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1. INTRODUCTION

The focus of this thesis is on the subgradient optimization methods which are
used to solve nonsmooth optimization problems. We are particularly concerned
with solving integer programming problems using the methodology of Lagrangian
relaxation and dualization. This involves the problem of maximization of a La-
grangian dual function which is concave but nondifferentiable. The subgradient
methods are suitable to solve such a problem since these procedures can make
use of the concavity of the objective function. The goal of the thesis is to employ
the subgradient optimization techniques to solve a large-scale practical radiation
therapy planning problem which involves certain difficult constraints but imbed-

ded in some tractable nice mathematical structures.

Integer optimization problems are generally difficult to solve because of their
inherent combinatorial complexity. Unfortunately, almost all important generic
classes of integer programming problems are NP-hard. Furthermore, many in-
teger programming problems of practical relevance are of large-size. Hence, the
scale at which these problems arise in applications and the explosive exponential
complexity of their search spaces preclude the use of simplistic enumeration and

search techniques.

Therefore, in order to solve practical integer programming problems we may need
to resort to approximation schemes and problem specific algorithms which can
exploit some special structures of the problem at hand. Indeed, many practically
relevant integer programming problems are usually composed of some nice math-

ematical structures adjoined with certain complicating conditions (or constraints)
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which make any solution procedure difficult. The method of Lagrangian relax-
ation lifts these complicating constraints and makes use of the special structure
to solve the relaxed problem. This produces a lower bound for a minimization
problem. At least a good approximate solution or the best (tight) bound can
be obtained by subgradient optimization methods where a subgradient vector is
obtained by minimizing the relaxed primal problem and the dual variables are
updated iteratively along the direction of this subgradient vector. This approach
has received recognition and is proven to be a very useful tool to solve various
difficult discrete optimization problems since the first successful works of Held
and Karp in 1970’s ([44], [45]). They used Lagrangian relaxation approach based
on minimum spanning trees to devise a successful algorithm for the travelling

salesman problem.

In Chapter 2, we will review some important techniques in the approach of the
Lagrangian relaxation of integer programming problems and formulate the re-
lated Lagrangian dual problem. We also discuss properties of the dual problem,
optimality conditions as well as the general structure of the dual objective func-

tion.

A major challenge in the method of Lagrangian relaxation of a minimization
problem of an integer programming problem is to maximize effectively the La-
grangian dual function which is defined only implicitly and is nondifferentiable,
concave, and piecewise affine. The subgradient method is frequently used to solve
such problems since this method does not demand differentiability. In fact, it is
an iterative procedure which searches for an optimal solution using the direction
of the gradient vector at each point where the gradient of the function exists; but
replaces the gradient vector by a subgradient vector at a point where the gradient
does not exist. The subgradient of a function at a point is generally not unique
and the functional value of the objective function may not be improved along a

given subgradient direction. Consequently, line search techniques as in the gra-
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dient methods of the case of minimizing smooth functions can not be suitable for
subgradient methods. Hence, subgradient methods are not directly analogous to
the gradient methods of smooth nonlinear optimization problems. Depending on
the particular strategy of determining a step direction, there are different kinds
of subgradient procedures which differ in their performance. These procedures

will be discussed in detail.

In Chapter 3, different variants of subgradient methods will be investigated and
a unified presentation of the methods will be given. Their optimality conditions
and convergency properties will be also analyzed. The central drawback of this
methods is that their convergence is usually slow which is mainly caused by the
so called zigzagging phenomena. The slow convergence is a crucial problem, par-
ticularly, in view of the need to solve large-scale problems. Various versions of
subgradient methods such as the modified subgradient method [21], the average
direction strategy [77], and conditional subgradient methods [53] have been de-
veloped with the intent to improve the speed of convergence of the traditional
subgradient method by controlling its zigzagging phenomena. Although these
procedures address the issues of zigzagging phenomena, zigzagging has not been
precisely defined in the literature beyond the geometrical and intuitive under-
standing of the phenomena. Furthermore, none of these procedures can com-
pletely eliminate zigzagging. In order to make the analysis precise, we formalize
the definition of zigzagging in terms of mathematical expressions and explore in
detail the kind of zigzagging which can be manifested by each of the variants
of the subgradient methods. Furthermore, based on the formalized definitions
of zigzagging, we determine suitable values of parameters, such as deflection pa-
rameter, in some of the existing subgradient procedures in order to strengthen
their capability to control zigzagging. Yet, even with such a choice of suitable pa-
rameters, none of the available procedures can completely eliminate zigzagging.
Consequently, the basic difficulty with regard to the slow convergence has not

been altered.
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In Chapter 4, we will introduce a new and general strategy for step direction se-
lection that can help to completely eliminate all kinds of zigzagging phenomena
of subgradient procedures and provide convergence conditions. We also consider
application of the new procedure to solve the Lagrangian dual of integer pro-

gramming problem.

Another drawback of the traditional subgradient method and its modifications is
that the methods do not directly provide primal solutions. Indeed, in the context
of Lagrangian dual formulations, subgradient methods solve the Lagrangian dual
problem and provide a tight bound to the objective value of the primal problem.
But solving the dual problem might not provide primal optimal, or even a feasi-

ble, solution.

In Chapter 5, we discuss the techniques of directly constructing a primal solu-
tion within the subgradient schemes. In particular, we will describe extensions of
the subgradient methods which, without a significant additional computational
effort, can produce primal as well as dual solutions. One of these methods is
the ergodic subgradient method due to Larsson et al. 1999 ( [54] ) which is
an extension of the conditional subgradient procedure. This method constructs
ergodic (averaged) sequences of the solutions of a subproblem within the condi-
tional subgradient method such that the sequence converges to a primal solution
which satisfies the primal-dual optimality conditions together with certain limit
point of the dual variables. The authors originally proposed the algorithm for
a convex programming problem and have proved the convergence of the ergodic
sequence to a point which satisfies the dual-primal optimality conditions. Indeed,
such a point exists for convex programming problems satisfying an appropriate
constraint qualification. However, we cannot expect such a result for the problem
discussed in this thesis due to our demand for integrality and the existence of a

duality gap; as a consequence of which the primal-dual optimality conditions can
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never be generally satisfied. Hence we can aim only at a near-optimal solution

which can be reached as will be shown.

In Chapter 5, we will also describe and analyze the volume algorithm which
has been recently developed by Barahona and Anbil [6]. The volume algorithm
was developed as an extension of the deflected subgradient methods to produce
primal solutions of a linear programming problem within the deflected subgradi-
ent procedure. Its name originated from a result on linear programming duality
stating that one can derive a primal solution from the volumes below the faces
which are active at the maximum point of the dual function. Basically, a primal
solution is constructed as a convex combination of the solutions of the subprob-
lem. Similar to the case of the ergodic subgradient method, we can expect only
a near-optimal primal solution when the volume algorithm is applied to solve an
integer programming problem, since there is no guarantee to satisfy integrality

from convex combinations of points.

In Chapter 6, we apply the subgradient optimization methods to solve the prob-
lem of modulation of radiation beam in the cancer radiation therapy using a
multileaf collimator. Particularly, we will consider the problem of minimizing
total delivery time of a given radiation dose (intensity matrix) to a cancer pa-
tient. The problem is NP-hard [20] and thus far there exists no method for
solving the problem to optimality. We introduce a new, fast and efficient algo-
rithm which combines exact and heuristic procedures to solve the problem. The
exact subproblem in our heuristic algorithm deals with the problem of minimiz-
ing beam-on time of binary intensity matrices generated by the algorithm. We
use the Hamacher-Boland network flow model [16] to solve this subproblem. The
difficulty here is that the network involves side constraints and consists of large
number of nodes and arcs. Hence problems with a large number of bixels in the
multileaf collimator cannot be solved with a reasonable time. We prescribe the

rules for preprocessing in order to reduce the number of arcs and nodes. More-



1. Introduction 6

over, by using the Lagrangian relaxation and dualization technique, we lift the
side constraints and obtain a pure minimum cost flow (circulation) problem as a
subproblem. We solve the resulting circulation problem using the negative cycle
cancelling method. Numerical implementations show that our solution method
dramatically reduces computational time as well as memory space requirement
of large-sized problems. Furthermore, comparisons of numerical results of our
new algorithm with that of other alternative algorithms show its various good

qualities.

Some Notations:

The following notations are frequently appearing in this thesis.

Let u = (uy,ug, . ..,u,) and v = (v, v9,...,v,) be vectors in R”. Then,

e uv = Y " wwv;, independent of whether any of the vectors is a row or

column vector.
e u > 0 means u; >0 foreachi=1, 2,...n.
e |lu|| :=+y/uu - the Euclidean norm .

e Po(u) = argmin, o{|[z—ul||} - the Euclidean projection of u onto a closed,

convex set €2; i.e., the point in 2 closest to u.

e dist(z,S) := min{|ly — z|| : y € S}- distance of a point z € R" from a set
S C R™

o It ={xe€Z" : x;>0,i=1,2,..,n} -theset of vectors of non-negative

integers.

o A= (a1, i, ...,a;), i-th row of a matrix A € R™*",
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nt(Q) ={z e Q: |ly—z| <e=y € Q, for some € > 0} - the set of

interior points of 2, where (2 C R"™.

bd(Q2) = Q —int(Q) = {u € Q:u & int(2)} - the set of boundary points
of a set (2.

conv(X) ={z|z=>" ', Y ;=1 a; >0, 2" € X Vi}- the

convex hull of a set X.

scalars are indexed by subscripts as aq, ..., ag; but vectors are indexed by

superscripts as u!, ..., u".

Q" - set of optimal solutions of an optimization problem whose feasible set

is 2.

¢* - optimal objective value of an optimization problem whose objective

function is ¢(.).
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2. LAGRANGIAN RELAXATION AND DUALITY

In this chapter we review some important techniques of the Lagrangian relaxation
approach for integer programming problems and formulate the related Lagrangian
dual problem. We also discuss properties of the Lagrangian dual problem, opti-

mality conditions and the structure of the dual objective function.

2.1 Introduction

Lagrangian dual arises from a Lagrangian relaxation. Lagrangian relaxation is
a useful technique in nonlinear programming, large-scale or structured linear,
convex, and integer programming. In this thesis, we restrict ourselves to the case

of integer programming. Hence, we consider an integer programming problem

(IP) Z*= min cx (2.1)

st. Ax>b
reX={zxeZ}: Dx>d}

where ¢ € R", (A,b) and (D,d) are m x (n+ 1) and r x (n + 1) matrices,
respectively, and x € Z’ means that x is an n-vector of non-negative integers. X
is a set of discrete (integral) points in a polyhedral and assumed to be non empty
and bounded for convenience. We call the problem (IP) the primal problem and

its solution a primal solution. Suppose that the constraints Dx > d are "nice”

in a sense that an integer program with just these constraints, i.e.,
min{cz : Dz > d, x € Z1 },

can be "easily ” solved for any choice of ¢ while the whole problem which includes

also the other constraints Az > b may be significantly harder to solve. We
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call those constraints Ax > b, which make a solution procedure difficult, the
complicating constraints. A common approach to solve this problem, perhaps
approximately, is to solve its Lagrangian dual problem obtained via Lagrangian
relaxation([44], [45], [74],[39], [75], [36]). In the Lagrangian relaxation approach,
the complicating constraints Az > b are relaxed by introducing a multiplier vector

u € RT?, called Lagrangian multiplier, and the Lagrangian function
L(x,u) =cx+u(b— Ax).
Given u € R, the Lagrangian relazation problem is then to solve the subproblem:

SP(u) ¢(u) = min L(x,u) (2.2)

st. reX

yields the function ¢ determined pointwise by the optimal objective value of the
subproblem. Note that, for any v € R, 2 € XU {2 : Az > b}, and any optimal
solution z* of the (IP) it holds that

o(u) < L(xz,u) <cx and o¢(u) < L(z",u) < ca* = 2"

The relative simplicity of solving the subproblem and the fact that ¢(u) < z*
allows SP(u) to be used to provide lower bounds for (IP). In general, correspond-
ing to different values of u, one obtains different lower bound ¢(u) to the primal
optimal value z*. Thus, to obtain the best (greatest) lower bound of z*, the best
choice of u would be any one which is an optimal solution to the Lagrangian dual

problem:
(LD) ¢" =max {¢(u) : u>0} (2.3)
where ¢(u) is given pointwise by the subproblem SP(u):

¢(u) = min cx + u(b— Ax) (2.4)
st. zeX.

The function ¢ is called the dual function. Observe that when m constraints that

have been dualized are equality constraints of the form Ax = b, the corresponding
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Lagrangian multipliers are unrestricted in sign and the Lagrangian dual becomes

¢" = max{¢(u)}.

uER™

Other possible relaxation problem of the IP is a linear programming relaxation.

For the IP problem the linear programming relaxation is given by

(LP) Zip=min cz
st. Ax>b
reX={zeR?: Dz >d}.

That is, the integrality constraints are simply replaced by its continuous relax-
ation. In the case of a small sized and simple problem, the IP can be solved
by solving its LP relaxation using a simplex based procedure and then apply a
branch and bound or a cutting plane method to generate an integral solution. In
such a procedure the optimal value of the LP relaxation problem =27, provides a
lower bound to z* just as in the case of the LD. However, in IP problems with
some complicating constraints or with a large number of constraints and variables

the Lagrangian dual approach would be preferable since

e LD can make use of the available special structures of the problem by

removing the complicating constraints.

e even if no special structure is available, the number of constraints are re-

duced in the subproblem (2.4).

e using concavity of the dual function (to be justified later), there is easier
method to solve the Lagrangian dual than the simplex-based methods of
solving LP.

e ¢* can be tighter than or else at least as good as 2}, (see, Corollary 2.5 ).

e one can construct an approximate solution of the IP from the solution of
the subproblem (2.4) easily as compared to the simplex-based solution of

the LP relaxation (see Chapter 5).
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2.2 Properties of the Dual Problem and Dual Function

In this section we review some properties of the dual function related to con-
cavity and subdifferentiability. We also summarize the main properties of the
Lagrangian dual problem (LD) which will be used in the remainder of our dis-
cussion. The proof of the next theorem follows directly from the fact that SP(u),
for any v € R, is a relaxation of (IP) and the detail of the proof can be found

on standard text books such as [64] and [84].

Theorem 2.1: (Weak Lagrangian Duality)

Let (IP), SP(u) and (LD) be as defined above and z be a feasible solution of (IP).
Then for any u > 0,

¢(u) < cx. Consequently ¢(u) < ¢* < z*.

O

The above theorem shows that any feasible solution of the dual problem as well
as its maximum value is a lower bound to the optimal value of the primal prob-
lem (IP). The next theorem provides the conditions for which the optimal dual

problem yields a solution to (IP).

Theorem 2.2: (Strong Lagrangian Duality)
Let (IP), SP(u) and (LD) be as defined above. If & solves the subproblem SP ()

for some u > 0, and in addition

Ai > b (2.5)
a(b— Az) =0 (2.6)

then 2 is an optimal solution of the primal problem (IP) and @ is an optimal

solution of the Lagrangian dual problem (LD).

Proof: An 7 satisfying the hypothesis of the theorem is feasible in (IP) because
of (2.5) and
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the fact that & solves SP(u) means & € X. In particular, feasibility of Z implies
that ¢z > 2*. But from the weak duality theorem, Theorem 2.1, we also have
2* > ¢(u) = cx+u(b— Az) = cz. The first equality in this relations follows from
the definition of ¢(u) and the second equality follows from (2.6). Putting these
together we have

x> z2" > ¢u) =ct

from which one can conclude that z* = ¢(u) = cz. That is, 2 is an optimal
solution of (IP). Moreover, using this result and the fact that ¢z is an upper

bound of ¢*, we obtain
¢(i) < ¢* < e = ¢(a).
which means ¢* = ¢(u). That is, @ is an optimal solution of the Lagrangian dual

(LD). O

The implication of (2.5) and (2.6) is that & computed by the subproblem SP ()
is optimal for the IP problem if it satisfies the dualized constraints, i.e., Az > b,
and A'Z = b; whenever @; > 0, where A° is the i-th row of the matrix A. In the
case of a problem where the dualized constraints are all equations, i.e, if Az =0

in the primal problem (IP), then the LD is

max{¢(u): u =0}

and Theorem 2.2 implies that if & solves the subproblem SP(u) and satisfies the
dualized constraints, then & and u are optimal solutions of the primal problem
and the Lagrangian dual problem, respectively, since (2.6) is satisfied for any

4 € R™ and any primal feasible solution z.

In general, however, it is not possible to guarantee finding feasible solutions &
and @ for which ¢(4) = ¢z. For most problem instances of integer program-
ming the strong Lagrangian duality does not hold and thus, there is in general
a gap between the optimal primal and dual objective values. The difference

*

2" — ¢* is known as the Lagrangian duality gap. Even for a problem without such
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duality gap, an optimal solution & of the subproblem SP(#) corresponding to a

Lagrangian optimal dual solution & may not be feasible in the primal problem, IP.

If Z is an optimal solution of the subproblem SP(u) and satisfies (2.5), but not
necessarily (2.6), then  is called an e-optimal solution of (IP) with respect to @
with € = u(Az —b) > 0. In this case & is a feasible solution of (IP) and hence cz

is an upper bound to the optimal primal objective value z*. In fact, it holds that
ct— 2" <e

since ¢(u) = ¢z + u(b — Az) < z* implies that cz — 2* < 4(Az — b) = €. Hence

we have shown the following result.

Corollary 2.3: Let (IP), SP(u), and (LD) be as given above. If & is an e-optimal
solution of (IP) with respect to u, then

o(u) <z"<ex and ct—¢(u) =e (2.7)

O

The diagram below, Figure 2.1, illustrates the relations given in Corollary 2.3

where 7 is an e-optimal solution of (IP) with respect to .

£ = (AR —b)

Fig. 2.1: Order relation of dual and primal values with the gap € where Z is an e-optimal

solution of (IP) with respect to .

The next theorem characterizes the Lagrangian dual problem. This characteri-
zation was provided by Geoffrion [39] and is based on the convex hull, denoted

by conv(X), of points in X where conv(X) is a set of all convex combinations of
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the points in X, i.e.
conv(X)={z: 7= Zaixi, Zai =1,0; >0,2" €X,Vi }.

(See, for instance, [47] or [70] for further detailed discussion on convex set and

convex hull.)

Theorem 2.4: (Geoffrion, 1974)
Let (IP), SP(u) and (LD) be as defined above and ¢* be the optimal value of the
Lagrangian dual problem (LD). Then

¢* =min cx (2.8)
s.t. Az >0
x € conv(X).

Proof: Since X C 77 and bounded, X consists of a finite, but possibly very
large, number of points x!, z%,...,27. Then,

¢" = max {¢(u)}

u>0
= max {min cx +u(b— Az) : z € X}

u>0
= max {min ez’ +u(b— Az") : i=1,2,...,T}
max 7
= st. p<cx' +ulb— ArY), i=1,2,...,T. (2.9)

neR! wueRT,

where the new variable 7 is a lower bound to {cx’ +u(b— Az"): i=1,2,...,T}.
The latter problem, (2.9), is a linear programming problem (usually large scale

LP) with variables (n,u) € R' x R”". Taking its dual yields:

¢* =min 3 ay(cat)
st SO oAzt —b) >0
ZtT:1 o =1
ap>0; t=1,2,...,T.
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Now setting z = S0, aya®, with S oy =1, a; >0, foreach t =1,2,...,T,

we get
¢* = min cx
st Az >b
x € conv(X),
which is as required. O

The above theorem tells us how strong a bound obtained from the Lagrangian
dual is. Indeed, the bound provided by the Lagrangian dual is at least as large as
(in some cases larger than) the lower bound obtained from the linear programming

relaxation of (IP) as shown in the next corollary.

Corollary 2.5: (Lagrangian Dual versus Linear Programming Relaxation)
Let (IP), and (LD) be as given above and let (LP) be the linear programming
relaxation of (IP). Then

9" = 21p
where ¢* and 27 , are the optimal objective values of the (LD) and (LP), respec-
tively.

Proof: The problem (LP) is defined as

2;p=min cx
s.t. Az >b
reX={zeRr: Dr>d}

Since X C X implies that conv(X) C conv(X) = X, it follows that the (LP) is a

relaxation of problem (2.8 ), in Theorem 2.4. Hence, ¢* > 27 5. a

We now consider two examples to demonstrate the existence of a problem in-
stance for which the optimal Lagrangian dual value is strictly greater than that

of the linear programming relaxation and also where the two are equal.



2. Lagrangian Relaxation and Duality 17

Example 2.1: In this example we consider Lagrangian dual of uncapacitated
warehouse location problem as given by Parker and Rardin ( [66], page 208).
In warehouse location problems one chooses which of a given set of potential
warehouses i« € W = {1,2,...,n} to build in order to supply demand points
j€D={12...,m} at minimum total cost. Costs include both a fixed cost
fi > 0 for building the warehouse ¢ and transportation costs ),y Zje D CiiTij,
where x;; is the amount shipped from i to j and ¢;; is its unit transportation cost.

By introducing variables y; where

1, if warehouse ¢ is built
Yi =
0, otherwise

we obtain the formulation:

(P1) min Z Z CijTij + Z fiyi

ieW jeD ieWw

ieW

owy <O dj)y VieWw (2.11)
JeED JjeD

yi € {0,1} (2.13)

Here, d; is the demand at point j. Suppose we dualize (2.10). The Lagrangian
dual of (P1) is then

(LD-1) ¢* = max {¢(u) : ue R}
where ¢ : R'fl — R is given by the subproblem

SP1(u) ¢(u) = ZjeD ujd; + min ZiGW ZjeD(Cij - uj)xij + ZiGW fiyi
st (2.11), (2.12), (2.13),

which is equivalent to:

min fiy; + > p(Cij — uy) Ty
=2 uid ! . 2.14
o) j;,uj o ;V st (2.11),(2.12), (2.13) (2.14)
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Thus, the subproblem can be solved by separately solving one trivial problem for
each 7. Specifically, we consider y; = 0 which implies, by (2.11), x;; = 0 for all j,

versus y; = 1 in which case

dj if Cij — U; < 0
IL‘Z‘j =

0, otherwise

This implies, for any u > 0,

$u) =Y wid;+ Y [minf0, f; + min{(ci; — u;)d;, 0}}].

jeb iew

One specific instance with ¢ = 1,2,3 and j = 1,2 is:

min 8.%'11 + 7.%'12 + 5.%'21 + 4.%'22 + 1.%'31 + 3.%'32 + 36y1 + 12y2 -+ 36y3

Vv
o

s.t. Ty + Xoy + x31

Vv
o

T2 + o9 + T3z

\
J/

11 + 212 < 12y
To1 + xay < 12y
reX= T w3+ az < 12y3
0<z; <6 for 1=1,2,3 andj=1,2
Y1, Y2, y3 € {0, 1}

\ Vs
The optimal solution of this problem is to open only warehouse 3, i.e., y3 =
1; x31 = x30 = 6 and it yields z* = 6 + 18 + 36 = 60. All other variables are 0.

Now consider (2.14) for (uy,us) = (4,6). The subproblem for i = 2 is:

min (5 —4)zg; + (4 — 6)xe + 12y5
S.t To1 + Too < 12y,
0<my; <6, je{l,2}
Yo € {0,1}.
If yo = 0, then w9y = x99 = 0 at cost 0. If yo = 1,291 = 0 but x99 = 6, then cost
is 12+ (—2)6 = 0; so yo may be either 0 or 1. A check of similar problems for
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1 =1 and 3 shows that y; = y3 = 0 is optimal. Thus
¢(u) = 6(4) +6(6) + 04 0+ 0 = 60, which is equal to z* and thus ¢*. i.e.,
¢ = 2* = 60.

However, the LP relaxation of the problem yields a solution ZTos = 31 = 6, 7o =

ys = 0.5, with cost 2] p = 54. Therefore, in this case, ¢* is strictly greater than

*
ZLP .

Example 2.2: Consider the class of a Boolean problem

(P2) min cx
st Ax>b
reB"={zeZ": z; €{0,1}}

where all linear constraints are to be dualized. The Lagrangian dual of (P2) is

then
(LD-2) ¢* = max{¢p(u),u > 0}

where the corresponding subproblem for v > 0 is given by

SP2(u) ¢(u) = min cx +u(b— Ax)
st x e B".

Note that, the objective function of the subproblem SP2(u) can be rewritten as

n

> (ej —ud))z;,
j=1
where A; is the j-th column of the matrix A. Thus, SP2(u) can be solved by
inspection:
1, if Cj — UAJ' <0

.I'j =
0, otherwise
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This implies, for any u > 0

d(u) = ub+ Z min{c; — uA;, 0}.

J=1
One specific instance is:

min 3z + 22,

s.t. 2z + dx9 > 3,
Ty + 2x9 2> 3,
xy, 29 € {0, 1}.

This problem has only one feasible solution z = (1, 1); and hence z* = (1,1) is

the unique optimal solution with z* = 5.

