochem Biophys Methods 1998; 16:27-40) 

Buettner GR and Jurkiewicz BA, Catalytic metals, ascorbate and free radicals. Radiation 

Research1993, 145, 532-541. 

 

Butler, A. M., and Cushman, M., Interaction of vitamin C and vitamin E during free radical 

stress in Plasma: An ESR study, J. Clin. Invest., 19, 459, 1940.   

 
Carr AC and Frei B: Toward new recommended dietary allowance for vitamin C based on 

antioxidant and health effects in humans. Am J Clin Nutr 1999, 69:1086-1107 

 
Clark R.A., and Pearson D.W., Inactivation of transferrin iron binding capacity by the 

neutrophile myeloperoxidase syste. J Biol Chem, 264, 9420-9427 (1989) 

 
Curello S et al oxidative stress during reperfusion of human hearts: Potential sources of 

oxygen free radicals. Cardivasc Res 1995; 29;118-25 

 
Clegg, R. M. FRET. Curr. Opin. Biotechnol. 6: 103-110, 1995., Wu, P., and L. Brand.  RET: 

Methods and applications. Anal. Biochem. 218: 1-13, 1994. 

 
Crandon J. H., Lund, C. C., and Dill, D. B., New England J. Med., 223, 353, 1940.  

 
Crane, F. L., Sun, I. L., Clark, M. G., and Löw, H., (1985) Biochim. Biophys. Acta. ,811,  233-

264 

 
Davies S: Time-course of free radical activity during coronary artery operations with  

CPB. J Thorac Cadiovasc Surg 1993; 105: 979-87 

 
Diaz-Velez DR, Garcia-Castineiras G, Mendoza-Ramos E, et al. Increased malondialdehyde 

in peripheral blood of patients with congestive heart failure. Am Heart J 1996; 131:146–152 

 
Ferrari R et al: Occurrence of oxidative stress during reperfusion of human hearts.  

Circulation 1990; 81:201-11 

 



List of references 

 

130

 
Fritzsche, T.M., Trommer, W.E., McIntyre, J.O. und Fleischer, S. Complex formation 

between nucleotides and D-ß-hydroxybutyrate dehydrogenase studied by fluorescence and 

EPR spectroscopy, (1984) Biochim. Biophys. Acta  791, 173-185. 

 
Fridovich, I. Superoxide radical and superoxide dismutase. Ann. Rev. Biochem. 64:97, 1995.  

 
Frei B. and Traber  M., The new US dietary reference for vitamin C and E. Redox Rep 2001, 

6:5-9 

 
Frei, B., England, L., Ames, B. N., Ascorbate is an outstanding anti-oxidant in human blood 

plasma. Prot. Natl. Acad. Sci. USA 86: 6377-6381; 1989 

 
Ghatak A, Brar MJS, Agarwal A, et al. Oxy free radical systemin heart failure and therapeutic 

role of oral vitamin E. Int J Cardiol 1996; 57:119–127 

 
Glöggler, K.G., Balasubramanian, K., Beth, A., Fritzsche, T.M., Park, J.H., Pearson, D.E., 

Trommer, W.E. und Venkataramu, S.D. The synthesis of deuterium-substituted, spin-labeled 

analogues of AMP and NAD+ and their use in ESR studies of lactate dehydrogenase, 

(1982) Biochim. Biophys. Acta 701, 224-228. 

 
Green. S. A.; Simpson, D. J. ; Zhou, G. ; Ho, P. S.; N. V. J. Am. Chem. Soc. 1990, 112, 7337. 

 
Ghiselli A, Serafini M, Natella F, and Scaccini C., TAC as a tool to asses redox status: 

Critical view and experimental data. Free Rad Biol Med 29:1106-1114, 2000 

 
Gutteridge JMC. Thiobarbituric acid-reactivity following iron dependent free radical  

damage to amino acids and carbohydrates. FEBS Lett 1981; 128:343–346 

 
Gutteridge JMC, Halliwell B. The measurement and mechanism of lipid peroxidation in 

biological systems. Trends Biochem Sci 1990; 15:129–135 

 
Hearse DJ, Bolli R: Reperfusion induced injury; manifestations, mechanisms, and  

clinical relevance. Cardivasc Res 1992; 26;101-8 

 
Herbelin, S. E.; Blough, N. V. J. Phys. Chem. Soc. 1990, 112, 7337 

 

 



List of references 

 

131

 
Halliwell B. and Gutteridge JMC., Role of free radicals and catalytic metal ions in human 

diseases. Methods Enzymol 1990, 186,  

 
Halliwell B and Gutteridge JMC, Fee radicals in biology and medicine. Oxford science  

publications. 2000. 

