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abstract Based on the framework of continuum mechanics two different concepts to formu-
late phenomenological anisotropic inelasticity are developed in a thermodynamically consis-
tent manner. On the one hand, special emphasis is placed on the incorporation of structural
tensors while on the other hand, fictitious configurations are introduced. Substantial parts
of this work deal with the numerical treatment of the presented theory within the finite ele-
ment method.

zusammenfassung Basierend auf dem Rahmen der Kontinuumsmechanik werden zwei un-
terschiedliche Konzepte zur Formulierung phenomenologischer anisotroper Inelastizitit ther-
modynamisch konsistent entwickelt. Einerseits wird die Beriicksichtigung von Strukturten-
soren betont, andererseits werden fiktive Konfigurationen eingefithrt. Wesentliche Anteile
dieser Arbeit sind der numerischen Umsetzung der dargestellten Theorie mit Hilfe der Finiten
Element Methode gewidmet.
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Preface

VB

ut 3 muft fpeaf again about croftal3, fhapes, colours.
& There are crpftald a8 bhuge a8 the colonnabde of a cathe-

Z & ) oral, foft o8 mould, pridly a8 thorns; pure, azure,
green, life nothing elfe in the world, fiery, blad; mathe-
matically egact, complete, life conftruction8 by cragy, capricious fci-
entift8, o reminifcent of the liver, the beart ... There are croftal
grotto3, monfirous bubbled of mineral8, ardyitecture and engineering
act ... Even in buman [ife there i8 a Hidden force towards cryftalli-
fotion. Eqopt ceoftallifed in pyramidd and obeliftd, Greece in col-
umns; the midbdle aged in vial8; London in grinny cubes ... Life
fecret mathematical flafbed of lightning the countle38 law8 of con-
firuction penetrate the matter. Lo equal nature it i8 neceflary to be
mathematically and geometrically eract. Number and phantafy, lamw
and abundance - thefe are the living, creative frengths of nature; not
to fit under a green tree but to create cryffald and to form ideas,
that i8 what it means to become one with nature!

fa./}/é’«

Karel Capek [1890 — 1938]
after his visit of the mineral
collection of the British Museum
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Arno Schmidt [1914 — 1979]

In this work, a tensor notation in the spirit of Marsden and Hughes [MH94] is applied since the point
of view that “Even for a simple body, tensor analysis on manifolds clarifies the basic theory. For
instance, using manifold ideas we can see clearly how to formulate the pull-back and push—forward

..” is adopted [MH94, Chap. 1, Box 2.1]. In addition to standard conventions, we introduce the
symbol § to indicate mixed—variant tensors. Therefore the spatial identity, with the Kronecker delta
d0;; in terms of Cartesian coordinates, will read g" in the sequel. The scalar product and the tensor

product of vectors — sa vﬂ,vl’,vIi — are written in standard fashion, namely vt - vh = v o' and
y V1,03, V3 1702 2" U1

[vﬁ ® vg] b = [vg - vh)] vg whereby each - indicates one contraction. Moreover, the trace operation
for second order tensors is consequently determined by e.g. tr (g° - [b*]') = g : b*, compare Appendix

A for a reiteration on the transposition operator.

To give an example, we highlight the celebrated Truesdell or rather Murnaghan formula for the
Kirchhoff stress tensor within an isotropic setting which allows the following representations

general tensor notation: o= 2 gt . 8bﬁ¢6 . bt
general components: T = 2 g% Oyl W o= g'- Tt gl
Cartesian components: Tij = 2 O Bbqu/;(t) by = e- T -€

whereby the summation convention is implied and the free Helmholtz energy density 1§ represents
an isotropic scalar—valued tensor function. Predominantly, we deal with body tensor fields and do
not strictly distinguish the denomination of these objects from space tensor fields, see Lodge [Lod74,
Chaps. 2 & 11] for a detailed outline.

Standard notations are used as much as possible, casually under the common contradiction in un-
derstanding small bold symbols as vectors (n), capital bold symbols as second order material tensors
(IN) and small bold symbols as spatial second order tensors (n). Fourth order spatial and material
tensors are depicted differently from second order fields (n, N). For notational simplicity, we abuse
notation and denote functions and their values by the same symbol. The subsequent list summarises
symbols which are frequently used in this work (without asserting completeness)*.

*The applied denomination of spaces is given in Appendix A.2 and thus not highlighted here.
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Nomenclature

B

M

t

X, x

By, TBy, T*By
By, TB:, T*B;
p, P

Fh, fh

(Y

G

Q"

rotRh, reth

@i’ ot
G;, G’
9: 9"
Gl G, G"
g, 9, g
U‘, Vi R"
uh, vh, 7l
C’, B!
bﬂ, c
&, B
lh, Lt

B

1,...,n? a’l,...,n
[MF]", [mf]"
St Tt
Eﬁ’ eﬂ
q"

B,, TB,, T*B,
Fy,

Fi, £
RPN EPN
G, GG
CE” B
C., B!
~
bp, c,
b, ¢

1,1,
it T

pr e

body

material body manifold

time

placement of a material point at time %y and ¢

compatible material configuration and tangent, co-tangent (dual) space

compatible spatial configuration and tangent, co-tangent (dual) space

direct and inverse motion (material and spatial diffeomorphism)

linear tangent map of ¢ and &

stress functions

symmetry group
orthogonal transformation

rotations and reflections

material and spatial convected coordinates

material contra— and co—variant base vectors

spatial contra— and co—variant base vectors

material metric tensors and mixed—variant second order identity
spatial metric tensors and mixed—variant second order identity
right, left stretch tensors and rotational part of F?

left, right stretch tensors and rotational part of f b

material right Cauchy-Green tensor and inverse field

spatial Finger tensor and inverse field

spatial Almansi and material Green—-Lagrange strain tensor
spatial velocity gradient and pull-back in By

material and spatial tensor series

material and spatial Mandel stress

material second Piola—Kirchhoff and spatial Kirchhoff stress
material and spatial elastic tangent operator

spatial acoustic tensor

incompatible intermediate configuration and tangent, co-tangent (dual) space

direct and inverse inelastic linear tangent map

direct and inverse elastic linear tangent map

metric tensors and mixed-variant second order identity in B,
inelastic right Cauchy—Green tensor and inverse field

elastic right Cauchy—Green tensor and inverse field

inelastic Finger tensor and inverse field

elastic Finger tensor and inverse field

inelastic and elastic velocity gradient

inelastic and elastic velocity gradient, pull-back in By,
inelastic and elastic velocity gradient, pull-back in By

symmetric and skew—symmetric representation of ii



Nomenclature IX
21'1 . tensor series in By,

K proportional hardening variable

[]/\Z h]t Mandel stress in B,

S : second Piola—Kirchhoff stress in B,

Yl’, ?b, Y’ thermodynamic force conjugate to B%, (A;”, bg

ZI; , 25, z'Z? thermodynamic force conjugate to Ag, ?15, ag

h thermodynamics force conjugate to x

A admissible domain

[t elastic inverse motion first Piola—Kirchhoff stress

AR [f:ﬂ]t, [Xd]' elastic inverse motion Cauchy stress in By, By, By

B, TB, T*B incompatible fictitious configuration and tangent, co-tangent (dual) space
Fh, fh direct and inverse fictitious linear tangent maps

Gi, G fictitious contra— and co—variant base vectors in B

C’b, B* fictitious right Cauchy—Green tensor and inverse field

E fictitious Green—Lagrange strain tensor

A" Al anisotropy/damage metric in B, By

5 fictitious second Piola—Kirchhoff stress

Z b, z thermodynamic force conjugate to Aﬂ, Al

l~5’, Tl~5’, T*B incompatible fictitious configuration and tangent, co-tangent (dual) space
i‘h, fh direct and inverse fictitious linear tangent map

Fi, E direct and inverse elastic fictitious linear tangent map

Jis g fictitious contra— and co-variant base vectors in B

7, 1317, 13b inelastic metric in B, pull-back in B and B,

EZ, EZ elastic Green-Lagrange strain tensor in B and By

ﬁﬁ anisotropy /damage metric in B

7 fictitious Kirchhoff stress

g, P free Helmholtz energy density and inelastic potential

W, Dy stress power and dissipation

['][°]Iq basic invariants wrt a set of second order fields and appropriate metric tensors
(o]l ]J]_’Q’g principal invariants wrt a second order field and appropriate metric tensor
[e]le] F 1,2,3 Haigh—Westergaard coordinates wrt a second order field and appr. metric tensor
912 spherical coordinates wrt a unit—vector

o([e], [0]) anisotropy measure (J([e],[c]) > 0 if [e] and [0] do not commute)

Dy, Ly, Ly material time derivative and Lie-derivatives wrt By, By,

0Pt o @ functions wrt By, By, Bt, B, B

¢}, [3], [¢] fields wrt B,, B, B

mixed—variant, contra—variant and co—variant
push—forward and pull-back under the action of the diffeomorphism [e]

push—forward and pull-back under the action of the linear tangent map [e]






Introduction

have difcovered that writing o boof i8 o nonlinear problem, the folu-
tion of whidy require8 many iterations. Since the prefent form of this
2 worf varied very [ittle in the loft few iterations, T prefent it with the
hope that it provides an approgimate folution to the problem at hand.

John Tinsley Oden
Finite Elements of Nonlinear Continua, 1972

The title of this work is in a way misleading; however any possible title would displease at least some-
one. For mathematicians, the idea of anisotropy reflects e.g. group theoretical settings. Material
scientist and physicists probably have atomistic models, micro—structures, grains, etc. in mind and
might like to completely omit the terminology of anisotropy since it is obvious that almost all inelas-
tic processes are anisotropic. Finally, engineers, who have to accomplish failure and lifetime predic-
tions, possibly expect experimental results, strange material behaviour and some curve—fitting proce-
dures. I hope that “Modelling and Computation of Geometrically Nonlinear Anisotropic Inelasticity”
allures at last some readers from these communities.

The modelling of anisotropic material behaviour on different scales has been an active research
subject in the last decades and is of cardinal importance in material and engineering science. Since al-
most all materials are anisotropic, due to their natural occurrence or as a consequence of manufactur-
ing procedures and deformation histories, it is clear that various applications are found in the branches
of material science and mechanics. Typical examples are detected in the context of texture (develop-
ment) and crystalline and poly—crystalline materials, see e.g. the recent monographs by Kocks et al.
[KTWO00], Phillips [Phi01], Nembach [Nem97] or the contributions in Teodosiu [Teo97]. Another wide
field of applications for anisotropic material behaviour is provided by fibre reinforced plastics and com-
posites which are a very broad and important class of engineering materials — conventionally polymer,
metal and ceramic composites. For a general survey, we refer to Hull and Clyne [HC96] and Spencer
[SpeT72] — see also references cited therein. Moreover, it is clear that geo-materials, like soil and rock,
and biological materials, namely materials with growth, show overall anisotropic characteristics. For
instance, the modelling of wood and muscles or teeth and bones in consideration of their interaction
with orthopaedic implants is of major interest, see the overview article by Taber [Tab95] and for an
introduction to correlated finite element settings, we refer to Huiskes and Chao [HC83]. Conceptually
speaking for a wide class of bodies, what we observe as phenomenological anisotropy on the macro—
scale is attached to a specific structure on the micro—scale which might allow representation via tenso-
rial fields within the framework of continuum mechanics. Typical applications are e.g. continua with
voids, spin, rotational degrees of freedom, etc. — see Capriz [Cap89] for a general overview and Svend-
sen [Sve0la).

In this work, a phenomenological framework (for simple materials) is developed, that is the ther-
momechanical response of each particle in the body of interest allows to be determined from the his-
tory of the overall motion and temperature at this particular material point. The entire state and
state functions are represented by constitutive functionals which account for the knowledge of the his-
tory of independent variables including internal variables which are not accessible to direct observa-
tion. Thereby, constitutive theories of continuous solid materials with respect to convected coordi-
nates (related to body fields — attached to particles to which the history of the material is referred)
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result usually in simpler formulations compared to approaches with respect to bases which are fixed
in space (space fields — attached to places). Nevertheless, for specific applications like e.g. typical fi-
nite elements settings, it incidentally turns out to be convenient to choose a specific coordinate sys-
tem that coincides with the (body) convected coordinates in the considered particle at time ¢, e.g. or-
thogonal or even Cartesian coordinates. For conceptual clarity, but without loss of generality, we re-
strict ourselves to the rate-independent and isothermal case.

One possible approach to model anisotropy — within the framework of continuum mechanics and
a phenomenological hyper—elastic setting — is based on the incorporation of additional tensorial ar-
guments into the free Helmholtz energy density. A typical application is for instance the introduc-
tion of symmetric second order tensors which define preferred orientations of the material; for a de-
tailed outline see e.g. the contributions by Spencer [Spe84], Qiu and Pence [QP97] or Menzel and
Steinmann [MS01h] among many other authors and special emphasis on applications within finite el-
ement settings is placed by Weiss et al. [WMG96], Almeida and Spilker [AS98] — see also references
cited in these works. Then, the set up of isotropic or anisotropic tensor functions together with gen-
eral representation theorems and the correlated sets of invariants and generators is a natural conse-
quence and allows the modelling of anisotropic materials. For extensive background information and
a general overview, we refer to the monographs by Green and Adkins [GA70], Smith [Smi94], the early
work of Pipkin and Rivlin [PR59] and the contributions in Boehler [Boe87]. Furthermore, recall that
anisotropy is incorporated as soon as the assumed free Helmholtz energy density is additionally de-
fined by further non—spherical arguments or components on top of an appropriate kinematic tensor
field, compare Marsden and Hughes [MH94, Chap. 3, Prop. 5.7] for isotropic behaviour and the appli-
cations in Park and Youn [PY98]. Throughout this work, we choose symmetric second order tensors
to represent the type of anisotropy. Indeed, more complex theories are possible incorporating consti-
tutive anisotropy tensors of higher order, compare e.g. Zhang and Rychlewsky [ZR90] or Zheng and
Spencer [ZS93]. In this context, Betten [Bet82a] generated the set of irreducible invariants of a fourth
order tensor and, in view of the coupling to a second order tensor like e.g. stress or strain, addition-
ally the corresponding simultaneous invariants.

Nevertheless, a remaining task is to account for anisotropy within a phenomenological approach of
inelastic processes — for instance elasto—plastic behaviour. In this context, a powerful framework is pro-
vided by the theory of generalised standard dissipative materials as proposed by Halphen and Nguyen
[HN75], see also Maugin [Mau99, Chap. 7] or Antman [Ant95, Chap. XV] and references cited in these
monographs for a general overview. Conceptually speaking, the set of variables included in the free
Helmholtz energy density is enlarged by additional arguments. These arguments are treated as inter-
nal variables and allow to account for e.g. plastic deformations and possibly for induced anisotropy.
For an outline of anisotropic plasticity see e.g. the recent contributions by v.d. Giessen [vdG89],
Steinmann et al. [SMS96], Miehe [Mie98a], Papadopoulos and Lu [PL01], Svendsen [Sve01b], Resse
et al. [RRWO01], Tsakmakis [T'sa00] or Menzel and Steinmann [MS01d, MSOla] among others.

The appropriate choice of the physical nature of internal variables describing the anisotropic state
of a material and their tensorial representation is since long under discussion, compare Leckie and Onat
[LO81] for special emphasis on damage mechanics. An alternative framework to model anisotropic
material behaviour is provided by the introduction of fictitious mappings which allows to shift some of
the characteristics of additional internal variables to the properties of the chosen transformation. It is
clear that these approaches monitor reduced representations of general anisotropy. Nevertheless, as a
main advantage, one has the opportunity to base the modelling of anisotropic material behaviour on
standard isotropic constitutive equations. The idea of undamaged microscopic fictitious configurations
(similar to the effective space of the classical isotropic [1 — D ] damage theory) which are attached to
macroscopic configurations was originally established for the formulation of anisotropic failure crite-
ria of inelastic processes like creep and damage, see Betten [Bet82b] and Murakami [Mur88] or Betten
[Bet76], Karafillis and Boyce [KB93] and Oller et al. [OBMO95] with application to plasticity. Recently
Park and Voyiadjis [PV98] discussed in detail the underlying kinematics with application to damage.
Likewise, the concept of a fictitious, undeformed configuration has been advocated by Steinmann and
Carol [SC98| and was further elaborated in Menzel and Steinmann [MSOlc, MS01f, MS0le, MSO1b].
Thereby, as the fundamental assumption, the storage of strain energy due to either nominal or effective
strains is measured by either the damage or the energy metric based on the hypothesis of strain en-
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ergy equivalence between microscopic and macroscopic configurations, compare e.g. Sidoroff [Sid81].

Besides the formulation of the initial elastic anisotropic state of the material, the incorporation of
yield criteria and appropriate flow rules that account for anisotropy are of cardinal importance. In
analogy to the free Helmholtz energy density, the introduction of further arguments into inelastic po-
tentials — in addition and coupled to the appropriate thermodynamic driving forces — and the applica-
tion of representation theorems give a powerful tool at hand, compare e.g. Smith [Smi62], Boehler and
Sawczuk [BS76, BS77], Litewka and Sawczuk [LS81] and Betten [Bet85]. For an overview and applica-
tions on anisotropic yield criteria, we refer to Desai and Siriwardane [DS84, Chap. 12]. Thereby, it is
obvious that the general type of evolution equations results in a modification of the underlying sym-
metry group of the material which is often denoted as deformation induced anisotropy. In this direc-
tion, the evolution of anisotropic continuum damage within the small strain case has been highlighted
in, e.g., Chaboche [Cha93] or Carol et al. [CRW01]. General surveys on anisotropic damage and creep
theory are summarised by Murakami [Mur87], Lemaitre and Chaboche [LC98, Chap. 7] and Betten
[Bet91] among others. Special emphasis on the incorporation of structural tensors in the context of
continuum damage mechanics has been placed by e.g. Matzenmiller and Sackman [MS94], Betten et
al. [BSZ98] and Menzel and Steinmann [MS99]. A classical yield criterion for anisotropic metals is
represented by the celebrated Hill-type plasticity [Hil50, Chap. XI| which is defined via a quadratic
form in terms of stress (the conjugate thermodynamic force) and a fourth order tensor (that accounts
for the incorporated type of plastic anisotropy — similar to the tangent operator in anisotropic linear
elasticity). Furthermore, recall that plastic anisotropy enters the modelling of the material as soon
as kinematic hardening is incorporated since the flow direction generally does not commute with the
conjugate internal variable that accounts for plastic deformations in this case, compare Haupt [Hau00,
Sect. 11.3], Diegele et al. [DJTO00], Svendsen [Sve98, SAKS98] and Ekh et al. [ER01, EMRS02] among
others. Until now, the concept of plastic spin is not settled extensively harmonised in the computa-
tional mechanics community. Likewise, we do not adopt this approach in the sequel, but refer to the
discussion in Dafalias [Daf98], the contribution by Paulun and Pecherski [PR92| and, for special em-
phasis on additional initial anisotropy, to Cleja—Tigoiu [CT00] — see also references cited therein.

A fundamental part of any formulation in computational inelasticity is the numerical (time-) in-
tegration of the corresponding rate equations. If possible, families of radial-return algorithms or ex-
ponential integration schemes are applied, see e.g. Simo [Sim98] and Weber and Anand [WA90] for
an overview on applications within elasto—plasticity. However, for a general anisotropic setting, no
exponential-type integrator of the governing evolution equations is conveniently available which is ob-
viously due to the non—coaxiality of the internal variables and their correlated flow directions. In this
case, Runge-Kutta methods allow advantageous integration procedures, see e.g. the textbook by As-
cher and Petzold [AP98], Lambert [Lam91] and Hairer et al. [HNW93, Chap. II] for a general outline.
Typically higher order implicit multi stage methods are adopted which allow the setup of two differ-
ent schemes, namely that only the actual configuration is demanded to stay in the elastic domain or,
on the contrary, that all intermediate stages are additionally constrained to satisfy this condition. For
a survey on the integration of rate equations in the context of higher order Runge—Kutta schemes, we
refer to Hackl [Hac98], Hackl and Schmidt-Baldassari [HSBO01], Diebels et al. [DEE98], Kirchner and
Kollmann [KK99] and Menzel and Steinmann [MSO01f].

Goals of this study and modus operandi

The modelling of anisotropy is naturally related to group theoretical settings, the crystal classes, rep-
resentation theorems and specific formats within linear elasticity. Since these subjects are of funda-
mental importance and permanently present (between the lines) throughout this work but are other-
wise well-established in the literature, we reiterate briefly some of the basic essentials in the separate
Chapter 1 which completes this introduction.

The formulation of large strain hyper—elasticity is usually based on the right Cauchy—Green ten-
sor within the Lagrangian setting or alternatively on the Finger tensor with respect to an Eulerian
framework. As a usual drawback, at least in the field of computational mechanics, the spatial outline
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was essentially restricted to isotropy. Thus, we develop a modular formulation for anisotropic hyper—
elasticity in Chapter 2 which accounts for additional tensorial arguments and allows a direct setup
in terms of spatial fields. The derivation is strictly based on the general representation theorem of
isotropic tensor functions and the fundamental covariance relation of the free Helmholtz energy density.

On this basis, the generated anisotropic framework is enlarged to the formulation of dissipative pro-
cesses in a thermodynamically consistent manner, namely anisotropic multiplicative elasto—plasticity
with respect to non—standard dissipative materials, Chapter 3. Thereby, the covariant character is ad-
ditionally applied to the incorporated inelastic potentials. In particular, we account for initially elas-
tic, plastic and deformation induced anisotropy. The setup of different types of evolution equations
and the corresponding algorithmic treatment is displayed in detail.

The main objective of Chapter 4 is to clarify the relation between two strategies to formulate con-
stitutive equations for hyper—elastic orthotropic materials at large strains. In particular, the classical
Lagrangian approach with respect to the incorporation of structural tensors is compared to the frame-
work of a fictitious isotropic configuration which defines an anisotropic reference configuration via the
correlated linear tangent map. Thereby, the principle of strain energy equivalence or rather covari-
ance with respect to the fictitious configuration and the standard reference configuration is adopted
and the free Helmholtz energy density allows to be computed via push—forward operations within the
nominal setting. Thereby, anisotropy comes into the picture if the obtained anisotropy metric is non—
spherical which is apparently determined by the fictitious mapping. This approach results in a re-
duced but nevertheless physically motivated set of invariants which are related to the invariants de-
fined by structural tensors. As a main conceptual advantage, standard isotropic constitutive equa-
tions can be applied and moreover, the numerical treatment within a finite element setting becomes
cheaper since we deal with a reduced set of invariants.

To capture the anisotropic nature of damage, one has to introduce at least a second order inter-
nal variable. In this context, the goal of Chapter 5 consists in extending the framework based on a
fictitious isotropic configuration to geometrically non—linear, anisotropic, tensorial second order con-
tinuum damage. Referring to the framework of standard dissipative materials, associated evolution
equations are constructed which substantially affect the anisotropic nature of the damage formulation.
Specifically, the categories of quasi isotropic and anisotropic damage evolution are classified. The nu-
merical integration of the obtained system of ordinary differential equations is discussed whereby two
different schemes and higher order methods are taken into account.