For u! = (1,1),
1 3 : :
o(u') = (1,1) + min{3 — 7,0} + min{2 — 7,0} = —3.
3
For u? = (0,1),
5 3 . .
o(u®) = (0,1) + min{3 — 5,0} + min{2 — 2,0} =1,
3
and so on. These are lower bounds on z*. The best of such bounds occur for
u* = (4/21,11/21) which solves the Lagrangian dual (we will discuss in a later
section methods for determining such multipliers). At u*,
3
o(u™) = (4/21,11/21) + min{3 — 63/21,0} + min{2 — 42/21,0} = 15/7.
3
On the other hand, solving the linear programming relaxation of this particu-

lar problem yields an LP relaxation solution z = (3/7,3/7) with the optimal

objective value z} , = 15/7 which is equal to ¢*.
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The above examples, Example 2.1 and Example 2.2, show one case where the
Lagrangian dual value is strictly greater than that of the LP relaxation and one
where the two are equal. Indeed, Theorem 2.4 reveals a condition under which
the bound obtained from the optimal value of LD is strictly better than that of
the LP. In particular, if

conv(X) & {z € R} : Dz > d},

then we can obtain 27, < ¢*. This is a useful result, say for instance, in the
branch and bound procedure since such strictly better bounds can reduce sub-
stantially the size of the branch and bound tree to be searched. On the other
hand, if conv(X) = X = {z € R? : Dz > d}, then the subproblem SP(u) can be
solved by solving the LP relaxation. In this case, we say that X has the Integrality

Property. The consequence is ¢* = 2] p.

Theorem 2.6: (Integrality Property)
Let (IP), SP(u), (LD), be as defined above. If X has the integrality property,

then ¢* = 27 p.

Proof: The proof follows immediately from Theorem 2.4 and the definition of

the integrality property. O

It should be emphasized that the integrality property is not defined relative to
a given problem class but relative to a given integer programming formulation,
in particular X. This is important distinction because a problem often has more
than one formulation or there can be different possible choices of constraints that

will be kept in X.

One of the question that we would like to answer is how one can solve the La-
grangian dual. The linear programming formulations appearing in Theorem 2.4,
i.e., (2.8 ) or (2.9), may provide one way to calculate ¢*. Note that problem

(2.9) is usually a large scale linear program because the number 7" of constraints



2. Lagrangian Relaxation and Duality 22

can easily be on the order of thousands or millions; one constraint corresponds
to each feasible point in X. The large number of constraints means that a con-
straint generation (or cutting plane) approach is required (see, [84] Chapter 8, for
instance). Other possible technique of solving a large scale linear programming is
the Dantzig-Wolfe decomposition method ([26], [55], [61], [11]). However, when
the problem size is large (as typically the case) such simplex-based algorithms
require excessive amounts of storage and are also quite slow. Hence the problems
cannot be efficiently solved as an ordinary linear programming problem. Alter-
natively, we solve the Lagrangian dual using a technique known as Subgradient
Method which will be described in Chapter 3. The method is designed to solve the
problem of maximizing(minimizing) a non-differentiable concave (convex) func-
tion iteratively. It will be shown that the Lagrangian function which we would

like to maximize is a non-differentiable concave function.

Definition 2.1: A function f: R™ — R is said to be concave iff
flaz' + (1= a)2?) > af(z') + (1 - a) f(«?)

for all ', 2% € R™ and all « € [0, 1].
This suggests the following theorem.

Theorem 2.7: The dual function ¢ : R™ — R, defined by

¢(u) =min cx + u(b— Ax)
st. zeX

1S concave.

Proof:

Let up,us € R™ and « € [0, 1]. Then,

¢(u1) = min  cx + uy (b — Ax)
st. zeX
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and,

¢(uz) = min  cx + ug(b — Ax)
st. zeX

Now for u = auy + (1 — a)us,

¢(u) = min cx +u(b— Ax)
st. zeX
= cr+ulb— Az)  for some T € X.
= alcz +ui(b— AZ)] + (1 — a)[cx + uz(b — AZ)]

A J . S

Ed:?n) Z(Z;(:m)
> ag(ur) + (1 — a)(us),
and this completes the proof. O

Piecewise linearity is another property of the Lagrangian dual function. To see

this, let 2, 22,..., 27 be the points of X as in the proof of Theorem 2.4 . Then,

é(u) = min cxr+u(b—Azr) = min cx’+ u(b— Az')
st. reX ie{l,2,...,T}.
Therefore,
é(u) = min cz’ + u(b — Az?) (2.15)
ie{1,2,....,T} .

This relation, (2.15), tells us the exact structure of the dual function by describ-
ing it as the minimum of the set of linear functions. Hence the dual function
is a piecewise linear concave function, see Figure 2.2 for 7" = 6 where a line ¢
corresponds to the graph of = cz’ + u(b — Az?), for each i = 1,2,...,6. Thus
the Lagrangian dual problem ¢* = max,>o{¢(u)} can be viewed as the problem

of maximizing a piecewise linear concave but non-differentiable function ¢.

That is, the Lagrangian dual program consists of maximizing a concave function

over a convex set; it is thus a ”convex” programming problem which can be solved
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Fig. 2.2: Form of the dual function

iteratively.

Note that given u € R, the relaxation of the subproblem SP(u) which may be

given as

¢(u) =min cx + u(b— Ax) (2.16)

s.t. € conv(X)

is also a convex programming since cz + u(b — Ax), for a given w, is affine and
hence a convex function. Clearly conv(X) is compact as X is a closed and bounded
subset of R™. Hence, the solution set of (2.16) is compact, too. The non-empty,

convex and compact solution set to the program (2.16) for a given u € R is
X(u) = {2 € conv(X) : ¢z +u(b— Az) = ¢(u)}. (2.17)

We show next that X(.) is a closed map, when a closed map is defined below. In
defining this property we allow the point-to-set mapping to map points in one

space R™ into subsets of another space R"™.

A point-to-set map
M:R™ — 2%
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is called a closed map if {u'} — u, a' € M(u') for all ¢, and {2} — = imply

that © € M(u).

The next theorem due to Larsson, Patriksson and Stromberg [54] shows that the
mapping u — X(u), where the set X(u) is given by (2.17), is a closed map. We
will use this result in Chapter 5 to analyze some properties of optimal solutions

of the subproblem SP(u).

Theorem 2.8: (Larsson-Patriksson-Stromberg, 1999)

Let the sequence {u'} C R, the map X : R} — 2(R") be given by the definition
(2.17), and the sequence {z'} by the inclusion z' € X(u'). If {u'} — @ and
{z'} — 7 then 7 € X(a).

Proof: Given a sequence x' € X(u') such that {z'} — 7 and {u'} — @,
where u' € R, we want to show that: (i) z € conv(X) and (ii) cz + (b — Az) =
¢(u). Note that (i) follows immediately since ' € conv(X) and conv(X) is closed
(compact). Hence,

z € conv(X). (2.18)

Since the function L(z,u) = cx 4+ u(b — Ax) is continuous on conv(X) x RY, it

holds that L(a!,u") — L(Z,u) as (2%, u’) — (Z,u). That is,
cr' +ut(b— Az') — ¢z + u(b — Az) (2.19)

as (z',u') — (7, @). On the other hand, since z' € X(u') and the dual function

¢ is continuous it holds that
ca’ +ut(b— Az') = ¢(u') — o (). (2.20)
Thus, from (2.18), (2.19) and (2.20) we have = € conv(X) and ¢z + u(b — AZ) =

¢(u). Consequently, z € X(a). O

From Theorem 2.8 it follows that in a particular case when X(u) = {Z}, a single-

ton, then {z'} — Z. Consider now the Lagrangian dual of a convex programming
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problem (2.8 ) in Theorem 2.4 where the constraints Az > b is to be dualized, as
before. This can be written as :

(LD") max min{cz + u(b — Azx) : x € conv(X)} (2.21)

with a convex solution set 2*. Note that if the primal-dual optimality relation
(strong duality) holds for this problem, then the optimal objective value of prob-
lem (2.21) is equal to ¢* (Theorem 2.4 ). To obtain primal-dual optimality

relation, the primal feasible set must fulfil a constraint qualification.

Assumption (Slater constraint qualification):

The set {z € conv(X) : Az > b} is non-empty.

Under this assumption, the convex set 2* of solution of (LD¢) is non empty and
compact and the strong duality holds for some pair (z,%) € R} x R such that
b— Az < 0 holds ([12], Theorem 6.2.4). The next theorem states conditions under
which a point z is optimal in (2.8 ) for the case that an optimal dual solution is

at hand.

Theorem 2.9: (Primal-dual optimality conditions)

Let the assumption of the Slater constraint qualification holds and let u € Q*.
Then, Z is a primal optimal solution of (2.8 ) if and only if z € X(u), b— Az <0
and u(b— Az) = 0.

The proof of this theorem follows from Theorem 2.2 and ([12], Theorem 6.2.5). O



3. SUBGRADIENT OPTIMIZATION METHODS

This chapter deals with subgradient optimization methods and designs proce-
dures that can be used to solve the Lagrangian dual of Integer Programming. In
the proof of Theorem 2.4 we have seen that the Lagrangian dual problem can
be formulated as a linear programming problem whose number of constraints are
equal to the number of elements of the set X. This makes the direct use of linear
programming system impractical since in many application problems the number
of elements in the set X can be very large and also can be very difficult to list all

of them explicitly.

An alternative approach which is usually used to solve the Lagrangian dual prob-
lem without using a linear programming system is a subgradient optimization
method. The subgradient optimization method that we would like to consider
is an iterative procedure that can be used to solve the problem of maximizing a

non-differentiable concave function ¢(u) on a closed convex set €, i.e.,
max{¢(u) : u € Q},

using the following generic procedure:
e Choose an initial point u° € Q.

e Construct a sequence of points {u"} C Q which eventually converges to an opti-

mal solution using the rule

un—f—l — Pﬂ(un + )\nvn)

where Pq(.) is a projection on the set Q, A, > 0 is a positive scalar called step
length and v" is a vector, called step direction, which has to be determined at

each iterate point.

e Until: (some stopping condition).
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The direction of motion (step direction) that has to be determined at each iterate
point in the procedure plays a crucial role in order to be able to obtain a desired
outcome. Depending on a particular strategy for finding the direction of motion,
the subgradient optimization methods can be categorized mainly into the pure

subgradient, the deflected subgradient and the conditional subgradient methods.

The pure subgradient method uses a subgradient of the objective function at each
iterate point as the stepping direction to generate a sequence of iterates. The
procedure which is based on such stepping direction can, however, generate a
sequence of iterates whereby the difference between a consecutive iterate points is
insignificant since if the subgradient vector at a given iterate point form an obtuse
angle with the previous direction of motion, then a zigzagging path is resulted.
We call such phenomenon zigzagging of kind I (formal definition will be given
in Section 3.2). Such zigzagging phenomenon that might manifest itself at any
stage of the subgradient algorithm can cause a slow convergence of the procedure.
As a tool to overcome this difficulty a deflection of subgradient procedure is
used in which the direction of motion is computed by combining the current
subgradient with the previous stepping direction. We may call such a strategy as
the deflected subgradient method and it is the subject of discussion in Section 3.2.
While the iterate points are generated by either the pure or deflected subgradient
procedure, we need to project the resulting iterate point onto the feasible set in
order to maintain feasibility. The operation of the projection can also hamper
the motion from a given point to the next iterate point and forms also another
type of zigzagging path if the selected direction of motion is almost parallel to the
normal vector of a face of the feasible region that contains the given point since
in such case the projection operator projects the iterate point u™ 4+ \,v™ back
to a point near to u". We call such a phenomenon zigzagging of kind II (formal
definition will be given in Section 3.3). The conditional subgradient method which
defines the direction of motion as a combination of a subgradient and a vector

from a normal cone at the given point helps us to handle such difficulties. The
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conditional subgradient method will be discussed in Section 3.3 . We will also
see that the phenomenon of zigzagging of kind II can manifest itself only in case

the iterates are moving across the relative boundary of the feasible set.

3.1 The Pure Subgradient Method

3.1.1 Introduction

The maximum value of a smooth concave function can be usually determined
by the gradient methods. A gradient method, say the steepest ascent method,
finds an optimal solution of the problem max, f(z) by iterative method in which,

0

starting with some z”, a sequence of ™ which eventually converges to an optimal

solution is constructed according to the relation

2"t =" + N,V f(2")

where A\, > 0 is a suitable step length and V f(2") is the gradient vector of f
at 2. One may refer to [12] and [65] for complete coverage of this and related

subjects.

In the case of our problem, however, the dual function is not differentiable. Hence,
we cannot use the gradient method since there are points at which V¢ does
not exist. Instead we use the subgradient method which is the adaption of the
gradient method in which gradients are replaced by subgradients in order to make

use of the concave structure of the dual function.

Definition 3.1: Let f : R™ — R be concave. The vector s € R™ is called a
subgradient of f at x € R™ if

f(Z)+s(z—z)> f(zr) VeeR™

Definition 3.2: The subdifferential of f at T is the set of all subgradients of f
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at z which is given by
of(z)={s: f(@)+s(x—z)> f(z) VreR™}

If 0f(x) is non-empty, then f is said to be subdifferentiable at z. It is known
that a concave function is subdifferentiable at every point in its domain. Fur-
thermore, the subdifferential is a non-empty convex, closed and bounded set (see,
for instance, Rockafellar [70] p. 217 or Dem’yanov and Vasil’ev [29] p. 49, The-
orem 5.1). A concave function is not necessarily differentiable at all points in
its domain. As will be shown in the following theorem, if a concave function is
differentiable at a point Z then V f(z) is a subgradient of f at the point. In this

sense, subgradient is considered as a generalized gradient of a concave function.

Theorem 3.1: Let f : R™ — R be concave and differentiable, and V f(Z) be
the gradient of f at z. Then Vf(z) € 0f(z) Vx e R™

Proof: It suffices to show that for any z € R™,
Vi@)(x—z) > f(z) - f(z) VeeR™

For z = Z, this inequality holds obviously. So we need to consider only the case
x # Z. Since f is differentiable, the directional derivative of f at T in the direction

of x — z, given by
@t e = D) - (@)

t—0t t

exists and is equal to V f(Z)(x — Z). Since f is concave, the following holds for
te(0,1):
tf(z)+ (A =t f(@) - f(z)

flx)—f(z) =

t
¢ Jtrr0-0n - 1)
_ @t -2) - /(@)
t

which implies

(o) — f(z) < tim LEHUE=2) = /@)

t—0t t

— V(@) — ).
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This completes the proof. O

Note that, Definition 3.1 means that a subgradient vector is a gradient of a
hyperplane supporting the epigraph of f at (z, f(z) ) € R™", where epigraph of
fis

epif = {(x,2) e R™: 2 < f(2)},

which is a closed convex set. If the concave function f is also smooth at z, then
it is known that such a supporting hyperplane is uniquely determined by the gra-
dient V f(Z). This means that the subgradient of f at z is uniquely determined
and given by V f(z). Thus we have the following theorem.

Theorem 3.2: If Vf(Zz) exists, then 0f(Z) is a singleton and
of(z) = {Vf(7)}. o

However, at a point & where the function is non-differentiable we can have in-

finitely many elements in the subdifferential set 0f(z).

Example 3.1: Let

= min{3 2, — 10}.
f(a) = min{3r,a +2, >0 + 10}
Then f is a piecewise linear concave function given by

3, r <1
flz) =14 =42, 1<z<3
%53: + 10, x> 3.
(See Figure 3.1.)

f is differentiable at every point z € R\ {1,3}. Hence, for any z ¢ {1,3} the
subgradient s(z) of f at Z is given by
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y=x+2
y=3x
f(x)

y =-5/3x+10

1 3 \ X

Fig. 3.1: Graph of the piecewise linear concave function f.

That is,
3, <1
s(z)=<¢ 1, 1<z<3
75 —
3 z>3

However, at £ = 1 both s; = 3 and s, = 1 are subgradients of f. Moreover, any

convex combination of s; and sy is also a subgradient of f at £ = 1 as can be

shown also in the following theorem. Similarly, both sy = 1 and s3 = =2 as well

3
as any of their convex combinations are the subgradients of f at ¥ = 3.

Theorem 3.3: The subdifferential df(z) of f at £ € R™ is a convex set.

Proof: Suppose s1,s9 € 9f(Z). Then it holds that
si(x =) 2 f(z) — f(z), VoeR™

and

so(x — ) > f(z) — f(Z), Vo € R™.

So, for any a € [0,1] and € R™ we have,
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which, by the definition of a subgradient, implies
as; + (1 —a)sy € Of ()

and this completes the proof. O

Theorem 3.4: A necessary and sufficient condition for z* € R™ to be a maxi-

mizer of a concave function f over R™ is 0 € df(z*).

Proof: By the definition of the subgradient, 0 € df(z*) for z* € R™ if and only
if
flz) — f(a") <0(x — 2¥) Vr € R™,

Which is equivalent to
f(z) < f(z") VxeR",

as claimed. O

Note that the condition 0 € df(z*)” is a generalization of the usual stationary
condition "V f(x) = 0” of the smooth case. For the problem given in the Example
3.1, z* = 3 is an optimal solution since 0 € 9f(3). Indeed, 0 = 355 + (1 — 2)s3
where s = 1 and s3 = %5 are the subgradients of f at x* = 3. But, In general, it
is difficult to construct a zero subgradient using convex combinations of the sub-
gradients even if the point is an optimal solution since there is no general method

that can be used to compute all the subgradients and the zero subgradient at the

point.

3.1.2 'The Pure Subgradient Algorithm

The subgradient procedure which is described in this section is an adaption of
the gradient (steepest ascent) method of the smooth case and solves the problem
of maximizing a nondifferentiable concave function. It is an iterative procedure

which attempts to climb up the hill using the direction of the gradient vector at
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each point where the gradient of the function exists; but replaces the gradient
vector by a subgradient vector at a point where the gradient does not exist. That
is, it starts at some point u° and construct a sequence of points {u*} according
to the rule:

uP = Po(uf + \es®), k=0,1,2,... (3.1)

where s

is a subgradient of a concave function ¢ at a point u*, A\, > 0 is an
appropriately chosen step length and Pgq(.) is the Euclidean projection on the

feasible set 2.

Beside the need for an appropriate termination criterion and a relevant rule to
determine a suitable step length (step size) Ag, two important requirements are
desirable, from an implementation point of view, for the subgradient scheme.
First, an easy method of computing subgradient vector s* € d¢(u*) at every
point u* € Q must be available; and second, € must be simple enough to admit

an easy projection.

The two requirements are fulfilled in the case of the Lagrangian dual problem

(LD) of the linear integer programming problem since

e O = R7 implies that the projection Po(u) = uy , where its components are

defined by (u,); = max{0,u;}, 1=1,2,...,m.

e a subgradient vector can be determined easily using an optimal solution
of the subproblem as will be shown in the next theorem, Theorem 3.5. In
particular, we will show that given a point u* € R, then st =b— Azt €
d¢(uF) where z* is an optimal solution of the corresponding subproblem

and the dualized constraints are Az > b.

Since a subgradient plays a central role in the course of maximizing the dual func-
tion, we give next a method to determine a subgradient of the dual function and

will discuss the underlying reason to use the subgradient vector in the procedure
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of maximizing a non-differentiable concave function.

In what follows, the function ¢ : R™ — R is the dual function given by
é(u) = min{cx + u(b — Az) : z € X}

unless stated otherwise, and given @ € R, the set X*(#) denotes the set of

optimal solution(s) of the subproblem
o(u) = min{cx + u(b — Az) : x € X}.

That is,
X*(u) ={z € X: ¢(u) =cx + u(b— Az)}.

Theorem 3.5: Consider the dual function ¢ : R™ — R. Then s(z)=0b0— Az

is a subgradient of ¢ at @, where T € X*(a).

Proof: Given u € R, Z € X*(u) means that
P(u) = cx + u(b — Az),
and for any u € R™,
¢(u) = min{cx + u(b— Az) : z € X} < cx + u(b — Az).
Thus it holds,

o(u) —op(u) < e+ ulb— Az) — [cx + u(b — AZ)]
= (b—Az)(u—1u) YueR™

This completes the proof. O

In the following theorem, we use the relation
é(u) = min{cz’ + u(b — Az")|i=1,2,...,T} (3.2)

where {z!,2?,... 2T} =X,
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Theorem 3.6: Let ¢(u) be the dual function given as (3.2) and
I(u)={i: ¢(u) = cx’+ u(b — Ax")}. Then,

(a) s'=0b— Ax" is a subgradient of ¢ at @ for all ¢ € Z(u).

(b) If iy,49,...,4x € Z(u), then

k
s = Z ozjsj
j=1
is also a subgradient of ¢ at u, where

k
s) =b— AzY, Zozjzl, a; >0,

J=1

for j=1,2,... k.

Proof: (a) Follows directly from Theorem 3.5 .
(b) From (a), each of s/ for j = 1,2,...,k is subgradient of ¢ at u and by The-
orem 3.3 a convex combination of the subgradients is again a subgradient of the

function at the given point. Hence also (b) holds. O

At a given point, therefore, we have no unique subgradient of the function. This
causes some difficulties with regard to a construction of a good iterative procedure
that uses a subgradient vector as its stepping direction. In the smooth case, it is
well known that the gradient vector is the local direction of maximum increase
of the function. Unfortunately, this is not the case for a subgradient vector. In
general, unlike the gradient direction of the smooth case, the subgradient is not
an ascent direction and hence the iteration procedure of the subgradient method
does not necessarily improve the objective function value at some steps. As a
consequence, the procedures such as the line search techniques of the smooth
case is not applicable to determine a suitable step length A in the subgradient
scheme. The following alternative point of view, however, provides an intuitive

justification for moving in the direction of a subgradient:
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Suppose @ and @ are any points such that ¢(a) > ¢(u) and let § € dp(u). Then

where the first inequality is due to concavity of ¢ and the second follows from
é() > ¢(u). Thus the hyperplane H= {(u, z) € R™" : 2z = ¢(u) + 5(u — u)}
through (u, ¢(w)) having 5 as its normal determines two half-spaces and the closed
half space into which § is pointing contains all 4 such that ¢(a) > ¢(w). That
means if we are at the point 4 and want to increase ¢, we should have to move to
a point @ with §(u — @) > 0. This direction is given by the subgradient vector s.
In particular, this half space includes any point where ¢(.) assumes its maximum
value. In other word, the subgradient vector § at u forms an acute angle with

the best direction leading from @ to an optimal solution u*, since

Therefore, a sufficiently small step from u along the direction of § produces a

point closer than u to any such maximum point (see Figure 3.2).

%

u
°

Fig. 3.2: For s* € 0¢(u¥) and sufficiently small Az, u* 4 \zs¥ is closer to an optimal

u* than u” is.

That is, there exists 5\;: such that for any 0 < Ay < S\k,

k1

It = <[l =l
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k1 is obtained by the subgradient scheme (3.1) and u* is an optimal

where u
solution to max,cq ¢(u) and ||.|| is the Euclidean norm. The next theorem which
is due to Polyak [68], justifies this and indicates the limits on the appropriate

step sizes.

Theorem 3.7: Let u* be an optimal solution to max,cq ¢(x), where ¢ is concave

over R™ and €2 is a closed convex subset of R™.

If
9 ) k
0 < M\ < ((b(“”)ska(“ ), (3.3)
then
e N !
where u*T! uF s* and ), are related as given in the equation (3.1) and ||.|| denotes

the Fuclidean norm.

Proof:
[ — w2 = [[Pa(u® + Aps®) — u*||?
< ||luk 4+ Apst —ur|)?
= JluP = wr)* 4 208" (uh — wt) + AR sP?
= |l =[P+ M =2 st ) ]
——
> p(u*)—(u)
<l =[P AP = 2] (u”) = ()]
<BT by (3.3)
< luf — |
Therefore, |[uf™ —u*|| < |luf —u*]| . O

The theoretical basis of the subgradient scheme lies on the above theorem, Theo-
rem 3.7, since convergence analysis of the subgradient schemes based on the fact
that the sequence {||u* — u*||} is strictly decreasing in contrast to the gradient
methods of the smooth case that rely on a monotonic decrease of {|@(u*)—¢(u*)|}.

Using this fact, Polyak [68] has also shown for a general convex programming
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problem that the step rule given by (3.3) guarantees convergence. However, note
that in order to apply the Polyak’s step length rule specified in (3.3) one has
to know the optimal objective value ¢(u*) a priori, which is impossible for most
problems. Polyak suggested that ¢(u*) be replaced by a lower bound ¢* < ¢(u*).
He proved, in this case, that the sequence generated is such that ¢(u®) > ¢F
for some k or else ¢(u¥) < ¢ for all k and ¢(u*) — ¢L. In either case, how-
ever, we have no assurance of convergence to ¢(u*). In general, one needs to use
rules based on a combination of theory, common sense and practical experimen-

tation. The step size used most commonly in practice to solve the Lagrangian

dual problem (LD) is

. _ mUB = 6(uh))
SR e

where uy is a step size parameter satisfying 0 < pp < 2 and UB is an upper

(3.4)

bound on the dual function ¢, which may be obtained by applying a heuristic to
the primal problem (IP). The empirical justification of this formula is given by

Held, Wolfe and Crowder [46].