 
Hennekens CH, Buring JE, Manson JE. Lack of effect of longterm supplementation with beta 

carotene on the incidence of malignant neoplasms and cardiovascular disease. N Engl J Med 

1998; 334:1145–1149 

 
Heineman, M. J, Clin. Invest., 17, 751, 1938. 4 

 
Hearse D. J., Bolli R., Reperfusion induced injury: manifestations, mechanisms,and clinical 

relevance, Cardiovasc. Res. 26: 1992, 101-108. 

 
Janero DR. Malondialdehyde and thiobarbituric acid-reactivityas diagnostic indices of  

lipid peroxidation and peroxidativetissue injury. Free Radic Biol Med 1990; 9:515–540 

 
Jenner A, England TG, Aruoma OI, Halliwell B. Measurement of oxidative DNA damage by 

gas chromatography mass spectrometry: ethanethiol prevents artifactual generation of 

oxidized DNA bases. Biochem J 1998;331:365-369 

 
Kehrer, JP et al. XOD is not responsible for reoxygenation injury in isolated-perfused rat 

heart. Free Rad. Res. Commun. 3, 69. 1987. 

 
Keith M, Geranmayegan A, Sole M J, et al. Increased oxidativestress in patients with 

congestive heart failure. J Am Coll Cardiol 1998; 31:1352–1356 

 
Keith ME, Jeejeebhoy KN, Langer A, et al. A controlledclinical trial of vitamin E 

supplementation in patients with congestive heart failure. Am J Clin Nutr 2001; 73:219–224 

 
Lazzarino G et al: Myocardial release of malondialdehyde and purine compounds during 

coronary bypass surgery; Circulation 1994; 90:291-7 

 
Levine, M., N. Engl. J. Med., 1986, 892-901 

 

 



List of references 

 

132

 
Levine M et el Vitamin C pharmacokinetics in healthy volunteers: evidence for a 

recommended dietary allowance. Proc Natl Acad Sci USA 1996,  93, 3704 

 
Levine M, Rumsey S. C., Druwala R., Park J. B., and Wang Y., Criteria and 

recommendations for vitamin C intake, , JAMA, vol. 281, 1999, p1415-1423 

 
Loesel, R.M., Philipp, R., Kálai, T., Hideg, K. & Trommer, W.E., Synthesis and application 

of novel bifunctional spinlabels, (1999) Bioconjugate Chemistry 10, 578-582. 

 
Lowry, O. H., Bessey, O. A., Brock, M. J., and Lopez, J. A., J. Biol. Chem., 166, 111, 1946 

 
Mak S, Lehotay DC, Yazdanpanah M, et al. Unsaturatedaldehydes including 4-OH-nonenal 

are elevated in patientswith congestive heart failure. J Card Fail 2000; 6:108–114 

 
Mallat Z, Philip I, Lebret M, et al. Elevated levels of8-iso-prostaglandin F2_ in pericardial 

fluid of patients withheart failure: a potential role for in vivo oxidant stress inventricular 

dilatation and progression to heart failure. Circulation 1998; 97:1536–1539 

 
McMurray J, Chopra M, Abdullah I, et al. Evidence of oxidative stress in chronic heart failure 

in humans. Eur Heart J 1993; 14:1493–1498 

 
Misra HP, Fridovich I., The generation of superoxide radical during auto-oxidation of 

haemoglobin. J Biol Chem 1972; 247: 6960-6962 

 
Morse et al, lattelets and neutrophil activation during cardiac surgical procedures; Impact of 

CPB. Ann Thorac Surg 1998; 65:691-5). 

 
May, J. M., Qu, Z., and Whitesell, R. R., (1995), Biochemistry 34, 12721-12728 

 
McCord, J.M. (1987) Fed Proc 46, 2402 

 
Mühlhöfer, A., Mrosek, S., Schlegel, B., Trommer, W, Rozario, F., Böhles, H., Zoller, W.G. 

& Biesalski, H.K., High dose intravenious vitamin C therapy is not associated with an 

increase of pro-oxidative biomarkers, , (2004) Eur. J. Clin. Nutrition. 

 
Niki E. Interaction of ascorbic acid and α-tocopherol. Ann. NY Acad. Sci., 48: 1987, 186-199 

Nishiyama Y, Ikeda H, Haramaki N, et al. Oxidative stress isrelated to exercise intolerance in 

patients with heart failure. Am Heart J 1997; 135:115–120 



List of references 

 

133

 
Nomura H. and Sugimoto K.: Synthesis of L-ascorbic acid acyl derivatives stabilized against 

oxidation, Chem. Pharm. Bull. 14(9)1039-1044, 1966.  