Finally, Chapter 6 generalises the concept of a fictitious configuration, namely a framework for
continuum damage mechanics coupled to multiplicative elasto—plasticity is developed whereby it turns
out to be convenient to introduce two different fictitious configurations. Specifically, in addition to the
intermediate configuration of multiplicative elasto—plasticity, we account for two microscopic config-
urations of Lagrangian and Fulerian type which characterise the so—called fictitious undamaged ma-
terial. This kinematical framework enables us to apply two well-established postulates based on the
standard terminology in nonlinear continuum mechanics. Concerning the free Helmholtz energy den-
sity, the postulate of strain energy equivalence is adopted and in view of the plastic dissipation poten-
tial, the concept of effective stress is a natural outcome of the underlying kinematical assumptions.
Moreover, we focus on the integration technique for the class of obtained evolution equations.
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Der Titel dieser Arbeit mag in gewisser Weise irrefithrend sein; allerdings konnte kein Titel allen po-
tenziellen Lesergruppen gerecht werden. Fiir Mathematiker steht Anisotropie sicherlich in engem Zu-
sammenhang mit gruppentheoretischen Aspekten. Materialwissenschaftler und Physiker haben wahr-
scheinlich atomistische Vorgehensweisen, Mikrostrukturen, Koérner, etc. vor Augen und lieen eventu-
ell die Bezeichnung Anisotropie am liebsten ginzlich weg, da offensichtlich nahezu siamtliche inelasti-
schen Prozesse anisotrop verlaufen. Ingenieure, die Versagens — und Lebensdauervorhersagen zu ver-
antworten haben, erwarten unter Umstdnden experimentelle Ergebnisse, merkwiirdiges Materialver-
halten und Kurvenanpassungen. Ich hoffe, daB “Modelling and Computation of Geometrically Nonli-
near Anisotropic Inelasticity” zumindest einige Leser dieser Bereiche anspricht.

Die Modellierung anisotropen Materialverhaltens auf unterschiedlichen Skalen ist ein seit einigen
Jahrzehnten aktiv verfolgtes Forschungsgebiet und von grofler Bedeutung in den Material- und Inge-
nieurwissenschaften. Da nahezu alle Materialien anisotrop sind, aufgrund ihrer natiirlichen Erschei-
nungsform oder als Folge von Herstellungs— und Deformationsprozessen, existiert offensichtlich eine
Vielzahl von Anwendungen in den Werkstoffwissenschaften und in der Mechanik. Typische Beispie-
le findet man in Zusammenhang mit Textur (~bildung) und kristallinem sowie poly—kristallinem Ma-
terial, siche z.B. die aktuellen Monographien von Kocks et al. [KTW00], Phillips [Phi01], Nembach
[Nem97] oder die Beitrige in Teodosiu [Teo97]. Ein weiteres Anwendungsfeld anisotropen Material-
verhaltens stellen faserverstirkte Kunststoffe sowie Verbundwerkstoffe dar, die eine groie und wichti-
ge Klasse von Ingenieurmaterialien sind — iiblicherweise Polymer, Metal und Keramik Verbundwerk-
stoffe. Fiir einen allgemeinen Uberblick verweisen wir auf Hull und Clyne [HC96] und Spencer [Spe72]
— siehe auch die dort zitierte Literatur. Des weiteren ist offensichtlich, dal Geomaterialien, wie z.B.
Boden und Fels, und Biomaterialien, d.h. Materialien die wachsen, allgemein anisotrope Eigenschaf-
ten aufweisen. So ist z.B. die Modellierung von Holz und Muskelgewebe oder von Zahnen und Kno-
chen unter Beriicksichtigung mit der Interaktion mit Implantaten von zunehmender Bedeutung, siehe
den Uberblickartikel von Taber [Tab95] und in Hinblick auf eine Einfithrung in die Umsetzungen der
Finiten Element Methode im Rahmen der Biomechanik verweisen wir auf Huiskes and Chao [HC83].
Konzeptionell betrachtet werden die Eigenschaften von vielen Materialien, die wir phénomenologisch
auf der Makro—Skala beobachten, von einer speziellen Struktur auf der Mikro—Skala bestimmt, wel-
che in der Kontinuumsmechanik mit Hilfe von tensoriellen Felden modelliert werden kénnen. Typi-
sche Beispiele sind Kontinua mit Fehlstellen, Spin, rotatorischen Freiheitsgraden, etc. — siehe Capriz
[Cap89] fiir einen allgemeinen Uberblick und Svendsen [SveOla).

In dieser Arbeit wird ein phinomenologischer Rahmen (fiir einfache Materialien) entwickelt, d.h.
die thermomechanischen Eigenschaften eines jeden Partikels des betrachteten Korpers seien durch die
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Deformationsgeschichte und Temperatur an diesem einen materiellen Punkt bestimmbar. Der Zustand
sowie die Zustandsfunktionen werden mittels konstitutiver Funktionale reprisentiert, die der Kennt-
nis der Geschichte unabhingiger Variablen sowie interner Variablen, welche der direkten Beobachtung
nicht zuginglich sind, Rechnung tragen. Dabei ist es grundsétzlich vorzuziehen, fiir Formulierungen
kontinuierlicher Festkorper allgemeine konvektive Koordinaten (Kérper Felder — bzgl. eines Partikels,
auf den sich ebenfalls die Kenntnis der Deformationsgeschichte bezieht) an Stelle von raumfesten Ko-
ordinaten (Raum Felder — bzgl. eines Ortes) zu verwenden. Nichtsdestotrotz kann es bei speziellen An-
wendungen, wie z.B. typische Finite Element Algorithmen, vorteilhaft sein, fiir die konvektiven Koor-
dinaten in einem betrachteten Partikel zum Zeitpunkt ¢ ein spezielles Koordinatensystem zu wahlen,
z.B. ein orthogonales oder Kartesisches. Der Ubersichtlichkeit halber, aber ohne Beschrinkung der
Allgemeinheit, modellieren wir ausschlielich ratenunabhéngiges und isothermes Verhalten.

Eine mogliche Vorgehensweise der Modellierung anisotropen Materialverhaltens — im Rahmen
der Kontinuumsmechanik und phinomenologischer Hyper—Elastizitit — basiert auf der Einfithrung
erginzender tensorieller Argumente in die freie Helmholtz Energiedichte. Als typisches Beispiel sei
die Beriicksichtigung von symmetrischen Tensoren zweiter Stufe genannt, die bevorzugte Faserorien-
tierungen des Materials definieren; detailierte Ausfithrungen sind z.B. in den Beitrdgen von Spencer
[Spe84], Qiu und Pence [QP97] oder Menzel und Steinmann [MSO01h] enthalten und die Umsetzung
im Rahmen der Finiten Element Methode wird speziell von Weiss et al. [WMG96], Almeida und Spil-
ker [AS98] betont — siehe auch die dort zitierte Literatur. Basierend auf den allgemeinen Darstel-
lungstheoremen isotroper und anisotroper Tensorfunktionen, definieren die zugrundeliegenden Invari-
anten und Generatoren konstitutive Gleichungen, welche die Modellierung von Anisotropie gestatten.
Fiir eine umfassende Darstellung der Grundlagen und einen allgemeinen Uberblick sei auf die Mono-
graphien von Green und Adkins [GA70], Smith [Smi94], die frithzeitige Arbeit von Pipkin und Rivlin
[PR59] sowie die Beitrige in Boehler [Boe87] verwiesen. Des weiteren sei daran erinnert, dal Anisotro-
pie bereits modelliert wird, wenn die angenommene freie Helmholtz Energiedichte neben dem existen-
tiellen kinematischen Feld weitere tensorielle, nicht—sphérische Argumente oder erginzende Kompo-
nenten enthilt, vergleiche Marsden und Hughes [MH94, Kap. 3, Prop. 5.7] fiir Isotropie sowie die An-
wendung in Park und Youn [PY98]. In dieser Arbeit sollen stets symmetrische Tensoren zweiter Stu-
fe gewidhlt werden, um Anisotropie zu erfassen. Allerdings sei darauf hingewiesen, dafl weitaus kom-
plexere Theorien méglich sind, die z.B. auf Tensoren héherer Stufe basieren, welche den entsprechen-
den Typ von Anisotropie charakterisieren, vergleiche Zhang und Rychlewsky [ZR90] oder Zheng und
Spencer [ZS93]. In diesem Zusammenhang ermittelte Betten [Bet82a] den Satz nicht reduzierbarer In-
varianten eines Tensors vierter Stufe und in Hinblick auf die Kopplung mit einem zweistufigen Tensor
wie z.B. dem Spannung- oder Verzerrungsfeld die zugehorigen Simultaninvarianten.

Nichtsdestotrotz verbleibt die Aufgabe, Anisotropie im Rahmen eines phinomenologischen Ansat-
zes fiir inelastische Prozesse umzusetzen — z.B. fiir elasto—plastisches Verhalten. In diesem Zusammen-
hang stellt die Theorie generalisierter standard dissipativer Materialien einen leistungsfihigen Rah-
men zur Verfiigung, sieche Halphen und Nguyen [HN75], Maugin [Mau99, Kap. 7] oder Antman [Ant95,
Kap. XV] sowie die dort zitierte Literatur fiir einen allgemeien Uberblick. Hierbei wird die Liste der
Argumente der freien Helmholtz Energiedichte um Felder erweitert, welche interne Variablen reprisen-
tieren und plastische Deformationen sowie moéglicherweise deformationsinduzierte Anisotropie darstel-
len kénnen. Aktuelle Formulierungen anisotroper Plastizitédt sind z.B. in v.d. Giessen [vdG89], Stein-
mann et al. [SMS96], Miehe [Mie98a], Papadopoulos und Lu [PLO01], Svendsen [Sve01b], Resse et al.
[RRWO01], Tsakmakis [Tsa00] oder Menzel und Steinmann [MS01d, MS0la] enthalten.

Die adidquate Wahl der physikalischen Eigenschaften interner Variablen, welche Anisotropie mo-
dellieren sollen, sowie ihre tensorielle Darstellungsform sind seit langem Gegenstand intensiver Dis-
kussionen, vergleiche Leckie und Onat [LO81] mit spezieller Ausrichtung auf Schidigungsmechanik.
Eine alternative Vorgehensweise stellt die Einfiithrung fiktiver Abbildungen dar, die wesentliche Eigen-
schaften der Anisotropie beinhalten sollen. Einerseits kann ein solcher Rahmen lediglich eine reduzier-
te Darstellung allgemeiner Anisotropie liefern. Andererseits ist es moglich, mit Hilfe von standard iso-
tropen Stoffgesetzen anisotropes Materialverhalten zu modellieren, was ein wesentlicher Vorteil dieser
Methode ist. Die Vorstellung einer ungeschidigten, mikroskopischen Konfiguration (&hnlich der effek-
tiven Konfiguration der klassischen, isotropen [1 — D] Schidigungstheorie), die mit der makroskopi-
schen Konfiguration in Relation steht, wurde urspriinglich fiir anisotrope Versagenskriterien wie Krie-



Einleitung 7

chen und Schidigung verwendet, siehe Betten [Bet82b] und Murakami [Mur88] oder Betten [Bet76],
Karafillis und Boyce [KB93] und Oller et al. [OBMO95] mit Anwendung auf Plastizitit. Kiirzlich dis-
kutierten Park und Voyiadjis [PV98] ausfiihrlich die zugrundeliegende Kinematik in Hinblick auf Kon-
tinuumsschidigung. Desgleichen wurde von Steinmann and Carol [SC98] eine fiktive, undeformierte
Konfiguration eingefiithrt und in Menzel und Steinmann [MS01c, MS01f, MSOle, MS01b| weiter ent-
wickelt. Als fundamentale Grundlage wird hierbei die gespeicherte Verzerrungsenergie in nominellen
und fiktiven Verzerrungen in Bezug auf eine Schidigungs— bzw. Energiemetrik gemessen, was der Hy-
pothese der Verzerrungsenergie Aquivalenz entspricht, vergleiche z.B. Sidoroff [Sid81].

Neben der Formulierung der anfinglich elastischen, anisotropen Ausgangskonfiguration ist die
Beriicksichtigung von FlieBkriterien und Flieffunktionen, die ebenfalls Anisotropie modellieren, ent-
scheidend. In Analogie zur freien Helmholtz Energiedichte stellt die Einfiihrung zusétzlicher Argumen-
te in die inelastischen Potenziale — als Erginzung und gekoppelt mit den zutreffenden thermodynami-
schen, treibenden Kriften — sowie die Anwendung von Darstellungstheoremen einen leistungsfihigen
Rahmen zur Verfiigung, vergleiche z.B. Smith [Smi62], Boehler und Sawczuk [BS76, BS77|, Litewka
und Sawczuk [L.S81] und Betten [Bet85]. Fiir einen Uberblick und Anwendungen anisotroper Flief-
kriterien verweisen wir auf Desai und Siriwardane [DS84, Kap. 12]. Dabei ist es offensichtlich, daf}
die allgemeine Form anisotroper Evolutionsgleichungen zu einer Verdnderung der Symmetriegruppe
des Materials fiihrt, was oft als deformationsinduzierte Anisotropie bezeichnet wird. In dieser Rich-
tung wurde die Evolution anisotroper Kontinuumsschédigung fiir kleine Verzerrungen z.B. von Cha-
boche [Cha93] oder Carol et al. [CRWO01] untersucht. Allgemeine Ubersichten zu anisotroper Schidi-
gung sowie anisotropen Kriechens sind in Murakami [Mur87], Lemaitre und Chaboche [LC98, Kap.
7] und Betten [Bet91] zusammengefafit. Der Einfithrung von Strukturtensoren in Zusammenhang mit
der Kontinuumsschidigungsmechanik wird besondere Aufmerksamkeit in den Arbeiten von Matzen-
miller und Sackman [MS94], Betten et al. [BSZ98] und Menzel und Steinmann [MS99] gewidmet. Ein
klassisches FlieSkriterium fiir anisotrope Metalle stellt die viel beachtete Hill-Plastizitdt dar [Hil50,
Kap. XI|, welche iiber eine quadratische Form beziiglich der Spannungen (die konjugierte thermody-
namische Kraft) und einen vierstufigen Tensor (welcher — dhnlich dem Tangentenoperator anisotro-
per, linearer Elastizitdt — Anisotropie beriicksichtigt) definiert ist. Des weiteren sei daran erinnert,
daf plastische Anisotropie bereits in der Modellierung enthalten ist, sobald kinematische Verfestigung
Beriicksichtigung findet, da in diesem Fall die FlieBrichtung im allgemeinen nicht mehr mit den konju-
gierten internen Variablen, welche die Plastizitéit beschreiben, kommutiert, vergleiche Haupt [Hau00,
Abs. 11.3], Diegele et al. [DJT00], Svendsen [Sve98, SAKS98] und Ekh et al. [ER01, EMRS02] un-
ter anderen. Bis heute wurde das Konzept eines plastischen Spins im Bereich der computerorientie-
reten Mechanik unterschiedlich verwendet. Gleichermafien iibernehmen wir diese Theorie im Folgen-
den nicht, sondern verweisen vielmehr auf die Diskussion in Dafalias [Daf98], den Beitrag von Pau-
lun und Pecherski [PR92] sowie, in Hinbllick auf die Beriicksichtigung anfinglicher Anisotropie, auf
Cleja—-Tigoiu [CTO00] — siehe auch die in diesen Arbeiten zitierte Literatur.

Ein wesentlicher Anteil jeglicher numerisch umzusetzender Formulierung von Inelastizitit besteht
in der (Zeit—) Integration der zugrundeliegenden Ratengleichungen. Soweit moglich, finden zumeist
Radial-Return Algorithmen oder exponentielle Vorgehensweisen Anwendung, siehe z.B. Simo [Sim98§]
und Weber und Anand [WA90] fiir eine Ubersicht und Beispiele im Rahmen elasto—plastischen Ma-
terialverhaltens. Im allgemeinen anisotropen Fall lassen sich derartige Exponential-Integratoren nicht
mehr komfortabel umsetzen, denn die internen Variablen sind dann offensichtlich nicht koaxial zu ih-
ren Fliefirichtung. In diesem Fall erlauben Runge-Kutta Methoden vorteilhafte Integrationsalgorith-
men, siehe z.B. das Lehrbuch von Ascher und Petzold [AP98], Lambert [Lam91] und Hairer et al.
[HNW93, Kap. II] fiir eine allgemeine Ubersicht. Typischer Weise kénnen implizite mehrstufige Ver-
fahren hoéherer Ordnung eingesetzt werden, die prinzipiell zwei unterschiedliche Vorgehensweisen er-
lauben. Entweder wird lediglich vom aktuellen Zustand gefordert, daf} er sich im zuléssigen elastischen
Gebiet befinden soll, oder alle weiteren Zwischenzustéinde sollen ebenfalls dieser Bedingung geniigen.
Fiir einen Uberblick zur Integration der Ratengleichungen in Zusammenhang mit Runge Kutta Me-
thoden hoherer Ordenung verweisen wir auf Hackl [Hac98], Hackl und Schmidt-Baldassari [HSBO1],
Diebels et al. [DEE98], Kirchner und Kollmann [KK99] und Menzel und Steinmann [MS01f].



8 Einleitung

Zielsetzung dieser Arbeit und modus operandi

Die Modellierung anisotropen Materialverhaltens ist natiirlicher Weise mit der Gruppentheorie, den
Kristallklassen, Darstellungstheoremen und speziellen Formen linearer Elastizitéit verbunden. Da die-
se Themenbereiche von fundamentaler Wichtigkeit sind und stets (zwischen den Zeilen) in dieser Ar-
beit auftauchen, allerdings in der Literatur ausfiihrlich abgehandelt wurden, fassen wir lediglich eini-
ge wesentliche Grundlagen in dem separaten Kapitel 1 zusammen, das diese Einleitung abrundet.

Hyper-Elastizitit bei groflen Verzerrungen ist gewéhnlich mit dem rechten Cauchy—Green Tensor
materiell formuliert oder basiert auf dem raumlichen Finger Tensor. Im Bereich der numerischen Me-
chanik besteht ein Nachteil der ansonsten vorteilhaften, direkten rdumlichen Vorgehensweise in der
Beschrinkung auf Isotropie. Daher wird in Kapitel 2 eine Formulierung anisotroper Hyper—Elastizitit
entwickelt, die zusétzliche tensorielle Argumente beriicksichtigt und eine direkte Beschreibung in rdum-
lichen Feldern erlaubt. Die Herleitung beruht auf dem allgemeinen Darstellungstheorem isotroper Ten-
sorfunktionen und der fundamentalen Kovarianz der freien Helmholtz Energiedichte.

Auf dieser Basis kann der entwickelte Rahmen fiir dissipative Prozesse thermodynamisch konsi-
stent erweitert werden, z.B. auf anisotrope multiplikative Elasto—Plastizitit unter Verwendung nicht—
standard dissipativer Materialien, Kapitel 3. Dabei soll die Kovarianz Eigenschaft zuséitzlich fiir die
inelastischen Potenziale gelten. Im Einzelnen beriicksichtigen wir anfingliche elastische, plastische so-
wie deformationsinduzierte Anisotropie. Die Umsetzung unterschiedlicher Evolutionsgleichungen und
deren algorithmische Handhabung werden detailiert ausgefiihrt.

Das Hauptziel des Kapitels 4 besteht in der Gegeniiberstellung zweier unterschiedlicher Vorgehens-
weisen, konstitutive Gleichungen fiir hyper—elastische Orthotropie bei grofien Verzerrungen zu formu-
lieren. Im Einzelnen wird die klassische materielle Strukturtensor—-Formulierung mit der Einfithrung
einer fiktiven Konfiguration, welche eine anisotrope Ausgangskonfiguration iiber lineare Tangentialab-
bildungen definiert, verglichen. Das Konzept der Verzerrungsenergie—Aquivalenz bzw. die fundamen-
tale Kovarianz beziiglich der fiktiven Konfiguration und der standardméfigen Referenzkonfiguration
wird angewendet und die freie Helmholtz Energiedichte kann nun mit Hilfe von push—forward Ope-
rationen nominell formuliert werden. Anisotropie ist beriicksichtigt, sobald die entsprechende Aniso-
tropie Metrik nicht sphérisch ist, was ausschliellich die fiktive Abbildung bestimmt. Diese Vorgehens-
weise fithrt zu einem reduzierten aber physikalisch motivierten Satz von Invarianten, welcher mittels
der Invarianten, die durch Strukturtensoren definiert sind, dargestellt werden kann. Ein Hauptvorteil
dieser Methode beteht in der Verwendung standard isotroper Stoffgesetze und der effizienten numeri-
schen Umsetzung im Rahmen der Finiten Element Methode, welche bei weitem nicht so aufwendig ist
wie die vorherige Vorgehensweise, da ein reduzierter Satz von Invarianten vorliegt.

Zur Erfassung der anisotropen Eigenschaften von Schidigungsprozessen ist es notwendig, eine zu-
mindest zweistufige interne Variable einzufiihren. In diesem Zusammenhang besteht das Ziel des Ka-
pitels 5 darin, das Konzept einer fiktiven isotropen Konfiguration auf geometrisch nichtlineare, tenso-
riell zweistufige, anisotrope Schidigung zu erweitern. Basierend auf der Theorie standard dissipativer
Materialien werden assoziierte Evolutionsgleichungen entwickelt, welche die anisotropen Schidigungs-
eigenschaften wesentlich beeinflussen. Im Einzelnen gilt es, die Kategorien quasi isotroper und aniso-
troper Schidigung zu klassifizieren. Die numerische Umsetzung des so erhaltenen Systems gewohnli-
cher Differentialgleichungen wird ausfiihrlich behandelt, wobei zwei unterschiedliche Vorgehensweisen
sowie Verfahren hoherer Ordnung Anwendung finden.

Abschlielend wird in Kapitel 6 das Konzept einer fiktiven Konfiguration generalisiert, und zwar
auf die Kopplung von Kontinuumsschidigung mit multiplikativer Elasto—Plastizitit, wobei es vorteil-
haft ist, zwei unterschiedliche fiktive Konfigurationen einzufiihren. Genau genommen beriicksichtigen
wir erginzend zur Zwischenkonfiguration multiplikativer Elasto—Plastizitat zwei mikroskopische Kon-
figurationen vom Lagrange sowie FEuler Typ, welche das sogenannte fiktive, ungeschidigte Material
charakterisieren sollen. Dieses kinematische Geriist erlaubt uns, zwei etablierte Postulate im Rahmen
der nichtlinearen Kontinuumsmechanik anzuwenden. Bezogen auf die freie Helmholtz Energiedichte
findet das Postulat der Verzerrungsenergie-Aquivalenz Anwendung und fiir das plastische Potenzial
ergibt sich direkt aus den kinematischen Annahmen das Konzept effektiver Spannungen. Des weite-
ren wird die Integration der entwickelten Klasse von Evolutionsgleichungen ausfiihrlich diskutiert.