The step- size given by (3.4) is usually known as relazation step length or also
Polyak’s step length. The step-size parameter p; controls the step size along the
subgradient direction s*. A first approach used by Held and Karp [45] and also
recommended by Fisher [36] is to determine py, by setting 1o = 2, and halving
whenever ¢(u*) has failed to increase in some fixed number of iterations. How-
ever, Caprara et al. [22] observed that in some particular instance of problems
the classical approach halves the step-size parameter after so many iterations,
although in these iterations the growth of the value of the dual function ¢ is
far from regular and can cause a slow convergence. In order to obtain a faster
convergence, they proposed the following strategy: Start with pug = 0.1. For
every p = 20 subgradient iterations compare the biggest and lowest values of ¢
computed on the last p iterations. If these two values differ by more than 1%,
the current value of p is halved. If, on the other hand, the two values are with

in 0.1% from each other, multiply the current value of p by 1.5. Following this
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idea one can determine the step-size parameters by setting o = 0.1 and using

the following rule to update puy, for k=1,2,3,...:

(0.5) g1, if ¢ — ¢ > (0.01)¢
pr = (151, if ¢ — ¢ < (0.001)¢

Mk—1, otherwise
where
¢=max {¢p(u') : t=k—p+1, k—p+2, ..., k}
and
¢=min {p(u') : t=k—-p+1, k—p+2, ..., k}

Despite its simplicity, the subgradient method gives rise to a number of problems
regarding the choice of step lengths since the choice of the best step length for
an implementation of the subgradient method is not yet well understood. The
alternative and most general theoretical result is that ¢(u*) — ¢* if the step
lengths A\, > 0 satisfy the following two conditions:

lim A\ =0, and Z A = 00. (3.5)
k=0

k—oo

The next theorem justifies the convergence of the subgradient scheme with the

step length given by (3.5).
Theorem 3.8: Consider the LD problem
max{¢(u) : ue Q=R}}

where ¢ is the dual function and bounded from above on {2 so that the set
O ={ueQ: o) > du), Vu € Q} # 0. If {uf} C Q is a sequence of
points generated by the recursive formula (3.1) where s* € d¢(u*) is given by
sk = b — Ax* for some 2% € X*(u*) and )\, are positive quantities satisfying

condition (3.5), then ¢(u*) — ¢* = ¢(u*), where u* € Q*.

Proof: This result may be considered as a special case of more general state-

ment given by Polyak [67] for the solution of extremum problems. To prove the
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theorem, we need to show that for any arbitrary ¢ > 0, 3 Ky > 0 such that
k> Ky = ¢(u*) — ¢(u*) < e. Let us suppose by contradiction that Je > 0
such that

p(u*) — op(u*) > ¢ VE. (3.6)

Suppose z* € X*(u*) so that s* = b — Ax* € d¢p(u¥) for each k. By definition:
o(u) + 5" (u —ut) > ¢(u) Vu
and hence setting u = u* we obtain from (3.6) that
sP(ut —uf) > e
Now multiply the last result by the negative quantity (—2\;), we have
2A8% (uF — u*) < —2\e.

It follows that

[ub —wr[? = [[Po(u® + Axs*®) —u||?
||uk + )\k‘sk _ u*||2
=t = w2+ ARSI+ 2Mst (ut — )

b — w*]|2 + A2 ||sF||2 — 2Axe.

IN

A\

Now recalling that X is a finite set that can be given as X = {2 : t = 1,2,...,T},
let
|s*]|? = max{||s"||?: s'=b— Az, t=1,2,...,T}.

Under the condition of the first part of (3.5) a K; > 0 can always be found such

that
€

512

A < vk > K,

or equivalently:
/\k||s*||2 <.
Then we can write :

luf =2 <l = w4 Ak (Aells*]* = 2¢)

< JluF =P = e, VE> K
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This last inequality, recursively written, gives for any arbitrary integer N > K :

N
0< P <kt — P e 3 (3.7

k=K1
Since, by (3.5), Z]kV:Kl A, — 00 as N — oo, the right hand side of (3.7) tends to

—o00; which is a contradiction. O

The choice of the step size Ay according to the rule (3.5) is also subjected to some
criticisms with regard to the rate of convergence of the subgradient procedure.
Some comments and numerical experiments in the literature (for instance,[45],
[46], [73], [36]) show that such a choice of step length is, in general, inefficient for
a practical application due to the resulting slow convergence. Hence the choice
of step size according to the step relaxation rule, (3.4) is still popular in practical

implementation of the subgradient procedure.

The following algorithm can use any subgradient at each step, but for computa-
tional purpose one of the subgradient directions b — Ax? will be chosen, where z

is a solution of the corresponding subproblem at the i-th iteration.

Algorithm 3.1: The Subgradient Algorithm for the Lagrangian Dual

Step 0: (Initialization) Choose a starting point u® > 0 and let k = 1.

Step 1: Determine a subgradient vector s* at u* by solving the subproblem SP(u*):

d(uF) = min  cx + uF(b — Ax)
st. zeX

Let 2* be a solution of this subproblem. Then,

sk =b— AzF.

Step 2: (Feasibility and Optimality Test)
If s* < 0, then 2" is an e-optimal solution to the primal problem with

€ = |uFsk|.
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If s*¥ < 0 and w*s* = 0, then z* is an optimal solution of the primal
problem and u* is an optimal solution of the Lagrangian dual problem.

STOP. Otherwise go to Step 3.

Step 3: Let u*™ = Pgm (u* + A\ps*), where
Pgrm(u) = @ for which its i-th component u; =
0, otherwise

and A > 0 is a step length given by (3.4).
Let K=k + 1, and return to step 1.

Ideally the subgradient algorithm can be stopped when, on some iterate k, we find
a subgradient which is a zero vector. However, in practise this can rarely happen
since the algorithm just chooses one subgradient s* and has no way of showing
0 € O¢(u*) as a convex combination of subgradients. The stopping criteria stated
in the Step 2 , i.e., s* <0 and u*s* =0, can happen only if the strong duality
holds(Theorem 2.2). But this is not generally possible for integer programming
problems. Hence the typical stopping rule is either to stop after a sufficiently
large but fixed number of iterations or to stop if the value of the function has not

increased (by at least a certain amount) with in a given number of iterations.
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3.2 The Deflected Subgradient Method

One of the most important behavior of the subgradient procedure is that at each
of the iterate u*, the subgradient direction s* forms an acute angle with the di-
rection leading from u* to the optimal solution u*. However, according to various
reports (see for instance, Camerini et. al [21], Bazaraa et. al [12], Sherali and

Ulular [77] ), as the iterates progress the angle between the subgradient direc-

k k-1

tion s” can form an obtuse angle with the previous direction of motion s*~" and
this can force the next iterate point to become near to the previous one. This
phenomenon can obviously slow the convergence of the procedure. The following
figure, Figure 3.3, attempts to illustrate such a behavior in a two-dimensional

case.

Fig. 3.3: Zigzagging of kind I in the pure subgradient procedure.

Definition 3.3: Let A\, be a positive scalar and d" € R™. We say that an iterative
procedure

u"™ = Po(u" + M\d”), n=0,1,2,...

forms a zigzagging of kind I if at any two (or more) consecutive iterate
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points u*, u¥*1 € Q, the angle between corresponding step directions d* and d*+!

is obtuse; i.e., dFd**! < 0.

Zigzagging of kind I is peculiar to the pure subgradient procedure. For instance,

consider the special case of a piecewise linear ¢ on 2 = R’ :
¢(u) =min {¢; + A'u :1<i<T}
where A € R™ and ¢; € R!. Then, the problem is

max  ¢(u)

st. u€ RT.

Now consider dividing R7" into 7" subregions €21, €, ..., Qp, where ; = {u €
R : ¢(u) = ¢; + A'u}. Note that A* € 9p(u) at any point u € {;; and A’ is the
only subgradient of ¢ on the interior of €2; since ¢ is differentiable on the interior
of Q; with gradient A?. Thus, if the procedure step from a region €2; into another
region €; by moving along the step direction A%, the (sub)gradient A7 of ¢ in the
new region may form an obtuse angle with A* and points back into the region we
just left. Figure 3.4 indicates a case in which the procedure will zigzag back and

forth across the line of intersection of different regions.

Such zigzagging phenomena that might manifest itself at any stage of the sub-
gradient procedure slow down the search process. In order to avoid such an
unpleasant behavior one may need to deflect the subgradient direction whenever
it forms an obtuse angle with the previous stepping direction. To this end, in
order to form a smaller angle between the current stepping direction and the
preceding direction than the traditional (pure) subgradient direction does, and
hence to enhance the speed of convergence, Camerini et. al, [21] proposed a mod-
ification of the pure subgradient method in which the subgradient direction s* at

an iterate u” is replaced by a deflected subgradient direction d*, given by

d" = "+ 5pd*
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Aj

Fig. 3.4: Zigzagging of kind I across the line of intersection of €); and €2; as well as €);

and € by moving along subgradients.

where s* € 0¢(u*) and 6, > 0 is a suitable scalar called a deflection parameter,
and d*~! = 0 for k£ = 0. That is, the deflected subgradient method moves in the
current search direction d* which is a linear combination of the current subgra-

dient direction and the direction used at the previous step.

In this section we consider the deflected subgradient method and show that any
favorable property of the subgradient vector can be extended to the deflected
subgradient direction while this method generates a point which forms a more
acute angle with the direction to the optimal solution set than the point generated
by the pure subgradient method and can also reduce the unfavorable zigzagging

behavior of the pure subgradient method.

Algorithm 3.2: The deflected subgradient algorithm

Step 0: (Initialization):
Choose a starting point u® € Q =R™, and let k =0, d*!=0.
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Step 1: Determine a subgradient s* € d¢(u*)

d¥ = "4 §pd"! (3.8)
uFtt = Po(uf 4 \pd®) (3.9)

(Rules to determine & and Ay will be given.)

k=k+1

Step 2: If a stopping condition is not yet hold, return to step 1.

We next consider some properties of the deflected subgradient directions and a
rule to determine the deflection parameter o, and step length A\, given in the
equations (3.8) and (3.9) respectively. To that end, we will consider the following

lemma whose result will be used in the proof of the next theorem.

Lemma 3.9: Suppose Q is a closed convex subset of R™, «° € Q, and v = v+ \d
where d is a vector in R™ and ) is a positive scalar. If u' = Pq(v) and p = u' —v,

then
(i) pd <0.

(i) flu' —u®f < flv—u].

Proof: The results of this lemma follows directly from the properties of convex
set, in particular, the fact that the vector p is perpendicular to the supporting
hyperplane of © at u! and hence the angle at u' of the resulting triangle A (uu'v)

is obtuse (see Figure 3.5). O

Theorem 3.10: Suppose s* € d¢p(u*) and d* is given by (3.8). If

* k
0< X\ < ¢||d7’?||(’;b)’ Vk=0,1,2,... (3.10)
Then,
d*(u* —u) > sF(u* — u) (3.11)

for all k.
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Fig. 3.5: Nlustration of Lemma 3.9 in 2D.

Proof: We shall prove the theorem by induction on k. Clearly (3.11) is valid for
k = 0 with an equal sign. Suppose that the assertion of the theorem is true for

some m = k. To prove it for m = k + 1, observe that by (3.8)
korl(u* . ukJrl) — 8k+1(u* . uk+1) 4 5k+1dk(u* . ukJrl) (3.12)

Hence we need only to show &, 1d*(u* — u*1) > 0.

Now setting p* = Pq(uf + M\pd*) — (u* + A\pd*) we have

d"(u* —u") = dF(u* — Po(uf + M\db))
— dF(u — Ut — Mt — pb)
= d"(u" —u®) = N[l d"|P — dMp"
(

*_

> dF(u — uF) — A ||dF))? (3.13)

The inequality in the last expression follows from Lemma 3.9(i), i.e., —p*d* > 0.
On the other hand, using the given condition in the theorem and the fact that
sk € 0p(u*), we get

0 < Afld¥|? < ¢ — p(u") < sF(w — uF) < dF(ut — ub).
The last inequality follows from the induction hypothesis. Hence it holds that

d*(u* — u®) — M| dF|)> > 0.
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This together with (3.13) yield
Spad(u — w1y > 0
since dx1 > 0. From this last relation and (3.12), it follows that
A (0 — P ) > S (g — g

and this completes the proof. O

The following theorem extends two important properties of a subgradient vector

s¥ to properties of the deflected subgradient direction d*.

Theorem 3.11: Let {u*} be the sequence of iterates generated by the deflected

subgradient scheme. Under the condition of the preceding theorem,
(i) dF(u* —uF) >0
(i) [ =] < flu? —u|

k

for all £ where u” are non optimal points and u* is an optimal solution.

Proof: (i) Since s*(u* — u*) > ¢* — ¢* > 0, the claim follows directly from
Theorem 3.10 .

(ii) Now to prove the second part of the theorem:
*_uk—f—lH2 — Hu*—PQ(uk+)\kdk)H2

<l = uf = Npd®|)?

[

Ju* — ¥ ))* + N[l d||* = 2d" (u* — u")] (3.14)
Then, by applying the condition in Theorem 3.10 we get
Ml d¥|? < 6" = p(u”) < 2(¢" — (u)).

Now using this inequality, concavity of the function ¢, and Theorem 3.10 we

obtain the following relations, respectively:

Alld®[* < 2(¢" — d(u®)) < 25" (u" —u") < 2d"(u” —u").
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From this it follows,

el|dF))? — 2d%(u* — uF) < 0.
This together with (3.14) provides

* kH7

[l — ™ <l —

as claimed. |

Theorem 3.11(i) tells us that, like the case of the subgradient vector, also the
deflected subgradient direction d* forms an acute angle at each iterate points
with the direction leading to an optimal point u*. Moreover, the second part of
Theorem 3.11 guarantees that the sequence {||u* —u*||} is strictly decreasing and
as a result, a point closer and closer to an optimal solution is obtained at each
iteration of the deflected subgradient procedure. The following theorem shows
that with a particular choice of the deflection parameter d, one can also obtain

a stronger result.

Theorem 3.12: Suppose {u*} is the sequence of iterates generated by the de-
flected subgradient procedure. Under the condition of Theorem 3.10, let

LY : k gk—1
5, = Tk a1 > it st <0 (3.15)
0, otherwise
with 0 < 7, < 2. Then,
(i)
d*(u* —ub) _ sF(ur —ub) (3.16)

>
] 5%

(ii) If the vectors d* and s* form an angle % and 0% | respectively, with the

s 7

vector u* — u¥, then

0 <ok <68 <90°.

Proof: (i) If s*d*~! > 0 then &, = 0 and hence (3.16) holds obviously with

equality as d* = s*. Consider the case s*d*~! < 0, in which case,

Skdkfl
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Then,

[ = [Is*[* = lIs" + opd™ 1> — ||s"|?
= 025 + Al R)
= 0p(2sFdFt — msFdRY), (from (3.17))
= 0h(2 — 7p)8*dF !
< 0.

The last inequality follows from the given condition on 7, i.e., 2 — 7, > 0 and
skd*=1 < 0. Hence,
la*)1* <"1, (3.18)

Thus, (3.18) together with Theorem 3.10 yield

d*(u* — uk) S s (u* — uk)
las = st

as claimed.
(ii) Now to prove the second part of the theorem: Clearly both 6% and 6% are

acute angles and since,

d*(u* — u®) sk (u* — uk)
ok = ok =
ostba) = T —ar ) = Tl =

from the first part of the theorem it follows that
cos(0%) > cos(6%).

Thus, 0% < 6% as the angles are acute and cosine function is monotonic decreasing

on the interval [0, 90°]. O

Note that the choice of the deflection parameter J; according to the rule (3.15)
of Theorem 3.12 tends to avoid zigzagging of kind I of the sequence of iterates
since whenever the actual subgradient direction s* forms an obtuse angle with the
preceding moving direction d*~!, the deflection parameter J; is set greater than
zero to deflect the "unfavorable” direction. Diagram (b) in Figure 3.6 illustrates

such a behavior in a two-dimensional case while diagram (a) illustrates the case
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dk*l

(a)

Fig. 3.6: (a) Case where s* is a favorable stepping direction. (b) Case where s* is

deflected since it has formed an obtuse angle with d*~1.

where the current subgradient direction is favorable.

From Theorem 3.12(ii) one can also observe that by a proper choice of the deflec-
tion parameter d;, the deflected subgradient vector direction d* is always at least
as good as the direction of the subgradient vector s* in a sense that the stepping
direction d* can form a more acute angle with the best direction towards an op-
timal solution than the pure subgradient vector does, thus enhancing the speed
of convergence. By imposing a lower limit on 75, as given in the next theorem,

we can obtain the following useful result.

Theorem 3.13: Let d* be the deflected subgradient direction at k-th iteration.
Under the condition of Theorem 3.12, if 7, > 1, then

d*d*1 > 0.

Proof: Case s*d*~! >0 = d* = s* and hence the claim follows. Thus, consider

the case s*d¥~1 < 0. In this case we have

A = (sF 4 Sud )R
= std* — mpskdbt (followed from: &6 = —7,88d* =1 /|| d*1||?)
= (1 —73)skd*!
> 0,
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because 1 — 7, < 0. This completes the prove. O

The importance of Theorem 3.13 lies on the fact that choosing the deflection
parameter d; using the strategy (3.15) with 1 < 7, < 2 forces the current de-
flected subgradient direction to form always an acute angle with the previous
step direction and hence this method eliminates the zigzagging of kind I of the

pure subgradient procedure.

Note that the choice of 7, = 1 would amount to using a direction orthogonal to
d*=1 . In [21], the use of 7, = 1.5 is recommended and its intuitive justification
together with computational results are also given, which is indicating that also
in practise the performance of deflected subgradient algorithm is superior to that
of the pure subgradient algorithm. There are, in fact, various forms of the choices
of the deflection parameter in literature ( for instance, [77], [18] ) other than the
one proposed by Camerini, Fratta and Maffioli which is discussed above. Note
that the direction of motion generated by the deflected subgradient procedure
with the Camerini-Fratta-Maffioli deflection strategy (3.15) may turns out to be
simply the subgradient direction itself, say, in case the pure subgradient procedure
is free of zigzagging of kind I, since the deflection is initiated only when the
current subgradient forms an obtuse angle with the previous direction of motion.
Sherali and Ulular [77] recommend to make the deflection at each iterate point
by choosing the direction of motion which bisects the angle between the current
subgradient s* and the previous direction of motion d*~! irrespective of the type
of angle between s* and d*~'. To get this direction, the deflection parameter is

computed according to
Il

k= BT
[[d*=H]

With this choice of the deflection parameter the direction d* = s* +6,d*~! simply
bisects the angle between the subgradient s* and the previous direction d*~! and,

in this sense, is called an average direction strategy.
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Furthermore, instead of choosing just the bisecting direction, a convex combi-
nation of the subgradient s* and the previous direction of motion d*~! is some

times used to determine a current step direction d* (see, e.g., [18] ). That is,
d" = aps® + (1 —ag)d"™, € (0,1).

In this case, if s*d*~! > 0 then d*d*~! > 0 for any oy, > 0. However, if s*d*~! < 0
then we need to restrict oy in order to eliminate zigzagging of kind 1. In particular,
if s*d*~1 < 0, then d*d*~! > 0 if and only if

a1

0< oy < [dE=1]2 — shgk—1"

kd*=1 < 0, then a4 should be chosen so as 0 < aj, < Ay, where

v, = min < 1 Hdkil”
ar = ) [dR=1]|2 — skdk-1

in order to eliminate zigzagging of kind I.

Hence, in if s
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3.3 Conditional Subgradient Method

Conditional subgradient method is another iterative procedure that can handle
a zigzagging of kind II of the pure subgradient method which cannot be elimi-
nated by the deflected subgradient method. Recall that the deflected subgradient
method can control a zigzagging phenomenon only in the case that the zigzagging
path would be created due to the formation of obtuse angle between the current
subgradient direction and the previous direction of motion. In some case, how-
ever, although the angle between the subgradient direction s* and the previous
direction of motion is acute, it is possible that s* is almost perpendicular to a
face of feasible region containing u* in which case the projection of u* 4+ \;s* to
the feasible region yields a point near to u*, or essentially u* itself (see Example
3.2). In such situation, the iterate points may be almost unaltered or have no
significant change as a consequence of which the procedure may become very
slow. The following problem illustrates the possibly slow convergence of pure

(and deflected) subgradient methods.

Example 3.2: (Slow convergence of subgradient method)

max —uj + 2us

st (ug,ug) € Q

where Q= {(u;,us) €ER?: uy —up >0, 0<u; <1, 0<uy <1}

The optimal solution is u* = (1,1) with optimal objective value ¢* = 1 where
d(u) = —uy + 2uy. At any iterate point u* € Q, the subgradient s* = (—1,2)
forms an acute angle with the direction leading to the optimal solution u* and
never form an obtuse angle with a preceding stepping direction. Indeed, the
stepping direction is always the direction of the subgradient vector (-1,2). Hence
the step direction of the deflected subgradient methods with either the deflection

rule (3.15), the average direction strategy, or a convex combination of current
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subgradient and previous direction always coincide with the step direction of
the pure subgradient method. Therefore, solving the problem with the pure
subgradient method starting at the point u’ = (0,0) with the relaxation step

length and step length parameter p; = 1, yields A\, = ¢*||;f|(|7§k) = 1_¢5(“k)

, for all
k. Then, the iterates are

o)y —a- -2

with objective value ¢(u*) =1 — 9 for all k, (see Figure 3.7). Clearly, for this

uk — Pﬂ(ukfl +

10%
instance, the procedure converges very slowly toward the optimal solution. O
u,
u* = (15 1)
142 Q
ul
u’ ”1

Fig. 3.7: Tteration points of Example 3.2: Zigzagging of kind II

The zigzagging phenomenon in this example, Example 3.2, is due to the fact
that the subgradients are ”almost perpendicular” to a face of the feasible set
{(u1,us) : up = us}. We call such a zigzagging of subgradient method zigzagging
of kind II. We will give a formal definition of such a zigzag after the following

basic definitions.

A normal cone of € at some point u € € is the set
No(u)={y e R™: y(z—u) <0, V2€Q }.
A tangent cone of the set () at some u € €) is the set

To(u) ={z€R™: 2y <0, Yy € Nq(u) }.
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Ng(u) and Tg(u) are both non empty closed convex subsets containing 0. Figure

3.8 demonstrates the normal and the tangent cone at a u € €.

N, (1) u Ta(w)

Fig. 3.8: A normal and tangent cone of a convex set at u.

If w € int(Q), where int(2) denotes the interior of €2, then Ng(u) = {0} and
Tq(u) = R™. The elements of No(u) and Tq(u) are called normal vectors and
tangent vectors of the set {2 at u, respectively. Note that for any z € {2, we have
z —u € Tq(u) since y(z —u) < 0 for any y € Ng(u). i.e, Q@ — {u} € Tq(u).
Indeed, the definition of tangent cone can be also expressed (see, for instance,

[47], Definition III. 5.1.1) as the closure of the cone generated by 2 — {u}. i.e.,
Tou)=c{zeR™: z=a(y—u), yeQ, a>0}.
Or equivalently ( see, for instance, [60], Theorem 2.2.7)
To(u) =cl{z € R™: there exists A > 0 so that u+ Az € Q }.
Note that if €2 is a polyhedral set, then

To(u) ={z€R™: u+ Az € Q for some A > 0}.

We refer to a vector d € R™ as an infeasible direction at u € bd(Q) if d & Tq(u),
where bd(2) is the set of points on a boundary of §2. That is, a vector d is
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infeasible direction at u € bd(Q) if
dv >0 fosome v € Ng(u).

Now we give a formal definition of zigzagging of kind II.

Definition 3.4: Let A\, be a positive scalar and d” € R™. We say that an iterative
procedure

u"™ = Po(u" + M\pd”), n=0,1,2...

forms a zigzagging of kind II if at any two (or more) consecutive iterate

points u*, u*1 € Q) there exist vectors v € Ng(u*) and w € Ng(u**!) such that

d* >0 and d"'w > 0. (3.19)

Note that zigzagging of kind II can arise, according to the definition, only when
the iterate points are on the boundary of €2, otherwise there exist no vector v
and w satisfying the given condition (3.19). In this section we generalize the
pure subgradient method in the sense that feasible set is taken into consideration
while a step direction is determined and establish the convergence of the resulting
conditional subgradient method. The conditional subgradient method, which is
presented here, is shown by Larsson et, al. [53] to have significantly better prac-
tical performances than that of the pure subgradient method since it can avoid

zigzagging of kind II as we will see in this Section.

We would like to first consider the general case. Let the function f: R™ — R
be concave. Thus f is continuous but not necessarily everywhere differentiable.
Further, let 2 C R™ be a non-empty, closed and convex set, and assume that

[* =sup,cq f(u) = f(u*) < oo for some u* € 2. The problem considered as

(DP) f*=max f(u) (3.20)

u€eN

with the non-empty and convex set of optimal solutions

O ={ueQ: fa=f}
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The stated property of the problem (DP) are assumed to hold throughout our
discussion unless stated otherwise. Note that the definition of the subdifferential
and subgradient do not take the feasible set {2 into consideration. Dem’yanov
and Shomesova ( [27], [28] ) generalize the definitions of the subdifferential and
subgradient so that the feasible set of the problem (DP) is taken into account.

Definition: Let f : R™ — R be a concave function and 2 C R™. The condi-
tional subdifferential of f at u € €2 is the set

Of(u) = {58 €R™: f(u)+3(z—u)> f(z), Vz€Q}

The element 5 € 0 f(u) is called a conditional subgradient of f at u.

We will see that subdifferential and conditional subdifferential are identical on
the relative interior of a set €2 while this is not the case on the relative boundary
of Q. In the following figure, Figure 3.9, the normal vector s, of line AB is a
conditional subgradient of a smooth concave function f on R whose graph is given
in the figure where the set of interest is the closed interval 2 = [a,b] . Note that
the graph has only one subgradient vector, say, s, at the point a which is normal
to the tangent line CD while it possesses many other conditional subgradients
including s,. Similarly the normal vector s, of the line EF is one of the conditional
subgradients of f at b. Observe that conditional subdifferential is depending not
only on the function but also on the set of interest (2.

It is known that, given a concave function f and w in its domain, df(u) is a non-
empty, convex and compact set (see, e.g., Rockafellar [70] ). Clearly 0f(u) C
O f(u) for all u € Q and hence 6 f(u) is non-empty. The following theorem is

also immediate from the definition of conditional subdifferential.