 

Opie LH: Reperfusion injury and its pharmacologic modifications. Circulaton 1989;  80; 

1049-62 

 
Omenn GS, Goodman GE, Thornquist MD, et al. Effects ofa combination of beta carotene 

and vitamin A on lung cancer and cardiovascular disease. N Engl J Med 1996; 334:1150 1155 

 
Packer J. E., Slater T. F., Wilson R. L., Direct observation of free radical interactions between 

vitamin E and vitamin C. Nature 278: 1979, 737-742 

 
Padayatty S J, Levine M. New insights into the physiology and pharmacology of vitamin C. 

Can Med Assoc J 2001; 164:353– 355 

 
Pietri. S.; Seguin. J. R; D’Arbigny. P and Culcasi. M. Free Rad. Biol. Med., Vol. 16,no. 4, pp. 

523-528, 1994) 

 
Podmore I. D., Griffiths H. R., et al., Vitamin C exhibits pro-oxidant properties. Nature 1998, 

392:559 

 
Porter WL., Paradoxical behaviour of antioxidants in food and biological systems. Tox Ind. 

Health 1995, 9, 93 

 
Rapola JM, Virtamo J, Ripatti S, et al. Effects of _ tocopheroland _ carotene supplements on 

symptoms, progression, and prognosis of angina pectoris. Heart 1998; 79:454–458 

 
Reese C.B., Trentham D.R. : Tetrahedron Letters, No. 29, 2459-2467, 1965. 

  
Romay C, Pascual C, Lissi EA.The reaction between ABTS radical cation and antioxidants 

and its use to evaluate the antioxidant status of serum samples. Braz J Med Biol Res. 1996 

Feb; 29 (2):175-83. 

 
Roe, J. H., Kuether, C. A., and Zimler, R. G., J, Clin. Invest., 26, 355, 1947. J. H. Roe and C. 

A. Kuether, J. Biol. Chem., 166, 111, 1946.         

 
 



List of references 

 

134

 
Rumsey, S.C. et al, Glucose transporters isoforms GLUT 1 and GLUT 3 transport DHA, J. 

Biol. Chem., 272, 1997, 18982 

 
Schneider, M., Diemer, K, Engelhart, K., Zankl, H., Trommer, W.E. & Biesalski, H. 

Protective effects of vitamins C and E in smokers monitored by semidehydroascorbate radical  

formation in plasma and the frequency of micronuclei in lymphocytes, (2001) Free Radical 

Res. 34, 209-219. 

 
Schneider, M., Niess, A.M., Rozario, F., Angres, C., Tschositsch, K., Battenfeld, N., Schäffer, 

M., Northoff, H., Dickhuth, H.-H., Fehrenbach, E., Trommer, W.E. & Biesalski, H.K. 

Vitamin E supplementation does not increase the vitamin C-radical concentration at rest and 

after exhaustive exercise in healthy male subjects. Eur. J. Nutrition, 2003, 42, 195-200. 

 
Schrier GM, Hess ML. Quantitative identification of superoxide anion as a negative inotropic 

species. Am J Physiol 1988; 255:H138–H143 

 
Sharma M. K. and Buettner G. R., Free Rad. Biol. & Med., vol 14, pp 649-653, 1993 

 
Sies H., Oxidative stress: Oxidative stress, oxidants and antioxidants. Ed. London Academic 

press 1991, pp XV-XXII   

 
Stephens NG, Parsons A, Schofield AM, et al. Randomisedcontrolled trial of vitamin E in 

patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS). Lancet 

1996;347:781–786 

 
Susanna Mak, MD; and Gary E. Newton, MD The Oxidative Stress Hypothesis of Congestive 

Heart Failure  

 
Sylvia P, Jacques R. S., Pierre D’Arbigny and Marcel C., Ascorbyl free radical: A non-

invasive marker of oxidative stress in human open-heart surgery. Free Radical Bio. & Med., 

Vol. 16, No. 4, pp. 523-528, 1994 

 
Tamas Kalai, Olga H. Hankovszky, Eva Hideg, Jozsef Jeko, Kalman Hideg. Synthesis and 

structure optimization of double sensor molecules. Arkivoc 2002, (iii) 112-120. 

 
 

 



List of references 

 

135

 

Trommer, W.E., Del, S., Jehl, M., Milosavljevic, R. & McIntyre, J.O., Lipid-protein 

interaction in R-3hydroxybutyrate dehydrogenase,  2001 Eur. J. Biochem. 268, 241. 