Chapter 1

Concepts of the formula-
tion of anisotropy

rom the dap3 of Voigt, who introduced the term ‘ten-
for’, fome find of tenfor calculud hod alwaps been
’ gtbe beft infirument for Dealing with the propertied of
"S=3 0 anifotropic media.

J.A. Schouten
Tensor Analysis for Physicists, 1951

The contents of the subsequent Chapter is independent of the rest of this work. The readers who
would like to start directly with the modelling of anisotropic materials should skip this Chapter. In
fact, a brief review on common strategies to incorporate anisotropy into constitutive equations is given
and, hopefully, a sufficient number of representative examples is included since — being an engineer —
I personally learn a lot from examples. For the sake of maximal congruence with the literature, the
applied notation in this Chapter is fairly standard and does not explicitely distinguish between co—,
contra— and mixed—variant fields. Conventional details are highlighted in Appendix A.

1.1 Principles of objectivity

Preliminary, we focus on material objectivity, namely the fundamental principle of material frame in-
difference (as represented by superposed spatial rigid body motions) and the appropriate definition of
the symmetry class which characterises the body of interest. Both concepts are well-established and
documented in several standard monographs on continuum mechanics, see e.g. Eringen [Eri62, Arts.
27 & 44], Truesdell and Noll [TN92, Sect. C.I], Antman [Ant95, Sects. XI.11 & 13], Silhavy [Sil97,
Chap. 6, Sects. 9.3 & 9.4] or Murdoch [Mur00] and the contributions by Svendsen and Bertram [SB99]
and Ericksen [Eri00]. Please note that these relations are specific cases of general covariance which is
thoroughly highlighted in Chapter 2.

Distance preserving transformations: Let X9 € E? characterise two points at time #; 2 € R. Now,
consider a mapping of these points onto X , € E? at time t1 o € R. We require an observer to
measure identical distances between the particles X o and XII,Z which is guaranteed under the
time-dependent transformation

Xo-X1=Q1) [X2-X1] = |IX;-X)| = X2 X4 (1.1)

with X}, — X!, Xy —X; € V2 for any orientation preserving function Q(s) € C*® : R — @ﬁ_. Re-
call that this transformation is related to the concept of superposed rigid body motions (active
version). Alternatively, Eq.(1.1) can be written as

XLb=Q() - Xo+c(t) with ct)=X,-Q)-X;€C®:R—-V?3 (1.2)
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associated with the shift in time scale § = ¢}, — o = t| —t; € R which possibly vanishes, without
loss of generality. Likewise, Eq.(1.2) allows to characterise two different observers (being related
via an orthogonal transformation Q(e) € C*® : R — 0?), one monitoring X1 » and the other ac-
counting for XIl,Z’ but both obviously observing the identical incident. This interpretation is es-
tablished as the change of (Euclidian) observer, frame or coordinate system, respectively (pas-
sive version).

Principle of indifference with respect to superposed rigid body motions (active version): We con-
sider an admissible but otherwise arbitrary motion of the body of interest denoted by ¢(X,1) :
R? x R — R? incorporating the position field X € R?® which allows identification with points, or
at least distances between points, in E3. The previous discussion on distance preserving trans-
formations indicates two classical principles on material objectivity with respect to the physi-
cal properties of the body of interest. On the one hand, the Hooke-Poisson—Cauchy represen-
tation characterises invariance of a constitutive equation under superposed spatial rigid body
motions (Q(e) € C*®° : R — Q% C QP active version) while on the other hand, the Zaremba—
Jaumann format allows an arbitrary change of observer (Q(e) € C® : R — Q3, passive version).
The “classical” conclusion is that the second framework is generally more restrictive compared
to the first since improper orthogonal transformations are additionally included; i.e. a responds
function which satisfies the Zaremba—Jaumann form fulfils equally the Hooke—Poisson—Cauchy
restriction — but not the opposite way round, compare Truesdell and Noll [TN92, Sect. 19A].
However, each format represents a principle on it’s own (say rigid body motion— and Euclid-
ian frame-indifference) which both have to be satisfied, then imply additionally form—invariance
and, finally, elaborate material objectivity, see Svendsen and Bertram [SB99] for a detailed out-
line. Now, adopting the Hooke-Poisson—Cauchy approach, Eq.(1.2); is related to an Euclidian
transformation (in the language of differential geometry, we deal with a spatial orientation pre-
serving isometry)

O(X, 1) = QW) -o(X, ) +et) — F(X,t)=Q() F(X,1) (L3)

which, conceptually speaking, represents a superposed spatial rigid body motion and includes
the functions c(e) € C® : R = R3 Qo) € C® : R — (O)i’L. Moreover, the applied abbreviations
F'(X,t') = 0x¢'(X,t') € L3 and F(X,t) = Ox¢(X,t) € L3, respectively, represent the cor-
responding linear tangent maps. Next, based on the assumption of a simple elastic stress func-
tion solely defined in terms of F'(X,t), namely &(X,t) = &(F(X,t); X) whereby &(X,t) is ex-
pected to be a one-point tensor, we define the stress vector [&(X,t)- N ], for arbitrary N € U?,
which results under the motion as determined by Eq.(1.3) in

&(X,t")-N'=Q(t)-[&(X,t)- N] = &(X,t)=Q((%) - -&(X,t)-Q't) (1.4)

with &'(X,t) = &(F/'(X,t'); X) = &(Q(t) - F(X,t); X) and N’ = Q(t) - N. Note that
Eq.(1.4)2 defines an objective tensor function. Next, applying the right polar decomposition the-
orem F(X,t) = R(X,t)-U(X,t), FI(X,t)=R(X,t) - U'(X,t)=Q(t) - R(X,t) - U(X,1)
— U'(X,t) =U(X,t) with R,R' € 0% and U,U’ € S%, and taking into account the specific
case Q(t) = RY(X,t), we end up with the reduced format

&(X,t) =S(F(X,t); X) = R(X,t)-8(U(X,t); X)- R (X,t) |, (1.5)

T In this Section we adopt the ansatz Q(t) = R*(X,t) = F'(X,t) = U(X,t) which is well-established in the lit-
erature, see e.g. the monographs by Truesdell and Noll [TN92, Sect. 29], Ogden [Ogd97, Sect. 4.2], Antman [Ant95,
Sect. XI.11], Haupt [Hau00, Sect. 7.2.2]. A critisim of this aproach with respect to the strain energy density, com-
pare Section 1.3, as e.g. highlighted by Truesdell and Noll [TN92, Sect. 84] or Green and Adkins [GAT70, Sects. 1.3
& 8.3] among many other authors has been emphasised in Rivlin and Smith [RS87], see also Rivlin [Riv91] and Trues-
dell [Tru66, Chap.IV, Sect. 37]. However, as mentioned above, the stretch of F'(X,t) equals the stretch of F(X,t) and
therefore an elegant derivation can be based on the argument U (X) = /F'(X,t) - F(X,t) = /[F (X, t)]t- F'(X,t')
which is satisfied for any Q(t) € Q® including Q(t) = R*(X,t). Finally, the fundamental covariance principle enables us
to give a clear representation of the problem at hand, see Section 2.2.
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compare Truesdell and Noll [TN92, p. 66, footnote 1]. Thus, the simple elastic stress function
&(X,1t) is defined in terms of the stretch tensor U (X,t) and does not incorporate the rotation
R(X,t). Note that Eq.(1.5) is objective which is easily verified by inserting this function into
Eq.(1.4). Furthermore, various representations of stress functions can be applied. One likely
candidate is

S(F(X,t);X) = F(X,t)-U YX,t)-8(U(X,t); X)-U Y(X,t)- F{(X,1)
= F(X,t)-3U(X,t);X) - F'(X,t).

Among several possible arguments, the introduction of (U (X ,t); X) = S(C(X,t); X) with
C(Xat) = Ut(Xat)U(Xat) = Ft(Xat)F(Xat) = Ft(Xat)Qt(t) (t) F( at)
[F'(X,!)]- F'(X,t) = C'(X,t') € S} is obviously a natural outcome.

Material symmetry (active version): Consider two different events; first let ¢(X,t) correspond to
an admissible motion, second assume the homogeneous body of interest to be primarily mapped
by a transformation that incorporates Q € O and subsequently be deformed via ¢(X,t). Con-
ceptually speaking, we deal with a preceding Euclidian transformation and consequently focus
on the inverse non-linear deformation map @(zx,t) : R® x R — R3, similar to Eq.(1.3), which al-
lowed interpretation as a superposed spatial rigid body motion (in the language of differential
geometry, we deal now with a material isometry)

Ql(matl) :Q'ds(w,t) +tc = fl(watl) = Qf(w,t) : (17)

Again the abbreviations f'(z,t') = 0,®'(z,t') € L}, and f(z,t) = 0,B(x,t) € L3, respec-
tively, represent the corresponding linear tangent maps and ¢ € R3. Obviously, by inversion, the
correlated deformation gradient of the direct motion reads F'(X,#') = F(X,t)- Q' € I} . The

mv-*
previously introduced simple elastic stress function then renders
&(X,t) =8(F(X,t); X) and &'(X,t') =&(F'(X,t); X)=8(F(X,t)-Q% X). (1.8)

For any admissible but otherwise arbitrary deformation gradient F(X,t) € ]Li, the fixed trans-
formation Q" is called symmetry transformation if the relation &(X,t) = &'(X,t) is satisfied.
In this case, conceptually speaking, the above stress function remains unchanged under the action
of Q' € G C 02, whereby G is called symmetry group. In particular, the material represented
by the constitutive stress equation (1.8) is denoted as isotropic if G = O® (holohedral isotropic)
and as hemitropic if G = (O)E”'_ (hemihedral isotropic) but otherwise classified as anisotropic (not
hemihedral isotropic). Moreover, since the choice of F'(X,t) is arbitrary, Eq.(1.8) holds without
loss of generality for @ - F(X,t) € .2, as well and under consideration of Eq.(1.4) we obtain

mv

Q- F(X,t) Q4 X)=8(Q F(X,t);X)=Q -&(F(X,1);X) Q' (1.9)

for @ € G. Note that Eq. (1.9) defines an isotropic tensor function if G = Q® and an hemitropic
tensor function if G = @i, respectively . For this case, we apply the left polar decomposi-
tion F(X,t) = V(X,t) - R(X,t), with V € S%, and assume R(X,t) = Q which results in
S(F(X,t)) =8&(V(X,t)), compare footnote t on page 10. Thus the simple elastic stress func-
tion is defined in terms of the left stretch tensor V' (X, ¢) and does not account for the rotation
R(X,t). Another likely ingredient for the stress function among several possible is in analogy to
C(X,t), the introduction of b(X,t) with b(X,t) = V(X ,t)- VY(X,t) = F(X,t)- F(X,t) =
F(X,t)-Q"'-Q -F'X,t)=F'(X,t)- [F'(X,t)|' =¥ (X,t') € S3.

In the sequel we restrict ourselves to material symmetry and do not focus on the concept of physical symmetry, see
Zheng and Boehler [ZB94] and references cited therein.

¥ Since any orthogonal tensor is either proper orthogonal or the negative of a proper orthogonal tensor it is straight-
forward to show that a hemitropic tensor function of even order is isotropic, e.g. [-Q] - T -[-Q]'=Q -T-Q*V T € I.>.
However, there are several applications in continuum physics that deal with tensorial fields of odd order, see e.g. Erick-
sen [Eri00] for a discussion on the related invariance groups.
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Summarising, we can obtain the restriction to objective stress functions after superposing spatial
rigid body motions. It turns out that these functions are not affected by the rotation of the deforma-
tion gradient. One possible argument is C(X,t), which here remains invariant under the action of
Q(t) whereby b/ (X ,t) = F'(X,t)-[F'(X,1)]' = Q(¢)-b(X,t)-Q(t)" transforms objectively. Contrary,
in the case of a preceding material orthogonal transformation, C'(X,t) = [F'(X,t)]' - F/(X,t) =
Q- C(X,t)- Q" transforms objectively and b(X, ) remains invariant, which restricts the simple elas-
tic stress function to isotropy (if no other ingredients beside b(X,t) are involved).

1.2 Some essentials of groups and classes

The structure of space can be defined via relations between points which goes back to Euclid. Any
transformation, or rather mapping, of a point onto another point which does not change the structure
of space is called automorphism, compare Section 1.1. For instance, recognising the wings of a butter-
fly to be essentially identical is one—to—one with stating that the corresponding reflection of each wing,
with respect to the appropriate plane, is an automorphism. In the language of mathematics, automor-
phisms form a group, say G; see e.g. Alperin and Bell [AB95] for a general review or Cornwell [Cor69,
Chap. 1] and Smith [Smi94, Chap. 1] in view of an outline on group theory in the present context.

Let {G1,G2,G3,... G4} be the elements of the group G. Then the following relations must hold

(i) G, € G with G, = G; o Gj
(ii) I e G with G; = I o G; = G; ol VGi,Gj e G (1.10)
(i) G'eG with I = G;oG;' = G;'o G,

1 1

whereby o represents an associative combination G; o[G0 G] = [G; o G;] o G}; concerning matri-
ces, o usually characterises multiplication. The group G is called Abelian if o is additionally commu-
tative, G; o Gj = Gj o G;, and finite if its order g is finite. As a typical example, the set of integers
{...;,—=n,...,—1,1,...,n,...} forms an infinite Abelian group whereby o complies to addition.

A set of elements of G forms a subgroup $“PG if conditions (1.10) are fulfilled and is denoted as
proper subgroup for 1 < 5'Pg < ¢ and otherwise as improper. A set of elements of G, say 8"G, is a
system of generators of G if any G; € G can be constructed as a combination of the elements of "G
and the inverse elements of &"G.

Example 1.1 A group is a point group if at least one point remains unchanged under the action of
all elements of the group which are rotations and reflections, respectively. A typical and simple exam-
ple (e.g. the molecules CHCI3 or CH3CCls), among the infinite number of subgroups of the orthogo-
nal group, is given by

Csv = {I,™' R(%Z n), ' R(%F n), ™ R(m,), ' R(m,), " R(m3)} . (1.11)

We thereby have agreed to an isomorphic relation between the symmetry transformations and a faith-
ful matrix representation since ™*R(0 [o]) and ™ R([e]) are assumed to denote rotations and reflec-
tions — compare Eq.(2.19) — With respect to an orthonormal frame e123 for n = e3, m; = ey,
my ="'R(—7/6n)-e; and m3 ="' R(n/6n)-e1, respectively. Consequently, the associative combi-
nation o can be replaced by the symbol -, which indicates ordinary tensor multiplication. Moreover,
we have chosen the classical Schonflies notation to indicate the considered group; see any standard
textbook on crystallography, e.g. Juretschke [Jur74]. The corresponding multiplication table reads

C3v I rotR(%r n) rotR( ir ) refR(m1) refR(m2) refR(m3)
TI I rOtR(QTﬂ n) rotR(%r ,n) refR(ml) refR(m2) refR(m3)
rotR(Q?ﬂ' ,n) TOtR(%T ,n) rotR(%r n) refR(mS) refR(ml) refR(m3)
rotR(%r n rotR(%r n) I rotR(%r ,n) refR(mz) refR(m3 refR(ml) (1_12)
refR(ml) refR(’l’I’L1) refR(mz) refR(ms) I tR(%’r ,n) rotR(%r ,n)
refR(m2) refR(mg) refR(m3) refR(ml) rotR(%r ,n) rOtR(QTW ,n)
refR(m3) refR(mZ) refR(ml) refR(mZ) rOtR(QTW ,n) rotR(%r ,n)
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and highlights the non—-Abelian character. Applying this table, one easily verifies the relations

rotR3 (2?7r ,n) = T, rotR2 (2% ,n) . refR(ml) — refR(mg) , ( )
1.13
rot pp—1 (2% ,n) — rotR(%r n) ’ rot (2% n) . refR(ml) — refR(m3)
and thus the set of generators reads
gnCy, = {"'R(Z n), * R(m,)}. (1.14)

Moreover, we have four proper subgroups of Csy, e.g. C3 = {I,"™ R(% n),™*R(%X n)} with the cyclic

properties ' R*(2Z n) = ™' R(% n) and ™' R*(2 n)} = I and consequently &"Cj3 = {"*R(%Z n)}.

Next, leaving the abstract representation of point groups behind, recall that these symmetries are
permanently present in daily life, see e.g. Weyl [Wey52] for a survey on applications of symmetry. In
this context, Figure 1.1 highlights point symmetries in a typical artwork by M.C. Escher and of an
FEthiopian vegetable (okra). A likely candidate to find such symmetries in music is “Die Kunst der

Figure 1.1: Point groups: Cs, (M.C. Escher: “Circle Limit IV”, taken from S. Singh: Fermat’s Last
Theorem, Fourth Estate, 1997) and Cs, (okra).

Fuge” by J.S. Bach [Bac56]. Figures 1.2 and 1.3 give only two examples of such symmetries (reflec-
tions). Impressively, the complete “polyphone Satz” in Contrapunctus 12 and 13 is based on a hori-
zontal reflection plane.

c
0

q
170

vertical reflection plane

Figure 1.2: J.S. Bach: “Die Kunst der Fuge”, vertical reflection in Contrapunctus 18.

An element A is conjugate to an element B with respect to, say, G if the relation

A=GoBoG™ (1.15)

holds. Likewise, B is obviously conjugate to A; B =G !0 Ao [G!]"!. Now let G run through all
elements of the group G. With this procedure, we construct the class of elements conjugate to B.

Example 1.2 In view of the previously discussed symmetry group Cs,, we compute
{{I,*R(%¥ n),...]- I (L R(ZEn),... ] = {1}
{1, rOtR(%7r n),...|- 1”"“‘R(%r n, 4gn) [, 1”O'“R(%r n),...] 1} = {“’tR(%” n, 4%n)} (1.16)
{1, mR(%” n),...|- refR(ml,Q,;.;) [, mtR(%r n),...] 1} = {refR(ml,z,g)}
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Figure 1.3: J.S. Bach: “Die Kunst der Fuge”, horizontal reflection in Contrapunctus 5.

and thus obtain the three classes which separately collect the identity, rotations and reflections

Csv = {I} + {"'R(Z n), ™ R(*Z£ n)} + {* R(m1), "' R(my), ' R(ms3)} . (1.17)

Paying attention to the type of transformation as given in Eq.(1.2), we see that in addition to
those transformation associated with elements of point groups, a vector (translation) is additionally
incorporated. A set of such symmetry operations, which includes the primitive case of pure transla-
tions is called space group if conditions (1.10) are satisfied. The usual abbreviated notation in view
of Eq.(1.7) reads as

X'=Q-X+c={Qle} X
and allows usual operations like inversion, etc.

{Qe} ' Qe X ={I0} X=X = {Qlc}7'={Q7'-Q " ¢}, (1.19)

see e.g. Sands [San95, Chap. 4] for more background information. Next, with emphasis on applica-
tions in material science, we focus on crystals which generally allow interpretation as arrangements of
atoms in patterns that are periodically repeated in the three—dimensional space. Choosing any arbi-
trary point in such a pattern and identifying all other points that are translatory identical to the cho-
sen one, we obtain a set of lattice points. With this set at hand, the points can be connected by paral-
lelepipeds which define the unit cell of the underlying structure Y. The space of a unit cell is spanned
by three non—coplanar vectors, namely the lattice vectors. In the following, this basis is denoted as
a; characterising the set

(1.18)

3. .
tp, =Y, nta; (1.20)
i=1

with n'23 obviously being integers, see e.g Silhavy [Si197, Sect. 1.5]. Next, based on Eq.(1.18), the
construction of the conjugate element to a primitive lattice translation with respect to a symmetry
operation of the underlying group, say {Q|c}, yields

{Qle} {Ita} {Qle} ' = {QIe}{Ita}{Q7' - Q7" - ¢}
= {QIe}{Q 7t — Q7 - ¢} (1.21)
= {IlQ-tn}

which is nothing but a primitive lattice translation characterising the periodicity, compare Eq.(1.15).
Recall that this operation has to be an element of the corresponding symmetry group and thus the
relation

Q tp = [Qijai‘g’aj]'[nkak] :Qijnjai =m'a; =tm (1.22)

must be fulfilled. Therefore, the coefficients Qij are forced to be integers since n* and m’ are inte-
gers. Consequently, the trace of the symmetry operation tr (@), must also be an integer. In this con-
text, we consider the characteristic polynomial

QX —tr (Q) AN+ L[tr?(Q) — tr (Q%)] 9N —det (Q) =0 (1.23)

T Generally, unit cells or even primitive cells may have a much more involved geometry compared to the crystalline
case, see e.g. the artwork of M.C. Escher for graphical representations.
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with tr (Q) = @)A1 + @2 + @3, tr(Q%) = NI + @A3 + 9N2, det(Q) = 9N; YA2 QN3 and Q) o3 char-
acterising the eigenvalues of Q. Making use of the orthogonality, det(Q) = £1 for the proper and im-
proper case, one easily verifies that ®\; = +1 satisfies Eq.(1.23) if YAg @A3 = £ 1 or QN @3 = F 1.
In accordance with the area preserving restriction A; ® Ay @X3 = +1 we obtained two complex conju-
gate eigenvalues ¥\, 3 lying on the unit circle, compare e.g. Smith [Smi71b] or Arnold [Arn95, Sect.
28.2]. Denoting the corresponding angle by 6 € (0,2 7|, we end up with

tr(Q)=414+2cos(d) = O={n"'27|n=1,23,46}, (1.24)

see e.g. Sands [San93, Sect. 3—4] for a geometrical proof. Note that a symmetry operation which does
not satisfy this severe restriction is not allowed in any lattice structure, which is in strong contrast to
molecules where almost all point groups are allowed. To give an example, the group Cs,, visualised
in Figure 1.1, is especially excluded.