Theorem 3.14: The conditional subdifferential 3 f(u) is non empty, closed and

convex for all u € (). |

The optimality conditions of the problem (DP) is given in the next theorem.
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a b |\ X

Fig. 3.9: 5, and §; are conditional subgradients of f at a and b, respectively, where

Q= a,b].

Theorem 3.15: (Optimality Conditions)
a) u€Q* ifandonlyif 0¢cd%f(a).
b) weQ* ifandonlyif 9f(a)NNg(a)#0.

Proof: (a) follows easily from the definition of conditional subdifferential and
the fact that f is concave. We prove, therefore, only (b). Let u € Q*; and sup-
pose Of () N Ng(@w) = 0. This implies s(u — @) > 0 for all s € f(u) and some
u € €. Since 0 € df(a), it follows O(u — @) > 0 which is a contradiction. Hence,
0f (@) N No(a) # 0.

On the other hand, suppose 9f(a) N Ng(@) # 0. This means, there exists
s € df(u) and s(u —u) <0 for all w € 2. Then, by the definition of conditional
subgradient, since s € 9f () C 9 f(u), it follows f(u) < f(@) + s(u —u) < f(u)
for all u € €2. This completes the proof. O
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Note that if € is a polyhedral set, i.e., Q ={u € R™: Alu <b;, i=1,2,...,n}

where A® € R™ is a row vector , then
No(u)={veR™: v = iszi, iwi(Aiu —b)=0, w; >0, Vi}
i=1 i=1
and defining an index set for the active (binding) constraints at u by
T(u)={i€{1,2,...,n}: Au=b},

the necessary and sufficient conditions for the optimality of # in the problem

(DP) can be expressed as:
Js € 0f () and w; > 0, 4 € Z(u) such that s = 37, 7 wiA".

That is, s lies in the cone generated by the gradients of binding constraints at
u, which is the generalization of the Karush-Kuhn-Tucker condition of a differ-

entiable programming.

Theorem 3.16: (Characterization of a conditional subdifferential)
0 f(u) = Of (1) ~ No(u)

for each u € ().

Proof: Suppose v € 9 f(u), where u € Q is fixed but arbitrary. Hence,
f(z) = flu) <v(z—u), Vze.

Define an auxiliary function h: 2 — R by

Clearly h is concave on €, h(z) < 0 for all z €  and h(u) = 0. Hence,
u is a maximum point for h on the set €2. Thus, by the optimality condition,

Oh(u) N Ng(u) # 0. Moreover, from the definition of h, dh(u) = df(u) — {v}.
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Hence, there exists a vector s, € df(u) such that s, —v € Ng(u). That is,

Ny, = s, — v, for some n, € Nq(u)

or
v =8, —ny € 0f(u) — No(u).
Thus,

0% f(u) € 9f (u) — No(u).

On the other hand, suppose

v=uv; —vy € (Of(u) — Ng(u)), where v; € df(u) and vy € Ng(u).
Thus we have,

f(z) — f(u) <vi(z—u) ,forall z€ R™ since v; € df(u) and

ve(z —u) <0 forall z€Q since vy € No(u).

Summing the two inequalities, we obtain

f(z) = flu) < (v —ve)(z—u) =v(z—wu) forall ze€Q

which means v = v; — vy € 9% f(u).

That is, (0f(u) — No(u)) € 09f(u) and this completes the proof. O

3.3.1 Conditional Subgradient Algorithm

Let 5 € 0 f(u*) be a conditional subgradient of f at u* € Q. A conditional sub-
gradient optimization is a procedure which, starting at a given u® € 2, generates

a sequence of iterates {u*} for the problem (DP), (3.20), with the rule
uF T = Po(uf +\8%),  k=0,1,2,.... (3.21)
where §% = s* — ok with s* € 9f(u*), v* € No(u¥) and A, > 0is a step length

to be chosen according to a rule which guarantees convergence.

We will see that while the conditional subgradient procedure can alleviate some
of the drawbacks of the pure and deflected subgradient procedures, it preserves

their two important properties; namely if {u*} C Q is a sequence of iterates
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generated by the conditional subgradient scheme (3.21), §¥ € 9 f(u*), and u* is

an optimal solution then

(i)

§8(u* — u*) > 0 for all non-optimal u*, since from the definition of condi-

tional subgradient we have
~k( x k * k
§%(u* —u") > f(u*) — f(u") > 0. (3.22)

Therefore, like a subgradient vector also a conditional subgradient form an

acute angle with the direction leading to an optimal solution.

2(f (u*) — f(u"))

EIE Rt < [ — ). (3.23)

0< A <

= ||lu

i.e., the sequence {||u* —u*||} is strictly decreasing. The justification of this
) q y g J

result is similar to the proof of Theorem 3.7 except replacing s* by 3*.

The next theorem establishes convergence of the sequence of iterates u* that gen-

erated by the conditional subgradient procedure (3.21) by imposing a condition

on the choice of the step length .

Theorem 3.17: Let u* C Q be a sequence of iterates generated by the condi-
tional subgradient procedure (3.21) applied to the problem (DP) (3.20) with the
step length A\, > 0, for all £ =0,1,2,... that also fulfilling

lim A =0, =00, & Y N <o (3.24)
* k=0 k=0

If sup,{||3*||} < oo, then {u*} converges to an element of 2*.

Proof: Let u* € Q* and k£ > 1. In every iteration k£ we then have

[t = ? = [Pa(u® + Aks*) —u'|?

< Huk + \5F — u*H2

| — w*]|? + 2087 (u® — u*) + 22|57 (3.25)
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The repeated application of (3.25) yields that
k-1 k-1
ot — w2 < o — P+ 2 AP )+ RIS (3.26)
=0 =0
Then from (3.22) we have

Fu —u)<0, Vji>0 (3.27)

Hence, from (3.26) and (3.27), we obtain
k—1
=P < Jlu® —u P+ D AN (3.28)
=0
Defining ¢ = sup,;{||3/[|} and p = »~°2 ) A%, we obtain

7=0 """

k—

|37] < ¢ forany j >0 and 377~

1
0 AF < p.
From (3.28) we then conclude that,

|uf —u*||* < ||u® — u*||? + pc*  for any k> 1,

which means that the sequence {u* —u*} is bounded and, therefore, the sequence

{u*} is bounded, too.

Assume now that there is no subsequence {u'} of {u*} with {s!(u! —u*)} — 0.
Then, there must exist a 6 > 0 with {3*(u* —u*)} < —§ for all k > K, where K
is a sufficiently large natural number, since by (3.27) the sequence is non-positive.

This together with the condition Z;’io Aj = oo imply that

Moreover,
k—1 k—1
lim E M[87))? < ¢ lim g M\ < oo.
k—o00 J k—o0 J
j=0 7=0

From these and (3.26) it follows that {|u* — u*||} — —oo, which is impossible.

The sequence {u*} must, therefore, contain a subsequence {u'} such that
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{§'(u’ — u*)} — 0. From (3.22) it follows that {f(u")} — f*. Moreover, since
{u*} is bounded, there exists an accumulation point of the sequence u!, say u.
From the continuity of f it follows that f(u) = f* and hence u € Q*. Now to show
that the whole sequence {u*} converges to @: Let ¢ > 0 and find an N = N(e)
such that [|u™ —al| < § and ;"\ A7 < 55%. Then for any k& > N, analogously
to the derivation of (3.28), we obtain

k—1
ka2 < oY — 7|2 Z)\2~j2<f £ 2_
I = o < o =P+ 3B < G g =

Since this holds for any arbitrary small value € > 0, the claim of the theorem

follows. O

A step length satisfying the conditions of (3.24) of Theorem 3.17 is called diver-
gent step length. If the Polyak’s step length \; satisfying the condition of (3.23)
would be chosen and sup,{||5*||} < oo then it also holds that f(u*) — f* .
Justification is similar to the proof Theorem 3.8 . Thus for any accumulation
point @ of {u*} we have 4 € Q* which follows from continuity of f. Moreover the
existence of an accumulation point is guaranteed by (3.23) since {||u* — u*||} is

strictly decreasing implies that {u*} is bounded.

Boundedness of the sequence {5*} of conditional subgradients can be ensured by

appropriate choices of v* in the method (3.21). One possible way is to choose
0 = Prgur (s7), (3.29)

where s¥ € df(u*). Since df(u*) is a bounded convex set and a v¥ chosen ac-
cording to (3.29) is also bounded, it follows that the sequence of 5% = s¥ —v* is

bounded, too.

Corollary 3.18: ( Adaptive step length selection rule)
Let 1y, be an arbitrary sequence of step lengths replacing A\x in the method (3.21).
If there exists sequences {)\,} and {\;} that both satisfy (3.24) and )\, < np <
X\; for all k, then the assertion of Theorem 3.17 holds.

O
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The proof of Corollary 3.18 is immediate since the sequence {7} under the given
conditions satisfy (3.24). Since the elements of the sequence {),} and {\}
can be made arbitrarily small and large, respectively while satisfying (3.24), for

example,
« < M

A = A = ——

where o > 0 is as small as needed, M > 0 is as large as required and 3 > 0,

(3.30)

the condition of the Corollary 3.18 helps us to be flexible in step length selections.

The next example illustrates the effect of applying the conditional subgradient

procedure to solve the problem of Example 3.2.

Example 3.3: ( Enhanced convergence using the conditional subgradient)

To show the effect of the conditional subgradient method, we apply the method
(3.21) using the Polyak’s step length rule to the instance of Example 3.2, starting
with «® = (0,0) and with o = 1. Note that the normal cone at u° is Ng(u®) =
{ly e R : yy+y <0, y1 <0 } and the projection of s = (—1,2) onto
the normal cone is v* = (—3/2,3/2). Hence, a conditional subgradient at u°
is given by s = s% — 0% = (1/2,1/2). This implies Ay = 1/||3°||> = 2. Thus,
u' = Pqo(u® 4+ X8%) = Po((1,1)) = (1,1); i.e., the optimal solution is reached in

one iteration. O

Note that the efficiency of the conditional subgradient method depends on a
chosen conditional subgradient direction and may not eliminate zigzagging of kind
IT for arbitrarily chosen conditional subgradient. For instance, in the example
above (-1,1) is also in Ng(u") and hence 3° = (—1,2) — (—1,1) = (0,1) is a

conditional subgradient at «° but it is an infeasible direction.
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3.3.2 Conditional Subgradient Procedure for the Lagrangian Dual

In this section we apply the conditional subgradient procedure to solve the La-
grangian dual problem 2.3. Recall that the Lagrangian dual problem (LD) is
given by

& = max dlu)
ueQ={ueR”: uv>0} =R}
where ¢(u) is given by the subproblem SP(u):

¢(u) = min cz + u(b— Ax)
st. zeX

and X*(u) = {z € X: ¢(u) = ¢z + u(b — Az)}, the set of optimal solutions of

the subproblem for a given u € R

Note that the normal cone to the set 2 = R at u € R is given by
Ngm (u) = {veR™: v<0, vu;=0, i=1,2,...,m}.

Notation: Let N (.) := Ngp(.), for notational convenience .

Then, the conditional subgradient of ¢ at each iterate point {u*} can be given

by

where,
st =b— Azk € 9p(uF), for zF e X*(uF)
and o* =Py, (s*).

Consequently, each of the i-th component of v* is given by

skoif sF<0 and uf=0

17

0, otherwise.
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Thus, denoting the i-th row of the coefficient matrix A by A’, the i-th component
of the conditional subgradient of ¢ at u* € R is given by
0, if b; — Az <0 and u¥ =0
s =sF —f = , - ’ (3.31)
b; — Alz¥, otherwise
where 2% € X*(u¥), which is an optimal solution of the subproblem SP(u*).

Moreover, for any u € R™,
PQ(U) = PRT (U) = UJr, (332)

where the i-th component of ™ is given by u) = max{u;,0}.

Thus, using the above results on conditional subgradient of the dual function ¢,

the corresponding conditional subgradient can be constructed as follows.

Algorithm 3.3: Conditional Subgradient Algorithm for the Lagrangian
Dual Problem:

Step 0. Initialization:

Choose a starting point u° € R, and set k =0

Step 1. Determine a conditional subgradient of ¢ at u*:

§F = sk — vk where its i-th component s¥ — vf is determined by (3.31).

i

Step 2. ! = Pga (u* + A\p(s* —v"))
where A is chosen according to (3.24) or Corollary 3.18, and
Pgmy(.) is given by (3.32).

Step 3. If a stopping condition is not yet satisfied,
let K =k + 1 and go to Step 1.

The convergence of the Algorithm 3.3 follows from Theorem 3.17. Note that if
vF = 0, then Algorithm 3.3 will reduce to the pure subgradient method. The
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important property of the conditional subgradient method that enhance its per-
formance than that of the pure subgradient is the fact that the conditional sub-
gradient vector s¥ —v* > 0 at each iterate u* if u* is on the boundary of Q = R
This means, for any u* € R, the step direction 5k = sk —o* which is determined
by (3.31) is feasible in the program of (LD) and hence u®* + \i(s¥ — v*) € R
for a small step length A, and this implies u**' = Pgm (u* + A (s —v*)) =
uf + \g(s¥ — v*) in the Algorithm 3.3. Hence the motion from the point u* to
u**! does not hampered by the projection and, therefore, this eliminates the phe-

nomenon of zigzagging of kind II of the pure subgradient procedure that could

be occurred due to the projection.
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3.4 Bundle Method

In this section we briefly present a class of method which is closely related to
subgradient methods- known as bundle method. A detail description can be
found in Hiriart-Urruty and Lemaréchal [47], [48], Kiwiel [51] or [37]. Bundle
method which have stemmed from the work of Lemaréchal [57], [58] is aimed at
devising an ascent iterative procedure (in case of problem of maximization) for
nonsmooth optimization problems. This requires an ascent direction d* with the
property
d(uP + A\pd®) > p(uF)

for all Ay € (0, )], where X\ is some positive number, at any iterate point uF.
In order to obtain a significant improvement of the objective function ¢ at any

iterate point u*, it is required to find a step direction d* € R™ such that

p(u* + d*) > ¢(uF) + ¢, for some e > 0. (3.33)

This can be obtained by employing a concept called e-subdifferential, defined as
0-0(u") = {g € R™ : ¢(u) < p(u*) + g(u—u*) +¢,  VueR™}

where ¢ is a concave, not necessarily differentiable function on R™ and ¢ > 0.
Elements of d.¢(u”) are called e-subgradients of ¢ at u*. 0.¢(u”) is a nonempty

convex closed set.

Correspondingly, the e-directional derivative of ¢ at u* along a direction d is

defined as

& (u: d) = sup 201 = o) — =
t>0

It has been shown that (see, for instance, [60] p. 101)
¢ (u*;d) = min{gd : g € 0.6(u")}. (3.34)

Note that if a direction d can be found such that ¢.(u*;d) > 0, then the objective

function ¢ can be increased by at least € along the direction d. Therefore, it



3. Subgradient Optimization Methods 71

is desirable to select a normalized step direction d* such that the e-directional

derivative is maximized; i.e.,

d* = arg{ max ¢L(u*;d) }

= arg{ max min g¢gd
el lld]|=1 gec’)saS(u’“)g J

Hence, by the well known Min-max Theorem we can exchange the optimization

order and get

d* =ar min max gd 3.35
2 9€0:p(uk) IIdllzlg } ( )

We now assume that u* is not e-optimal (otherwise we are done), i.e., 0 € d.¢(u").
Then, the solution of the latter maximization problem in 3.35 is
=2
gl
So we obtain,

d* = ar min .
s min o] )

d* is known as the e-(steepest) ascent direction.

Hence, an e-steepest ascent direction at any iterate point u* can be obtained by
solving the minimum norm problem
min  |g|| (3.36)
s.t. g € 0.0(ub).
Notice that this problem demands the knowledge of the whole e-subdifferential
0.¢(u*). Generally, since the set 0.¢(u"*) is impossible or too costly to calculate,

the idea of the bundle method is to accumulate subgradients s’ of the past iterates

in a bundle

B'={s',s% ... s

and approximate d.¢(u*) by the convex hull of the bundle elements given by

t t ¢
[Bl]:={geR™/ g= Zaisi, s' € B, Zai =1, a; >0, Zaiei <e}
i=1 i=1 i=1
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where ¢; is a linearization error for element i at the point u*, i.e.,
R A N i ik i k
€= e(u’;u’) = ¢(u') + 5" (u" —u') — g(u”),

where s' € d¢(u). Due to the definition of subgradient, we have e = e(u®; u*) > 0
for all u’,u* € R™. Thus, choosing a tolerance ;, > 0 at each iterate point «* and
replacing 9., ¢(u*) by [B. ], a direction d* in [BL ] that has the smallest norm
is used as a trial step direction. That is, at each iterate point u¥, the trial step

direction is the solution of the problem
min  3/|g||?
s.t. g€ [BL]
Due to the definition of [B! ] this is equivalent to finding the multipliers «; for

1=1,2,...,t that solve the quadratic programming problem

min 3| >0, s’
s.t. Z§=1 ae; < g
Z::l o =1

>0, Vi=1,2,... .t

(3.37)

If the multipliers a¥, i = 1,2,...,t, solve the problem 3.37, then we obtain a
trial step direction t
d" = Z als',

i=1
Line search is then performed along this trial direction. If a point, say y'!, in
the trial direction yields an improvement of the objective value by at least e,
then we have a success and u” is updated to the new point. such a successful
step is known as seritous step. If [B;k] is not adequate enough to approximate
0., #(uF), the trial direction may not be an ascent direction. In this case u® is

not updated but a subgradient s € 9¢(y*!) is added to the bundle resulting
Bt = st 62, st st

and the step is called a null step. Null steps generate more subgradients of ¢ at

points near to u* so that [B! | become closer to 9., ¢(u¥). However, several null
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steps may be required before a serious step is obtained.

We conclude this section with the following remarks. Bundle method can be used
to maximize nonsmooth dual functions so as to provide ascent directions that are
lacked in the subgradient methods. Moreover, bundle methods provide a better
stopping criteria since a zero-vector in 9., ¢(u*) can be identified while solving for
the smallest norm e-subgradient. However, there are numerous difficulties with
this method. The main difficulty in this method is the choice of the tolerance
€, in 3.37. This tolerance controls the radius of the ball in which the bundle
model is thought to be a good approximation of 9., #(u*). One can observe a
conflicting situation between the sizes of ¢, since on one hand for large ¢ the
bundle model [BL ] gives a bad approximation of 9., ¢(u*) (see, [60]) and on
the other hand for small £, we can only expect a small increase of ¢ due to
3.33. For this reason it is difficult to derive exact rules for updating ;. The
quadratic programming and line search involving at each iterate point can also
lead to too much computations. This is a crucial problem, particularly, in the
case of implementation of large scale problems. Moreover, the bundle method
subject to zigzags. If we apply this method to solve, for instance, the problem in
Example 3.2, then the method is reduced to the pure subgradient procedure since
the subgradient of the objective function at any point is constant. Hence, the
e-steepest ascent direction turnout to be the (sub)gradient itself and the method

suffers zigzagging of kind II as described in Example 3.2.
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4. A ZIGZAG-FREE SUBGRADIENT PROCEDURE

4.1 Introduction

The zigzagging behavior that arises from the step direction of the subgradient
methods makes the computational performance of the procedures poor since it
slows the convergence of the procedures. As mentioned earlier, the zigzagging
phenomenon can be manifested itself either in the form of zigzagging of kind I
or the zigzagging of kind II; and possibly the whole procedure can be exposed to
both kind of zigzagging. This obviously can make the procedure quite inefficient,

particularly for large sized problems.

The deflected subgradient and the conditional subgradient methods that have
been discussed in Section 3.2 and 3.3, respectively, are designed with the intent
of alleviating the zigzagging phenomena of the pure subgradient method. How-
ever, even though the deflected subgradient procedure can avoid zigzagging of
kind I, it can not deal with zigzagging of kind II. On the other hand, the con-
ditional subgradient procedure can eliminate zigzagging of kind II but has no
way to control zigzagging of kind I. Therefore, none of these procedures can com-

pletely eliminate the zigzagging behavior.

In this chapter we design a new strategy for selection of step direction that can
help to completely eliminate both kind of zigzagging. The strategy aims at com-
bining together and extending deflected and conditional subgradient procedures
while keeping the simplicity of the procedures. In Chapter 3, we have noticed

that the zigzagging of kind II may arise only when the iterate points run across
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the relative boundary of a feasible region and such zigzagging can be controlled
by the conditional subgradient procedure if a suitable conditional subgradient is
chosen for the step direction (see, Section 3.3). Moreover, the deflected subgra-
dient procedures, with appropriate choice of a deflection parameter, can help to
eliminate Zigzagging of Kind I when the iterates are moving within the relative
interior of the feasible set. However, both methods cannot determine a priori a
type of zigzagging that would going to arise. Here we construct the procedure
that mimicking the conditional subgradient strategy while the iterates running
across the boundary of the feasible set and switches to the deflected subgradient
procedure whenever required. That is, we design a procedure that inspects a
resulting subgradient direction at each iterate point and informs itself the type
of zigzagging intended to arise. Based on the information, an appropriate step

direction that can protect the appearance of a zigzag is selected.

4.2 A Generic Hybrid Subgradient Procedure

In this section we present a new algorithm with specific rules for selection of
subgradient based step direction which can completely eliminate the zigzagging
phenomena. Recall that a step direction d* is said to be infeasible at an iterate
point u* € bd(Q) if d*v >0 for some v € No(u¥); i.e., d* forms an an acute

. The more acute ( i.c., the smaller) such an

angle with a normal vector at u
angle is the stronger that the projection operator would hamper the motion of
the iterates and hence the worse the zigzagging phenomena of kind II. To avoid
this difficulty, we would like to enable the procedure to step using the direction
of an appropriately chosen tangent vector at a boundary point u* instead of

moving using the direction of the inconvenient infeasible direction. This can be

accomplished by choosing a step direction A* at u* € bd(Q) by the rule

AF = g8 — ok (4.1)
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where s% € 0¢(u*) and v* = Py, @r)(s") whenever the subgradient s* is

infeasible at u”. Since A* = s¥ — PNQ(uk)(Sk) is orthogonal to the normal cone,
Na(u¥), AF is a tangent vector of the set Q at u*. In particular, if Q is a

polyhedral set then there exists a A > 0 such that
uf + M AF € Q forall A, €0, )],

in which case uF*t1 = Pqo(uf + M\ AF) = u¥ + N\ AF.

The vector A¥ obtained by the rule (4.1) is a conditional subgradient of ¢ at u*
(see, Section 3.3). In this procedure, however, we use it as a step direction only
when the subgradient at the iterate point is an infeasible direction, in contrast
to the conditional subgradient procedure which always use it as a step direction.
In other cases, i.e., if s* is not infeasible direction or if u* € int(2), we make the
procedure to switch to the deflected subgradient strategy in order to avoid an
occurrence of a zigzagging of kind I. Thus the generic procedure which generates

the sequence of iterates {u"} in 2 is as follows.

Algorithm 4.1: A generic hybrid subgradient algorithm:
e Step 0 (Initialization): Set k =0, A~! =0 and choose u’ € Q.
e Step 1 (Determine the step direction):

AF sk — ok, if u* € bd(Q) and s* is infeasible direction at u"
s* + 6,AF1 otherwise

(4.2)
where s* € dg(u¥), v* = PNQ(uk)<Sk> and 0, is a deflection parameter to

be chosen appropriately.
e Step 2:

uF Tt = Po(uf + A\ AF) (4.3)

e Step 3: Let k:= k+ 1; and Repeat Step 1 until some stopping condition.



4. A Zigzag-Free Subgradient Procedure 78

We call the step direction given by (4.2) the hybrid subgradient (step) direction
for the reason that it takes either a conditional subgradient or a deflected sub-
gradient direction. We shall determine an appropriate choices of the step length
Ar and the deflection parameter 0 in order to enable the procedure to eliminate
the zigzagging phenomena while preserving the two important properties of the
subgradient methods that help the procedure to converge; namely, if {u*} C Q
is the sequence of the iterates then (i) the step direction at u* should make an
acute angle with the direction leading to an optimal solution, and (ii) the se-

quence {||u* —u*||} should be strictly decreasing and eventually converging to 0.

The following Lemmas will be used in the proofs of the theorems that follow.

Lemma 4.1: Suppose (2 is a non-empty closed convex subset of R™. If v € R™

and p, = Pq(v) then
(i) lpo —u|| < |Jlv—u| forany wue Q.

(i) a(v—u)(p, —v) <0, for any scalar a > 0 and any u € (2 .

Proof: Note that v — p, € Nq(p,). Therefore, for any u € €2, it holds that

(u—pu)(v—pu) <0 (4.4)

|?>. Now we

(i) The inequality in (4.4) directly provide wv — up, < vp, — ||py

use this last inequality in the following relation.

lpo = wll® = llo = ull* = lpoll® = [[0]I* + 2(uv — up,)

IN

Ipol* = llvll* + 20ps = 2||py||?

_Hpv _UH2
0.

IN

Therefore the inequality in (i) holds.
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(ii) Again using (4.4),

(U—U—f-v—pv)(v—pv) < 0.
(u=0v)(v=p)) < =llv=p* < 0.
(v—u)(p, —v) < 0.

U

As consequences of Lemma 4.1 we have the followings: If {u*} is a sequence of

iterate points generated by the rule (4.3), then
e setting u=u* and v ="+ N\, A* (i) of Lemma 4.1 gives us

[ I L (4.5)

o setting u=u" v=u*+ A" and a=1/)\;, (i) of the Lemma yields

Ak(ukJrl _ uk _ /\k;Ak) <0
= AF(uF — uF ) > || AR (4.6)

These relations are used in the proofs of the followings.