 
Trommer, W.E., Wenzel, H. und Pfleiderer, G. Notiz über Synthese und biochemische 

Eigenschaften eines Spin-Label-Nicotinamid-adenin-dinucleotids, (1974) Liebigs Ann. Chem., 

1357-1359. 

 
Vergely C et al: Influnce of the severity of myocardial ischemia on the intensity of ascorbyl 

free radical release and on postischemic recovery during reperfusion. Free Rad Biol Med 

1998; 24;470-9 

 
Vojdani C, A, Bazargan M., Vojdani E., and Wright J., New evidences for antioxidant 

properties of vitamin. Cancer detection and Prevention, 24(6), 2000, :508-523 

 
Vogel, V. R.; Rubtsova, E. T.; M,; likhtenshtein, G. I.; Hideg, K. J. Photochem. Photobiol. A: 

Chem. 1994, 83, 229 

 
Wang R., Liu Z., Cai R.and Li. X., A new spectrofluorometric method for the determination 

of ascorbic acid based on its activating effect on a haemoglobin-catalyzed reaction. Analytic 

sciences 2002, 18, p977-980 

 
Weber C, Wolfgang E, Weber K, and Weber P.C, Increased adhesiveness of isolated 

monocyte to endothelium is prevented by vitamin C intake in smokers. Circulation 1996; 93: 

1488-1492.  

 
 
 
 

 

 

 

 

 

 

 

 



Danksagung 

 

136

7 Danksagung 

 

An dieser Stelle möchte ich allen Danken, die zum Gelingen dieser Arbeit beigetragen haben: 

 

• Ich danke Frau Dr. A. Wartenberg-Demand von der Firma Pascoe Naturmedizin für 

die finanziellen Unterstützung  und für die Bereitstellung von Plasmaproben für die 

Vitamin C Studien 

 
• Frau S. Mrosek, B. Schlegel, M. Langer, J. Tinz vom Arbeitskreis Prof. Dr. H. 

Biesalski der Uni. Hohenheim, Institut  für Biologische Chemie und   

Ernährungswissenschaft für das bereitwillige Zustellen von  Daten, die für diese 

Arbeit von großer Wichtigkeit waren 

 
• Herr Tobias Schmidt, Arbeitskreis  Prof. Dr. B. Brüne, danke ich für seine stete 

Hilfsbereitschaft und Bereitstellung der für die in vitro Studien benötigten RKO 

Zellen  

 
• Herrn Dr. Rheinhard Philipp  und Dr. Markus Jehl danke ich für Ihren intensive 

Unterstützung bei der Korrekturarbeit 

 
• Frau Caroline  Fluck danke ich für Ihre großzügige Hilfe bei der Überwindung 

schwerer bürokratischer Hürden im Lauf  meiner Promotion 

 
• Frau Elke Litmianski danke ich im Besonderen für Ihre bereitwillige Hilfe bei den 

ESR Untersuchungen von Plasma Proben 

 
• Herrn Dr. Mesfin Redi und Herr Tibebu Giorgis Danke ich ganz herzlich für ihren 

offenes Ohr bei Problemen und Diskussionen, die für meine Arbeit und weiter hinaus 

geholfen haben 

 
• „Last and not the least” danke ich den Mitarbeitern im Arbeitskreis, Herrn Dirk 

Mannweiler, Stefan Hauck, Narasimha Raju , Olaf Becker, Ralf Berger, Dr. Martin 

Hossann, für ihre große Hilfe, Zusammenarbeit und für das sehr gute Arbeitsklima 

während meiner Promotionszeit  



Lebenslauf 

 

137

8 Lebenslauf 

 
 
Name    : Fabian Rozario 
 
Geburtsdatum  : 19.11.1961 
 
Geburtsort   : Trichur (Indien) 
 
Anschrift   : Berliner Str 55 

     66849 Landstuhl 

 
Staatsangehörigkeit  : indisch 
 
Schulbildung   : 1980, Model High School for Boys, Trichur  
 
Studium   : 1982, Pre-Degree, University of Calicut, India 

     1985, Bachelor of Science, University of Kerala, India 

: 1989, Nachweis deutscher Sprachkenntnisse (P.N.D.S),     

                                                                     Kaiserslautern 

     1994, Diplomvorprüfung Chemie, TU Kaiserslautern 

     2000, Diplom Chemie,  TU Kaiserslautern 

     2004, Promotionstudium, Arbeitskreis  

                                                                     Prof. Dr. W.E.  Trommer Fachbereich Chemie,  

                                                                     TU Kaiserslautern 

 
 
 
 
 