A crystal class collects space groups that incorporate identical point groups. It turns out that only
32 crystallographic finite point groups exist, see e.g. Schouten [Sch89, Sect. VIL.5], Sternberg [Ste94,
Chap. 1] for a graphical visualisation of these groups, Cornwell [Cor69, App. 3] where the appropriate
space groups within each class are additionally highlighted or any other standard textbook on crystal-
lography. Furthermore, when taking electromagnetic effects into account, we refer to Kiral and Erin-
gen [KE90, Chap. 3] for a detailed outline on the 90 crystallographic magnetic finite point groups.
Nevertheless, we have only 14 space—filling infinite lattice types, namely the Bravais lattices,

It :  any non-coplanar combination of a; 23

Fm: as 1 ai2

F,’;L: a; = ae;+ ey a; = ae; — ey a3 = ve;+des

I,: a5 = ae ay; = feo a3 = yes

Fg: ai :Oé€1+,362 as :ael—ﬁeg a3 = 7yeg

Iy: a = cei+fex+ve3 ay = ae;+Bex—ve3 a3 = ae; —fex—ye3
Fof: a; = ae;+fey as = fex+yes a3 = e +ves

I'v: a1 = aep a; = aes a3 = Pes (1.25)
Iy: a1 = aei+aex+fPe; ay = ae;r+taer—fes a3 = ae; —aes+ fes
Fc: a, = «oae; a; = ey as = «eg

IrY: a 2%614-%624-%63 a2=%€1+%62—%63 a3=%el—%62—%63
Fcf: a; = %61+%62 as = %€2+%€3 as = %el-l-%eg

Ip: a1 = ae; +fPes a; = %el—%ez—l-ﬂeg as = _23(161—%624-563
Ih,: a1 = ves a, = ae; as = %ael—@ez

with o, 3,7,0 € Ry, see e.g. Sands [San93, Chap. 3]. There are seven symmetry systems which col-
lect Bravais lattices associated with the order of their principal axis

triclinic (I3) cubic (I, I?,IY)
monoclinic (I, %) rhombohedral (Ip)
orthorhombic (I, I, IV, T%f) hexagonal (I) (1:26)
tetragonal (I, I7))

whereby the triclinic (Cj, C), monoclinic (Csp, Co, Cs), rhombohedral — or trigonal — (Dsgq, C3, Cs,,
D3, Sg), tetragonal (Dyp, Dag, Sa, Ca, Cap, Da, Cay) and hexagonal (D, C3, C3y, D3, Sg, Dap, D3p,
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Cs, Csh, Csy, Dg) systems incorporate a single principal axis of order 1,2,3,4, 6, respectively. Con-
trary, three mutually orthogonal rotation axis of order 2 are described within an orthorhombic sym-
metry (Dsgp, Coy, Do) and, finally, a cubic system incorporates four rotation axis of order 3 with ori-
entations towards the vertices of a regular tetrahedron.

Remark 1.1 The orthogonal group has an infinite number of subgroups associated with non—
crystalline solids. We specifically deal with isotropic, transversely isotropic, icosahedral or non—crystal
dihedral symmetries. These systems are usually characterised in Schonflies — or Hermann—Mauguin
symbols, see any standard textbook on crystallography, e.g. Juretschke [Jur74]). A special role is
due to the state between a crystal and a liquid with a quasi—periodic lattice structure, called quasi—
crystal. Interestingly, an infinite number of symmetry groups is observed for these materials — includ-
ing classes that are not embodied in the 32 crystallographic finite point groups, see e.g. Levine and
Steinhardt [LS84] or Bruhns et al. [BXM99] where special emphasis on the construction of appropri-
ate yield functions is placed.

As advocated by Smith and Rivlin [SR58] the symmetry operation according to the 32 crystallo-
graphic finite point groups allows for a matrix representation, which is essentially based on the previ-
ously mentioned homomorphic relation between the symmetry operations of interest and matrix oper-
ations. It turns of that a set of 15 square matrices is obtained. The corresponding coefficients read as

IV = Diag(111) Il = Diag(-1 -1 —1)
R — Diag(-111) RY = Diag(1 —11) RY = Diag(11 —1)
DY = Diag(1 -1 —1) DY = Diag(-11 —1) Dy = Diag(-1 —11)
) 1.0 0] ) [0 0 17 B 010
7 =10 0 1 T = [0 10 T =10 0
[0 1 0 | [ 1 0 0] 00 1 (1.27)
B [0 1 0] - [0 0 17
M7 =001 My = | 100
[ 1 0 0] [0 1 0]
[ 1 V3 [ _1 3
i N i _ | A 3 0
Sy = —Y5 3 0 Sy = 2 2 0
0 01 0 01

whereby I denotes the second order identity and I central inversion. Moreover, let 11,23 be unit—
vectors co-linear to @12 3. Then the abbreviated notations R 3 3 characterise reflections with respect
to planes defined by the normal vectors m 2 3, respectively. Similarly D 7 3 represent rotations with
axis 1,23 and angle § = 7. The operation associated with T';—; 2 3 corresponds to a reflection in the
plane through n; bisecting the other axis n;x, j = 1,2,3 A #14, k = 1,2,3 A # i A # j. The rota-
tions M; share the same axis [n + ng + ns)/ V3 and incorporate the angles 6; = %Mr. Finally, 812
are rotations with identical angles compared to M 5 but with respect to the rotation axis n3. For a
comprehensive Table of the 32 crystalline finite point groups including the operations highlighted in
(1.27) we refer to Rivlin [Riv66] and Suhubi [Suh75, Sect. 2.10].

Summarising, a crystal is represented by repeating a unit cell numerous times with respect to three
non—planar translations. The admissible space groups are defined by the 32 crystallographic point
groups and the 14 Bravais lattices, at least in the non—magnetic case. In addition, we have further
symmetry elements, which are actually combinations of rotations of reflections and translatory sym-
metry, and that are skew axis and glide planes. Thereby, the operation due to a skew axis is charac-
terised by a rotation and a translation with respect to the axis of the rotation. The coupling of a re-
flection and a translation is established as a glide plane operation. Finally, by combining these sym-
metry transformations and the 32 crystallographic point groups, one ends up with 230 admissible in-
finite space groups, see e.g. Sands [San93, App. 1] for a comprehensive table.
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Example 1.3 Once more “Die Kunst der Fuge” by J.S. Bach [Bac56] is a likely candidate to find ap-
plications for space groups. The trivial case is given by one-dimensional translation where the rota-
tional part boils down to the identity. In the language of music, this specific symmetry is nothing else
but the concept of rhythm, compare Figure 1.4 for an image of this idea.

| | - .
i/ 7. @ .—.—‘p
y S & @ . |
{ry? | '
3 = —
~ c ~ c ~ c ~
rav 1 — ) I ) I i )
O & | @ D 7 )
7 'b‘" J—Lﬁl i_d i | f
| T

Figure 1.4: J.S. Bach: “Die Kunst der Fuge”, the concept of rhythm in Contrapunctus 4.

1.3 Constitutive functions

In the sequel, we adopt the framework that the stress tensor is derivable from a scalar—valued func-
tion 1 € R (established as strain energy density) in terms of the right Cauchy—Green tensor C(X,t)
which is invariant with respect to specific symmetry transformations represented by G = {G1,.._ 4; X }.
Moreover, let 1 be defined by a set of real quantities I . ,(C(X,t); X) which is consequently claimed
to remain invariant under the action of G 4. The set I; . ,(C(X,t); X) is called functional basis
if I . (C(X,t); X) = c1,...,n has one, but only one set of solutions C' = G/,... g« C whereby the nota-
tion , represents the linear operator and c; ..., denotes an admissible set of constants. For this case,
the strain energy density is obviously defined by the functional basis I .. ,(C(X,t); X).

Next, without loss of generality, we additionally represent the right Cauchy—Green tensor in terms
of the components C;;(X,t) = e; - C(X,t) - e; € R® whereby e; € R? define a, e.g., Cartesian frame,
and obtain

¢0 = ¢0( C(X’t);X) = "/JO(Il,...,n( C(Xat);X))
= o(Cii(X,1); X) = to(l1,..n(Cy(X,1); X))

Alternatively, the strain energy function allows notation in the format of a series expansion relative
to the second order identity I € Szj’r, namely

(1.28)

$o(C(X,1); X) = $o(C; X)| ooy
+ 8Cwo(c’;)(”c’:[ : [C—T]
+h Bee (G X))oy v [[C-TI0[C-T]] (1.29)

+%8%®C®C¢O(C;X)|C:I::: [[C_I]‘X’[C—I]@[C—I]]
+ o

by agreeing to the common request 1o(C(X,1); X)|c=1r = 0.

The overall constitutive equation for the stress tensor reads as

S(C(X,1); X) = 20c $o(C(X, 1); X) = z 20,,90(C(X,1); X) 5(C(X,1); X) | (1.30)

with S(C(X,t); X) € $3, Z;(C(X,t); X) = 0cL(C(X,t); X) € S3. Note that Z;(C(X,t); X) are
obviously independent of 9y(C(X,t); X) but rather defined by the corresponding symmetry type of
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the material, G, . 4+« Zi(C(X,1); X) = Z;(G1,...9« C(X,1); X). In view of the series expansion as
given in Eq.(1.29) we obtain

S(C(X,t); X) = 2 dc $o(C; X)| oy
"‘% 8%‘@0 ¢0(C§X)|C:I : [C—1]
+8  Oscsc W(Ci X))oy i+ [[C-T]8[C-1T]] (131)

+ % 0bgoscec Y0(Ci X)|_y i [ [C-T]@[C-I]@[C—1I]]
_|_

In order to satisfy the physically reasonable restriction S(C(X,t); X)|c=r = 0, one observes the con-
straint dc 1o(C(X,t); X)|c=1 = 0.

Moreover, the general format of the Hessian of the strain energy density with respect to C(X,t)
reads as

EC(X,1;X) = 4 0%e0%(C(X,1);X)

Il

4 O (C(X,1); X) 5(C(X,1); X) (1.32)

=1

+ Y 4 8, ho(C(X,1); X)
ij=1

s

[

i(C(Xat);X) ® Ej(C(X’t);X)

with E(C(X,t);X) € S and apparently Z;(C(X,t);X) = 0%ycli(C(X,1);X) € ¥,
1 X) = Zi(Gh,...9« C(X,t); X). Application of the series expansion naturally yields

E(C(X,t);X) =3 0sc ¢0(C;X)|0:I
+% a%®C®C¢0(C§X)|C:I : [C-1T]
+3 Obscecsc ¥o(Ci X))oy i+ [[C-T1e[C-1]] (1.33)
+ 8 0 ecacscac ¥0(Ci X)| gy [ [C-T]@[C - I]@[C - I]]

+

However, if we assume a linear constitutive equation in the spirit that the stress tensor is com-
puted by a linear map of an appropriate strain measure, we obtain Hooke’s law

E™(C(X,1); X) = 4 8350%0(C X)| oy
s'"(C(X,t);X) = 5 E" . [C-1], (1.34)
WP :X) = L B [[0-TelC-T)].

Summarising, the nature of tensor functions with respect to Egs.(1.28,1.30) and the, say elastic-
ity tensor E in Eq.(1.32) — that is the nature of tensor functions of zero, second and fourth order — is
characterised via

(C(X’t)’[.](Xat);X) = "/JO (Gz* C(Xat)aai* ['](-X’t);X)
(Xat),[.](Xat);X) = S(Gi*c(xat)aGi* [.](X,t);X) VGz €G (135)
(C(X,1),[¢](X,1); X) = E(Gi.C(X,t),Gi[0](X,t); X)

<
S

G, S
G, E

Q

1%

whereby the abbreviation [e](X,¢) characterises an additional set of appropriate arguments. If we
choose 9,(C(X,1),[#](X,1); X) to be a polynomial in (the components of) C(X,t) and [¢](X,1),
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then it is noted that the functional basis I1 . ,(C(X,t),[#](X,t); X) itself turns out to be a polyno-
mial function and is thus called polynomial basis or rather integrity basis. As a disadvantage, polyno-
mial functions contain, in general, more elements than non—polynomial approaches [TN92, “We see no
sign that nature loves a polynomial, . ..”; footnote 1 on page 61]. Therefore, an integrity basis usually
leads to less compact settings compared to a non—polynomial approach even if the integrity basis is ir-
reducible, i.e. none of it’s elements can be expressed in terms of a single—valued function of the remain-
ing arguments of the set. However, in the case that the underlying group of transformations is finite the
scalar—valued integrity basis also forms a (typically reducible) functional basis since any scalar invari-
ant, whether polynomial or not, may be expressed as a single—valued function of the elements of the in-
tegrity basis, see e.g. Pipkin and Wineman [PW63, WP64]. Furthermore, please note that even an ir-
reducible functional basis is often not unique and most of all that for an anisotropic constitutive equa-
tion, the constraint of the existence of a potential 1y, which defines the constitutive equation for the
stress tensor, is a restriction compared to a general tensor—valued tensor function for the stress measure.

There exists a large body of literature on the classical theory of invariants, see e.g. Weyl [Wey87],
Gurevich [Gur64] or Olver [O1v99]. For an overview in the present context, we refer to Truesdell and
Noll [TN92, Chap. B], Spencer [Spe71], Rivlin [Riv80] and the contributions in Boehler [Boe87]. Nev-
ertheless, with emphasis on much more advanced functions — compared to the simple cases consid-
ered in this work — the computation of irreducible sets of invariants I1 __,(C(X,1), [#](X,t); X) (com-
monly realized with the aid of group representation theory), or alternatively the complete elimination
of syzygies, is still a crucial issue under discussion.

1.3.1 Anisotropic tensor functions

Anisotropic tensor functions with respect to Eqgs.(1.35) are identified by a symmetry group G that
does not include the complete proper orthogonal group (O)E)’i_. Representations of anisotropic tensor
functions for the polynomial case are well-developed, see e.g. Smith and Rivlin [SR57, SR58] and Liu
[Liu82]. A clear Table summarising the corresponding set of invariants for all 32 crystallographic fi-
nite point groups with respect to one tensorial argument of second order is included, e.g., in the con-
tributions by Rivlin [Riv66] or Gairola [Gai79] and many other references. The development of irre-
ducible representations for anisotropic non—polynomial tensor functions is discussed by, e.g., Boehler
[Boe79] and Zheng [Zhe93b).

Example 1.4 A coherent case of symmetry is a transversely isotropic material, which is of major
interest in engineering applications. We generally have five different types of transversal isotropy,
Ti,..5, see eg. Smith [Smi94, Sect. 8.10]. Within the subsequent example, the group T} =
{I,1,*R3(0e3), 6 € [0,27)} is discussed which is essentially defined by the rotation axis e3 € R.
We follow the works by Ericksen and Rivlin [ER54] and Pipkin and Rivlin [PR59] and thus apply
index—notation as introduced in Eq.(1.28). The transformation relations for the identity and central
inversion are obvious and for the rotational operation with respect to 83 = 6 e3, we obtain

rotc(X’og)’t) -~ roth(as) -C(X,t) . rotR3(03) . o C(.)S(H) Sin(@) 0
) . o with "™ R3™ = | —sin(@) cos(d) 0 | (1.36)
UCii(X, 03,1) = 'Ry *;(03) Cra(X,t) ™ Ry';(03) 0 0 1

which results in

> Ci1+52Co+25cCiy sc[Cor— Cri] +[c? —s?]C12 sCos+cCis
rOtCij = 52 Ci + & Coy —2s5¢Cio cCy3 — s(Cy3 (137)
sym Cs3

whereby the abbreviated notations ¢ = cos(f) and s = sin(6) have been applied. The correspond-
ing invariance requirement for a scalar-valued anisotropic tensor function is characterised by the con-
straint of complete independence of the rotation angle 0. Thus, for the free energy density, we obtain

Po(C(X,1); X) = Po('C(X, 03,1); X) = %o(C(X,1),03 X)

(1.38)
= Opo(X,03,t); X) = Orotcthp : Orotg,"'C : 9™ Ry = 0.
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Next, some straightforward computations and the application of index notation yield
Oty = Oror ;0 K™ “’thnj + Ry Crnge 6jl] dp™ RSF,
— [8r°tclj¢0 aarothkl Ck:n rotR3nj 4 arotcﬂ¢0 rOtR3mi ka 5jl] aarothkl
= 2] Orotyy 0 — Orot oy, Y0 ] " Cla + Brorcy, 10 [ PC11 — ™ Co2 ]
+ Orot 0y Y0 " C'13 — Orot oy, o ™03 = 0

(1.39)

since the non—vanishing parts of the derivatives 89r°tR3i ; result in 0p™ Ryt | = 0p™'Ry%, = ™'R,%
and 9p™ Ryl = — 9p™'Ry?, = ™R, respectively. The differential equation (1.39) remains invari-
ant unter any replacement as defined in Eq.(1.36). Apparently, Eq.(1.39) is satisfied for the following
polynomial basis

I,..5 = {C11 + O, C11 Cop — Cly, Cs3, C5 + C3s, det(Cij)} (1.40)

which is easily proved by setting C;; — ™'C;; and employing these invariants into Eq.(1.39) with
det(Cij) = 011 022 033 + 2 012 023 C13 - C11 0223 — C22 0123 — 033 C122 being obvious.

1.3.2 Isotropic tensor functions

The nature of isotropic tensor functions in the present context is naturally pictured by Eq.(1.35)
whereby the symmetry group coincides with the full orthogonal group G = @? (holohedral isotropic)
or with the complete proper orthogonal group G = (D)i (hemihedral isotropic; the distinction becom-
ing relevant if the list of fields includes quantities of odd order, compare footnote § on page 11). The
underlying painstaking analysis to end up with general irreducible representations of isotropic tensor
functions has been developed over several decades, see Spencer [Spe71] for the polynomial case and
Wang [Wan70], Smith [Smi71a], Boehler [Boe77] and Zheng [Zhe93a] for emphasis on non—polynomial
settings.

Example 1.5 The introduction of structural tensors that characterise the anisotropy of the modelled
material is widely used, see Zhang and Rychlewsky [ZR90] and Zheng and Spencer [Z593] for general
surveys. In this context, let the set of additional structural tensors be represented by A; . (X, t)
which enters the list of arguments in the free energy density

Yo = Po(C(X,1),[e](X, 1), Al,---,n(Xa t); X). (1.41)

Next, in analogy to Example 1.4, we consider the case of transversal isotropy. Following the approach
by Boehler [Boe79] with respect to the scalar—valued case, the representation for the isotropic ten-
sor function (1.41) is a representation for 1y considered as a transversely isotropic tensor function of
C(X,t) and [e|(X,1), respectively, since G1,.. g« A1, n(X,t) = A1, n(X,t) whereby Gi,... 4 charac-
terise appropriate symmetry transformations. The simplest case is obtained by neglecting the addi-
tional variables [¢](X,t), assuming A3(X) = a3(X) ® a3(X) with a3(X) € R? (in analogy to Ex-
ample 1.4) and setting A1 2.4, n(X,t) = 0. Interestingly, the correlated functional basis and the in-
tegrity basis are identical for this specific case, namely

L, .s={C:1I, C?:1,C3:1,C: A3, C?: A3}. (1.42)

It is a straightforward exercise to exchange the invariants I 3 for the invariants obtained via the char-
acteristic polynomial as highlighted in Eq.(1.23), that is %[C’ : I —C?: 1]+ I, and det(C) + I3.
Next, switching to index notation and choosing a3(X) = e, we obtain

L5 = {Ci1+ Cog + Cs3, C11 Cog + Co3 C33 + C11 C33 — CZ, — Cay — O,

(1.43)
det(Cij), Cs3, Cfs + C33+ C33 } .

Now the relation between this set, say iSOIL,“,5 and the invariants 2] 1,..,5 in Eq. (1.40) becomes clear
since _ . . . . .
trajl — 1soI1 _ 1soI4 , 1:rauI2 — 1soI2 _ 1soI1 ISOI4 + 13015 ’

. . . . (1.44)
traI3 = Bsof, , traI4 = o, _ 1soIZ , trauI5 = sof, .
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1.3.3 Curvilinear anisotropy

So far, we did not accounted for any constraints on the homogeneity of the body of interest since the
orientations that define the underlying anisotropy are generally allowed to differ at each material point
X. The concept of curvilinear anisotropy provides a simplification of the overall approach. Concep-
tually speaking, in addition to a material curvilinear system of coordinates ©*(X) we incorporate an-
other set of material curvilinear coordinates ©'(X) into the free energy density which later on allows
to model anisotropic behaviour. This approach was advocated by Adkins [Adk55], see also Green and
Adkins [GAT0, Sect. 1.16], Truesdell and Noll [TN92, Sect. 34], Suhubi [Suh75, Sect. 2.10.4] and for
applications with special emphasis on elastic liquids, we refer to Lodge [Lod64, Chaps. 9 & 12].

In this context, we introduce the two—point tensor field

F''(X) = 0x0X) ® 0g/i X = 0x0'(X) ® a;(X) (1.45)

whereby the vectors a;(X) = 0gi X € R? are obviously co-linear to a natural basis at X. With these
relations at hand, the transformed right Cauchy-Green tensor enters the free energy density which
now accounts for curvilinear anisotropy, i.e.

C'(X,t) = f'"X): C(X,t) = 9y =9p(C"(X,1); X) =y(L1,. »(C'(X,t); X); X) (1.46)

incorporating the abbreviation f'(X) = [F'(X)]~!. If we assume the basis a;(X) to be orthogonal,
then the corresponding constitutive equation for the stress tensor results in

S(C(X,1);X) = 2F''(X) - aphy(X) - 0o $h(C' (X, 1); X) - aph (X) - F/(X) (L.47)
with @piag(X) = v/a:(X) - a:(X) a:i(X) ® a;(X).

Example 1.6 In the present context of curvilinear anisotropy, a transversely isotropic material
is characterised by symmetries with respect to the normal and the tangent plane to the surface
©'3(X) = const. The strain energy density thus has to remain invariant under the coordinate trans-
formations @3 = +©" and ©'? = @"2(0"?) with ©"*(X) representing another set of orthog-
onal curvilinear coordinates. Based on Eq.(1.43) the underlying set of invariants reads as I 5 =
{1, o, I, Cly, O3 + G + CI2 .