Lemma 4.2: Suppose {u*} C Q is a sequence of iterates generated by (4.3) and
the step direction A¥ is the hybrid subgradient direction given by (4.2). If

¢* — p(u¥)

0 < /\k; <
[A*]?

(4.7)

Then
AFu* = ub) > ¢(u”) — ¢(u”)

for any iterate point u*.

Proof: (By induction on k )
Let k = 0. Then, either A? = % — Py, (u0)(s°) € 8%¢(u®) or A®=5" € dp(u°).
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For both cases, the assertion is true.

Suppose the claim holds for k¥ € N. Then, in case u*™! € bd(Q) and s**! is

1

infeasible at ©**!, we obtain

AR = 4P (851 € 0%(u )
From this it follows,
At~ ) > g — o(ut).
In the remaining cases, AF! = skl 45, A*. Hence,
AFFL( — F ) = g (5 ) s AR — b (4.8)

Next to show AF(u* — u**1) >0 :

AR —ub ) = AR — b b — u )
= AR(ut — uF) o+ AR(F — )
> ¢(u*) — d(uk) + AF(ub — ub ) [ induction hypothesis]
> o(u*) — p(uF) — M ||AF||? [ followed from (4.6 ) |

Y
o

[ from the given condition on A.]

Using this in (4.8), we obtain

Ak—l—l(u* . uk—f—l) Z Sk-{—l(u* . uk;—f—l) Z ¢(u*) . ¢(Uk+1.

The following theorem extends important properties of subgradient methods.

Theorem 4.3: Suppose {u*} is a sequence of iterates generated by (4.3) and the
step direction A* is the hybrid subgradient direction given by (4.2). If

¢ — p(u")

0 < N\ <
[A*]]?

, (4.9)

then,
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(i) AF(u* —uF) >0 forall u* ¢ Q.
(i) [Jurtt —ut]| < ||uf —u*|| for all u* & Q.

(iii) If A™ =0 at some iterate point u™, then u" is an optimal solution.

Proof: (i) Follows obviously from Lemma 4.2 since for all u* ¢ Q* it holds that
Af(u* —u¥) > ¢(u”) = o(u") > 0.
(ii) Using Lemma 4.1 we obtain
b1 — w2 < [ub + A AR — o2
= [t = w2+ M ARl AR = 248w — u)].
Therefore, we need only to show M| AF||? — 2AF(u* — w¥) < 0. Using the

condition on A, and Lemma 4.2 we have
M| AF|1? < ¢F — p(u¥) < AF(u* —uP) < 2AF(u* — uP).

Hence, M\i||A*||> — 2A%(u* — u*) < 0. This completes the prove of (ii).

(ili) ¢* = max{p(u): u e Q} > ¢(u"). On the other hand, using Lemma 4.2
and the given condition on A" it holds that ¢* — ¢p(u™) < A™(u* —u™) = 0.
Hence, ¢* < ¢(u"). Putting these together, we have ¢(u") = ¢*. O

Theorem 4.3 establishes important properties that (i) at each iterate point the
hybrid subgradient direction A* forms an acute angle with the direction leading
from u* to an optimal solution u*, and (ii) the sequence { ||u* — u*|| } is mono-
tonic decreasing. Moreover, Theorem 4.3(iii) provides a sufficient condition for

optimality.

Theorem 4.4: Suppose a sequence {u*} C Q is constructed by the hybrid sub-

gradient procedure using a step length

¢* — $(u¥)
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If sup{||A*||:k=0,1,2,...} <oco and Q* is nonempty, then ¢(u*) — ¢* and

the sequence {u*} — u* for some u* € Q*.

Proof: Using Lemma 4.1 one obtains

||uk+1 . u*||2 S Huk + )\kAk o U*HQ
= [Juf =[P+ N AP = 20 A (0 — ut)
2 (9" — ¢(Uk))2

= =l g

8 W) s
T G

(6" — o(u"))”

<l =P = (2 — )
1A%

(4.11)

<t =P = (67 — o(u”))? (4.12)

where ¢ = sup{||A*| : k= 0,1,2,...}. Note that the relation (4.11) follows by us-
ing Lemma 4.2 in the previous relation and the relation (4.12) holds since 2 — 15, >
1 and jy > &o. From (4.12) we conclude that (¢(u*) — ¢*)? — 0, or equivalently,
d(uF) — ¢* (otherwise, 39 > 0 and K > 0 such that (¢p(u*) —¢*)> > 6 Vk > K.
Let, with out loss of generality, K = 0. Using this inequality in (4.12), we obtain
Jub ™ — uwr|?> < |lu* — w*||> — o where a = 2% is positive. The last inequality
written recursively yields [Ju**!—u*||? < ||Ju® —u*||?—ak — —oo as k — oo,
which is a contradiction).

Now it remains only to show that u* — u* € Q*. Observe that {||u* — u*|}
is monotonic decreasing implies the boundedness of {u* — u*} and this again
implies that {u*} is bounded. Hence an accumulation point @ €  of {u*} ex-
ists; i.e., there is a subsequence { u*» } which converges to @. It follows that
d(ubr) — ¢(u) since ¢ is continuous. Hence we have ¢(1) = ¢*; i.e., u € Q.
We now show that the entire sequence {u*} converges to . Since @ € Q*, the
sequence ||uf — @|| is bounded and monotonic decreasing with a subsequence

converging to 0. Hence the sequence ||u* — | — 0. Thus, {u*} — @. O

The next theorem describes the most important property of the hybrid subgra-

dient procedure.
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Theorem 4.5: Suppose the hybrid step direction AF is given by (4.2), the step
length A\, > 0, and the deflection parameter d; is given by either

(1)

kAk—1 ; kE Ak—1
—Tk”sAki_l”Q, if s"A <0

Sp = (4.13)
0, otherwise
where 1 < 7, < 2 and s* € dp(uF),
or
(ii)
5"
5, = , (4.14)
[PAS

then the hybrid subgradient procedure, Algorithm 4.1, is free of zigzagging
of kind I and kind II.

Proof: Suppose s* is infeasible; i.e., u¥ € bd(2) and s* forms an acute angle
with a normal vector of Q at u”. Then A" = s* — Py, ,1(s"*) is orthogonal to a
normal vector and hence A* € Tq(u*). Thus, zigzagging of kind II can not arise.
Moreover, if s* is not infeasible then the problem of concern is only a zigzagging

of kind 1. But in this case AF = s* 4+ §,AF1L.

(i) Now if ¢y is chosen according to (4.13), then dj, either 0 or a positive scalar.
If s*AF=! >0, then the claim of the theorem follows since in this case
AP = s¥ as §, = 0. Thus consider, the case s*A¥! < 0. Then,

AFAFT = gEART g ARL|J2
— GFARL g gh AR
= (1 —7)sFAF!
> 0,
since 1—7, < 0 and also s*AF~! < 0. Thus, also zigzagging of kind I

does not arise.
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(ii) If &y, is given by (4.14), then A* = s* + ”ﬂik_HIHAk_l

= AkAkfl — SkAkfl + HSkHHAkfln

Is*IIARH] = [s"AR - [since sPARTE > —[sPAR] ]

AV VS

0 [ Cauchy-Schwarz inequality |

O

4.3 Hybrid Subgradient Procedure for the Lagrangian Dual

In this section we apply the hybrid subgradient procedure to solve the Lagrangian

dual problem 2.3. Following our previous notations, let

X*(w) = {ze€X: T isan optimal solution of the subproblem SP(u) }
Ni(.) = Ngn(.), normal cone of the positive octant at a point
Q = Rf={ueckR™: u>0}

and s¥ = b — Ax* € 9¢p(u*), for z* € X*(uF).

Note that for all such s*, { ||s*|| } is bounded and hence sup{||s*|| : k € N} < oo.
Therefore, a hybrid subgradient vector A* obtained from s* by (4.2) is bounded,
too. As a result, Theorem 4.4 is valid for this problem. Furthermore, the hybrid
step direction is given by A* = s¥ 4+ §,A¥~! wherever the subgradient s* is not
infeasible at the iterate point u*. Now we describe how one can identify an infea-
sibility of s* and find a rule that can be used to determine an appropriate step

direction when s* is infeasible.

Obviously, u* € bd(R7) only if uf = 0 for some of its j-th component. Fur-
thermore, a subgradient s* at boundary point is infeasible if and only if s¥ < 0
for some of its i-th component for which uf = 0; i.e, if Z¥ = {i : u¥ = 0}, then
sk € O(u”) is infeasible at u* if and only if s¥ < 0 for some of its components

i € ZF. In such case the hybrid step direction A* is determined by AF = s* — ok
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where s =b— Az* for 2% € X*(u*) and o* = Py, (s") so that each of the

i-th component v* is given by

X sk ifuf=0 and sF< 0

0, otherwise.
Thus, in case s* is infeasible at u* € bd(R'?) the hybrid step direction can be
expressed as

AF = (AF AL AR) (4.15)

where
0, if u¥ =0 and b; — Alz* < 0

b, — Alz*. otherwise.

for 2% € X*(u*) and b; — A'z* is the i-th component of s¥ = b — Az*.

Therefore, using the above results, the corresponding hybrid subgradient for the

Lagrangian dual problem can be constructed as follows.

Algorithm 4.2: Hybrid subgradient algorithm for the Lagrangian dual:

e Step 0: (Initialization) Set k := 0, and choose u° € R™".
Let A™'=0, u ' =4 and ¢(u ~') = —o0.

e Step 1: Solve the subproblem SP(u*) to get z* € X*(u*) and ¢(u*).
sk = b — Ax¥, a subgradient of ¢ at u*.
If ¢(u*) > ¢(a"~1), then
u* = uF and ¢(a*) = p(u").
else

F =kt and ¢(u*) = ¢(a*1).

N

e Step 2: Determine the hybrid subgradient direction:
Let Z8 ={i: uf =0}
AF, if s¥# <0 for some i € ZF.

AF =
s* 4+ 6,AF1 otherwise
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where AF and §;, are given by 4.15 and 4.13, respectively.

ekl (R kL k+1
e Step 3: u"h = (ui" us L usth),
where, uf™ =max{ 0, u¥ + \;AF} for each i =1,2,...,m.

Let k := k + 1, repeat Step 1, (until a stopping condition).

Note that in Step 1 @* is updated only if ¢ has a greater value (up to the current
iteration), so that ¢ is monotonic increasing on the subsequence {a*}. At termi-
nation, the last iterate 4™ would be an output as a solution of the Lagrangian

dual (LD) with the objective value ¢(u™).

Finally, the comment on a termination criterion of the hybrid procedures is sim-
ilar to that of any other subgradient methods. Indeed, the procedure can be
stopped when A* = ( at some iterate point; but there is no guarantee for occur-
rence of this. Hence a possible stopping rule is either to stop after a sufficiently
large number of iterations or if the value of ¢ has not increased for a number of
consecutive iterations. The procedure may also made to terminate if A* or ) is
below certain threshold. A combination of these may also be used to terminate

the procedure.



5. PRIMAL SOLUTIONS WITHIN THE SUBGRADIENT
PROCEDURES

In this chapter, we analyze two important extensions of the subgradient methods
which have been developed recently in order to construct primal solution within
the subgradient schemes without a significant additional computational effort.
Originally, the procedures were developed either for problems arising from linear
programming or convex programming problems. We adopt the procedures to find

a near-optimal solution for integer programming problems.

5.1 Introduction

This chapter deals with a solution method of the original integer programming
problem, i.e, the primal problem IP. While the subgradient optimization proce-
dures that have been described in the previous sections can be quite powerful
in providing a good lower bound (for the minimization problem) to IP via the
solution of its Lagrangian dual LD, the disadvantage is that a primal optimal
solution (or even a feasible solution) to IP is not usually available using these
schemes. Such a primal solution is important not only as the final solution of IP
but also in the branch and bound procedure which is usually applied to search
for an integral solution since a primal solution provides an upper bound on the
IP. Moreover, the availability of a primal solution can provide a natural stopping

criterion of a subgradient procedure.

One may attempt to obtain a primal solution after enforcing complementary

slackness on the derived optimal solution of LD. Note that if # € X and @ € R
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satisfy the optimality condition (Theorem 2.9), then & is an optimal solution in
the primal problem and « is an optimal solution in its Lagrangian dual problem.
Thus, the possible strategy for the application of Lagrangian relaxation tech-
niques could be to find first an optimum « in LD and once this has been done,
then try to find a complementary & € X for which the optimality conditions hold

by calculating one or more solutions & satisfying

ci + (b — Az) = ¢(a)
b— Az <0
a(b — Az) = 0.

But this might involve a significant additional computational burden, particularly
in the case of a large scale problem. Beside the computational burden, there is no
guarantee that this strategy will succeed because (a) there may be no u feasible
in LD for which the optimality conditions can be made to hold for some z € X
because of the possible duality gap; or (b) the specific optimal @ we obtained may
not admit the optimality conditions for any z € X, although some other u € R

which maximize the Lagrangian dual may satisfy the optimality condition.

On the other hand, branch and bound is a method guaranteed to find an opti-
mal solution to an integer programming problem. Usually an optimal solution
of a linear programming, LP, relaxation is used to provide a lower bound (for a
minimization problem) in a branch and bound algorithm and a feasible (integral)
solution has to be searched by repeated re-optimizations using a simplex-based
algorithms and additional extra constraint in order to get a solution or an upper
bound ([64],[72], [84]). However, the search for an integral solution has been a
challenging task in such a procedure, particularly, in the case of a large-scale in-
teger programming problem since such a simplex-based algorithms are slow and

requires large storage area.

Alternatively, the Lagrangian relaxation and the Lagrangian dual procedures can

thus be used to provide bounds in a branch and bound algorithm with relative
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easiness and quickness. The issues involved in designing a branch and bound al-
gorithm that uses the Lagrangian relaxation are essentially the same as those that
arise when a LP relaxation is used. The difference is, however, the Lagrangian
relaxation is used and the subgradient method is applied to solve the resulting
Lagrangian dual instead of a simplex-based algorithm of LP problems. This tech-
nique provides a lower bound on the IP problem relatively easily and quickly and
it has lead to dramatically improved algorithms for a number of important par-
ticular problems in the area of such as Travelling Salesman Problem( [44], [45]),
Scheduling ([33], [34]), Set Covering([32], [13] ), Location ( [25], [30], [23], [14]
) and general integer programming ( [39],[74], [35], [36] ). Lagrangian Relax-
ation was successful for these applications because the subgradient optimization
method which was used to solve its Lagrangian dual is more powerful than the
simplex-based methods available for solving the (generally large) LP relaxation of
IP. The important message of these applications is that combinatorial optimiza-
tion problems frequently can be formulated as large integer programming whose
Lagrangian dual can be solved relatively easily and quickly by the subgradient
methods.

The drawbacks of a subgradient algorithm is, however, that it does not produce
values for the primal variables. Moreover, it has no well defined stopping crite-
ria. Hence, at termination, one does not know how far the value obtained is from
the optimal value. In order to deal with these drawbacks, Shor ([80], pp.116-
118) proposed to use a sequence of points generated by convex combination of
solutions of the subproblems of the Lagrangian dual problem within the sub-
gradient scheme in such a way that it eventually converges to a primal solution
by adopting certain restricted step size strategies. He applied this idea within
a pure subgradient scheme of a Lagrangian dual problem that came from a lin-
ear programming problem to construct a sequence of primal iterates by convex
combination of solution of subproblems. Sherali and Choi [78] have used this

idea within the deflected subgradient methods that solve Lagrangian duals of
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linear programming problem. Larsson, Patriksson and Strémberg [54] also used
the idea to the case of general convex programs within the conditional subgra-
dient scheme. More recently, Barahona and Anbil [6] developed an extension of
a subgradient method which produce an approximate primal solution with in a
deflected subgradient method and presented a successful numerical experiments
with large scale linear programming relaxations arising from set partitioning, set

covering and plant location problems.

In this chapter, we present extensions of the subgradient algorithms to a class
of algorithms that can produce an approximate to a primal solution of integer
programming problem directly from the information generated in the process of
the deflected subgradient or the conditional subgradient optimization methods.
Insights and solution methods for the primal problem are derived from the La-
grangian dualization and convexfication of the IP problem. Recall that (Theorem

2.4), given an integer programming problem

(IP) min cx (5.1)
st. Arx >b

reX = {xeZ}: Dx>d},

then it holds that

¢* = min czx (5.2)
st. Az >0
x € conv(X)

where ¢* is the maximum value of the Lagrangian dual LD of the IP. Note that
(5.2) is a convex programming problem. From these facts, we may say that the
Lagrangian dual of IP is equivalent to convexfication of it. Moreover, there is
no duality gap for problem (5.2). Hence, we aimed at calculating & € conv(X)
which satisfies the optimality condition (Theorem 2.9) together with some @ € R’}

which maximizes the LD of the convex programming relaxation (5.2) of IP. We call
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such a solution Z a near-optimal solution of the IP. Thus, we have the following

definition:

Definition 5.1: (Near-optimal solution)
Suppose u € Q0 = {u € R : ¢(0) > ¢(u), Yu e R}
and let

X(u) ={z € conv(X) : cx + (b — Az) < cx +u(b— Azx), Vzx € conv(X)}.

An 7 € X(u) is said to be a near-optimal solution of the IP, (5.1), if
Az >b and u(Az—b) =0.

O

In Section 5.2, we extend the deflected subgradient procedure so as both a dual
and a near-optimal primal solution are generated within the scheme. Section 5.3
deals with such extension of the conditional subgradient procedure. Additionally,
while these extended procedures are maintaining the same low computational cost
per iteration, they provide a much better stopping criterion. In general, the ex-
tensions produce a near-optimal primal vector as well as a dual vector that can be
used by themselves to devise a simple heuristic that can convert the near-optimal
primal solution into an integral solution, which is usually the case ( [8], [7], [6],
[50]), or as the starting points of a more exact method such as, for instance,

branch-and-bound method.

5.2 The Volume Algorithm

We describe below an extension of the subgradient algorithm which produces a
near-optimal primal solution of IP directly from information generated within the
process of the deflected subgradient algorithm. Given an IP problem (5.1), we
have seen that the optimal objective value of its Lagrangian dual can be obtained

from (5.2) which is itself a convex programming (or LP) relaxation problem of
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the IP. That is,

¢* =min cx
s.t. Ax >b
reconv(X)={z: x=> a",> 0, =1,0;, >0, 2 € X}

which can be written as
¢* = min Z(cmi)ai (5.3)
s.t. i(Ax‘ —b)a; >0
i a; =1
ozi- >0 Vi
This is a linear programming problem (generally large-scale) whose dual is

¢* = max =z
st. z+u(Az’ —b) < cxt, Vi
ueRY, zeR

or,

¢* = max z (5.4)
st. z<ub+ (c—ud)r' Vi

uveRY, zeR
Setting z = ¢(u), then (5.4) is equivalent to the Lagrangian dual
(LD) ¢* = max{¢(u): u € R}
where ¢(u) is the dual function determined pointwise by the subproblem
d(u) = ub+ min{(c —uA)z' : ' € X, Vi}. (5.5)

We have seen already that the Lagrangian dual (LD) can be solved by a subgradi-

ent optimization procedure. Beside solving (LD), we want to determine a primal
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solution of (5.2) or, equivalently, (5.3) within the subgradient procedures. Such
solution yields a convex combination of points in X, and hence is a near-optimal
solution of the IP. To generate such solution via a convex combination of points
in X, the set of points {z!,z?%,..., 2%, ...} C X are generated from the solutions
of the subproblem (5.5). The basic idea to be used to determine the correspond-
ing weights «; in the convex combination comes from applying the theorem on
volume and duality due to Barahona and Anbil [6], where the «; are estimating
certain volumes associated to active faces at an optimal dual solution as shown

in the following theorem.

Theorem 5.1: (Volume and Duality)
Consider the problem

max 2z (5.6)

st z4+au<b, fori=12....m

where z € R, and a',u € R". Let (2,4) € R x R™ be an optimal solution, and
suppose that constraints 1,2,...,m’, m' < m are active at this point.

Let z < Z and assume that

2+ alu < b, for i=1,2,...,m’
(5.7)
z 2>z,
define a bounded polyhedron. For 1 < ¢ < m/, let 7; be the volume between
the face defined by z + a‘u < b; and the hyperplane defined by z > z. Then an

optimal dual solution is given by

Vi

7 .

Z;n:l i

a; =

Proof: The shaded region, P, in the Figure 5.1 illustrates such a volume in
a plane. Consider the polyhedral P defined by (5.7). Since it is a bounded
polyhedral it is a polytope and full dimensional. Let Fj be the face defined by
z >z, and Fj the face defined by z +a'u < b;, i=1,2,...m'. Gauss’ divergence
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=

Fig. 5.1: The shaded region P is an example of the required volume.

theorem says that for a closed bounded region P whose boundary is a piecewise

smooth orientable surface S, and vector field F defined on P,

/ F.idS = / div(F)dv,
S P

where 7 is the outer unit normal vector of the surface S. Taking F = v, a

constant vector, we get

/ vidS =0, (5.8)
S

since div(F) = 0 for the constant F' = v. By taking v = e; ( the j-th unit vector)
for 1 < j < n, we obtain v.77 = n; and hence (5.8) yields [¢n;dS = 0 for each

j=1,2,...,n. From this, it follows
/ﬁdS =0, (5.9)
5

where 0 denotes a zero vector. Since S = F{URU. .. UF,UF,, disjoint unions,

(5.9) gives us
3 / A(F)dS + / F(E)dS = 0
i=1 /I Fo
where 7(F;) is an outer unit normal to the face F;. Notice that

n(Fo) = —(1,0,...,0) and 7n(F;) = ”8: Zi;n, for each i=1,2,...m/.
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Thus, using this in the last integral equation we obtain,

Zh o [ 08] - .00 [ as < o

This implies,

m’ 51 i
Zm(l,(l)—éo(l,o,,(]) =0
i=1

where §; = fF. dS, the surface area of I}, for each i = 0,1,2,...,m'. Thus,

m/ 52 i
(1,0,...,0) :;750”(1, A1 @)

so at this point we have the gradient of the objective function written as a non-
negative linear combination of the gradients of the constraints that are active at

the optimum. This provides, therefore, an optimal dual solution

;= L (5.10)
dol[(1, a’)|
fori = 1,2,...m' (where o; = 0, for each i = m’ +1,m' + 2,...,m). Now we
shall see that
RO

where ¢ is a constant, and ~;, as defined earlier, is the volume between F; and
the hyperplane Fj.

If 9; = 0, then v, = 0. So we have to consider the case when 9; > 0. For that we
apply Gausses theorem again as follows.

Let @; be the convex hull of F; and (z,4) (see Figure 5.2).
Let Fy = F, N Q,. Notice that the faces of Q; other than F, and F} are defined

by inequalities like cu < d where the variable z is absent. This means that the
normal to this faces are orthogonal to the z-axis. Therefore, if we use formula
(5.8) with v = e; = (1,0,0,...,0) on @Q;, the only faces with v.77 # 0 are F; and
Fy. Thus applying (5.8) on @Q; with v = e; we get

O:/ elﬁdS:/ nl(E)dS—f-/ nl(F())dS,
i F; Fo
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u
Fig. 5.2:
- . 1 _ .
where 7 = (ny,ne, ..., n,) and ny(F;) = T e ni(Fy) = —1. Thus, it follows
/ asi— [ ds -
1 a’ H Fo

This implies

9

Ai = T
1(1, a®)|

where A; = [ 7y dS, the surface area of Fj.
Let h = 2 — zZ. Then the volume of @Q; is v; = %hAi or A; = %%. Since
do = Z;L A;, we have (see (5.10))

0i A A %%‘ i
@i = ool (1. at - 5_ - m/ T 2 - m )
olI(L, a®)] 0 Zj:l A; EZj:l Vi Zj:l i
This completes the proof. O

The Volume and Duality Theorem suggests that given a vector (z, ) one should
look at the active faces, and compute the volume of their projection over the
hyperplane z = Z — ¢, on a neighborhood of %, and for some small positive value

of e. Let «; be the ratio of the volume below F; to the total. Then one should
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compute

(1,0) — Zai(l,ai), where 0 = (0,0,...,0).
i=1

If this is zero we have a proof of optimality, otherwise we have a step direction and
the procedure needs to continue. The Volume Algorithm which will be presented
in this section computes approximations to these volumes within the subgradient

scheme.

Example 5.1:

max o

St x9—x1 <5
$2+%$1§14
To + 221 < 32
o €R, 21 >0

Solution: Clearly, the solution of this problem is (2, 23) = (6,11). We would
like to solve the dual problem using the Volume and Duality Theorem. (See
Figure 5.3). Let oy, as, az be the dual variables. Note that a3 = 0 since the third

constraint is not active at the optimal primal solution. But

q=—1 =12
71t
where 71 = 12 = 26 and 7, = 3€(2¢) = €2. Hence, a; = 1/3, as =2/3 and

az = 0 is the optimal dual solution.
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X2
(6,11) &
YZ
n 7/
H-e -—>r «— » (12, 8)
€ 2¢e
5.

6 16\ X

Fig. 5.3: graphical illustration of Example 5.1.

Next we describe an extension of the subgradient algorithm, due to Barahona
and Anbil [6], which produces both the solution of the Lagrangian dual and
an approximation to a near-optimal primal solution based on the Volume and

Duality Theorem.

Algorithm 5.1: Volume Algorithm

Step 0. (Initialization): Start with a vector @ := u® and solve the corresponding
subproblem (5.5). Let Z be an optimal solution of this subproblem. Set
=z, ¢:= o), k=1

Step 1. Determine a direction of motion, d¥ =b— Az; and
uk = P g (2 + AedF),  for a step-size A, given by (5.13).
Solve the subproblem (5.5) with u*, and let ¥ and ¢(u*) be the solutions
obtained.
Then z is updated as
T:=ar"+ (1 —a)z (5.11)

for some « € (0,1), to be discussed later.
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Step 2. If ¢(uF) > ¢, update u and ¢ as
¢ = o(u), uw:=u"

Let k:=k+ 1, and goto Step 1.

At termination of the Volume Algorithm, # would be an output for the solution
of the Lagrangian dual with the objective value ¢. Notice that in Step 2 we
update only if ¢(u¥) > ¢, so that this is an ascent method. The other difference
with an ordinary subgradient algorithm is the formula (5.11). If 2%, 2%, ... 2% is

the sequence of vectors produced by solving the subproblem (5.5), then
T=01-a)2"+ (1 -a) ezt +... + (1 - a)az® ' 4 az”.

For a € (0, 1), obviously each of the coefficients of 2, i =10,1,...,k is between

0 and 1 and their sum is equal to 1, i.e,

k-1
a) (I—a) + (1—a) =1, (5.12)

=0
which can be shown by induction on k, for £k = 1,2,.... Thus, Z is a con-
vex combination of {z% 2t ... 271 2¥} C X. The assumption that this se-

quence estimates an optimal solution of (5.2) or the corresponding coefficients
(1—a)k (1 —a)*ta,..., (1 —a)a, a approximate the solution of (5.3) is based
on Theorem 5.1. Notice the exponential decrease of the coefficients of this convex
combination, thus the later vectors receive a much larger weight than the earlier

once.

At each iteration of the Volume Algorithm, the direction of move is determined as
a convex combination of a current subgradient and the previous direction. That

is, if d* is the direction of move at the k-th iteration, then

d* = as® + (1 —a)d",
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where s* € d¢(ur), k = 1,2,..., d° = §° since (for % := Z, at the k-th
iteration)
d" = b— Az*

= b— Alazk + (1 — a)z"]

= a(b—Az")+ (1 —a)(b— Az* 1)

= ast+ (1 - a)d" .
Therefore, at every iteration the direction is updated as in the deflected sub-
gradient method, so this is a method that would not have the same zigzagging
behavior of the pure subgradient and it is in this sense that we consider the Vol-

ume Algorithm as an extension of the deflected subgradient procedure.

As in the case of the subgradient methods, the Polyak’s (relaxation) step length
rule

UB— ¢
Ak = Mkw (5.13)

is used where 0 < ui < 2 . In order to set the value of py, Barahona and Anbil

[6] proposed the followings: Define three types of iterations as follows.

e Fach time that we do not find an improvement of the objective value we
call this iteration red. A sequence of red iterations suggests the need for a

smaller step-size.
o If p(u*) > ¢, we compute
0 = d*s*
where d” is a determined direction of move and s* = b — Ax* € dgp(u¥).
— If # < 0 it means that a longer step in the direction of d* would have
given a smaller value for ¢(u*), we call this iteration yellow.

— If & > 0 we call this iteration green. A green iteration suggests the

need for a larger step size.
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Then, the strategy to determine py is

(0.66)ug—1, after a sequence of 20 red iterations
e =194 (1.1)pg—1, if k-th iteration is green.

Hk—1, otherwise.

In order to determine the value of a in (5.11), Barahona and Anbil [6] suggested
to set it to a fixed value for a number of iterations and decreases afterwards; or

to set it by solving the following 1-dimensional problem:

min ||b — A(az® + (1 — a)7)|| (5.14)

a
st —<a<a
10

The value of a is originally set to 0.1 and its value would be decreased near the
end. In [8], it is reported that a good success can be obtained by setting the
value of a originally to 0.1 and then after every 100 iterations check if ¢(u*) had
increased by at least 1%, if not divide a@ by 2. When a becomes less than 1072, it
is kept constant. This choice of a bears a great similarities with the one proposed

in [83].

At any iteration if d* = b — Az < 0, then Z is a feasible solution of the primal
problem (5.2) since € conv(X) and the dualized constraints are also satisfied.
If d* =b— Az < 0 and @(b — AZ) = 0, then by Theorem 2.9 Z is an optimal
solution of (5.2) and @ is an optimal solution of the Lagrangian dual and we stop
the procedure. Otherwise, if it becomes difficult to reach that, the algorithm
should stop when |b— AZ| and |cZ — ¢| are both below a certain threshold.

5.2.1 Similarities with the Bundle Method
We have seen that the Volume Algorithm (VA) constructs two sequences:
1. sequence of primal variables {7*}, and

2. sequence of dual variables {@'}, which are special subsequence of {u*},

where the dual function ¢ get improved.
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If we look at only the way dual variables are constructed, the VA shows some
similarities with the bundle method (BM). As mentioned above, the VA is an
ascent procedure (see Step 2) in the same way as a BM. In the VA Step 1 is
referred as a minor iteration and Steep 2 a major iteration. The major iteration
does update ' only when there is an improvement in objective value. Otherwise,
using the minor iteration, the procedure moves in the neighborhood of @' to
find a preferable direction or a tentative iterate point. In other word, the minor
iteration provides a new subgradient vector at some point u* in the neighborhood
of 4!, say s* € d¢(u¥), and constructs a trial step direction d* = as?+(1—a)d*1.

Indeed,
d"=(1-a)s"+(1—-a)tas' +...+ (1 - a)as" ! + as”.

where s¥ € d¢(u¥), for each k, and the coefficients are all nonnegative with sum
equal to 1 (see, 5.12 ). Thus, also the VA is utilizing all subgradients assembled
during the previous iterations as convex combination in order to determine its
current trial step direction. If this trial direction d* has lead from %' to a tentative
dual point u**1 where ¢(ufT1) > ¢(u'), then @' is updated to u**!; otherwise the
major iteration does nothing. Hence, we might have a sequence of minor itera-
tions before finding an improvement (or update at the major iteration) occurs.
The minor iteration in the VA resembles the null step in BM while the major

iteration corresponds to the serious step of the BM.

There is also differences between the VA and BM. In a typical BM, we have a
measure of improvement of objective value (see, (3.33) ). This is a crucial dis-
tinction since the major iteration in the VA does not measure the gain obtained.
Specifically, when passing from #' to %', it is not known how much ”better”
the serious step is - we only know that ¢(u'™') > ¢(u'). Recently, Bahiense et.
al. have addressed this issue in more details in their paper on a revised version

of the VA [5].
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5.3 Ergodic Primal Solution within the Conditional Subgradient
Method

We shall now extend the conditional subgradient method to find a near-optimal
primal solution to the IP. The conditional subgradient algorithm for the La-
grangian dual problem, Algorithm 3.3, produces a sequence {z*} of ”primal”
solutions to the subproblem. As mentioned above, there is no guarantee for
convergence of this sequence to an optimal (or near-optimal) solution of IP. We
utilize an ergodic (averaged) sequence to find a near-optimal solution to IP. The
ergodic sequence which we will consider is a sequence with elements that are

weighted averages of those of sequence of solutions of the subproblems.

Definition 5.2: (Ergodic Sequence)
Suppose a sequence {y*}, k= 0,1,2, ..., is given. A sequence {y'}, t =1,2,3, ...,
is called an ergodic sequence of the given sequence if each element 7' is a weighted

average of the first ¢ terms of the given sequence; i.e.,

t—1 t—1
7= wwtt, DY wn=1, wy>0, Vkt (5.15)
k=0 k=0

Example: 1f
{y*} = {(1/2)}}, k=0,1,2,3..

= {1,1/2,1/4,...,(1/2)%, ...}
is a given sequence, then its ergodic sequence with equal weights is given
by
{7y = 130(1/2)F, t=1,2,3..,
= {1,3/4,7/12,..., %(1 —1/2Y,...}.

To construct a near optimal solution of the IP we generate an ergodic sequence,
with a choice of special weights, from the sequence of the solutions of the La-
grangian subproblems so that it converges to a near optimal solution. Larsson-
Patriksson-Stromberg [54] proposed two schemes for generating such weighted

averages of the sequence of solutions of the subproblems with in the conditional
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subgradient procedure for Lagrangian dual of a convex programming problem and
also proved the convergence of each of these sequences to an optimal solution of
the primal problem. We will utilize this idea to construct a near-optimal solution
to IP within the conditional subgradient procedure. An ergodic sequence {Z'} of

the solutions of the Lagrangian subproblem is defined by

t—1 t—1
=0 ek =) M t=1,2,. (5.16)
k=0 k=0

where 2% € X(u"), i.e., a solution to the Lagrangian subproblem (2.16) at u*, and
Ai is a step length used in the conditional subgradient scheme (Algorithm 3.3).
Note that the weights wy, = [, e, Vk,t are in accordance with the weights in

the definition of ergodic sequence, (5.15).

We will show that each of the accumulation point of the ergodic sequence {7'}
defined by (5.16) is an optimal solution to the primal problem (5.2). The next
lemma, whose proof can be found in, e.g., ([52], Theorem 2, p. 35), ( presented

in [54]), will be used in the following discussion.

Lemma 5.2: Assume the sequence {wy} C R fulfills the conditions
wig >0, k=0,1,...,t—1; lwm =1, t=1,2.
and hmtg,oo Wtk = O, ]{] = 0, 1, 2,

If the sequence {y*} C R™ is such that limy_.., y* = y, then

O

Lemma 5.2 means that if the weights of the ergodic sequence of a given sequence
satisfy the given conditions, then the ergodic sequence converges to the limit

point of the original sequence, provided such limit exists.

Lemma 5.3: Suppose the sequence {Z'} be the ergodic sequence given by the

definition (5.16). If 7 is its accumulation point, then Z € conv(X).



5. Primal Solutions Within the Subgradient Procedures 105

Proof: Since wy, = ;'\ > 0, i jwi = 1 and 2* € X(u*) C conv(X), it
holds that ¢ = ZZ_:IO wipz® € conv(X), Vt . Hence, from closeness of conv(X) it

follows that z € conv(X). O

Recall that under the Slater constraint qualification (or else from the fact that
the strong duality holds for problem (5.2)) the solution to the primal problem
(5.2), which is the convex relaxation of the IP (5.1), may be expressed as (see,

Theorem 2.9)
X, ={reX(u): b—Ar <0, ulb—Ar)=0} (5.17)

irrespective of the choice of u € 2* and the primal-dual optimality conditions

may be expressed as(see, Theorem 3.15(b))
(z,u) € X5, x " & s(x) € 9¢(u) N Ngp (u) (5.18)

where s(z) = b — Ax is a subgradient of the dual function at u.

In the next theorem, the convergence of the ergodic sequence {Z'} to the set X
is established in terms of the fulfilment of the optimality conditions of Theorem

2.9.

Theorem 5.4: If the step size A, in the conditional subgradient procedure (Al-
gorithm 3.3) applied to the Lagrangian dual problem (LD) is given by (3.24) and
the ergodic sequence {Z'} is given by the definition (5.16), then

lim min ||z — 2| = 0.

t—oo zeXy,

Proof: We want to show, for any limit point Z of the ergodic sequence {7'}, T €
X(u), b— Az <0, and u(b— AZ) = 0 for some u € Q*. Note that for any
limit point Z of {Z'}, it holds that Z € conv(X) (Lemma 5.3). Let @ € Q* be the
limit of the sequence of iterates generated by the conditional subgradient scheme

(Algorithm 3.3), whose existence is guaranteed by Theorem 3.17. Note that the
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inequalities
t—1

0 < dist(7", X(u)) < Zwtkdlst ", X(a)) (5.19)
k=0

where wy, = ;'\, for all ¢, hold since the first inequality follows from nonneg-
ativity of the distance function and the second inequality follows from the fact
that the distance function dist(., X(a)) is a convex function. By Theorem 2.8 and

the convergence of {u'} to 4 we obtain
{dist(2* X(a))} — 0, as k — oo. (5.20)
Observe also that

A A
lim wy, = lim ———— k =0, Zwtk:Z—le, wy >0, Vi k
t—00 t— oozk 0)‘k — — [

and hence, using Lemma 5.2, with y* = dist(z*, X(%)) and y = 0, it is then
follows from (5.19)and (5.20) that

t—1

0 < dist(z", X(u Zwtkdlst 2 X(@)) — 0, as t— oo,

It follows from the convexity and closeness of X(u) that for any limit point  of
{z'} we have

7 € X(a). (5.21)

Next we show that for any limit point Z of the ergodic sequence {Z'}, Z is feasible
in the primal problem (5.2). From Lemma 5.3, Z € conv(X). So it remains to

show that s(Z) = b— Az < 0. Since s is affine function we have,

t—1
=171 As(ah) vt
k=0

and from the iteration formula in the conditional subgradient procedure,
u*tt = Pgm[uf 4+ A(s(2*) —v(z"))], where wv(2") € Ngm (")

> uf 4+ A (s(2F) —v(2F))  from (3.32).
> uf 4+ \ps(z¥),  since, from (3.31), s(z*) — v(xF) > s(2F)
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From which follows that

s(2F) < ———, VEk. (5.22)

s(@) <Y NS — = W
t

Theorem 3.17 implies that the sequence {u® — u°} is bounded, and therefore

ut — u®

lim sup s;(z") < lim =0, Viel={1,2,...,m},

t—o0 t—o0 t

since limy oo [y = Y po ) A, = 00. Therefore,
b— Az = s(z) <0. (5.23)

Now we want to show us(Z) = u(b — AZ) = 0. Consider an

i€ I(u)={i: @ >0} Asaisalimit point of u*, it follows that, for some fixed
but sufficiently large ky, u¥ > 0 Vk > ki, where {u*} is the sequence of dual
solutions generated by the conditional subgradient procedure (Algorithm 3.3).
Therefore, from (3.31), it follows that

8 =b, — Algk = $*

which implies
uf“:max{ 0, uf—l—)\kéf} :max{ 0, uf—l—)\ksf}, Vk > k.

Moreover, as u¥ > 0 Vk > ky, one can find a sufficiently small \; > 0 such that
uf 4+ A\gst > 0. Thus, since Ay — 0 as k — o0, there exists a sufficiently large

ko > 0 such that Vk > ky we get uf + )\ksf > 0. That is,

ubtt = Wb Nsb VE > max{ky, k)
Wk
= s = Z)\il VEk > max{ky, ka2 } (5.24)
k
Now -

- k+1 _ ok k_ .0

SZ(ZL‘t) — l;l /\kuz Ui — u; u;
A ly
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Therefore, by taking account of boundedness of the sequence {u* — u°} and
the lim;_ l; = 0o, we obtain lim; .., s;(Z") = 0. Since this result holds for all

i € I(u), and by definition u, =0 Vi € I\ I(a), it follows that as t — oo,
{us(z")} — 0. (5.25)

Thus, from (5.21), (5.23), and (5.25) it follows that at the limit the ergodic
sequence is feasible and satisfies the optimality conditions together with any

u € QF. O

Corollary 5.5: ( z' verifies the optimality in the limit):

Under the assumption of Theorem 5.4,
{dist(s(z"), dp(@) N Ngm (7))} — 0.

The proof of the corollary follows from Theorem 3.17, Theorem 5.4, and the re-
lation (5.18). O

An alternative ergodic sequence, with equal weights on all subproblem solutions,

is given by .
=
At k _
x—ggox, t=1,2,... (5.26)

where, as before, 2% € X(u*). Analogously to Theorem 5.4, one can show the
convergence of the sequence {Z'} to the optimal solution set of the primal problem
(5.2) or the near-optimal solution of the IP, given that the step size A in the
conditional subgradient scheme is chosen according to the adaptive step size

selection rule (Corollary 3.18), i.e.,

o) M
B+E B+k
where 3 >0, 0<a<M<oo, k=0,1,2,...

M € ], (5.27)

The next theorem whose detailed proof is found in ([54], Theorem 2) can be
justified with arguments analogous to the proof of Theorem 5.4 with wy, = 1/t,

foreacht =1,2,3,....
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Theorem 5.6: ( convergence of {i'} to the solution set X))

Suppose the conditional subgradient scheme (Algorithm 3.3) is applied to solve
the Lagrangian dual problem of IP (5.1) with a step size determined as (5.27),
the set X}, and the sequence {2’} are given by the definitions (5.17) and (5.26),
respectively, and suppose that {v'} is bounded. Then,

{ dist(2',X},) } — 0.

O
The above theorem implies directly the following corollary.
Corollary 5.7: ( ' verifies the optimality in the limit)
Under the assumption of Theorem 5.6,
{dist(s(2"), 0p() N Ngm (@)} — 0.
O

As a consequence of the results of this section, one can directly design a primal-
dual iterative procedure that can provide a near optimal primal solution to the
IP as well as an optimal solution of its Lagrangian dual by incorporating the
ergodic sequence of solutions of subproblems given by either (5.16) or (5.26) into
the conditional subgradient procedure (Algorithm 3.3). Note that the ergodic

sequence T’ in (5.16) can be written recursively using the following formula:

Given u’, any z' € X(u'), and step length \;,, ¢t=0,1,2,..., let

t= 2% =\
P (5.28)

. b ot A
Fil = perttphat, where Dy =1+ A, t=1,2,.

Similarly, the ergodic sequence Z* in (5.26) can be expressed recursively using the

following formula:

~1 0

= x

t+1 t At 1t (5.29)
T = 5T+ e, t=1,2,...

where 2! € X(u?).
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6. MINIMIZATION OF TREATMENT TIME OF A
RADIATION THERAPY

Radiation therapy refers to the use of radiation as a means of treating a can-
cer patient. In the process of radiotherapy, a beam from a linear accelerator is
modulated using a multileaf collimator (MLC) in order to define a series of beam
shapes, known as segments, which are superimposed to produce a desired fluency
pattern (or intensity function) on a target area. After discretization, an intensity
function that been given on a cross-sectional target areas can be described as an
m X n intensity matrix. The implementation of the intensity matrix, i.e, deliv-
ery of the radiation dose, within a short possible time is one of the important
goals in a radiotherapy planning. The optimization problem we consider in this
thesis is to determine a suitable sequence of leaf settings of MLC in order to
minimize total delivery time. Two main important objectives to accomplish this
are to minimize the total beam-on-time and the number of segments. Boland,
Hamacher and Lenzen [16] have developed an exact method for the problem of
minimizing the total beam-on-time using a side-constrained network flow model.
However, minimizing the beam-on-time alone cannot minimize the total treat-
ment time since the procedure under consideration requires set-up time during
each beam-off time, i.e., between each consecutive segments of the beam. Hence,
we need also to minimize the number of segments. Unfortunately, the problem of
minimizing the number of segments is NP-hard [20]. The heuristic algorithm of
Xia and Verhey [85] is the best available thus far for the problem of minimizing

the number of segments.

The optimization problem of total delivery time, where delivery time depends
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on both beam-on time and number of segments, is NP-hard. We introduce a
new fast and efficient algorithm which combines exact and heuristic procedures
with the objective to minimize the total delivery time. In particular, with the
objective of minimizing the number of segments, we construct a heuristic algo-
rithm which involves minimizing beam-on-time as a subproblem. We solve the
subproblem using the Hamacher-Boland side constrained network flow model.
This side-constrained network flow model usually becomes a large scale problem
and requires a large amount of computational time since it involves a large num-
ber of arcs (variables) to model a practical problem. We use the subgradient
optimization methods in order to overcome the difficulties with the problem of
large instances. In particular, the Lagrangian dual technique is used to remove
the complicating side constraints of the network so that the relaxed network sub-
problem becomes a pure minimum cost network flow problem. We solve this pure
minimum cost network flow subproblem, using negative cycle cancelling method.
Solutions of this pure minimum cost network flow subproblem provide either a
solution to the original problem or a subgradient direction at each subgradient

iteration point.

This chapter is organized as follows. We present some backgrounds in Section
6.1. Section 6.2 deals with the decomposition of intensity matrix (radiation dose)
into segments (deliverable radiation beams). In this section, we also describe
associated physical constraints of the MLC which would be used to deliver the
radiation to a target area. In Section 6.3 we present the Hamacher-Boland net-
work flow model of the MLC. A new algorithm intended to minimize the total
delivery time of the radiation therapy problem is introduced in 6.4. In section
6.5 we present some numerical tests. Application of subgradient methods in the
numerical implementation of large scale-scale problems show a tremendous re-
duction of computational time as well as much less requirement of memory space

as compared to other currently known methods.
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6.1 Introduction

Radiation therapy concerns with the delivery of the proper dose of radiation to
a tumor without causing damage to a surrounding healthy tissue and critical
organs. Since a sufficiently high dose of radiation can kill cancer cells (tumor),
external beam of radiation is often used to treat a cancer patient. However, dif-
ficulties and risks are associated with this technique since such a high dose of
radiation can kill also a normal or healthy tissue surrounding the tumor. There-
fore, it is highly required to plan a treatment carefully so that the radiation
beams are focused in such a way that they deposit enough dose of radiation en-
ergy into a tumor but do not deposit an abundance of radiation into organs at
risk or normal tissues. Thus, it is a crucial task in a clinical radiation treatment
planning to realize on one hand a high level dose of radiation in the cancer tis-
sue in order to obtain a maximum tumor control; and on the other hand, it is
absolutely necessary to keep the radiation into the tissue outside of the tumor
as low as possible in order to spare the health and functions of the organs after
the treatment. Because of such conflicting objectives in the radiation treatment
planning, Hamacher and Kiifer [43] have dealt with the problem using a mul-
tiple objective optimization approach. Such an approach usually starts with a
given or desired dose distribution and determine the radiation field that can pro-
vide the specified dose distribution in the patient field - thus called the nverse
treatment planning method. A number of other solution methods have also been
proposed to solve the inverse treatment planning problem. Depending on the
nature of a chosen objective function, determination of a solution of the inverse
treatment planning problem has been performed using various optimization tech-
niques including minimizing deviations from given bounds using least square or
quadratic programming approach (Burkard et al. [19], Shepard et al. [76]), linear
programming (Rosen et al. [71], Morill et al. [62], Holder [49] ), mixed integer
programming (Lee et al.[56]) and multiple objective optimization (Hamacher and

Kiifer [43]).
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The output of an inverse treatment formalism is usually an m x n matrix with
non-negative entries, called intensity matriz. Subsequently, the resulting intensity
matrix has to be implemented, i.e., delivered to the cancer patient treatment field
by using a medical accelerator which are put into a gantry that can be rotated

about a patient, who is positioned and fixed on a couch (see Fig. 6.1).

Fig. 6.1: A medical linear accelerator with beam head and a couch. A patient is being treated.

Source: http://www.varian.com/onc/prod55.html

The modern device used for this purpose is a multileaf collimator (MLC), that
consists of metal pieces that can totally block any radiation. These pieces of
metals are called leaves. Every two of these leaves are placed opposite to each
other where each of them is connected to a linear motor by a metal band and
can move in the direction towards the other leaf or away from it. Such two
leaves are called a channel and corresponds to a row of an intensity matrix. By
placing several leaf pairs one can shape a rectangular irradiation field where only

the cross-sectional areas corresponding to the openings between a pair of leaves
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receive radiation. For instance, given a 5 x 6 intensity matrix

~

I
S O = O O
O = = O
— = = =
_ = O
S = O O =
S = O O O

the corresponding leaves configuration of the MLC can be set as shown in the

Fig. 6.2.

column

1 2 3 4 5 6

u

Fig. 6.2: The leave setting corresponding to the intensity matrix I.

Channel

DR W -

Fig. 6.3 demonstrates the actual leave settings (configurations) of a MLC
mounted into the head of a linear accelerator from the patient treatment field

eye’s view.

The beam modulation can be accomplished in two different ways by using the
MLC: (1) the dynamic mode as described by Convey and Rosenbloom [24] and
Svensson et al. [82] whereby the leaves move with a calculated, not necessar-
ily constant, speed while the beam remains switched on in order to create the
desired intensity profile; and (2) the static mode as described by Bortfeld et al.
[17], Galvin et al. [38], Xia and Verhey [85], Siochi [81], Lenzen [59] and Boland
et al. [16]. With the static mode, which is also called the ”stop and shoot”, the
beam is switched off while the leaf pairs are being moved to the desired position.
Then, keeping all of the leaf pairs at this position, the beam is switched on for
a certain time in order to irradiate the sites which are not blocked by any of the

MLC leaf pairs. This procedure is repeated until the required intensity profile
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Fig. 6.3: A configuration of leaves of a MLC (from a patient treatment field eye’s view).

Source: http://www.radionics.com/products/rt/mmlc.shtml

has been delivered.

For the dynamic method the goal is to minimize beam on time which is equiv-
alent to minimizing the total treatment time. For the static method, however,
minimizing beam on time alone cannot minimize the total treatment time since
the procedure requires set-up time during each beam off time, i.e., between every
consecutive segments of the beam. Hence, one has also to strive to minimize the
total number of segments for the case of the static delivery method in order to
minimize the total treatment time. Here, we consider the static delivery method

and address the problem of minimizing the total number of segments.

6.2 Decomposition of Intensity Matrix into Segments

Given an intensity matrix I € Z™*"  which describes the radiation intensity
level that the corresponding cross-sectional areas in the patient treatment filed
should receive from a fixed gantry angle, one cannot directly deliver it since the
MLC can produce only a uniform radiation beam at a time and also subjected to

physical constraints described in this section. Therefore, we need to decompose
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the intensity matrix into a deliverable binary matrices {S*,S? ... SV} C Zm*n

such that
N
I = Z Oék;Sk
k=1

where each of the coefficients o > 0 is proportional to the delivery time of the
corresponding segment (shape matrix) S* | so that
ij = 7)) =

0, otherwise.

if the site (4, j) is irradiated.