1.3.4 Fictitious configurations

The concept of the introduction of fictitious configurations has originally been established within
the modelling of inelasticity, see e.g. Betten [Bet82b] and Murkami [Mur88]. Thereby, likely (stan-
dard) constitutive equations can be applied to compute the fictitious symmetric stress measure
S(C(X,t),[8](X,t); X) € S? in terms of arguments that refer to the fictitious configuration. Then an
anisotropy map a([0](X,t); X) : § — S is introduced, which depends on a set of variables [5](X,?)
with respect to the fictitious configuration and maps the fictitious stress field to the nominal stress
tensor of interest (note that in general S could be non-symmetric). A typical example of this ap-
proach is characterised via a fourth order tensor A([5](X,?); X) € L3%3 i.e. the mapping

S(C(X,t),[o)(X,1); X) = A([o)(X,1); X) : S(C (X, 1), [8](X,); X) |. (1.48)

Example 1.7 For the sake of simplicity we do not incorporate any additional arguments [o](X ).
Furthermore, let the fourth order tensor A([5](X,t); X) remain constant with respect to each mate-
rial point and be defined by a second order tensor ([5](X,t) =) A(X) = const|x € L3 via

S(C(X,t);X) = A(A(X)):8(C(X,t);X) = [AX)®A(X)]:S(C(X,1);X)

(1.49)

—  AX)LS(C(X1;X) = AX)-S5(C(X,1);X)-A'(X)

and §(C(X,t); X),8(C(X,t); X) € S? being obvious. In this context A(X) allows interpretation as
a linear tangent map that determines a stress—free, affinely pre-deformed reference configuration. The
specific choice A(X) =6 I +aa(X) ® a(X), with a(X) € R3, § € Ry, a € Ripy : @ > —4, results in
a transversal isotropic setting if the constitutive equation for S(C(X,t); X) represents isotropy.
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1.3.5 Anisotropic linear elasticity

The modelling of linear elastic anisotropic materials is extensively harmonised. Under the broad
amount of literature on linear elasticity, the monograph by Love [Lov44, Sect. 109] is of outstanding
sustainability. For a recent review on anisotropic linear elasticity, we refer to Cowin and Mehrabadi
[CM95]. One of the nice things in linear anisotropic elasticity is the opportunity to picture the mod-
elling with simple linear elastic springs and rigid balls (atoms). In this direction, Figure 1.5 monitors
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as as

- " +

az

as a

a a a

Figure 1.5: Spring—ball-model for linear anisotropic elasticity: General anisotropy, monoclinic sym-
metry and orthotropy.

a basic representation of general anisotropy or rather the triclinic class, monoclinic symmetry and or-
thotropy. Apparently, for the general case, none of the lattice vectors a; are pairwise orthogonal and
the springs in each direction have different properties. The symmetry group is completely defined
by the identity and central inversion, G = { I, T} and the elasticity tensor E'® in Eq.(1.34) is gener-
ally determined by 21 independent constitutive parameters. The monoclinic material is characterised
by the requirement that the elastic constants do not change under reflection with respect to a plane.
In Figure 1.5 this plane is defined by the lattice vectors a1 and ae, respectively. Thus the underly-
ing symmetry group reads G = { I, I, R3} and the fourth order tensor E'"" possesses “only” 13 inde-
pendent elastic constants. Typically, an orthotropic material obeys two orthogonal reflection planes
which are defined in Figure 1.5 by the lattice vectors a;» and ay 3, respectively. This additional con-
dition — on top of the monoclinic symmetry — results in a set of nine material parameters and the ap-
propriate transformation group reads G = { I, I, R;, R3 }.

A delightful representation of Hooke’s law in anisotropic linear elasticity is provided by the intro-
duction of Kelvin modes, or rather the application of the spectral decomposition theorem to the elas-
ticity tensor, see Kelvin [Tho56], Podio-Guidugli [PG00, Sect. 16], Nemat—Nasser and Hori [NNH93,
Sect. 15.6], Elata and Rubin [ER94], Sutcliffe [Sut92], Xiao [Xia97], Martins [Mar99] and Pericak—
Spector et al. [PSSS99]. For a general overview we refer to Rychlewski [Ryc95] and Mehrabadi and
Cowin [MC90]. Furthermore, correlated graphical visualisations are highlighted in Bohlke and Briigge-
mann [BB01]. In this context, the (symmetric) stress tensor is represented in the six—dimensional
Cartesian space. The appropriate basis is denoted by E1 ¢ and the tensorial elements are constructed
in terms of the base vectors ej 23 defining the three-dimensional Cartesian space, to be specific

E, = e Qey, E;, = V2[e;®@e V™,
E;, = esRes, E; = \/5[62 ®83]Sym, (150)
E; = e3Qes, Es = V2[e;®e3]¥™,

with E; : E; = §;; being obvious. Consequently, the elasticity tensor allows representation as

. 6 L
Ehn _ .Zlva%lel E;® Ej (1.51)
2,]=
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whereby the coefficients V! E%ijn refer to Voigt’s notation. Alternatively, we consider the eigenvalue

problem Ei . N = EAN of the elasticity tensor. The eigenvalues E)\L___,(,- of EI are defined via the
underlying characteristic polynomial

det (B —ExYM) =0 = EX6O - i ENS 4 LEM - BENM L L EN -~ BEA+ =0  (1.52)

and the appropriate spectral decomposition reads as

lin ; E : sym 6 6 Elin—E)\j sym|
E™ = 21 AiN;  with % = 21 N; and N;= H\ Bty (1.53)
i= i= j=1\i

whereby the abbreviated notation N; = IN;® IN; has been introduced. These fourth order tensors allow
interpretation as projection operators and represent the celebrated Kelvin modes. For a detailed out-
line on the incorporated fourth order identity tensors see Appendix A. Furthermore, note that the ap-
plication of Serrin’s formula in Eq.(1.53)3 assumes distinct eigenvalues. Applications of these concepts
to the modelling of anisotropic inelasticity are given by, e.g., Schreyer [Sch95], Biegler and Mehrabadi
[BM95] and Qi and Bertram [QB99] for continuum damage mechanics, Arramon et al. [AMMCO0]
pay attention to plasticity and Mahnken [Mah02] places special emphasis on the formulation of creep.

Example 1.8 For comparative reasons, we consider once more the case of a transversely isotropic
material determined by the rotation axis ez, now within linear elasticity. The corresponding repre-
sentation with respect to Eq.(1.51) is well-established and reads as

CAH2ur A A+« 0 0 07
A A+ 2ur A+ 0 0 0
- A« Ada A+2a+4pr—2pur+B 0 0 O
voiglin —
By = 0 0 0 pr 00 (1.54)
0 0 0 0 wur O
L0 0 0 0 0 pr |

whereby the constants A, ur, i, @, B denote the set of material parameters, compare Spencer [Spe84].

An overview on the computation of the elasticity tensor via eigentensors, i.e. the determination
by Kelvin modes, is given by Mehrabadi and Cowin [MC90, Table 3]. In the sequel, we reiterate the
outline highlighted in Cowin and Yang [CY97, App. A] for transverse isotropy with rotation axis es.
Based on Eqs.(1.52, 1.53), the corresponding eigenvalues of E'™ read

E/\1,2 — % [VOiElli{l 4 VOiElliél 4 VOiEg{I; + [[VOiElliil 4 VOiElliél _ voiEéig]Z 48 [voiEllig]Q]l/z] , (1 55)
E)\3 — VOiElliil __voi Elllél , E/\4,5 -9 voi EELIZILI , E)\6 —9 voi Egg . .

The second order tensors IN; that define the appropriate projection operators N; = N; ® N; allow
representation in terms of the basis in Eq.(1.50), namely

N = Llcos(9) +sin(?)][E1 + E2] + - [cos(?) — sin(9) ] E3,
2 V2
Ny = 3 [sin(¥) — cos(9) | [E1 + E] + % [cos(d) + sin(¥) | E3, (1.56)
stﬁ[El—Eﬂ, N4=%E4, N5=%E5, N6:%E6a

whereby ¥ is determined via tan(219) = [ VOIE}} 4 voigln — voigling /2 ,/2 voighn ],






Chapter 2

Anisotropic hyper—
elasticity based on structural tensors

t i3 an important dyaracteriftic of fcientific theory that it
aim8 at eliminating irrelevant fubjective afpectd from a
o field of buman egperience. Sn doing fo it create8 a pof
fibility to focus on the important obfervations.

Zhe covariance principle in phficd 8 a very typical ezample of this
objectivation procedure whidy aim3 at an elimination of the fubjective
feature of the fpace-time frame of veference in the formulation of phyf
ical relations.

E.J. Post
Formal Structure of Electromagnetics, 1962

In this Chapter we consider a modification of the free Helmholtz energy density compared to the
isotropic case with special emphasis on the Eulerian setting. For the sake of clarity we restrict ourselves
to non—dissipative materials and focus on the extension to multiplicative elasto—plasticity in Chapter 3.

The main objective is to derive an anisotropic spatial framework in terms of the Finger tensor
b* = F*.G*.[F®]' which is often applied in computational mechanics but usually restricts the formula-
tion to isotropy. Here, we present an anisotropic version of the established formula 7# = 2 g#- Oy Py -bF,
highlighted in Truesdell and Noll [TN92, Eq.(85.15)] which was already given by Murnaghan [Mur37]
in terms of det™!(b) cof(b%); see in addition the contribution by Richter [Ric52] where emphasis is
placed on a geometric approach. For the anisotropic setting, it turns out that after the introduction
of an additional tensor series of symmetric second order tensors into the free Helmholtz energy den-
sity ¥ (gl’, bt agy___,n; X)), the representations (of the stress tensors and tangent operators) referring to

the formulations in terms of gl’ or b and aq,___,n, decompose into a specific additive structure. As a
by—product, we observe an analogous format within the Lagrangian framework.

The Chapter is organised as follows: We first summarise basic essentials of non-linear continuum
mechanics in Section 2.1 and introduce some of the notations used in the sequel. Further notational
comments are given in Appendix A. To set the stage, Section 2.2 reiterates an established representa-
tion of anisotropic hyper—elasticity in terms of the spatial co—variant metric tensor or the right Cauchy—
Green tensor, respectively. Next, the concept of the anisotropic approach is highlighted in Section 2.3.
As the main contribution of this Chapter, we deduce representations of the spatial and material stress
tensors and tangent operators in terms of bﬁ, ag,___,n or G, Ag,“”n, respectively. Thereby, as one possi-
ble proof, the representation theorem of isotropic tensor functions is the essential point of departure.
An alternative proof is given in Appendix B.4.1. Finally, Section 2.4 highlights an analytical example
of orthotropic hyper—elastic material and a numerical setting taking transversal isotropy into account.
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2.1 Kinematics

In this Section we give a rather brief survey on essentials of non—linear continuum mechanics. For de-
tailed overviews we refer e.g. to the monographs by Murnaghan [Mur51], Green and Zerna [GZ92],
Eringen [Eri62] and to Svendsen and Tsakmakis [ST94] — among many other contributions.

A collection of material points represented by a connected differential (body) manifold M of fi-
nite dimension defines the material body B of interest. Embedding material points into a vector
space (M,t) — z(t) € V3, (M, ) — X € V3 is called a placement, whereby ¢ € R characterises
the time. The placement of B at time ¢ defines the corresponding configuration. In this context,
let the stress free reference configuration of B be embedded into the Euclidian space denoted by
(B,to) — B(ty) = By C E? and the corresponding spatial complement by (B,t) — B(t) = B; C E3.
The direct non—linear motion ¢(X,t) : By x R — B; maps material points X in By onto spatial points
x = p(X,t) in B;. Thereby, the local chart or rather the tangent (T8, TBy) — and co—tangent spaces
(T*B;, T*By) are spanned by line elements which are identified as natural and dual base vectors and
take the following format

g = Opx € R¥:T*B, — R, g = 0,00 € R*:TB — R,

2.1

G; = 8z@X € ]R?’:T*Bo—)R, G' = 9x0' € R3:T30—)R (2.1)
in terms of convected coordinates 6'(x,t) = ©)(X) o &(x,t) and O*(X) = 0 (x,t) o (X ,t) whereby,
for the sake of notational simplicity, the inverse non-linear motion &(z,t) = ¢~ ! : B; x R — By has
been introduced (and we naturally identify T**B; = TB; and T**By = T By, respectively). Please note
that the natural base vectors g; and G; in Eq.(2.1) define contra—variant body fields that allow in-
terpretation as tangent vectors while the dual base vectors g* and G* denote co-variant body fields
which are characterised as normals to the surfaces #*(x,t) = const and ©'(X) = const, respectively.
Moreover, contra—variant body vectors constitute fields that are dedicated to determine properties of
continuous bodies in a manner of being generally independent of any specific choice of a body coordi-
nate system, 0*(z,t) in the configuration B; or ©*(X) in the configuration By, respectively. A typical
example for a contra-variant space vector is a “displacement” field, e.g. dX (X ,t) € R®:T*By » R
whereby the corresponding components represent differences of the coordinates of two neighbouring
points in By and, for the sake of simplicity, explicit notational accentuation of the contra—variant char-
acter has been neglected. The correlated material time derivative is naturally a contra—variant space
field which is obtained if the distinct points refer to the same particle but at different times |l.

The corresponding spatial and material body metric tensor fields follow straightforward

g = g 9®¢" €S} :TB xTB — R, 9 = 9i'9;
g = ¢7 g,®g; € SL:T*B, x T*B, — R, gi = gi-gi )
G =Gy GG ¢ $2:TBy xTB — R, Gy = Gi-Gj,
G' = G G;®Gj € S3: T*By x T*By — R, Gi = GG

”Referring to the engineering and physics community we deal with contra— and co—variant vectors in the sequel, de-
spite the fact that strictly speaking what we call co—variant vectors arise as linear maps or rather one—forms, see e.g.
Dodson and Poston [DP91, Chap. II]. It turns out to be useful to introduce fields directly as contra— or co—variant, re-
ferring to contra— or co—variant base vectors, respectively, even though general tensors naturally allow representation
within any admissible base system when identifying the (finite) space of base vectors with it’s dual space via a metric.
Moreover, we usually do not thoroughly distinguish between the notation of body fields (including Cartesian frames in
the case of rigid motions) and space fields (including Cartesian frames), see Lodge [Lod64, Chap. 12], [Lod74, Chaps.
2 & 11] for a detailed outline. Nevertheless, recall that in general one can construct a body coordinate system that
uniquely corresponds to a space coordinate system at time ¢. Furthermore a Cartesian frame in a point at time ¢ can
be introduced and from then on used within a curvilinear coordinate system. For a detailed discussion on the intro-
duction of the space displacement fields in the Eulerian setting “u(x,t) = & — *"'3% . &(x, ) or the Lagrangian format
disgr(X,t) = NI - p(X,t) — X, whereby *"¢% and " I* denote shifters, we refer to Truesdell and Toupin [TT60, Sect.
18], Eringen [Eri62, Art. 5] and Marsden and Hughes [MH94, Sect. 1.3]. Nevertheless, the incorporation of the displace-
ment field usually complicates almost all terms where it has been considered and is thus preferably avoided in this work.
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with gf = det 1(g’) cof(g"), G' = det 1(G”) cof (G”) (compare Appendix B.1) and the (body) mani-
fold M apparently allows interpretation as Euclidian manifold whose metric depends on time. While
Cartesian vectors have unique magnitude and direction in space, the base vectors as defined in Eq.(2.1)
have only unique direction with respect to the body. Their magnitude depends on the body metric
tensors which are generally subjected to time. Due to the nature of these fields, body vectors at dif-
ferent points can not be added which is obviously in contrast to Cartesian vectors. Even contra— and
co—variant fields at one point can not be connected by any additive composition since they represent
geometrically different object — with all zero fields being the only exception.

Complementing Eq.(2.2), we apply in the sequel mixed—variant spatial and material identity—
tensors in terms of the natural and dual base vectors, i.e.

g°=9,0g' €l : T"B,xTB -R and G*=G;®G' €L : T*ByxTBy — R (2.3)

which reflects the nature of general tensor analysis where neither contra— nor co—variant identity—
tensors exist. Accordingly, the corresponding linear tangent map with respect to the direct motion
p(X,t) is a mixed—variant two—point tensor (motion or rather deformation gradient)

Fi = Oxp = 89i<p®6X9" = 89i<p®<9x[@i oPl =g, QG € Li : TBy — ThB; (2.4)

which transforms tangent vectors to material curves into tangent vectors to spatial curves. The in-
verse motion or rather deformation gradient is consequently introduced as

1= 0,8 = 00 @ 0,0" = i P @ D[ 0 p] = G; @ g' € L3 : TB, — TBy (2.5)

in terms of the inverse non—linear deformation map ®(x,t). In the following, we make use of four types
of kinematic tensors in terms of F and f% denoted by b* (Finger tensor), ¢’ = det ™ (bf) cof(b%), C”
(right Cauchy-Green tensor) and Bf = det™!(C”) cof (C®) which are defined via **

¢ =G = "G = [f' @ -f =Gy g0g € SE:TB xTB — R,
¥ = ¢, G = F',G' = F' .G [F'' = G g,0g, € S*:T*B, x T*B, — R, 26)
C" = ¢'g” = F*g = [Fi'. ¢ . F' = g; GG/ ¢ S$:TBy x TBy — R,
B = &.g' = fl.g' = fl-g [f' = g9 Gi®G; € S} :T"By x T*By — R,

see Appendix A.3 for notational details. With these metric tensors at hand, generalised strain mea-
sures can be constructed. Since strain means change of metric with configuration, one obtains the fol-
lowing differences (n € R} )

net, = g —["? = [g;-[Gy"?] g'®g’ €§*:TB, xTB —R,
nk%n) — ph2_gt = [[Gw n2_gi] g.®g, € S:T'B x T*B, —» R, o
nEp, = [C1’-6& = [lg"?-Gy] G'®G € §:TBy x TBy — R,
"K%n) = Gﬂ_[Bu]nm _ [Gij zy]n/Z] Gi®Gj € S3: T*By x T*By — R.

** When applying a geometrically strict framework, the transposed of a tensor field is commonly defined in a manner
such that the field and it’s transposed have identical transformation properties, i.e. they map identical spaces to identi-
cal spaces. On the contrary, the associated dual field maps the corresponding dual spaces. As a specific application, we
consider the mixed—variant two—point tensor F* and denote it’s dual by [Fh]D which is consequently defined as

[F'1° : T*B; - T"Bo with [F']° .o’ =o' - F' Vo :TB; >R (x%.1)
and the usual denomination of the transposed, abbreviated by [F]*®, reads
[FP"™* . TB, —TB, with [FY]"™ =G*'.[F"]°.¢", (+%.2)

whereby the identification of the transposed with the dual field holds since we map finite-dimensional vector spaces.
Based on this, the definition of e.g. the right Cauchy-Green tensor results in C* = [F*]"® . F" : TBy x T*Bo — R
with C* = G* - C" = [F!]P . g’ - F' = ¢* g’ and the Finger tensor reads b% = F" . [F!]'™® : TB, x T*B; — R with
b =bf-g' = F' . G' [F!')° = ¢, G*. For more background informations see e.g. Dodson and Poston [DP91, Chaps. -
V], Ogden [Ogd97, Sect. 1.4.3], Marsden and Hughes [MH94, Sects. 1.3 & 1.4] or Lodge [Lod74, Sect. 2.5]. In this work
however, we simplify notation and thus indicate the dual of a mixed-variant field as the transposed, e.g. [F"]° s [F*]*.
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Apparently, n = 2 results in the definition of the Almansi and Green—Lagrange strain tensors which
are respectively denoted by e’ and E = p* e’ in the sequel (likewise the relation K b = &, kb for
n = 2 is obvious) and the specific choice n = 0 is associated with the definition of logarithmic Hencky—
type strain measures ff

ey =— 3 In(c") €S*: TB, xTB, =R, ki = JIn®) €S :TB, xT"B;, » R, 8
Ejp= $In(C’) € §*: TBy x TBy = R, K'go) =— 2 In(B¥) € S*: T*By x T*By — R. '

It is clear that these different strain measures are qualitatively similar — namely equal to first order in
B; or By, respectively — only for the specific case when we deal with almost small strains, i.e. ¢® — g°,
C’ - Gb, b - g' and B! — G* (then appropriate strain rates are identical but the corresponding
rates of their conjugate thermodynamic forces (stresses) generally differ from each other).

2.2 General hyper—elasticity

Consider the scalar—valued isotropic tensor function (free Helmholtz energy per unit volume) of the
format

:X) € R |, (2.9)

yeey V)

QpO = ¢0(gb,Fha GﬂaAg

whereby the spatial co—variant metric allows to account for a set of general non-linear coordinates
and an additional tensor series of n symmetric, second (at least even) order tensors is incorporated

@, €S [TBxT'Bl, n—R, Al eS:[TBxT'Bl, .~k  (210)
that fulfils usual push—forward and pull-back relations
al=p. Al =F'. AL [FY' = [a}]' and Al=&.al=f"al [f7 =[A]]'. (2.11)

They allow the description of anisotropic characteristics if there is at least one non—spherical element
Ag incorporated. Here, we refer to the case of an arbitrary number of elements ag, Ag as “general”
anisotropy despite the fact that “even more general” formulations have been proposed, which are e.g.
not based on isotropic scalar—valued tensor functions or incorporate higher order structural tensors, etc.

In the following, we apply the essential covariance relation of the free energy density 1y as given
in Eq.(2.9). For a general survey on this principle in the present context we refer to Marsden and

1t is common practice to introduce generalised strain measures in terms of sufficiently smooth monotone functions
b
i € [} e squared principal stretches A; € Ry — sa e eigenvalues o or b", name i = i = i — WL
R of th d principal stretches \; € R v the eigenvalues of C’ or b Iy A = & = ¥y - with
fiA)|x;=1 = 0, O, fi(Ai)|a;=1 = 1 for ¢+ = 1,2, 3; compare Sections B.1 & B.2. In this direction, we obtain (n € Ry,
m € Ro)

b § _n b i b § _m+2
e(")}\i — K("))\i — % [1 _)‘i 2] e(o))\i — K(O))\i [ %ln()\i_l), a}\ie(m),K(m))\i = %)‘i 2
X b 1 n X B 1 o m 122 (1)
A = Py = 1 [)\; _1] , @x = Foxn = Ln(n), VORGPV S
and in addition, it is straightforward to show that the relations
b b2 b m b
elm 9" = [€1%F ki, = Kk, g = [T el

5 m (t1.2)
Elzm) .G = [CI’] 2 . Kt(lm) — K%m) . GI’ = [Bﬁ] 2 . Elzm)

as well as
* b b b b * b b b b
@ em=C" K} -G, $.ki =B E G, & E,,=c ki, ¢, ¢. K| =b e g (1.3)

hold without loss of generality (recall that the full length notation of an exponentiated field allows representation as, e.g.,

[b]% =g*-[g" b*]% = )\i% g,®g,)- For a detailed overview on generalised strain measures we refer the reader to Trues-
dell and Toupin [T'T60, Sect. 33(A)], Truesdell [Tru66, Sects. 15 & 16], Seth [Set64], Hill [Hil68, Hil70] and Ogden [Ogd97,
Sects. 2.2.7, 3.5 & 6.1]. Recently, Papadopoulos and Lu [PL98, PL01] applied generalised strain measures to an isotropic
and anisotropic plasticity formulation in strain space (based on the framework of a St. Venant-Kirchhoff-type material,
compare Sections 1.3, 1.3.5 & C.1) and Miehe and Lambrecht [MLO01] placed special emphasis on hyper—elasticity.
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Hughes [MH94, Chap. 2 & 3] and Simo and Marsden [SM84]. Special emphasis on anisotropic hyper—
elasticity is placed in Menzel and Steinmann [MS01h] or Lu and Papadopoulos [LP00].

In this direction, let ¥(x,t) : By X R — B; and w(X,t) : By X R — B, represent arbitrary spatial
and material diffeomorphisms with 1 = & ! and £ = w~! respectively. The fundamental spatial co-
variance relation is then given as

Yol(g’, ¥, GF AL LX) = yo(y* g, &, F'GP AL 5 X). (2.12)

yeanyTL?