Each of these binary matrices is required to be constructed in such away that it

fulfills the following Physical constraints of the MLC:

1) Consecutive 1’s property. Since only the sites between a pair of left and
right leaves in a channel can be irradiated, the 1’s in a row should occur

consecutively. i.e., for any row ¢ and two columns ji, jo such that j; < jo

if S*(i,j,) = 1= S*(@,j,), then S*(i,j) =1, for all j such that
J1 < j <7ja. (See Fig. 6.4 (a) and (b)).

2) Interleaf collusion constraints. Due to the problem of collusion of neigh-
boring leaves from opposite banks, interleaf motion is prohibited; i.e., no

leaf can be extended beyond the end of its nearest neighbors in the opposite

bank. That is,

for any row ¢ suppose [; € {0,1,...,n}, r, €{1,2,....,n+1}, I; <
such that
L,
Sk (@i, j) =

0, otherwise

ifl;, <jg<mr

Then, for any i € {1,2,...,m — 1} it should hold that

li < Tit1 — 1 and Ty > lz‘+1 + 1. (6].)

Note that [; and r; are the columns in which the left and right leaves corre-

sponding to the i-th row are positioned, respectively. The interleaf collusion
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constraints are also known as the interleaf motion constraints. (See Fig. 6.4
(c) and (d)). In fact, there are some technologies which do not demand this
physical constraints. Ahuja and Hamacher [1], for instance, are currently
working on the problem of minimizing beam-on time without considering

the interleaf motion constraints of a MLC.

(a) No consecutive 1’s property (b) Consecutive 1’s property

’0‘0‘1‘1‘0‘1‘1‘0‘0‘ ’0‘0‘0‘1‘1‘1‘1‘0‘0‘

“mn n NN ___EEEN _

Infeasible leaves setting Feasible leaves setting

(c) Interleaf collusion (d) No interleaf collusion

_mERTT

Infeasible leaves setting Feasible leaves setting

Fig. 6.4: Example of feasible and infeasible leaf settings.

Definition 6.1:

e An m X n binary matrix S, with at least one nonzero entry, satisfying both
the consecutive 1’s property and the interleaf motion constraints is called

a segment or a shape matrix.

o A decomposition of an intensity matrix [ is a representation of I as a positive

linear combination of shape matrices (segments), i.e,

N
I=> a8 (6.2)
k=1

where S* are segments (k = 1,2,...,N) and ap (k = 1,2,...,N) are
positive integers which are proportional to the required beam-on-time of

the segment S*, respectively.
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e The scalars aj,ag,...,ayx in the decomposition (6.2) are called delivery

coefficients or beam-on time of the corresponding segments S*,S?..., SV,

e Given a decomposition 6.2 of an intensity matrix /, the sum ij:l ap 1S

said to be the total beam-on-time associated with the decomposition.

Example 6.1: Let

0 3141
I'=1256 30 (6.3)
2 5310

Then I can be decomposed, for instance, into

5
I = Zaksk (64)
k=1

where
000710 01000 00000
S'=1l o1 1001}, 5=|0oo0o110]|,=[10000]/[,
01000 00100 10000
01100 00001
S*=1 01000, and =000 10
01110 00000

with the corresponding delivery coefficients oy =4, as =2, a3 =2, ay=1,
and a; = 1. That is, this decomposition yields 5 segments with total beam-on-

time >27_, aj, = 10. Other possible decomposition of I (6.3) can be

00010 0100 0 0111 1
St=1lo1100],5%=|111101],8=]l0011o0
0100 0 11100 00110

with the corresponding delivery coefficients a; =3, a; =2, and a3 =1.In
this case we have obtained only 3 segments with also smaller total beam-on-time

Zzzl ar = 6 which is desirable in the radiation treatment processes.
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The main concern of a MLC problem is to find an optimal feasible leaf settings
of the MLC that can generate a suitable sequence of beam segments given by
the set of binary matrices S = {S*,5?,..., S} and a corresponding beam-on-
time, called delivery sequence, {aq, aa, ..., an} such that equation 6.2 holds and
each S* satisfies both the consecutive 1’s property as well as the interleaf motion
constraints 6.1 with the objective to minimize the total delivery time. In general,
if I is decomposed into N segments S!, S2,..., SV with corresponding beam-on
time oy, as, .. ., ay, the total delivery time (TDT') depends on the total beam on

time, Zi\;l ag, and the number of segments N. Indeed, the total delivery time is

=

N -1
TDT(ay, ..., an, N) =D ar+ > o(S*, S

k=1 1

b
Il

where ¢(S*, S*1) is the time it takes to change from S* to S**! called set-up
time. We assume that the set-up time is a positive constant so that c(S*, S¥1) =

7. Consequently, the total set-up time will be

=2

—1
c(Sk, S¥Y) = (N — 1)r.

1

b
Il

Hence, the optimization problem we consider here is to determine a sequence of
deliverable shape matrices S, S?,...,SY of I and their corresponding beam-on

time aq, as, ...,y SO as:

T* =min S0 ap+ (N —1)r
st S oSk =1

Sk is deliverable shape matrices , a3 > 0, Vk.

Beside being NP-hard, another difficulty associated with this problem is that we
do not have a closed formula for the number of segments N which expresses its
mathematical relation with S* or a;’s — we have it only as part of the output
of the problem. Different approaches have been proposed in order to tackle with

this challenging problem. Two main important objectives of these are:

1. Minimize 3 | oy : The total beam-on-time problem.
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2. Minimize |S|, i.e, Minimize the cardinality of S : The problem of mini-

mizing the total number of segments.

Various researches have been done thus far in order to achieve these objectives.
Earlier heuristic methods of such works were by Bortfeld et al. [17] and Galvin et
al. [38]. Comparing the early works, while the Bortfeld-Boyer algorithm provides
a smaller total beam-on-time at a price of increasing the number of segments,
the Galvin method provides smaller number of segments but with a larger value
of total beam-on-time. Siochi [81] has aimed at finding the trade-off between
the two situation in order to minimize the total delivery time. Thus far, the
most effective heuristic method that can provide a smaller number of segments,
in average, is that of Xia and Verhey [85] as justified by the work of Que [69].
In the Xia and Verhey procedure, each intensity level of the entries of the ma-
trix that has a value larger than powers of two is "stripped off” first in order to
extract a binary intensity matrix with the delivery coefficients(beam on time) of
powers of 2. Moreover, the extracted binary intensity matrix would be further
decomposed into segments using a greedy algorithm. The extraction reduces the
intensity level at each iteration and the extraction procedure continues till the

desired decomposition is found.

Other approach is to develop an exact method in order to use mathematical
programming methods of optimization. The first work in this line was accom-
plished by Lenzen [59]. The mathematical programming models constructed by
Lenzen for this problem involves several thousands of constraints and millions of
binary variables which lead into a very large integer programming problem. More
recently Boland-Hamacher-Lenzen [16] have formulated the MLC problem as a
side-constrained network flow problem. In this setting, they solve a constrained
minimum cost circulation problem in order to determine an exact optimal solution
of the problem of the total beam-on-time. They have also proved the polynomial

time solvability of the problem of minimizing the total beam-on-time.
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Here we address the problem of minimizing the total number of segments, without
"paying much price” of increasing the total-beam-on time, using the combination
of heuristic and exact method in order to obtain smaller delivery time as much
as possible. In particular, we follow the idea of the level reduction technique of
Xia and Verhey to extract a binary matrix from a given intensity matrix, find an
appropriate corresponding delivery coefficient which is not necessarily powers of
2, and further determine the exact minimum number of segments of the extracted
binary intensity matrix using the Hamacher-Boland network model. To this end,

we next introduce the Hamacher-Boland network model of the ML.C problem.

6.3 The Hamacher-Boland Network Flow Model
of the MLC Problem

In this section we introduce the Hamacher-Boland network flow formulation of
the MLC problem in which a shape matrix (segment) can be represented by a
path in the network.

In the sequel, the intensity matrix I = (I;;) is an m x n matrix with [;; € Z for
all (i,7) € {1,2,...,m} x {1,2,...,n}, unless stated otherwise. Corresponding
to each row (also called a channel) of an intensity matrix I, a pair of metal leaves

of a MLC called left and right leaves , are associated.

Definition 6.2: (Representation of a pair of leaves of a MLC)
For any i € {1,2,...,m}, [;€{0,1,...,n}, and r; € {1,2,...,n+ 1}, a triple
(4,1;,7;) is said to represent a position of a pair of left and right leaves in the row

(channel) 7 if
1. I, <r;, and

2. the left leaf blocks radiation into the entry (cross-sectional area) (i,j) for
all 7 <l; and the associated right leaf blocks radiation into the entry (i, j)

for all j > r;.
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Thus, the representation (i,1;,7;) corresponds to a binary intensity matrix M =
(M;;) where
1, ifl<j<mr

Mij = .
0, otherwise.

For instance, if I is an m x 9 intensity matrix, then (4, 3, 7) represents the position
of the left and right leaves in the row ¢ where only the 4-th, 5-th, and 6-th

columns in the row can be irradiated (see Fig. 6.5 ).

’1‘2‘3 4‘5‘6 7‘ 8‘9‘ columns

| L | row i

Fig. 6.5: Leaves representation where (i,1;,r;) = (¢,3,7).

The representation of positions of a pair of leaves given above satisfies the con-
secutive 1’s property. In order to satisfy the interleaf motion constraints we need
to have the following relations between the representations of pairs of leaves in

consecutive rows.

Definition 6.3: (Admissible Representations)

Let (i,l;,r;) be a representation of the pair of leaves in a row i. The repre-
sentations of the positions of pairs of leaves in the rows ¢ = 1,2,...m are said
to be admissible if the representations (i,l;,7;) and (i + 1,l;41,7;41) of any two

consecutive rows satisfy the following relations:
li—l—l S Ty — 1 and Ti+1 Z lz +1 (65)

for all i € {1,2,...,m — 1}.

The admissible representations of the pairs of leaves of a MLC satisfy the consec-
utive 1’s property and the interleaf motion constraints of a MLC. The Hamacher-
Boland network consists of nodes that basically correspond to the representations

(4,1;,7;) and arcs that correspond to the admissibility relation 6.5, a relation which
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has to be satisfied in order to fulfil the interleaf motion constraints. In particular,
the network is a layered digraph G, = (V, E) consists of m layers which corre-
spond to the m rows of the intensity matrix, where the set of main nodes Vj is

given by

Ve=AG,1l,r) : i€{1,2,...,m}, 1€{0,1,....,n}, re{1,2,...,n+1}, I<r}
and the set of main arcs F is given by

Es={((,Lr), i+ 1,07 « (4,0,r), G+ 1,0, 7)Y eV, I'<r—1, 7 >1+1}.

Two dummy nodes D and D’ which serve as start and end nodes, respectively,
be added so that
V=Vs U {D,D'}.

Moreover, the set of arcs from the start node D to the first layer, from the last
layer to the end node D', and the return arc from the end node to the start node

are also included so that

E=E, U {(D,(1,l,r)) : (LLLr)eV,}
U {((mlr), D) : (mlr)eVit U {(D, D)}
The graph G is called the shape matriz graph. An example of the shape matrix

graph associated with a 3 x 2 intensity matrix is given in Fig. 6.6.

Note that the cycles C; =D —102—-212—-303—D'—D and Cy =D — 113 —
203 — 302 — D' — D in the graph (Fig. 6.6) correspond to the shape matrices

St =

—_ O

0 0 1
0|, and S 2= 1 1 ,
1 1 0
respectively.

The next Lemma given in ( [16], Lemma 4.1 ) states some properties of the shape
matrix graph Gs. The proof of the lemma is an immediate consequence of the

definition of Gi.
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Fig. 6.6: Shape matrix graph associated with a 3 x 2 matrix with its nodes and some of its
arcs (the remaining arcs indicated by the small arrows) including two cycles C7 =

D—-102-212-303—D'— D and C, = D — 113 — 203 — 302 — D' — D.

Lemma 6.1:
1. Gs—{(D', D)} is an acyclic digraph.
2. Any directed cycle in G contains the arc (D', D).

3. Every directed cycle in Gg (or every directed path from D to D’ ) corre-

sponds to a shape matrix and vice versa.

In the sequel, a cycle means a directed cycle and similarly a path means a di-
rected path, unless stated otherwise. The shape matrix graph G, provides all the
feasible shape matrices. Indeed, the set of all paths from the start node D to the
end node D’ ( or the set of all cycles in G) represents the set of all feasible shape

matrices.
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The shape matrix graph G is still needed to be expanded so as to construct a
complete network flow structure of the problem. In order to complete the network,
the intensity levels are included so as a flow through the network represents the
required irradiation intensity level. In particular, the value of a circulation flow
through a cycle represents the beam-on-time (delivery coefficient) of the shape
matrix represented by the cycle. Observe that a flow entering a node (i, 1, r) for
some [ < r represents irradiation of all sites (4, 7) such that [ < j < r. In order to
reflect this situation, each node (4,1,7) € V; is splitting in to two nodes (i,l,r)!
and (i,1,7)? with the idea that a flow could enter a layer (row) i only via a node
of the form (7,1,7)' and may leave the layer ¢ via the node (7,1,7)?* after going
through all the sites (i,j) such that | < j <r; ie,je{l+1,14+2,...,r—1}.

Thus the network consists of also another set of nodes
IN ={(i,j5) : i=1,2,....m, j=0,1,2,...,n} (6.6)

The elements of the set IN (6.6) are called intensity nodes. Thus the Hamacher-

Boland network, denoted by Ny, consists of the set of nodes
N =1{G1Lr)?" (,Lr)? : G,l,r)eV,y U INU {D,D}. (6.7)
The arcs in Ny are also defined as follows:

e The set of copies of all edges (arcs) E in Gy, i.e,

A

E={(D, (1,I,r)") : (D, (1,I,r) )€ E}
U {( (’i,l,T)Q, (1 + 1,l',7“')1 ) = (@G Lr), i+ 1,007 ) e E}
J {((m,l,r)* D) : ((mdr), D)EE}
u {(D',D)}. (6.8)
e Other arcs incident to the nodes in I N are:

— the set of arcs, referred as entering arcs:

EA={((,Lr)"G0D) : (i,L,Lr) €N, (i,) € IN } (6.9)
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— the set of arcs, called intensity arcs:
TA={(0G,j—-1),0G,4)) :i=12,....,m, j=1,2,....,n} (6.10)
— the set of arcs, referred as out-going arcs:
OA={((i,r—1),@,1,7r)*) : (i,r—1) € IN, (i,l,r)* € N} (6.11)
Thus, the set of all arcs in Nyp is given by

A=F U EA U IA U OA. (6.12)

The capacity of each arc is set as follows:

Let u, and . be the lower and upper capacity of an arc e € A. Then

u, =0 and 4, =00, foralle e A—TA. (6.13)
u, = I;j = ., foreach e=((i,j—1),(i,j)) € lA. (6.14)

The Hamacher-Boland network flow model is aimed at formulating the problem
of minimizing beam-on-time of the MLC problem as a minimum cost circulation
problem. we noted that each cycle contains the arc (D', D) once and only once.
As a consequence, the cost of an arc e, c¢(e), is set to be

e(e) = 1, if e= (D', D). (6.15)

0, otherwise.
The other important point in the model is that a flow entering a layer (row) ¢
through a node (4,1,7)* should leave out of the layer through the node (i,[,r)?
to ensure feasibility of a cycle as a representation of a shape matrix. Hence for
any
((5,1,m)", (i,1) ) € EA and ( (i,r —1),(i,1,7)*) € OA

it must hold that

(i, 0,r) 6,0 ) =2 (6,7 —1),(,1,7)*) (6.16)
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where z is a circulation flow ( in-flow equals out-flow at each node) in the network.

Thus, the Hamacher-Boland Network for the MLC problem is given by the net-
work

NHB = (Na Aa Ug, ﬂe, C(@) )

together with the side constraint 6.16.

3
Example 6.2: Let I = | 4
2

S = Ot

The Hamacher-Boland network corresponding to I is shown in the Fig. 6.3.

Using the network Ny p and the fact that the total beam-on-time

M =

ap = z(D', D),
k=1

Boland-Hamacher-Lenzen established the following important result.

Theorem 6.2: The "Minimize beam-on-time” problem of the MLC is equivalent
to the network flow problem

min x(D’, D) (6.17)
subject to z a circulation in Nyp lying between the lower and upper capacity
limits w, and @, defined by (6.13) and (6.14), and satisfying the side constraint

w((i,,r) (6,0) ) = z( (i,r —1),(i,I,r)*)  forall (4,1,7) € V,. (6.18)

Moreover, if the intensity matrix I € Z™*", and thus the capacity of arcs in Ngp
is integer, this side constrained network flow problem has an integer optimal
solution, which can be found in time polynomial in m and n. In particular, the

beam-on-time problem of the MLC can be solved in O(m?n'°log(mn?)) time.

Proof: See Theorem 4.3 in [16]. O



6. Minimization of Treatment Time of a Radiation Therapy 129

[u,,te.,c(e)]
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Fig. 6.7: The Hamacher-Boland network corresponding to the intensity matrix of Example
6.2, with all entering arcs, intensity arcs, out-going arcs, and some other arcs (the
remaining arcs are indicated by the small arrows). The capacities and cost value
[t,, Ue, c(e)] of all intensity arcs and the return arc are indicated in the network. For

all the other arcs [u,, @, c(e)] = [0, 00, 0].
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Despite the polynomial solvability of the beam-on-time problem, still it requires
a large amount of computational time in order to find an optimal solution if, in
particular, the problem size is large. Note that even for a small sized 10 x 10
intensity matrix, the solving time is of O(10'®) and practical problems can be a

lot more than this size.

One way to deal with this problem is the subgradient optimization method in
which the subproblem is constructed via Lagrangian relaxation where the side
constraints (6.18) are removed and included into the objective function. In this
case, given a Lagrangian multiplier u € RI!Y*l, where |V,| is the cardinality of

the set Vi, the Lagrangian subproblem is given as

min z(D', D) + Z wi [2((3,1,7)" (i,0) ) — o( (4,7 — 1), (i,1,7)*)]  (6.19)
(3,l,r)EVs
subject to x is a circulation in Nyp.

The subproblem (6.19) is a pure minimum cost network flow (circulation) problem
and its solution provides us a step direction (subgradient vector) at each point
u = (ug,) for a subgradient procedure. In particular, given u = (ug,) € RV

and a calculated optimal circulation z* of the subproblem (6.19), the vector

s = (sy,) € RV:l where
sar = o ((i,0,7), (3,0) ) — 2*( (4,7 — 1), (i,1,7)?), (6.20)

is a subgradient of the Lagrangian dual function at u = (u,). Note that a du-
ality gap does not occur for this problem since the associated side-constrained
network flow problem has an integer optimal solution (Theorem 6.2). This is a
helpful property in the computational procedure of a subgradient optimization
methods. In Section 6.5, we use this method to determine the minimum number

of segments of a binary intensity matrices for large instances of a MLC problem.
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6.4 Minimizing Total Delivery Time for Radiation Therapy

In this section we deal with the problem of minimizing delivery time of a radiation
therapy by a MLC. We construct a new algorithm which will use a combination
of heuristic and exact methods in order to find a smaller total delivery time for an
intensity matrix I € Z™*™ as much as possible. In particular, we use a heuristic
level reduction technique similar to that of Xia and Verhey to extract a binary
matrix from a given intensity matrix. However, unlike the algorithm of Xia and
Verhey, a delivery coefficient of an extracted binary intensity matrix will not be
fixed to powers of 2 but it is a calculated value based on certain rules which
help to keep the total beam-on-time as small as possible. Further, we use the
Hamacher-Boland network model to determine the exact minimum number of

segments of an extracted binary intensity matrix.

6.4.1 Max-Level Halving Algorithm

Here we construct an algorithm which extracts binary intensity matrix from a
given intensity matrix iteratively. The extracted intensity matrix will not nec-
essarily be a shape matrix. But its exact minimum number of segments can be

found as a consequence of the following theorem.

Theorem 6.3: Suppose M € {0,1}™ ™ is a binary intensity matrix. The MLC
problem ”Minimizing the number of segments of M” is equivalent to the problem

”Minimizing the total beam-on-time of M”.

Proof: Consider a decomposition of a binary matrix M into segments S*, 52, ..., SV;
ie, M= ij:l aS*, where ay, is a positive integer for each k. Then, obviously,

oy, = 1 for all k. Therefore,
N
Z ar = N, the number of segments of M.
k=1

Hence, a minimizer of the total beam-on-time ), oy, minimizes also the num-

ber of segments of M and vice versa. O
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As a consequence of Theorem 6.3, a binary intensity matrix can be decomposed
into its exact minimum number of segments using a model whose objective is to
minimize beam-on time, for instance, the network flow model [16] due to Boland,
Hamacher, and Lenzen or the LP model [3] due to Baatar and Hamacher. We
would like to determine a corresponding delivery coefficient ay, beam-on time
of the extracted binary intensity matrix, so as the extraction process reduces
the intensity matrix iteratively into zero-matrix with a few number of iterations
as much as possible in order to obtain a smaller possible number of segments
while also trying to keep each of the a;’s to a minimum possible values in order
to produce a reasonable amount of total beam-on time. Such result can be
obtained by choosing «4 in such a way that it is close to half of the maximum
level of the matrix element. Such delivery coefficients can be constructed based on
the difference between maximum intensity levels of consecutive residual intensity

matrices, where a k-th residual intensity matrix is defined as follows.

Definition 6.4: Let I be an intensity matrix and M*', M2, ..., M*~! be binary
matrices with a corresponding delivery coefficients oy, aq,...,ag_1. The k-th

residual intensity matriz I* after the k — 1 matrices are extracted is given by
k—1
IF=1-Y oM (6.21)
t=1

Note that the residual intensity matrices can be expressed recursively as
I'=1, I"™=r1"_qM k=12... (6.22)

Next, we introduce a rule for determining the set of delivery coefficients. The
rule is based on the intension to reduce the maximum intensity level of a resid-
ual intensity matrix by at least its half at each iteration so that the maximum
intensity level of a k-th residual intensity matrix I* is not more than half of the
maximum intensity level of the previous residual intensity matrix 7*~'. Thus we

choose ay to be close to half of the maximum level of I* as described below.
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Given an intensity matrix I € Z™*", suppose I* is its k-th residual matrix. Let
e Hj =max; ;{I;} be the highest intensity level of I*.
e d;. = 2™ where m = nint(log, Hy), where nint denotes the nearest integer.

Clearly, %dk < Hp since m — 1 < log,H. Then, the binary matrix M* =
(MZIE) € {0, 1}™*™ can be extracted as:

: k 1
ij = .
0, otherwise.

Furthermore, let
o M, :maxi,j{lfj: Ifj < %dk}

Then, the delivery coefficient of M* is taken to be

and the procedure is repeated until 7* = 0. Hence the maz-level halving algorithm

can be formulated as follows:

Algorithm 6.1: Max-Level Halving Algorithm

e Input: Intensity matrix I € Z™*";
e Initialization: let k=1, I'=1;
e Repeat
Step 1: let Hj, = max; ;{I}};
let dj = 2" where my = nint(log,Hy);
let Hy = maxi,j{lfj : Ifj < %dk};
let L = minivj{[fj : [fj > %dk};
Step 2: Let M* = M} € {0,1}™*", where

1, if I} > idy

k
M;; = .
0, otherwise.

let oy = min{ Hy — Hy, L; };
let TFH = IF — o, M*:
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Step 3: Find a decomposition of M* with exact minimum number of
segments;

let k=Fk+ 1,
Until maxm{ffj} =0

The output of the algorithm is the decomposition

Ty
I=> ap | S|, (6.24)
k t=1
where S*, S*2 . S®Ti are minimal segments of the binary matrix M*, for each

k, obtained by an exact method. We use the Hamacher-Boland network model

to determine the minimum number of segments of a binary intensity matrix.

Remarks:- From the construction of the algorithm, Algorithm 6.1, one can see

by a direct calculation that

1. a4 > 0, for each delivery coefficient ay.
2. I}, > 0, for each residual matrix I* = (I};).

3. for every consecutive residual matrices I* = (I}) and I"' = (Ifjﬂ), it
holds that
Hzlgx{ Iy = n}ﬁx{[;ﬂj} — . (6.25)

The property at equation 6.25 can help to reduce the total beam-on-time as com-
pared to that obtained by the Xia and Verhey algorithm; and in some cases the
Max-level halving algorithm can produce a decomposition with a minimum total

beam-on-time ( See, for instance, Theorem 6.5 and Corollary 6.6 ).

Example 6.3: Suppose
1 0
10 3
I'=1 28 27
26 21
3 2
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Application of Algorithm 6.1 gives us 4 segments; namely,

0 0 0 0 0 0 10
0 0 10 11 11
St=|1 1[,8%=|1 1],8=]|11],and S*=]|1 0
11 10 0 1 11
0 0 0 0 11 10

with the corresponding delivery coefficients oy = 18, s =7, a3 =2, a4 = 1.

Therefore, the total beam-on-time of the decomposition is Zizl o = 28.

The next theorem provides a lower bound to a total beam-on-time of a decom-

position of an intensity matrix whose proof is trivial.

Theorem 6.4: Suppose I = (I;;) is an intensity matrix and {S*, 5%, ..., SV} is
a set of its segments with corresponding delivery coefficients {aq, s, ..., ay}.