Furthermore, Eq.(2.12) boils down to the principle of indifference with respect to superposed spatial
rigid body motions (Hooke—Poisson—Cauchy form) if ¥(x,t) denotes a regular, orientation—preserving
spatial isometry

Yo =10(a" g’ - [d)', " FGH AL i X)=14o(g’.d" F',G* A} _;X) V¢ € 0% (213)

weyT?

whereby g° corresponds to the correlated linear tangent map which (by definition of an isometry)
preserves the metric, i.e. gP -gl’ - [qh]t = gl’; compare Marsden and Hughes [MH94, Chap. 3.2, Ax-
iom 2.9] and e.g. Guggenheimer [Gug77, Chap. 11] for more background information. The specific
choice W (x,t) = &(x,t) : B, x R — By results in the well-known conclusion that F enters the free
Helmholtz energy deunsity g via C’ with respect to the material setting,

Yo = ¢0(gb’Fh’Gﬁ’A§’m,n;X) = aho(p* gl’,ﬁ* Fh,G’ﬂ,Ag’ 1 X)

)

ﬂ (2.14)
X)) = $(C, G A

o))

X)

P(C°,G*, G*, Al

yeeesTV?

and the mixed—variant identity G* = &, F" being naturally redundant. Next, superposing a material
diffeomorphism on the finding of Eq.(2.14), that is wg , we consequently obtain
P, GHAY X)) = (2 Cw, G w, Al

yeeesTU?

X). (2.15)

yeensTU?

Similar to Eq.(2.14), the embodied option w(X,t) = ¢(X,t) : By x R — By results in the spatial for-
mat of the free Helmholtz energy density

ho = PY(C", G A} s X) = 9(*C”, 0. G 0, A} i X) =9h(g" b el i X) | (216)

which we will frequently apply in this work. Finally, when choosing the special case that w(X,t) coin-
cides with a material isometry, we end up with the definition of a scalar—valued isotropic tensor function

W@ - C - 1QT.Q -G [Q,Q- A, [QX) VQ'e 0 (2.17)

whereby Q" represents the underlying linear tangent map which (by definition of an isometry) obvi-
ously preserves the metric, i.e. Q- G*-[Q"]' = G*, compare Eq.(2.13). The correlated material sym-
metry group G of the considered material is a sub-group of the orthogonal group ©% and defined by

a set of elements Rim via

G= {RE €0’ | Rli, Aﬁ,...,n = Rli ’ Ag,...,n ) [Rli,...,m]t = Ag,,n} : (218)

ey VX yeenyM

In order to specify the nature of the elements Rh1 __m of the symmetry group, let e}, e;, e € R®in
By denote frames (whereby each of them is assumed to be orthonormal at the material point X') and
n!, n’ € U? represent a unit—vector in By. Then, due to the nature of the orthogonal group, any ele-
ment of G allows representation as R = e ® €', that are reflections "™ R! and rotations "™'RY which
we construct via

RN, N ) =G —2nf@n’ € 0® and "'RIOn') =exp(—0e-nf) e (034 (2.19)

whereby e’ denotes a mixed—variant representation of the third order alternating permutation tensor
in By and 8 € R: (0,27]. Please note that the central inversion mapping (— G' = —e; ®€') is ob-
tained by the reflection ™ R%(nf, n®) if n! is co-linear to e; + es + e3 and that the identity (G?) is
included for any rotation with 8 = 2.
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2.2.1 General spatial and material stress relation

Within the standard argumentation of rational thermodynamics, the free Helmholtz energy density
defines the stress tensors ¢ (Kirchhoff stress) and S* (second Piola-Kirchhoff stress) as

™ = 20, (¢ ba] LX) €8 TB x TB, - R, (2.20)
X) € §: T*By x T*By — R.

St = 20,99(C",G*, Al

!

2.2.1.1 Derivation of the general spatial stress relation

The isothermal Clausius—Duhem inequality in local form for a purely elastic process reduces to an
equality which reads within the spatial setting as

Dh = [m"]' : I — Dy ¢f(g’, b, a} ;X)) =0, (2.21)

whereby [mft = g’ -7 e L? : TB, x T*B, — R denotes a mixed—variant spatial stress ten-
sor of Mandel-type — or rather a mixed-variant representation of the Kirchhoff stress 7%, D;[o] =
9y ([0](X,t)) characterises the material time derivative (holding X fixed) and 1 = D, F%. ff ¢ L3 :
T*B; x TB; — R defines the spatial gradient of the physical velocity, see e.g Truesdell and Noll [TN92,
Chap. DI a]. The stress power W, can alternatively be written in the format

W('; = [mh]t = [mh -gﬂ]t : [gb -lh] =7t [gl’-lh]Sym = % Tt Ltgl’. (2.22)

Thereby the notation L; [e] = ¢, (D; (P, ([e]*(x,)))) represents the Lie derivative (here with respect
to a contra-variant field), which is known as the Oldroyd rate Ly 7% = Dy 7# — 2[1% - 7#]%™ when ap-
plied to the Kirchhoff stress. Now, computing the material time derivative Dy 1}, one obtains

Dy h = O P : Leg’ =20, 9 : (g - 1V ]"™ =2[g" - 0 f] : 1%, (2.23)

whereby the application of the Lie—derivative L; gl’ stems from the push—forward of the material time
derivative D; C”. Moreover, it is obvious that Eqgs.(2.21) and (2.23) define the mixed variant Kirch-
hoff stress tensor as

[mf]" = 26" - 9 9 (2.24)

which results in the well-known Doyle-Ericksen formula 7# = 2 O ¥ in view of Eq.(2.22).

2.2.1.2 Derivation of the general material stress relation

The material format of Eq.(2.24) can be derived by standard push—forward and pull-back operations
or via,

DY = [M*]': LF — D, 9{(C",G*, A} ;X)) =0 (2.25)

eoyn?

whereby [M"]* = C*- 8% € L3 : TBy x T*By — R denotes the Mandel stress tensor and L =
fi.D,F" € L3 : T*By x TBy — R represents the mixed—variant pull-back of the physical velocity
gradient. Now, taking the relation

W) =M Lh=[M" .- B [CP LA =8 [C"- LR =1/2 8 : D, C° (2.26)

and Dy 9 = O 9 Dy C’ into account, the material hyper—elastic law reads

[M']' =2C" - 944 (2:27)

incorporating the usual format of the second Piola—Kirchhoff stress tensor, S* = 2 Ocp 3.
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2.2.2 General spatial and material tangent operator

It is straightforward to show that the spatial and material tangent operators e and E' are Hessians
of the free Helmholtz energy density for a non—dissipative isothermal hyper—elastic setting. Here, the
appropriate time derivatives of the elements of the additional tensor series vanish — L; ag’___’n =01,.n

and Dy At},...,n = 01,5, — thus the typical format reads

el =4 a;b®gl,¢3(gb,bﬁ,aﬁ,___,n;X) € S3 . T*B, x T*B; x T*B; x T*B; — R, 229
2.28

Eﬂ =4 62b®cb¢8(cbaaﬂaA§

2, 1 X) € S>3 . T*By x T*By x T*By x T*By — R.

yeensTV?

2.2.2.1 Derivation of the general spatial and material tangent operator

For completeness, we give an outline of the derivation of the tangent operators which appear in the
relations L 7 = % el: L, g17 and D; §% = % E':D, C". The material version reads

D; 8" = 00w [20098] : D1 C* =282, 40 : D1 C” (2.29)
which proves Eq.(2.28)2. Standard transformations like
DS =&, Lyl = f1 . Lt [f', DiC’=¢"Lig’" =[F'-L,g" - F" (2.30)

and

Oy = Oph: 09’ = F*- - [F71",
Rogr¥d = Op| 11 0p0l - £ : 008’ (2.31)

= (FB]: Pt [[F1 B ]

finally yield the spatial tangent operator ef in Eq.(2.28)1, see Appendix A for notational details.

2.3 Representation of anisotropy

As previously mentioned, anisotropy possibly enters the formulation if at least one non—spherical ten-
sor Ag is employed to the free Helmholtz energy density. Without loss of generality, Eqgs.(2.20) and
(2.28) define the stress tensors and tangent operators but we additionally seek an analogous expres-

sion in terms of b, ag,___,n or G¥, Aq,___’n.

2.3.1 Anisotropic spatial and material stress relation
As the main thrust of this Chapter, we make the

Proposition 2.1 Within the anisotropic framework based on the free Helmholtz energy density
Yo = Pi(g°, bF, ag’.__’n; X) = ¢J(C”, G", Ag, X)), the stress tensor can alternatively be formulated

instead of g’ or C”. The formal structure is similar to the estab-

eV

in terms of bﬂ,ag,_"’n or Gﬂ, Aqn

lished equation for the isotropic Kirchhoff stress tensor 78 = 2 g! - Oy Pl - b* since the anisotropic for-
mulation results in a specific additive decomposition into derivatives in terms of b* and ag,___’n or G*

and Ali,___,n, respectively. Anticipating the result, we will end up with

n
o= 2 gl.gupl-bb 4 2 21 gﬁ.aa“p(t).ag =[],
1= 3

- (2.32)
S = 2 BY-9guyl-Gf + 2 Y BF-9,9)-Al = [SH.
2 !

7
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The corresponding proof can be based on the general representation theorem of isotropic scalar—valued
tensor functions. Thereby, one has to express every obtained stress generator based on g° or C’ in
terms of sums of generators based on b* and ag’___,n or G* and Aﬁ’___,n, respectively.

2.3.1.1 Derivation of the anisotropic spatial stress relation

The local form of the isothermal Clausius-Duhem inequality within the anisotropic spatial setting for
a non—dissipative process (L; a':jt,...,n = 0y, and Dy Atijl,- = 0y,..) with Dy b =2 [lh . bﬂ]sym and

D, a,g =2[1". ag %™ boils down to

N

’Dé = ['rn,h]t:lh - th(t)(gbabﬂ,aqr..,n;x)

= [mi)t: 15 — Oyt bl - Dy b - Y0 Dy ag
=1 v

= (Ml — 2 Byl (1B — 2 309l : [1F-af e (2.33)
=1 *

= [ml' 10— 2 Guyb: [1-6F]  — 2 2 Ak [lF-al]
=1 v

=0,

whereby symmetry relations have been taken into account. Thus, following the standard argumenta-
tion of rational thermodynamics, a definition of the mixed—variant Kirchhoff stress tensor can be con-
structed as

(Mt = 20,59p} - bF + 2 AT al. (2.34)

The fact that the (material) elements of the tensor series Ag,___,n are assumed to stay constant during
the deformation process suggests the terminology material or rather deformation induced anisotropy.

2.3.1.2 Derivation of the anisotropic material stress relation

The material format of Eq.(2.34) can be obtained by standard pull-back operations and reads

[MF)t = 205498 - GF +2 Y 04598 - AL (2.35)
= A

2.3.1.3 Derivation of the anisotropic spatial and material stress relation via invariants

Next, we take the general representation theorem of isotropic tensor functions into account (an alter-
native proof is given in Appendix B.4.1) in order to prove the symmetry (or in other words the com-
mutativity) of the introduced Kirchhoff stress tensor 7¢ = mf - g* = g' - [mJ]* or the introduced sec-
ond Piola—Kirchhoff stress tensor §f = M'. B! = Bt . (M h]'“, respectively, within the anisotropic
framework highlighted in Egs.(2.9, 2.34, 2.35). The corresponding set of invariants, e.g. g'b L3y i) (i)

ga} I(iv),(v),(vi) for the free Helmholtz energy density in spatial quantities with respect to By is sum-
marised in Table 2.1 whereby 4,j € [1,...,n] take all possible choices, compare e.g. Boehler [Boe77]
and references cited therein. The correlated derivatives of these invariants with respect to gl’, b* and
ag (or C’, G and Ag, respectively) are highlighted in Appendix B. We focus on the spatial represen-
tation in Eqgs.(2.20) and (2.32) in the sequel and end up with the alternative expressions

(vi)
Tﬂ = 2 Z alqw(t)agl’Iq = [Tﬂ]ta
q=(%)
(v1) (vi) n i
> Orh gt Ol b2 Y Y Ordhgt- 0,1, ah = [T
¢=() q=(i) s=1 s

(2.36)
o= 2
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Table 2.1: Complete set of invariants (7, (6), ey} X ) with respect to B, and By for all possible choices
ofi,j€[1,...,n].

(4) g:b = Cc’: Gt
(i1) [g"-bl-g": bt = Cc’"-G' C": Gt
(#44) [gb-[bﬂ-gb]Q]:bﬁ = [C"-[Gﬁ-ch L G

(tv) g":af = C’":Ag
(v) g b -g’):a] = [C°-G'-C']: 4]
(v) [g -a- l’] ag = [Cb-Ag--Gb]:Ag

In this context, Proposition 2.1 for the anisotropic stress relation (Eq.(2.32)) is one-to—one with

0pl, = g'-0pul, b+ é g 9,1, at
= b.oyl,-g' + Zn: ag.aagjq.gﬂ’
= (2.37)
o], = B'-0gl, G' + é B'-0,1,- Al
— GOl B' + fjl AL-9,1,- B
=

Emphasis is placed here on the spatial setting and we verify Proposition 2.1 in the form of Eq.(2.37);.
After some lengthy but straightforward algebra which is based essentially on the generators in Ap-
pendix B, we obtain

¥ Oplay = g% Oyl - b + 2 99,1 -a
= g'-¢g" bl+0="0
(i4) "
Opliy = g' Opluy b+ 82231 9" - 01 Lai) -al
= 298¢ b g’ BF+0=20"g" -V
(i) 0
O liiiiy = g% Oyl - b* + ;gﬂ “ 0t (i) - al
= 3g'-g" - [bF-g"]2- b =3b'-[g"-b')?
(i)

n
Oy liwy = g% Oyl - b + 21 g*- 0,1 I(iv) - 0
s=
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(v) n
89171(,0) = gIj . 31,:11(@) . bt + Zlgﬂ . 8a,§I(U) . aﬁ
s§=
— gﬂ.gb.ag.gb.bﬁ_l_gﬁ.gb.bﬂ.gb.ag
= 2[bF-g - af
(vi)

n
Oplwiy = G Oyl - b+ El 9" - 0,1 Iwi) - af
s=

sym

= —g 'Cb'[ag,j'gbb
_i_gﬂ.[gb.ag_.cb]Sym.ag_i_gﬂ.[gb.ag.cb]Sym.ag_

= [a’g,j T ot

which proves Proposition 2.1, the outline of the transposed version — Eq.(2.37)2 — being obvious (note
that the sum over all contributions in Eq.(2.36)2 results in a symmetric Kirchhoff stress while single
contributions are non-symmetric in general). Moreover, the derivation within the anisotropic mate-
rial framework is straightforward and thus not highlighted here.

Remark 2.1 Apparently, an isotropic setting is obtained if the additional tensor series are neglected,
Ab =0y, which results in

o= 2g0 - Ouyf (@0 0hX) b = [

(2.38)
St = 2B' . 9uyd (C°,G%X) - GF =[S,

whereby the spatial format is well-established in the literature, see Truesdell and Noll [TN92,
Eq.(85.15)] or Murnaghan [Mur37] for a corresponding outline in terms of &, i.e. T4 = —2g-c"-8,%.
Furthermore, note that the specific choice of spherical elements Aﬁ1 . o G* or the incorporation of
scalar—valued fields instead of second order tensors, results simi]arl); in an isotropic constitutive equa-
tion.

2.3.2 Anisotropic spatial and material tangent operator

On the basis for the developed stress relation, the spatial and material tangent operator within a non—
dissipative anisotropic setting can be derived in terms of b* and ag,___,n or G* and Ag,...,m respectively.
Anticipating the result, a specific additive structure is again obtained, i.e.

ef = 4 [bﬂggﬁ]38§u®bu¢3:[gﬂ®bﬂ]
4y [ai®g*]: 0% b [g' @]
§= s
4 n (' ®g*]: 3, ¥ (9" @al]
§= s
- t= 2 t = ol
+ 4 tZl [as®gﬂ]iaag®ag¢oi[9ﬂ®at]a
S,t=
(2.39)
E = 4 [GF®BF]: 0%y ) : [ B ® G
n E— JR—
+ 4 Zl [A§®Bﬂ]:aiﬂ®m¢g:[3ﬁ®aﬂ]
s§= 8
4 [G'®B*]: 02, .0 [B'®Al]
s= s
- f= 1. 42 0 t Al
+ 4 > [A:®B ]:6A§®A§¢0:[B ®A;].

»
S
Il
—_
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2.3.2.1 Derivation of the anisotropic spatial tangent operator

The derivation of the spatial tangent operator within a non-dissipative (L, ag,___’n = 04,5, and
D; AIi .n = 01,.n) anisotropic setting is based essentially on Eq.(2.32). In addition, the relations

T = glj [mf]* and D; b* = 2[1%- b* ™ D, a =2[l’ a ]Sym are taken into account. In this context,
the material time derivative of the Kirchhoff stress tensor

Dy 7# = 20,7h: [1F- b Y™ 42 Z Oy 7 [18- af e (2.40)

takes the following format by incorporating Eq.(2.32)

Dyt = 2 Dy VF - Oystp - g* < [1F-0F] + Dyl g~ Ol - bF] < [1F - BF ]!
+ 2 é 0,416 Ot -gt]: [ ab] + Oylgh Oyl b]: [ ab ]
b2 5 oplal- oo (18] + Ot 0ub-als[1- b
+ 2 él Oglal- 000 g"): [I-af] + O,lg"- 040 - al]: [1F - af]"
= 2 (B ®g ] : 0 et : (18] + [1F-0°) 20, (g7 ©BF] (2.41)
+ 2 ; (6@ 9] 0}y, 400 [ ab] + [1-af]": 02 b (0" ® Y]
+ 2% (@8] (] + ()5 0 (6B al]
+ 2 S’tzn_jl [a§®g] “@aﬁ% [lh'ag] + [lh a’t]t 82a®au¢0:[9ﬁ®0g]
+ 2 [15. 7t ]y,

Now, computing the Lie derivative of the Kirchhoff stress tensor, i.e. L;7! = D;7f — 2 [lh . i ]sym
(keeping the specific non—dissipative case in mind), in order to construct the spatial tangent operator
e and thereby proving Eq.(2.39);, we end up with

Ll = 2 bﬁ®g] Pyl [ ﬁ.gl’.bﬂ]

+ 2 V) g g | v | F BV

+2 3 (@t g] 02 00 (o O]

o2 é (69| 02, b [1gF g - al]

o9 522 :ag@gu] 32g®bu¢3¢[lh'9ﬂ'9b'b”]

+ 2 SZE R Er R o P

+ 2 s,tg ai®gt| 0% b [ gt gl (2.42)
+ 2 sil o} - 19" g ] - u®au¢o:[9“®a§]

[ [#59]) Gt [75]

+ o4y [aded] b [der]

W
Il
—



36 2. Anisotropic hyper—elasticity based on structural tensors

n JR— JR—
t4x (v@g|: 0% b [g' B al]
s§=
n _ sym
+ 4y [deg]:0 % at Vb (¢®af] | [¢- 8] = 1t Lig’.
s,t=1

2.3.2.2 Derivation of the anisotropic material tangent operator

The derivation of the material tangent operator E* is again a straightforward exercise in terms of stan-
dard push—forward operations, namely

Lt = o, D8 = Fh-DtSﬂ-[Fh]t, g8 = p.B' = Fh.Bﬂ.[Fh]t’
L;g’ = &D,C° = [ff'-D;C"- f°, V¥ o= o.G' = F' G'.[FY, (2.43)
ai = @. A = F' AL [F7
and " -
Ot V6 = x0%4ocn W0 = _[fh]t@’[fh]t_ F 0% V8 (PP,
gt W6 = Pelguy ¥ = |[FIBUF |10, 00 [FFEF,
- B (2.44)
625@1»1 Py = <P*‘9,245®Gu¢8 = _[fh]t®[fh]t_ :8?4§®Gu ¥ [ Frefr,
a®a“¢0 = ¢*8Aﬂ®Au¢0 = [f]®[f] 3a2n®An¢o [fhgfh]-

With these transformations at hand, applying some algebra finally yields Eq.(2.39)s.

2.3.2.3 Derivation of the anisotropic spatial and material tangent operator via invariants

In the sequel, we focus on the spatial setting with respect to a representation in terms of invariants
similar to the contributions of the stress tensors in Eq.(2.37). Two different families of derivatives are
obviously incorporated which can easily be seen in the usual spatial format in terms of the spatial
metric tensor

(vi
o =42, =4 Z()afq«p 2, g0 la +4 z()a},«po 01y ® 01, , (2.45)
q=\? q,r

compare Appendix B. The second type of contributions in Eq.(2.45) incorporates dyadic products of
the stress generators. Thus, with Eqs.(2.37); at hand, the equations

agqu®ngI, = [gﬂ anI bﬁ](}Z)[gﬂ i L7 - bﬂ]

n
+ [gﬂ-abqu-bﬁ]@) [ Zlgﬂ-aagfr-ag]
S—=

n

+ [ L6 0,40, dt| ©lgt 0L ]
s=1

+ [élgu-aaqu-ag] [Zgﬂ uI at]

. . (2.46)
= (' ®g"): [0l ® 0l ] : [g" BB,

n

+ Y (VR [0, ®0,1]: [¢'®al]
s=1 i
n

DY [a§®gﬂ] : [8ag1q®8bﬁlr] : [g° ® b']
s=1
n

+ Y [6i®gY): [0,1,0 0,1 : [ ®a]]

»
T~
Il
—
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hold. Next, the corresponding relation due to the first contribution in Eq.(2.45) is verified via the rep-
resentation theorem Therefore in view of the spatial setting, the derivatives of the stress generators
with respect to g°, b* and a1 » have to be computed which are given in Appendix B. Now, the re-
lation for the second derlvatlves of the invariants reads as

831:@91:[(1 = [bﬂ@gﬂ] : 6§ﬂ®bﬁIq : [gﬂ@bﬂ]

DY [bﬂ®gﬂ]:6§u®ag1q:[gu@a§]

i
I

B B (2.47)
+ Y 6By, 0 (91 B

s—=

[y

n

E [gﬂ®a§]

s,t=1 asQay

and can be verified after some lengthy algebra:

(i2)

n
Sall- Tt B ol
+ SZ::1 [bﬂ®gu]-a§u®agj(ii)-[gﬂ®a’s]
+ Y (4@ ]: 0 T [ OY]
s=1
T LT AR P
s,t=1 ’ a§®a§ (@) t
= [VBgl]: (B +d'®g"]:[g"®V]+0+0+0
= [ + b eb]
(i47)
0% g L) = [bﬁ@g“]raﬁu@ﬂ(m):[9“®bﬂ]
n
Sall: ol ® ol
+ 52::1 (V&g 82n®agI(iii) [g*®al]
+ Zl [as®g] aﬂ®bul(zzz)-[gﬂ®b]
s=
+ Z [as@gﬂ] ﬂ®a I(m [gﬁ®at]
s,t=1
SYM .
= 3 [¥8g]: |gBlg ¥ gl+galg ¥ gl :[gBH]
+ 0+0+0
SYM
— 3 [bu@[bu_gb_bquu@[bu_gb.bﬂ]]
(v)
Opaglw) = (6 ®g"]: 0 eIy : (g ©B]
n —_— JR—
+ s; (b ®g']: %@agI(v) [g"®dl]
n
+ Y [6i®gF1: % 1w [6F O]

®
Il
-
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+ Y [al®g']: 9% I, : (¢ ®a]]

st=1 ajgaf (V)
= 0+1i[b'®g"]: [gb@gb+gb@gb] :[g'®al]
+ al®g']: [gb@gl’—l-gl’@gl’] [g" b+ 0
= [bﬁ®a§—l—bﬁ@a§]SYM
(vi)
82b®gbI( 5 = [bﬂ@gﬂ]:a s apt :[g'®b*]
+ SXZ:I (b ®g!] 8§ﬁ®ﬂ1’( ) g Ral]

= (b ®g!]: [cl’@[cl’-ag--gb-ag-cb]sym

SYM -
+e@[d-al-g'-al | [gP B Y]

- L MEg): @Bl d-gl 1l al-g]] :[gFai]
- 3 [bﬂ®gﬂ]:[c"@[c"-ag-g"]—l—c"@[c"-a?-gb]]SYM g’ ®a’]
~ 1 [afB¢):[¢Ble dl )t eald a -] :gEv]
- b [dBg):[¢Blgd )+ Cnlg ai ]| i (g'EY]
+ 1 [al®d): (8B +g 8 ™M [¢'Bad!]
+ 1 [dl®g: (@B +g @M [¢'Tal]

= 0

which proves essentially the spatial setting of Eq.(2.39). The outline of the material version is straight-
forward and thus not highlighted here.

Remark 2.2 In analogy to Remark 2.1, the specific isotropic case for Ag’_“,n = 04,.., yields
e = 4 [®g'] ¢ O uufi(e’bhX) ¢ (¢ BV, o
E' = 4 [G'®@B] : 0, ,¥0(C",G:X) : [B'&G'].

For the proof of the spatial representation in the isotropic case, see Miehe [Mie94, Al]. Again, the in-
troduction of exclusively spherical elements in the additional tensor series, Ag O G" or the incor-
poration of scalar—valued fields instead of tensorial quantities results in tangent; o,perat;ors which char-
acterise an isotropic setting.

2.4 Examples

In the sequel, we consider two simple applications of an anisotropic material. On the one hand, or-
thotropic symmetry is incorporated via two (n = 2) constant (in Bp) rank one structural tensors
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Ag,z = A§,2Nﬁ ® AgﬂNﬂ with AﬁﬂNﬂ € U?: T*By — R. We thereby highlight “analytical” expressions
of interest like the stress field and the corresponding tangent operator in detail. On the other hand,
numerical examples incorporating transversely isotropic symmetry (n =1, Aﬁ = const in By) are dis-
cussed within the homogeneous deformation in simple shear and a general, inhomogeneous finite ele-
ment setting.

2.4.1 Analytical example within orthotropic symmetry

The considered spatial orthotropic setting is defined by two rank one structural tensors ag,Q = @, Agﬂ,

compare Eq.(2.11). For the sake of generality, we assume ANt G- A NE = const # 0. In this con-
text the free Helmholtz energy density 1% = ¢§(g°, b*, agjg; X) = ¢{(I1,..8; X) is determined via the
following set of eight invariants

YL = g bt YL, = [g"-bf-g’]: b, YL = [g0-[bF-g" 2] b,

[ #

gba1,2I4 = gb : aq s gba1,2I5 = [gb . bﬂ . gb] : ag " (249)
# # B

Yhrly = gidh, T2l = [¢8 b .g’lia}, Y2k = [g-al-¢]:db.

The Kirchhoff stress tensor turns out to decompose additively into an isotropic and anisotropic con-
tribution 7f = o7f 4 anirt - Consequently, with emphasis on the derivatives of the free Helmholtz
energy density, these particular contributions read

. 3 3
soft — 9 > an¢6 gﬂ.abnjq.bﬁ =2y anq¢3 bﬂ.[gu.bﬁ][q—ll,
=1 =1
! ! (2.50)

. 8 2
anif _— 9 Z [an¢6 gﬁ . abujq . bt + Z 3Iq¢0 gﬂ . 8a“ Iq . ag] .
g=4 s=1 8

Next, the invariants 9ol I, g as given in Eq.(2.49) are incorporated which results in
anipf  — 23[41/)6 aﬁ + 43151/)6 [bIi -gI7 . ag Jym
+ 2010h ab + 405,95 [V g - al (2:51)
+ 201,9h[a} g ah V™
Based on this, we now focus on the outline of the isotropic and the anisotropic contribution of the

spatial tangent operator (ef = s%ef 4 anief) defined by
3

R N R S PO AR LT
e q§1 521 an¢6 [bﬂ®gﬁ]:[{)§ﬂ®aqu]:[gﬂ@ag]
RPN G TARC AR TS
e qzijl s,tZQ—:1 81(11% [aﬁ@gﬁ]:[aig@)agjq]:[gu@ag] (2.5
e qizl 8%qu¢(t) [bﬂggﬂ]:[ab“Iq@’abﬁIr]:[Qﬁ@bﬁ] |
+ 4 q,iél v B8] : [0l @0, ] [gfDal]

FAY Y B 6B 0,080,1]: B
FAY Y B 6B 0,0 00,0 g Tal),

HPlease note that the spatial stress field *°7# does not represent an isotropic constitutive equation if the invariants

.....
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Finally, after some tedious but straightforward computations, we end up with
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Again, the outline for the material setting is straightforward and thus not highlighted here.

2.4.2 Numerical example within transversely isotropic symmetry

In the sequel we adopt a Mooney—Rivlin term for the isotropic part of the free Helmholtz energy den-
sity 509} as the essential constitutive function and an additional anisotropic exponential contribution
aniyht which accounts for transversal isotropy

. 3 bpl B byt b H
Ph(g’, b, als X) = SO (0 [0 55 X)) + Pl (T L3, “12 Iy 55 X)) (2.55)

compare Eq.(2.49). Both representations are reiterated in detail in Appendices C.1 and C.2 and the
set of chosen material parameters reads as

ca = 80, co = 200, A= 10,
a = 1, g = 1, § = 075,
(2.56)
e = 0.9, n = 1, n = 1.25,
Nl — 36.86°, M¢2 = 76.69°,

whereby the spherical coordinates v {912 define the orientation of the unit vector that determines the
incorporated structural tensor, compare Appendix D.2. For further investigations on the numerical
treatment of anisotropic hyper—elastic materials at finite strains within a structural tensor setting, es-
pecially for the transversely isotropic case with application to compressible and incompressible mate-
rials, we refer to the contributions by Weiss et al. [WMG96] and Bonet and Burton [BB9S] .

2.4.2.1 Simple shear

We discuss a homogeneous deformation in simple shear which is determined by F = I+ e; ® e? when
referring to a Cartesian frame with I = §'; e; ® €’ and the scalar 7y characterises the shear number.
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Figure 2.1: Simple shear: Anisotropy measure §(E’, 8*) for v € [0.0,2.5] (left) and v € [0.0,10.0]
(right).

As a typical indicator for anisotropy, the non—coaxiality of strain and stress fields is highlighted
in Figure 2.1 by monitoring the anisotropy measure §(E’, S*), compare Appendix D.1. Obviously, it
turns out that the degree of anisotropy shows a strong dependence on the shear number y. More-
over, the determinant of the acoustic tensor at v = 3.5 is highlighted in Figure 2.2 with respect to the
spherical coordinates which characterise the propagation direction (n’ = nl’("bﬂl’Q)), see Appendix
D.3 for a reminder on the underlying theory. We observe a striking difference when comparing the in-
troduced anisotropic setting (o = 1) to an isotropic material (a = 0).
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=
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Figure 2.2: Simple shear: Determinant of the acoustic tensor g? at v = 3.5; anisotropic setting with
a =1 (left) and isotropic setting with o = 0 (right).

2.4.2.2 Cook’s problem

Within the subsequent finite element example, we investigate a three-dimensional version of the clas-
sical two—dimensional Cook’s membrane problem. The standard discretisation in the e; 2 plane is
thus expanded into the es direction (when referring to a Cartesian frame). Geometry, as well as the
boundary and loading conditions, are visualised in Figure 2.3 whereby we chose the following param-
eters: L =48, Hy = 44, Hy = 16, T' = 4. The discretisation consists of 16 x 16 x 4 eight node bricks
(QLE9), whereby we invoke enhanced elements as advocated by Simo and Armero [SA92]. Further-
more, the conservative force F' is considered as the resultant of a continuous shear stress with respect
to the undeformed configuration. Concerning the numerical implementation, a Lagrangian parametri-
sation in terms of spatial fields is chosen throughout this work. For the sake of brevity, we make no
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further comments on the applied non-linear finite element setting but refer the reader to the books
by Oden [Ode72] and Hughes [Hug00] for more background information.

Since the incorporated direction which characterises the transversely isotropic symmetry of the
modelled material does not lie in the e; 2 plane, we consequently observe a severe out—off-plane de-
formation. Figures 2.3 and 2.4 show different views on the deformed mesh at | F|| = 4.5 x 103, More-
over, we study the displacement of the mid point node at the top corner of the specimen, *°Pu, see
Figure 2.5. In order to compare these results to an isotropic setting, we simply set o = 0. Figure

| L |
H, F
e Yy
.
—»}—‘4—
H,
Y
Z—‘ll_ X

Figure 2.3: Cook’s problem: Anisotropic (Q1E9); geometry, boundary and loading conditions, dis-
cretisation with 16 x 16 x 4 eight node bricks (left) and deformed mesh at || F| = 4.5 x 103 (right).
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Figure 2.4: Cook’s problem: Anisotropic (Q1E9); different views on the def. mesh at || F|| = 4.5 x 103.

2.6 monitors the obtained displacement curves whereby an anisotropic setting based on standard tri—
linear eight node bricks (Q1) is additionally highlighted which shows a stiffer behaviour compared to
the previous computation with enhanced elements (Q1E9). Finally, the convergence of these three dif-
ferent settings is summarised in Table 2.2 whereby the residual norm of the underlying Newton itera-
tion steps are tabulated for the load step || F'|| : [0,1000].
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Figure 2.5: Cook’s problem: Anisotropic (Q1E9); load—displacement curve of the mid point node at
the top corner.
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Figure 2.6: Cook’s problem: Load—displacement curve of the mid point node at the top corner;
isotropic setting (Q1E9, left) and anisotropic setting (Q1, right).

Table 2.2: Cook’s problem: Residual norm for the load step ||F|| : [0, 1000].

Q1E9, anisotropic Q1E9, isotropic Q1, anisotropic
no. IR| .| |R| no.| IR

1] 9.86979 E + 02 119.79760 E + 02 119.19998 E + 02
2| 3.63984 E 400 2| 3.62822 E + 00 2] 3.10966 E + 00
3| 1.53097 E 400 3| 1.08340 F — 03 3| 1.52990 E — 02
4| 5.65937 E —01 4| 8.49209F — 11 41 3.63277 E — 05
5| 224507 F —-01 519.62855 £ — 11
6| 1.40378 E — 02
7| 1.73148 E — 04
8| 7.68584 E —09




Chapter 3

Anisotropic elasto—
plasticity based on structural tensors

f conbition8 whidy uniquely determine their effect poffess
certain foymmetries, then the effect will erhibit the fome

fommetry. Thus Ardyimedes concluded a priori that
® equal weight8 balance in fcaled of equal arm3. ... AB
far a8 3 fee, all o priori fatementd in phyficd have their origin in
foymmetry.

Hermann Weyl [1885 — 1955]
Symmetry, 1952

In this Chapter, we develop a modular formulation of anisotropic elasto—plasticity and thereby adopt
the framework of an un—stressed intermediate configuration and non-standard dissipative materials.
For an overview on the general, almost isotropic, theory of elasto—plasticity, we refer to the textbooks
by Lubliner [Lub90] and Maugin [Mau92], the survey by Naghdi [Nag90] and for a detailed outline on
the algorithmic treatment, to Simo [Sim98]; see also references cited in these works. Here, we enlarge
the set of arguments included in the free Helmholtz energy density by additional symmetric second
order tensors. These fields are treated as internal variables and allow to account for deformation in-
duced anisotropy. As an interesting side aspect, we set up two classes of evolution equations — one type
results in a preservation of the material symmetry group while application of the other type of evolu-
tion equation ends up with a change of the symmetry properties of the material. Furthermore, and in
analogy to the free Helmholtz energy density, additional symmetric tensorial arguments of second or-
der are incorporated into the plastic potential. Thereby, the representation theorem of isotropic tensor
functions is a powerful tool to derive reasonable flow rules. Usually, no exponential-type integrator
of the governing evolution equations is conveniently available since the second order internal variables
and their flow directions do not commute in general. However, standard Runge-Kutta-type integra-
tors can be applied and as a demonstration of the developed methodology, a simple rate-independent
prototype model is discussed within a homogeneous deformation and a finite element setting.

The Chapter is organised as follows: Sections 3.1 and 3.2 reiterate essentials of the kinematics on
multiplicative elasto—plasticity and the fundamental covariance relation in analogy to Chapter 2. On
this basis, the Coleman—Noll entropy principle is applied and, as a key constitutive equation, the ex-
pansion of the celebrated isotropic Truesdell or rather Murnaghan formula to anisotropic multiplica-
tive elasto—plasticity is highlighted in Section 3.3. Then we adopt the framework of non—standard dis-
sipative materials and introduce inelastic potentials within a Lemaitre-type model, whereby the setup
of appropriate evolution equations is a natural outcome, Section 3.4. The numerical treatment of the
obtained ordinary differential equations is reiterated in Section 3.7. With this formulation at hand,
we set up a prototype model, Section 3.8, that accounts for different couplings of anisotropic elastic-
ity to anisotropic plasticity along with the incorporation of deformation induced anisotropy. Finally,
the numerical examples in Section 3.9 underline the applicability of the proposed formulation.
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3.1 Kinematics

Adopting the framework of multiplicative elasto—plasticity, a stress—free and generally incompatible
intermediate configuration B}, is introduced, see e.g. Mandel [Man74] or Haupt [Hau00, Sect. 1.10]
and e.g. Wang and Bloom [WBT74], Svendsen [Sve98] or Bertram [Ber98] for an alternative derivation.
In this context, let 7B, and T*B,, represent the correlated tangent and dual space (with the natural
identification T**Bj, = TB},) and let the additional metric tensors and the mixed-variant identity be
denoted by

G eSt TB,xTBy—»R, G €S :T'ByxTB, >R, G €L :TByxTBy »R (3.1)

~ ~b ~b
with & = det }(G") cof (G'). Based on the underlying non-singular linear tangent maps

F €13 : TBy — TB,, Fi ¢ L} : TB, — TB, F' = Fi-F?, 652)
fioeld . TB — TB,, fi €Ly : TB, — T8y, A= 5L,
additional kinematic tensors within all three configurations appear, namely
~b ~
¢ = frG €S TB xTB - R, b =FL,G ¢S :TB, x TB, - R,
& = fi*G €S} TB, x TB, » R, b, = Fi,G} €S : "B, x T*B, — R, 53
3.3
~b ~
C, = Firg €S :TB, x TBy = R, B! = fi.gt €S :T"B, x T*B, — R,
~b ~
C =F*G S :TBy x TBy » R, BL= fi,G e : 1By x T"By - R,
~ " N PPN N
and b = det™!(c})cof(c), bi = det_l(c;)cof('c\l;), Bi = det™}(C,) cof(C,), B% =

det™! (C'II’)) cof (C'II’)) being obvious, compare Egs.(2.6) and see Appendix A for notational details. Sum-
marising, Figure 3.1 gives a graphical representation of these kinematic tensor fields and their trans-
formation relations.

3.2 Free Helmholtz energy density

Let the free Helmholtz energy density be given as
i
o = ¢O(gbaF57G ,Al,...,n,’%;X) (34)

whereby Ki_“,n € S*: [T*B, x T*By1,...n — R represents a set of additional tensorial arguments and
k € R is a hardening (softening) variable. Next, in analogy to Section 2.2, we apply the fundamen-
tal covariance relation, that is a scalar—valued tensor function remains invariant under the action of
any non-singular tangent map (on it’s variables) which relates the tangent space of two affinely con-
nected manifolds. Thus, the free Helmholtz energy density remains un—changed under the following
pull-back operation of the incorporated arguments with respect to the intermediate configuration (see
Appendix A for notational details)

~f ~ ~b ~f ~
,(/)0 = ¢0(F5*gbafg* FgaaﬂaAg,...,naK’;X) = ,(/)(I))(CeaGﬁaAg ’K"’;X) ) (35)

3

Please note that the incorporation of the mixed—variant identity (T‘:” = fg* Fg is naturally redundant.
Now, with Eq.(3.5) at hand, which obviously incorporates exclusively symmetric kinematic tensors,
further transformations in terms of FE and FE, result in the spatial and material setting

. ~p =~ i
Yo = "p(l))(fg* Ce’FE*G ’FE* Al,...,na";; X) = ,(p(t)(glz b aqf..,nv’i;X) ) (3.6)

y» Yes
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Figure 3.1: Non-linear motion, linear tangent maps and kinematic tensor fields.

. b . A ~
o = YR(F*Cl, £1,. G 5, Ak X) =48(C”, BE, AL ki X) |, (3.7)

yeeesTU?

incorporating standard push—forward and pull-back operations for the set Xﬁn, ie.

4t S
a’q = Fg* Al,...,n ’ and Ag,...,n = fE)* Al,...,n ' (38)

)

As one typical field of application, we interprete these elements in the sequel without loss of gener-
ality similar to structural tensors. In this context, the preferred fibre directions define the material
symmetry group G of the body B in By

G={Qico’| @A} =4 .} (3.9)

Since the fundamental idea of multiplicative elasto—plasticity relies on the picture of an elastic set-

ting with respect to the intermediate configuration, an isometry with linear tangent map E)h is super-
posed onto the arguments of the free Helmholtz energy density 1§ which must remain invariant un-
der this action

~b Al ~ Ab oAb Al A AR ~ ~
wR(C, & A x)=yR(@C..Q G A _;x) v Qe (3.10)

with @h* f;'ﬂ = c?:ﬁ being obvious. Recall that this choice of a superposed orthogonal transformation
as one specific format of general covariance is one-to—one with the definition of an isotropic tensor
function. Based on this, the general representation theorem can be applied, see e.g. the fundamental
works by Wang [Wan70], Smith [Smi71al], Boehler [Boe77] or the outline by Antman [Ant95, Chap.
XI.13]. In analogy to Table 2.1, the obtained set of invariants is summarised in Table 3.1, see Ap-
pendix A for notational details. Please note that the isotropic tensor function has been introduced
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with respect to the intermediate configuration. Thus, the appropriate set of invariants is defined by

trace operations in terms of the metric tensors G and G , respectively. On the contrary, the mate-
rial symmetry group as given in Eq.(3.9) refers to the reference configuration.

Table 3.1: Complete set of invariants 1o ([(;),... (zi); X) With respect to By, By, and By for all possible
choices of 4, j,k,l € [1,n] but ¢ # (.

(3) g b = c ¢ = C’: B}
(id) [g"-bi-g’]: b = C.-G-C.: G = [C’-Bi-C']: B}
(i) [¢-[bh-g’P):b = [C.-[GF-C?]:G = [C°-[BL-C°)]: B}
(iv) g:al = C.: A; = C: A
(v) ¢ bi-g’):af = [CL.GCl1 A = (- BL.C*]: A}
(vi) g-dt-qlial = [C.-A-G:A = [C-ALCyl: A
(vii) g al-g']:af = (G- Al-C.): 4] = [C- A} C"]: A
(viii) c:a = g a - C’ : Al
(iz) [&-at-&]:al = @46 Al = [Ch- AL Ch]: Al
(@) [ei-lab, ] ef = [@[A),GP] A = [C)-[4, 0] A
(z) [Cl:z [ag,l,l'c:ba]s]:ag = [Gb [:‘ig,l,l ab]3]5:‘ig = [C;'[Ag,l,l'clfa]S]:Ag

ag remain
o

Remark 3.1 Recall that the particular case where all tensorial arguments Ag, n

spherical during the whole deformation process results in an isotropic setting.

ey TV?