Then

N
> > max{[;;}.
k=1 w
O

Theorem 6.5: If each of the binary matrix M* constructed by the max-level
halving algorithm (Algorithm 6.1) is a segment (shape matrix), then the algo-

rithm provides a decomposition with a minimum total beam-on-time.

Proof: Let M, M2, ..., M" be the N binary matrices constructed by Algorithm
6.1 and suppose each of them is a segment (shape matrix). The algorithm con-
structs a set of residual matrices {I', 1% ..., IV} where I' = [ and I[Nt = 0
such that

*Mr=r1F _q,M* k=1,2,...,N.

Moreover, from (6.25), we have

ay = max{};} — max{[;"
Z7] Z’j
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for each k =1,2,..., N where maXZ-J{[Z-];]“ = 0. Therefore,

N N
Sk = Doy [max{If} — max;  {I5;}]
= max, ;{I};} — max; ;{1

= maxm{fw}

Thus, by Theorem 6.4, ngvzl ay is equal to its lower bound; which means the

minimum value has been reached. O

Corollary 6.6: If I is an m X 2 intensity matrix, then the max-level halving
algorithm, Algorithm 6.1, constructs its decomposition with the minimum total

beam-on-time.

Proof: Any two column binary matrix M* constructed by the algorithm is a
shape matrix (segment). Hence, the claim of the theorem follows directly from

Theorem 6.5. O

One can observe that Theorem 6.5 and the above corollary provide a rationale

for choosing the rule of «y as given in the Algorithm 6.1.

6.4.2  Worst-Case Bound on the Number of Segments

Next we determine a worst-case bound on the total number of segments if the
max-level halving algorithm is used. Note that from the definition of Hy, L, Hy,

and oy we have the following relations.
Hk+1 = max{ﬁk, Hk - Oék}, (626)
and from equation (6.25) it follows that

Hk-i—l = Hk — 0. (627)
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Hence (6.26) and (6.27) implies that
Hyoy > H. (6.28)

Now, let m = nint(log, Hy).

Then, Hy is "close to” 2™. In fact,

2ml < H < 2™ (6.29)
or,
2m < Hy < 2 (6.30)
To derive the upper bound to the total number of segments, let us first consider a
2-column intensity matrix. From Corollary 6.6, one can conclude that the number

of segments equals to the number of elements in the sequence
H= {H1>H27 .- 'aHt}a

where 0 < Hj, = maxm{lfj}, the highest intensity level of k-th nonzero residual
intensity matrix 7*. Thus, we determine the maximum number of elements in the
finite sequence H.

Case 1: Suppose Hp < 2™ where m = nint(log,H;) > 0. (See 6.29).
Claim: Hp, <2m°L

To show this, note that from the definition of oy, Hj and Ly, either
Oék:Hk—Hk or Oék:Lk,

where H, < 2™ ! and 2™ ! < L, < H.
If ap = Hj, — Hy, then from (6.27) we obtain directly

HkJrl :Hk—OékIHk §2m71. (631)
If ap = Ly, then
Hyp1 = Hp—ay
< H,—2m! (since aj = Ly > 2™ 1)
< 2m—2om-l (since Hj < 2™).

2m—1,
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This relation together with (6.31) imply that
Hipq <2771 (6.32)

as claimed. From this we conclude that the sequence H can have at most m,

nonzero elements, where m; = nint(log,(max; ; ;;)).

Case 2: If H; has the property (6.30), i.e., 2™ < H* < 2™+ then replacing m
by m + 1 in the above reasoning (Case 1), we conclude that H can have at most

mq + 1 elements, where m, is defined as above.

Hence for any two-column intensity matrix I with the highest intensity level
H, = max; ;{I;;}, the max-level halving algorithm provides in the worst-case a

maximum of

Nyae = nint(log, Hy) + 1 (6.33)

segments. Comparing this result with that of Xia and Verhey algorithm, one
can observe that the number of segments obtained by the max-level halving al-
gorithm equals in the worst case to that obtained by the Xia and Verhey al-
gorithm since the number of segments of a 2-column intensity matrix is always
either nint(log,H;) or nint(log,H;) + 1 if the Xia and Verhey algorithm

is used. Indeed, the max-level halving algorithm can produce smaller number

1 7
of segments. For instance, suppose I = . If max-level halving algo-
0 6
rithm is used, then H;, =7, Ly =6, H; =1, and m; = 3. Consequently,
_ 0 1
a; = min{H, — H;,L,} = 6 and the corresponding segment S =
01
1 1
Thus, the residual matrix I?2 = [ — oy S! = , which implies, aps = 1 and
1 . . .
S? = . Therefore, I = o S* + 52, i.e., I is decomposed into two seg-
00

ments. However, if Xia and Verhey algorithm is applied, then it produces three
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segments with sequence of delivery coefficients {4,2,1}.

For general m x n intensity matrix, where n > 2, in the worst-case one can split
the matrix in to several two column sub-matrices and apply the method described
above to the sub-matrices. Hence, the maximum number of segments, N,,q., for
such an n column intensity matrix can be,

n+1
2

Nmaac = L J(ml ‘I’ 1) (634)

where m; = nint(log,(max; ; I;;)) and |.] is the greatest integer less or equal to

the number.

6.5 Implementation

In this section we address the issues regarding implementation of the max-level
halving algorithm and compare its result with that of others. Note that the cru-
cial point in the implementation of the algorithm is to determine a decomposition
of a binary matrix with exact minimum number of segments. This can be accom-
plished by using the Hamacher-Boland network flow model of a MLC problem
since, by Theorem 6.3, minimizing the number of segments of a binary intensity
matrix is equivalent to minimizing its total beam-on-time. Recall that, beside the
large size of the problem, the model is a side-constrained network flow problem.
In the cases of large instance, we use the subgradient optimization methods in
order to solve the problem by "removing” the side constraints as described by
equations 6.19 and 6.20. That is, for any u = (uy,) € RIVsl| we need to solve the
Lagrangian subproblem SP(u):

min .’L’(D/, D) + Z(i,l,r)e\/s uilT[x(<i7 la T)la (27 l) ) - l‘( (27 r— 1)7 (27 la T)2 )]
s.t. x is a circulation in Nyg.
(6.35)

We solve this problem using a negative cycle cancelling procedure. The negative

cycle cancelling algorithm starts with a feasible circulation x in the network.
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At every iteration, the algorithm constructs a corresponding residual network
G(z) and finds a negative cost cycle W in G(x). If such cycle is identified, then
the algorithm augments the maximum possible flow along W, updates G(z) and
repeats the process. If G(z) contains no negative cycle, then z is a minimum cost
circulation, so the algorithm terminates. For details, one can refer to the standard
text books by Ahuja et al. [2], Hamacher and Klamroth [42], and Murty [63]. This
algorithm maintains feasibility of the solution of a circulation problem at every
step. Moreover, a minimum cost circulation problem has integrality property;
namely, if all arcs capacities are all integer, the minimum cost circulation problem
always has an integer solution. Therefore, the algorithm we implement mainly
incorporates the following subroutines.

Given a binary intensity matrix M and HB-network :

1. Find starting feasible circulatiuon in HB-network with u = 0.
Observe that we need to find the set of paths from the source node D to
the sink node D’ each of which carries flow of 1 unit and covers all nonzero
intensity arcs. An intensity arc should occur on one and only one of the
paths. So the problem is reduced to find the set of all such covering paths
where each nonzero intensity arc is covered by one and only one path. We
accomplish this by a set of longest paths from D to D’ by defining the

following arc length [;: for any arc e € Ngp let

1, if e is a nonzero intensity arc
L(e) = Y (6.36)

0, otherwise.

Thus, we have the following.

e Subroutine 1: Feasible circulation in Nyp, (u=0)
Repeat:
— Determine the longest path from D to D’.

— If the length of this path is not zero, then augment a flow of 1
unit along the path.

— Delete all intensity arcs included in the path from the network.
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Until: The network contains no nonzero intensity arc.

The rationale for the longest path is to cover as many intensity arcs as
possible by the path. This provides us with a ”"good” starting feasible

circulation.

. Negative cost cycles in the residual network, u = 0:

Once we have a feasible circulation x, we construct a corresponding residual
network G(z) as usual and search for negative cycle(s) in G(x). Observe
that any path from node D’ to node D in G(z) together with the reverse of
the return arc, i.e., (D, D’), gives us a negative cost cycle and non of such
path consisting an intensity arc. Therefore, the problem of finding cycles of
negative cost in G(x) is reduced to finding the set of paths from the node
D’ to the node D in G(z). This can be accomplished by determining the
set of shortest paths from the node D’ to node D in G(z). In this case,
however, the arc length is defined as 1 unit for each arc in G(z). That is,

for each arc e in G(x), let its arc length to be l3(e) = 1. Then,

e Subroutine 2: Negative cost cycles in G(x):
Repeat:
— Determine the shortest path from D’ to D.
— Augment a flow of 1 unit along the path.
— Update G(z).

Until: No more path from D’ to D in G(z).

At termination of subroutine 2, we obtain a solution, say x{, of the sub-
problem SP(0). Given wu, if 7 is an optimal circulation of the subproblem
SP(u) and the subgradient of the dual function at w is a zero vector then
is an optimal solution for the constrained network flow problem. Otherwise,

if there is a nonzero component of the subgradient, say

Sir = (i, L, 20,0 — 1) — 2l (4,1, r,1,4,1) > 0,
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then u is updated in the subgradient procedure and solve the corresponding
subproblem SP(u). This can be solved also by the subroutine 2 with a
modification that at each iteration we set D’ := (i,7 — 1) as a source node
and D := (i,1,r,2) as a sink node in G(z¥). A path from (i,7 — 1) to
D := (i,l,r,2) together with the arc (i,l,7,2) — (i,7 — 1) is the desired

cycle in G(z). Similarly, if the subgradient has a negative component, say
Sir = (i, 0,7, 2,6, r — 1) — a (4,1, r,1,4,1) <0,

then we set in the subroutine 2 the start node to be D’ := (i, 1) and the sink
node to be D := (7,1,r,1). A path from the node (,() to the node (7,1, 7,1)
together with the arc (i,1,7,1) — (i,1) is the desired cycle in G(x).

Other main difficulty regarding implementation is that the practical problems are
usually large-sized and the model requires a large number of variables to describe
even a medium-sized problem since the network needs a large number of arcs to
represent such problems. In particular, the network corresponding to an m x n

intensity matrix involves m(n + 1)(n + 3) + 2 nodes and
1
(m — 1)[§(n +2)(n+ P+ (m+1Dn+2)(n+1)+mn+1

arcs, which can be shown by straightforward calculations (see, [40]). That is, the
number of nodes and arcs of the Hamacher-Boland network corresponding to an
m X n intensity matrix is of size O(mn?) and O(mn?*), respectively. One way to
overcome this difficulty is to reduce the number of variables in the model via pre-
processing techniques based on some special structure of a particular intensity

matrix.

6.5.1 Some Preprocessing Techniques

As described above the network model associated with an intensity matrix is
usually very large with, particularly, large number of arcs. However, in the
case of binary intensity matrices that been constructed by the above algorithms,

we usually obtain a sparse matrix. As a consequence, the associated network
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involves a large number of arcs with zero flows. The removal of these unnecessary
arcs substantially reduces the variables of an instance and therefore the over all
computation time. Our algorithm incorporates the following techniques to reduce

the size of an instance in the corresponding network.

1. Removal of nodes: Consider a representation (i,[,r) such that | < r —1.
If a radiation ”enter” into this node, then every site (entry) (i, ) where
[ < 7 < r would be irradiated. Thus, one can observe that for any j such
that [ < j < r if the intensity [;; = 0, then there should be no radiation
going into the node (4,1, 7). Hence such nodes can be removed. That is, all

of the nodes in the set

Zeronodes = {(i,1,7)", (i,1,7)*: (i,1,7) € V, and
exists j such that [ < j <rand I; =0} (6.37)

are removed form the network.

2. Removal of arcs : Obviously, any arc incident with a node belonging to

the set Zeronodes can carry only zero flow and is removed from the model.

3. Removal of first and last nodes: One can observe that the first node
(7,0, 1) and the last node (i, n,n+ 1) in each layer i have no significant role
and their removal does no affect a final solution. Therefore, such nodes and

all arcs incident with any of these nodes are all removed.

4. Removal of unnecessary intensity nodes and arcs: Suppose (i, )
and (7, j + 1) are two consecutive intensity nodes such that [;; = 0 = I; j41.
Then no positive flow can come into the node (i, ). Therefore, the set of

all nodes
ZI ={(i,7) : (i,7) is intensity node and [;; =0=1; 41}

is removed. We remove also all arcs incident to a node in Z1.
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5. Redirecting flows from a closed node: By closed node we mean a node

belonging to a set
CN = {(’i,l,r)l’ (i,l,T)Q : (i,l’r) eV, and r =10+ 1}.

Such nodes represent position of a pair of leaves where the channel is closed,
i.e, no cite in the row receive radiation. Therefore, a flow entering a chan-
nel i through a node (i,1,7)' can move directly to (i,1,r)* without going
through any intensity node in the channel. Therefore, for every row i, each

of the set of arcs
{(G, L)' @D), (G r—1),3,0r)%)
(5,0, @ 0) s (@ = 1), (6,0,7)°) € Aand r =141}
is removed from the model and replaced by the arc ((i,1,7), (4,1, 7)?).

6. Fixing variables: For any intensity arc ((¢,7 — 1), (4,4)) € A, the lower
and upper capacities are both equal to [;;. Consequently, the value of a
flow on such arc is equal to ;; in the final solution; and, hence, can be fixed

from the beginning. Therefore, for any intensity arc ((z,7 — 1), (¢,7)) € A,

2((1,5 =1),(6,7)) = L

is fixed, where x is a flow in the network.

Example 6.4: Consider representing a binary intensity matrix

o = O =
o = = O

0
0
0
1

S O = =

by the Hamacher-Boland network. In general, the network requires 142 nodes
and 842 arcs to represent a 4 x 4 intensity matrix. However, after removing
unnecessary nodes and arcs by using the above techniques, we can represent the
matrix by a smaller sized network which involves only 55 nodes and 80 arcs (see,

Fig. 6.8).
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Fig. 6.8: Hamacher-Boland network representation of the matrix M of Example 6.4 after the

removal of unnecessary nodes and arcs .
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6.5.2 Numerical Tests

In this section, we present some numerical results of our computational exper-
iments. Here, conversion of units of measurement is needed since the units of
delivery time is seconds while MLC measures the intensity of radiation with
monitor units (MU). Therefore, we determine the time (in sec) required by a
MLC to delivery a unit of intensity level based on the report of Siochi [81]. This
is done by setting the number of MU per intensity level to be 2. Moreover, it is
given that the linear accelerator can deliver 200 MU per minute; i.e, delivering a

single MU takes 0.3 sec. Hence, we obtain 2 x 0.3=0.6 sec/(intensity level). i.e.,
Delivery time = (0.6 x BOT) + (N — 1)1

where BOT is beam-on time, N is number of segments and 7 is the set-up time

in seconds.

Now, we compare first the results obtained by our new algorithm (MLH) with
that of four other existing algorithms; namely, the network flow (NF') procedure
due to Boland , Hamacher and Lenzen [16], the Xia and Verhey (XV) algorithm
[85], the agorithm of Siochi [81], and the very recent algorithm by Baatar and
Hamacher (BH) [3]. Figure 6.9 shows the comparison with set-up time 18 sec-
onds tested on 15 randomly generated 10 x 10 intensity matrices with 15 intensity
levels, ranging from 1 to 15. Here, we applied the numerical test on the same

test set used in [59], [16] and [3] in order to facilitate the comparison.

In this case, our new algorithm (MLH) and the recent algorithm by Baatar and
Hamacher (BH) yield always the smallest delivery time alternatively as compared

to the other three. In fact the average total delivery time (in sec) obtained by

MLH, BH, NF, XV, and Siochi is 334, 337, 388, 432, and 499, respectively.
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Fig. 6.9: Comparison of the results(total delivery time in sec) obtained by the five procedures
applied on 15 different 10 x 10 intensity matrices with 15 maximum intensity level

and constant set up time equals 18 sec.

If st-up time is very small, then BH yields the smallest total delivery time as
can be seen from Figure 6.10 for the case with the set-up time equals 4 sec. The
reason for this is that BH always finds optimal beam-on time. However, if the
comparison with respect to the number of segments is considered then the num-
ber of segments obtained by our new algorithm (MLH) is almost always smaller
than the number of segments obtained by BH and the others. This is shown in

Figure 6.11.
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Total delivery time

Fig. 6.10

Number of segments

Fig. 6.11
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: Comparison of the results(total delivery time in sec) obtained by the five procedures

applied on 15 different 10 x 10 intensity matrices with 15 maximum intensity level

and constant set up time equals 4 sec.
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15 different 10 x 10 intensity matrices with 15 maximum intensity level.

: Comparison : total number of segments obtained by the five procedures applied on
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Our solution procedure also enabled us to solve large-sized practical problems
within a reasonable time. To check this, we compare the performance of MLH
with NF. The reason for restriction of the comparison to only these two is that,
only MLH and NF are using the same model having the same variables, i.e.,
the Hamacher-Boland network flow model. Thus, in Table 6.1, we compare the
results obtained by MLH and NF applied on 40 clinical cases (practical data)
with 10 maximum intensity level. Some of these cases are of large size. The
NF unable to deal with the large instances. In fact, for some of the large-sized
instances, NF using CPLEX could not produce a result within three hours and for
some others, the problem size exceeded the available memory. However, our new
algorithm (MLH) together with the subgradient solution method solved these
large-sized instances within at most 95 seconds and without any complain about

the memory space.

! Dr. Alfredo Siochi is gratefully acknowledged for providing us the data.
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Number of segments

Beam-on time

Delivery time

Computation time (sec)

Size MLH NF MLH NF MLH NF | MLH NF
14 x 10 14 23 33 23 72 102 22 46
10x9 13 18 31 18 66 79 6 9
10 x 19 13 18 30 18 66 79 8 12
9x11 14 19 34 19 72 83 10 140
14 x 10 16 21 36 22 82 93 12 13
15 x 11 16 21 39 22 83 93 12 15
15 x 11 16 23 38 23 83 102 16 220
14 x 10 16 23 38 23 83 102 17 290
14 x 10 17 24 42 24 89 106 15 110
15 x 11 17 23 42 23 89 102 16 170
14 x 10 18 30 46 30 96 134 17 46
15 x 11 18 29 46 30 96 130 16 7
15 x 10 19 22 47 22 100 97 18 42
15 x 11 19 22 47 22 100 97 18 43
15 x 11 14 23 33 23 72 102 22 46
10 x 10 12 16 29 16 61 70 4 15
11x9 13 18 31 18 67 79 5 17
11 x 11 12 15 29 16 61 66 6 22
9x%x9 14 20 31 20 71 88 4 6
10 x 19 15 16 35 16 7 70 4 4
11x9 15 16 35 16 71 70 5) )
11x9 13 18 30 18 66 79 7 10
9x10 14 19 34 19 72 83 7 )
9x9 13 15 31 17 67 66 4 3
29 x 41 19 ok 34 o 92 o 36 ok
20 x 25 19 * 34 * 92 * 32 *
16 x 28 16 * 33 * 80 * 28 *
20 x 23 10 * 20 * 48 * 40 *
16 x 28 18 * 35 * 89 * 50 *
15 x 28 21 * 36 * 102 * 90 *
16 x 30 19 * 40 * 96 * 80 *
16 x 27 17 * 35 * 85 * 38 *
16 x 29 19 * 39 * 95 * 47 *
29 x 41 16 o 33 o 80 o 35 ok
29 x 41 10 ok 20 o 48 o 32 ok
29 x 41 18 o 35 o 89 o 95 ok
29 x 41 21 ok 36 o 102 ok 95 ok
29 x 41 19 o 40 o 96 o 92 ok
29 x 41 17 o 35 o 85 o 43 ok
29 x 41 18 ok 37 o 90 o 52 ok

Tab. 6.1: Comparison of results produced by the MLH and the NF applied on 40 clinical cases

* In this case, NF using the CPLEX could not solve the problem within 3 hours.

(practical data), with 10 max intensity level and set-up time 4 sec.

** In this case, the problem size exceeded the available memory.



7. CONCLUSIONS AND FUTURE RESEARCH

In this thesis, different versions of subgradient methods have been investigated
and a unified presentation has been provided. Furthermore, a new strategy which
can completely eliminate the main drawback, namely, the zigzagging phenomena,
of the subgradient methods has been established. We have also employed the
subgradient methods to solve effectively a large-scale practical problem in the

radiation therapy planning.

The foundation of our work is the methodology of Lagrangian relaxation and
dualization of an integer programming problem. The methods help us to remove
a set of complicating constraints of an integer programming problem and give us
a frame work to exploit any available "nice” mathematical structure embedded
in the problem in order to solve the problem, perhaps, approximately. However,
this is not without a cost. In fact, this transforms the problem into a problem of
nonsmooth optimization which has to be solved iteratively. These procedures as

well as the consequences have been discussed in Chapter 2.

In Chapter 3, different versions of subgradient methods was investigated and a
unified presentation has been provided. We have also investigated the zigzagging
phenomena of the subgradient methods in detail and formalized the definition
of zigzagging in terms of mathematical expression. The formalization served to
distinguish two different kinds of zigzagging and aided us to identify correspond-
ing subgradient procedures that are better suited to control respective kind of
zigzagging. Furthermore, the formalized definition of zigzagging has also helped

us to determine suitable values of parameters in some of the existing subgradient
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procedures in order to strengthen their capability to control zigzagging.

One of the central points of our research was in Chapter 4. There, we established
a new procedure which can completely eliminate the zigzagging phenomena. We
called the procedure the hybrid subgradient method and its step direction the hy-
brid subgradient. Obviously, this tremendously increases the speed of convergence
of the subgradient methods. For a general problem, the computation of the hy-
brid subgradient might demand difficult works since it involves determination of
the normal cone at each iterate point and the projection of the subgradient vec-
tor onto the cone. However, for the problem of maximization of the Lagrangian
dual of integer programming, we prescribed an explicit rule which computes the
hybrid subgradient. In this case, the computation does not demand a significant

additional work than the computation of a subgradient vector.

Further extensions of the zigzag-free hybrid subgradient method would be use-
ful. For instance, as briefly described in Chapter 3, the bundle method is closely
related with the subgradient methods. In fact, the bundle method also uses a
step direction based on the subgradient vectors and subjected to zigzagging. An
interesting subject for further research would be therefore the employment of the
hybrid subgradient method to eliminate the zigzagging behavior of the bundle
method.

Chapter 5 examined the issues of directly obtaining the primal solutions within
the subgradient schemes while solving the Lagrangian dual formulations. We re-
viewed classes of procedures which deal with the construction of primal solutions
directly from the information generated in the process of deflected or conditional
subgradient optimization methods. We deduced that these methods can produce
a near-optimal primal solution for an integer programming problem. Note that
since these procedures are based on either the deflected or a conditional subgradi-

ent methods, they are not completely free of zigzagging. Naturally, therefore, it is



7. Conclusions and Future Research 153

desirable to use the newly constructed zigzag-free hybrid subgradient method for
the purpose of generating both the dual and primal solutions. However, though
we have proved that the zigzag-free hybrid subgradient scheme can give dual con-
vergence, whether or not this scheme would also yield primal convergence is an

open question.

The goal of this thesis has been to employ the subgradient optimization tech-
niques to solve a large-scale optimization problem that originated from a radia-
tion therapy planning problem. In Chapter 6, we have formulated the problem
of minimization of total delivery time of a given radiation dose for a cancer pa-
tient. We have also described in detail the Hamacher-Boland network flow model
which represents important physical constraints of the Multileaf Collimator. The
model is used to minimize the total beam-on time to optimality. However, the
problem of minimization of the total delivery time, which is the sum of total
beam-on time and total set-up times, is NP-hard and thus far there exists no
method for solving the problem to optimality. In this thesis, Chapter 6, we have
established also a new, fast and efficient algorithm which combines exact and
heuristic procedures with the objective to minimize the total delivery time. The
exact subproblem in our procedure deals with the problem of minimizing a beam-
on time of a binary intensity matrix generated by the algorithm. We used the
Hamacher-Boland network flow model to solve this problem. Since the model
represents a side-constrained network flow problem and consists of large number
of nodes and arcs, its direct applicability has been limited only to problems of
small size. Here, we successfully overcame this difficulty by using subgradient
methods. In particular, using the Lagrangian dual technique, we dualized all the
side constraints and obtained a pure minimum cost network flow (circulation)
problem as a subproblem in the subgradient procedure. We solved the resulting
circulation problem using the negative cycle cancelling method. In this proce-
dure, we obtained a "good” starting feasible circulation using a set of distinct

longest paths in the network which partition the intensity arcs. Once we have a
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feasible circulation, we use shortest paths in the residual network to determine
cycles with negative cost. The numerical implementations show that our solu-
tion method dramatically reduces computational time as well as memory space
requirement of large-sized practical problems. Furthermore, we presented numer-
ical tests which show that our new algorithm yields almost always the smallest
number of segments without a cost of unreasonable increment of the beam-on
time. Consequently, our algorithm is a good alternative for the problem of mini-

mizing the total delivery time of radiation.

One can observe that the problem of minimization of the total delivery time of ra-
diation can be treated as an optimization problem with two objectives; namely,
minimization of total beam-on time and minimization of number of segments
(shape matrices). A possible future research work is therefore to examine whether
or not it would be advantageous to employ multiple objective optimization meth-

ods to solve the problem.
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