3.3 Coleman—Noll entropy principle

Before adopting the Coleman—Noll entropy principle as based on the Clausius—Duhem inequality —
compare the reiteration in the outlook on page 144 and for a detailed outline we refer the reader to e.g.
Coleman and Noll [CN63], Truesdell and Noll [TN92, Chap. D II] and Coleman and Gurtin [CG67] —
recall that the material time derivative D; of a, e.g., spatial contra—variant second order tensor field
[¢!]! decomposes additively into the Lie derivative L; [of]! = F%, D, (f°, [#']!), or rather the Oldroyd
rate, and a symmetrised part in terms of the spatial velocity gradient. In view of the appropriate spa-
tial arguments of the free Helmholtz energy density, one obtains in particular

D; bl =Ly bi 4+ 2[1F - BL1Y™  Dyal =Lia! +2[1F &} ] (3.11)
whereby the spatial velocity gradient reads

V=D,F - ff=D,Fi-fi+ Fi-D,F} - ff=10+13 € L : T"B, x TB, - R (3.12)



3.3. Coleman-Noll entropy principle 49

and the symmetry operation is reiterated in Appendix A. Consequently, the pointwise and isother-
mal format of the dissipation inequality with respect to B; results in

Dy = [mit: 1 —Dyyh(g’ b, al 5, X)
n
= | [m] — 20, ¢f - b - 23 0, vh- al] (313)
Oyt ¥ : Lubh — 3 09 : Lia! — 8,9, Dir > 0
=1 g

whereby [m/]* : 1% computes the stress power and [mf]* = g’ - 7! denotes the spatial Mandel tensor
with 7F characterising a Kirchhoff type stress measure, compare e.g. Eringen [Eri62, Sects. 38 & 45)].
Next, adopting the common Coleman—Noll argumentation of rational thermodynamics, we obtain the
following hyper—elastic constitutive function for the mixed—variant stress tensor

n
[mf]" =20, 9 - bl +2 Zl s - al. (3.14)
1= ]

This remarkable format allows interpretation as generalisation of the celebrated isotropic Truesdell
formula [TN92, Eq.(85.15)] — which has already been given by Murnaghan [Mur37] in terms of ¢’ — to
anisotropic multiplicative elasto—plasticity, compare Section 2.3.1. Nevertheless, the remaining task
is to prove that the contra—variant representation of Eq.(3.14) is symmetric and corresponds to the
Kirchhoff stress, namely that

=gt [mi =2g - [ O vh- b+ Y. 0,00k 0f | =20, 0 (3.15)
¢ i=1

holds. The straightforward proof follows in analogy to Chapter 2 but now with respect to the even
larger set of invariants as summarised in Table 3.1, see Sections 3.3.1 and 3.3.2. Alternatively, the
verification can be performed by applying the fundamental covariance relation of the free Helmholtz
energy density, see Appendix B.5.1 for an outline. Naturally, the dissipation inequality is computed

. . . S = ~b 5 .
with respect to the intermediate configuration in terms of the Mandel stress [M b]t =C,- Sﬂ, with

./S\'ﬁ = fg* 7!, and straightforward transformations yield

—~t ~t n <471 . 5t
o = , (3.16)
— Oy b LG _Zlaﬁ“pg:LfAi—a“popo >0,
1= *
whereby
L =fi . Fiefi D, Fi 4+ D F - fi =L+ L' € L : T°B, x TB, > R (3.17)

denotes the mixed—variant pull-back of the spatial velocity gradient 1" and the appropriate Lie—
derivative reads as L} [¢]f = FE,* Dy ( fg,* [¢]"). Consequently, the symmetric second Piola-Kirchhoff-
type stress tensor is defined via

o St =t M L 17 .
e-[M]t:QBe-[aéu¢g'G +§azg¢g-Ai]zzaéb¢g . (3.18)
1= 1 e

Continuing this strategy, the Mandel tensor in the material setting reads [M']' = C’ - §*, with
St = fb, 7! and we obtain

n
DY = [[Mh]t—283%¢8-B§,—2i:ZlaAgng-A”:Lh
0 - 0 f 0 (:19)
ano:Dth—aaAu¢0:DtAi—an¢0 Dik > 0
= ¢
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with
Li=f 1" Fi=f D, F1. Fl+ f - D, FA = Li+ L) € L : T"By x TBy - R (3.20)

being obvious. Thus, the second Piola—Kirchhoff stress is defined as

S'=B' [MY'=2B - [0 90 Bh+ Y. 0, 98- Al | =200 48 |. (3.21)
=1 4

Remark 3.2 The established format of the reduced dissipation inequality within multiplicative
elasto—plasticity refers to the Mandel-type stress and the plastic part of the spatial velocity gradi-
ent or appropriate fields obtained after pull-back operations. In order to relate Eqs.(3.13, 3.16, 3.19)
to this common representation, we apply the image of spatial Lie-derivatives as the push—forward of
Lie—derivatives with respect to the intermediate configuration via the linear elastic tangent map. This
strategy results in splitting elastic and plastic contributions of spatial Lie-derivatives. In particular,
one obtains the decomposition

L (o) = Fi, LY [ = FED, B — 2 [t [oF ] (3.22)

for a contra-variant spatial field [o!]' = F3, [8]! of second order. Now with this relation at hand, the
spatial format of the reduced dissipation inequality, as highlighted in Eq.(3.13), allows representation as

t Bt t pf - t .0 i
Dy = [[m] —28bg¢0-be—21§16a5¢0-ai]:l

n
+ [28bg¢8:bg+228ag¢6:ag] :lE)
= ¢

n (3.23)
~ 9, [FiDAl] ~ o9 Des > 0,
RIDt [l — f:la““ e [Fg*DtZt?] 9 Dik > 0.
= e
Obviously, pull-back operations can be applied which end up with
redpp — (RE: T ilaﬁ YR Dy A~ 8, gR Dik > 0, (3.24)
=1 A

compare Mandel [Man74, Eq.(15.13)], and in view of the material setting we obtain

D§ = (M) B~ 320,08 : [ DAl ] 0§ D > 0. (3.25)

3.3.1 Derivation of the anisotropic stress relation via invariants

In order to verify the hyper—elastic constitutive equations for the Kirchhoff stress, Eq.(3.15), we com-
pute the derivatives of the set of invariants in Table 3.1 with respect to the arguments in the free
Helmholtz energy density and prove the relation

(zi) (zi)
=2 Z (9[q¢(t) (99qu =2 Z
7 =2

[M@ g'- Oy ly - bE+ Y Or, gt Oyl a”s] : (3.26)
q=(1) q=(1) s=1 s

compare Eq.(2.36). The analogous outline for the Piola-type stresses, Eqgs.(3.18,3.21), is of course
identical and thus omitted here. Moreover, for the non-dissipative setting, the invariants I(,;), . (zi)
were redundant and the corresponding proof based on I(;) . () has been highlighted in Chapter 2 (for
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multiplicative elasto—plasticity, one simply has to apply the transformation bﬁe — b* and cL’, > cl’). To
save space, we do not reiterate these contributions here but focus on the verification of

n
Oply =g Oyly-bh+> g'-0,1,-al for g= (vii),...,(xi). (3.27)
s=1
In this context, the relevant derivatives of the invariants I, .. (zi) with respect to the spatial metric

g’, the elastic Finger tensor bg and the additional variables ag,___’n are given in Appendix B.5. With
these equations at hand, the proof of the constitutive equation for the Kirchhoff stress in the format
of Eq.(3.27) follows immediately, after some straightforward but tedious algebra

(vit) n
Ogr L(wisy = Z 3agf(m)'a§
s=1
- 9 gﬂ g - g-g"-ag
= 2 ag g f
(vids)
ng I(m“) = — gjj . CZ . ag bli + Z gﬁ uI(’U’LZ’L) . ag
= - gﬂ-cz-a -|-gﬁ c aﬁ
= 0
Opliay = — 2 gﬁ-cz-[a@’j-cg];ym-cb-bﬁ—l—Zgﬂ-aagI(iw)-ag
_ bbb f b i
= — gﬁ-cezca gﬁcajc-ai
b, b, b a.c-a
+ gu-ce- a;-c,-a; +gﬁ c a;-C,-a;
= 0
("I") . b sym h 1Sym # b 1Sym b . pt
Oplay = — g'-ce- [[azgk C] ‘|‘[ Qi j XAk +[aj,k,i'ce]3 ]'ce'be
n
+ Z gu-aagf(m)-as
s=1
= - g-a: [[ag,j’k.cg]gym +laf, e ™+ [“g‘,k,i'cu?m]
+ g-cl-lal, Q™ al v gi ol [af BT ch-af
g -laj; )™ - aj
= 0
(zi)
Oppliziy = — gﬂ'cZ'[[ag,i,i,l'cg]4+2[a§,l,i,z' 7™ + | af @il c"]4]-c2-bg
n
+ Zlgﬁ'aagf(m)'ag
s=
= - gﬂ'cZ'[[a?,i,i,l'CZ]4+2[ag,l,i,z' Z]Sym"‘[ Qi cb]‘l]
b o2]gdlal, el al gt ol @5 -l
= 0

which obviously proves Egs.(3.27, 3.26, 3.15), compare Appendix A.1 for notational details.
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3.3.2 Derivation of the anisotropic tangent operator via invariants

Next, in view of the elastic tangent operator, we stress the relation

et = 4 02 g W

= 4 [bg@gﬂ] : a§g®bg¢6 : [gﬂ®bg]
n JR— JR—

+ 4 Y, [di®g']: 8Zu®bu¢(t) : [g"®b]
s=1 s&he (3.28)
n JR— JR—

+ 4 [bi®g') : 3 v : [ Ba]
i=1 c®ay

+ 4 Y [di®gl]: 8% . [g'®al]

f
sii=1 asQa,

compare Eq.(2.39) and Appendix A.1 for the definition of the non-standard dyadic products. An out-
line with respect to B}, or By is of course identical and thus omitted here. In terms of the derivatives
of the invariants as given in Table 3.1, we obtain in analogy to Eq.(2.45)

(20) €D
el —4 z(;_) 01, 02 o Ig + 4 Z(,) 07, 1,6 OgpIq ® B I . (3.29)
q=\? q,r=(1

Apparently, the proof for the contributions dg Iy ® 9y I is included in the verification of Eq.(3.27).
Hence the remaining task is to show that the relations

Fpogpls = CEAR NPT
n = JE—
+ Zl [ai®g!] : 8¢2ﬁ®b”[‘1 : [g" @bl ]
§= S e
+ tZ:l [be®gﬁ] : abg@)ag.[q : [gn®at]
+ Xn: [aﬂ® 8] . 02 I, : | ﬁ@aﬁ]
A A PO R R
s,t=1 ] t

hold, compare Eq.(2.47). Moreover, the transformations of the second order derivatives 8;1, g Liy,...(v)
are, again, similar to those highlighted in Section 2.3.2.3 and thus not reiterated here. From the list

of remaining contributions due to the invariants (). (#), the second order derivatives of I(,;;) are
highlighted in Appendix B.5 which yield

a;b(g)gb-[('uii) = [bﬁ@gﬁ] : 3§g®bgf(mi) : [Qﬁgbg]
n JR—
+ Zl [a{i@gﬂ] 82”@1;” (vit) [gﬁ®bg]
s= €
+ bi®gl] : 04 T : (99 al
= [ e g] bg®a£ (vit) [g a’t] (331)

[} @4 0% Ty : [9' D af]

_|_
w EM:

0+[ai®g']:[0’Bg +9' 29" : [¢®al]
= ag ® ag + ag ® ag
and verify the transformation relation for 8;,, ®g|,I(m~i) in Eq.(3.28). Although tedious, it is straightfor-

ward to show that the contributions due to 821, ®gl,I (viid),...,(zs) cancel out as one can simply estimate

from Eqs.(B.25,B.26). Nevertheless, the underlying procedure turns out to be quite lengthy and is
thus not reiterated here.
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3.3.3 Thermodynamic forces

In order to abbreviate the notation, we denote the introduced thermodynamic forces within the spa-
tial setting as

yb = — Oy ’(/)8 c S3 : TBt X TBt — ]R,
z = —0uvf €S TB x T'B, > R, (3:32)
h = _an ¢6 € ]Ra

compare Eq.(3.13). Please note that these definitions are of cardinal importance within the proposed
framework of anisotropic multiplicative elasto—plasticity since these stress measures represent the key
ingredients of the inelastic potentials, see Section 3.4. Next, focusing on the intermediate configura-
tion, the thermodynamic forces read

~b

Y = -0y €S :TB, x TB, — R,

=b

Z; = -0z €S T'B, x T"B, - R, (3.33)
h = -0 %) € R.

which represents nothing else but the pull-back of Egs.(3.32) in terms of F¥. Finally, within the ma-
terial setting, i.e. the pull-back of Eqgs.(3.32) in terms of F*, we obtain

Y = —0p ) € S*:TBy x TBy — R,

P
ZIZ’ = — 0y ¢8 c s T*By x T*By — R, (3'34)
h = —0, ¥ € R.

For convenience of the reader, Figure 3.2 monitors the second order tensorial stress measures, their
conjugate variables and in addition, the correlated transformation relations.

3.4 Non—standard dissipative materials

Based on the Coleman—Noll entropy principle, represented in terms of the Clausius—Duhem inequal-
ity (compare Section 3.3 and the outlook on page 144), we adopt in the sequel a Lemaitre—type model
based on the framework of generalised standard dissipative materials as advocated by Halphen and
Nguyen [HN75] *. Following the standard scheme, let an admissible elastic domain be characterised

* Referring to a generalised (simple continuous) standard dissipative material, we take the following relations for
granted: (i) the free Helmholtz energy density is convex in it’s arguments (appropriate strain measure, internal vari-
ables) with the only exception being concave in the temperature field (X ,t), i.e. 95920 < 0 (compare the outlook on
page 144), (ii) the entropy equals the derivative of the free Helmholtz energy density with respect to temperature times
minus one, (iii) the thermodynamic forces are defined via derivatives of the free Helmholtz energy density with respect
to the introduced internal variables times minus one, (iv) the intrinsic dissipation power (greater/equal zero) is iden-
tical to the scalar product of the thermodynamic forces and the rates of the internal variables, (v) the admissible do-
main A is a closed convex set in the space spanned by the thermodynamic forces which initially includes the origin, e.g.
Yi+¢[yh -yl € AtY yli,2 € A* and ¢ € Rg : ¢ < 1 (in this direction see e.g. Hill [Hil00] or Mollica and Srinivasa [MS02]
with special emphasis on anisotropy and e.g. Mréz and Raniecki [MR76] where restrictions for the non-isothermal case
are discussed), (vi) evolution equations are characterised by normality rules which results in ((vii)) the postulate of max-
imal dissipation (positive dissipation within Lemaitre-type models is conveniently guaranteed via dissipation potentials
that are homogeneous of degree one in the thermodynamic forces, up to a positive scalar—valued factor).

By simple continuous media we mean that the response functions of the underlying material depend on the set
{t,, F",0,Grad 6, [e]; X} whereby the notation [e] abbreviates a collection of internal variables as well as additional ar-
guments and, moreover, application of the principle of material objectivity excludes ¢ and ¢ from the above list, see e.g.
Noll [Nol58], Truesdell and Noll [TN92, Sect. 28], Truesdell [Tru77, Sect. IV.3] for a detailed outline or the introduction
and the outlook on page 1 and 144.
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p(X,1)

Figure 3.2: Second order tensorial stress measure, conjugate variables and correlated transformation
relations.

by a scalar—valued yield function Y*®. This potential, with respect to By, is assumed to depend on
the hardening stress h, the thermodynamic force yl’, appropriate metric tensors gl’, g" and additional
arguments afl +1,...,m Which we specify later on. Accepting an additive decomposition we end up with

n—|—1,...,m;

Yie¢t:pla¢t(yl7’gﬂ’gl7’aﬂ X) + hardg(h;X) < 0} ) (335)

a'={(w’h X)

Moreover, by adopting a Lemaitre-type model, a dissipation potential is introduced
Polgt = Yiegt(y? b, g, g’ ab i X)+ 02,659 al i X) (3.36)

which is additively composed by the yield function Y&* and an additional potential i*@* that will ac-
count for an evolution of the tensorial arguments ag,___yn.

Based on these potentials, the setup of appropriate evolution equations is a natural consequence

Lt bﬂe = Dt)\ 8:',[" pOt@t = DtA 8yb pla,dst = DtAgglb
Lia] = DX 0, P00 = DA 9,%e = DA, (3:37)
Dik = DyA 8 P@ = DyA 8P%d = DyA¢,

whereby Eqs.(3.37)1,3 are obviously of associated format and Eq.(3.37), is non-associated.

Similar to the free Helmholtz energy density, these scalar—valued functions (potentials) satisfy the
fundamental covariance relation. In this context, usual pull-back and push—forward operations hold
for the additional set of arguments afl +1,..,m> Damely

=1

Apil,om = fE;* a7ﬂz+1,...,m’ AEH»I,...,m = fh* agz+1,...,m' (3.38)
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Without loss of generality, we assume these tensorial fields to be of second order and symmetric
whereby we will typically choose a rank one property in analogy to the structural tensors aq,.__,n. More-

over, the set ABH_L___,m € [T*Bo x T*Bo |n+1,..,m — R defines the material symmetry group in By of

the plastic potential via
H = {Qh €0’ ‘ Q" A5»+1,...,m = ABH—I,...,m} . (3.39)

Similar to Eq.(3.10), a spatial isometry is now superposed onto the arguments of the covariant inelas-
tic potentials P2@* and i@, i.e.

pla(pt(yb’gﬂ’gbaa'gH-l,...,m;X) = plaqst(qh*yb,qh*gﬂ,qh*g",qn*aiﬂ,...,m;X) v ! 03 (3 40)
q' € .

ibgt(zh  ..g%h g% dl 1 X) = ®ogh 2) . dhgh dhg’ dbal i X)

and ¢, g' = g%, ¢", g° = g" being obvious. With these definitions of scalar—valued isotropic tensor
functions at hand, the representation theorem can be applied in order to construct an appropriate set
of invariants. Table 3.2 summarises the complete list for the plastic potential P!2®, see Appendix A for
notational details. Please note that we have defined the isotropic tensor functions in Eq.(3.40) with
respect to the Eulerian configuration B;. The trace operations within the computation of the invari-
ants are thus computed in terms of the spatial metric tensors g’ and g, respectively. This is in con-
trast to the previous introduction of the free Helmholtz energy density which we set up with respect
to the intermediate configuration. Moreover, the definition of the material symmetry group of the
plastic potential refers to the reference configuration By, Eq.(3.39). The set of invariants due to fib®
is even larger but otherwise similar to that in Table 3.2, since we deal with the complete set zl’ly___,n

instead of only one thermodynamic force 3, and is thus not reiterated here.

Table 3.2: Complete set of invariants pla@(I(i),___,(mi); X)) with respect to By, By, and By for all possible
choices of 7, j, k,l € [1,n] but 7 # [.

~

(i) gty = BV - B':Y’
(i) ¢y-gliy = (B-Y-B:Y - ([BLYBY
@) gty -gPly = [BL-[¥-BIR):Y = [BL(Y.BYY
(tv) yl’:ag = f"’ﬁf = Yl’:Ag
(v) [y -¢'-y'):ad = ¥ -BL-Y'):A = [¥-BLY']: Al
(vi) [y -d-g]:al = (V' A5.0.): A = (Y- AL C): A
(vi) [y -al-y]ial = v ALYAD = (VA YA
(viid) g :d = c. A = c: Al
(iz) g-a-g']:db = [C.-A%.0.): 4] = (- AF.C']: A}
(@) [o-laty @] et = [CL[A) G| Al = [C-[4, 0P| Al
(z4) [9 [a’z,l,l g ]3] ag = [Ci [Ag,l,l C ]3] Xzﬂ = [Cb'[Ag,l,l'Cb] ] -Ag
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Apparently one has different possibilities to correlate the sets ag,___,n and ai +1,...,m Which enter e.g.

gee

the free Helmholtz energy density 1§ and the plastic potential P2®*. We account for three different
options in this work, specifically

(I) ag,...,nna‘EL—i—l,...,m = (b
(”) ag,...,nna’vﬂz—i—l,...,m = a’g,...,t (341)

(i) af _.Nahy m = @i

that is, (i) all arguments ai 11 in the plastic potential are different from those incorporated into

)

¥Y; (i) at least some of these arguments are identical; (iii) all arguments afl +1,..m €dual the tensorial

gee

fields ag’__”n and m = 2n.

3.5 Reduction to isotropy

Now, with the complete framework at hand, we can boil the anisotropic setting down to isotropy in
order to see how the proposed formulation is related to well-established isotropic approaches.

Recall once more that we obtain the well-known Truesdell or rather Murnaghan formula
[mf]" =208, 4§ - bl = —2¢c} - Oy P (3.42)
for ag,___,n = 0 whereby [mh]t = g’ - ! denotes the mixed—variant spatial Mandel stress. Within the

current framework, the symmetric thermodynamic force which enters the plastic potential but not the
equilibrium equations, reads in terms of the Kirchhoff stress as

yb:_ bgdjf):_%gb"rﬂ'cz:—%[mh]t.czzclé.acqu(t).cz, (343)

compare Miehe [Mie98b, Eq.(38)2]. Pausing for a moment, we observe that in the case of metal plas-
ticity where the elastic strains are usually small, i.e. cz — g’, the norms of y* and 7! differ only by
a factor of two. Moreover, the reduced isothermal pointwise dissipation inequality allows the follow-

ing representation

©Dp = [y bE]c [Lebic] = —3[mft o [IhbEc]
= [mf ] (s = [ ] s [0 8] (3.44)
= [mi]t - lE, > 0
whereby hardening contributions have been neglected for the sake of clarity and L; bf, = — 2 [lE) bl pym

is obvious. On this basis, an associated evolution equation is a natural outcome

—$Libl - =Dy Agh- 0 Pdt or 1% =Dy A Gy PP | (3.45)

compare Simo and Miehe [SM92, Eq.(2.19)]. Please note that the crucial relation Opmt)t plagt —
g" - 0,4 P2®" is a direct consequence of the Mandel-type stress tensor [7nb]t being a product of two
symmetric tensors with one always remaining positive definite. Moreover, the spectral representation
theorem [mf]t = ¢" - 7f = Z?Zl [mh]t)\i rign'; ® lefng with [mh]t)\i € R can be applied for this specific
case, compare Ericksen [Eri60, Sect. 37], Eringen [Eri71, Sect. 1.10] or Lodge [Lod74, Sect. 2.8].

Next, applying a pull-back operation to the intermediate configuration, we obtain

b

~h o~ ~b ~b
Y =-0u9=-3C.5 - "G =G0y G (3.46)
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—~ ~b o~
for the considered isotropic setting with [M n]t =C,-S : representing the Mandel stress in B,. Con-
tinuing this strategy, the dissipation inequality (3.44) results in

~ ~ ~b —~ ~
Db = (VG (0E G = M (10E G
— ~b ~f A — ~b ~f -~
= [M'y-& c (LG = [M]-G] - (E &) (3.47)
with LY &” =-2 [EE, . @” [?¥™. The associated evolution equation is consequently given by
~f ~b ~ ~
~3LPGT -G =DA B0y ™00 or Ly —=DiAo . Phar |, (3.48)

see e.g. Lubliner [Lub90, Sect. 8.2.4] and Miehe and Stein [MS92] or Maugin [Mau94] with special
emphasis on the framework of Eshelbian mechanics. In this direction, another pull-back to the refer-
ence configuration yields in analogy to Eqgs.(3.42, 3.46)

Y =gyl =-1C"- 8. Ch=-L[MI]-Ch=Ch 90 4§ C) (3.49)

incorporating the Mandel stress [M h]t = C" - 8!, compare Miehe [Mie98b, Eq.(38)1]. Now, the re-
duced dissipation inequality follows as

redpd  — [Y’-Bi] : [D,BL-C"] = —-i[MY) : [DyBE-CY)]
- [[Mh]t : C;] : [L3-Bivm = [[Mh]t : C;] . [L5- B! (3.50)
= (M) LY > 0
with Dy Bg =-2 [L% . Bg, ]*¥™ and the appropriate associated evolution equation results in
—3DiBL-C, =D A B*- 95 P20° or L = ppp P00 |, (3.51)

see e.g. Ibrahimbegovié¢ [Ibr94, Eq.(47)].

3.6 Relation to Eshelbian mechanics

The driving force within a deformation process of an inhomogeneous or generally inelastic body B is
accurately described by the framework of Eshelbian mechanics, see the recent monographs by Maugin
[Mau93], Silhavy [Sil97] and Gurtin [Gur00]. In this context, e.g., Epstein and Maugin [EM90, EM96]
and Cleja-Tigoiu and Maugin [CTMO00] placed special emphasis on finite elasto—plasticity, see also
references cited in these works.

We focus on the relation between Eshelbian stress tensors and the thermodynamic forces within
the proposed framework for anisotropic plasticity in the following. The significant stress field, e.g. y°
in By, is defined by the derivative of the free Helmholtz energy density 1} with respect to the elastic
Finger tensor. For this reason (in order to incorporate 1), we consider the inverse motion problem
characterised by ®(x,t) whereby the connection

P =det(f) o <= o = det(F7) (3.52)

is of cardinal importance, compare e.g. Steinmann [Ste00, Ste01]. With this relation at hand, we
compute the following useful representation of the elastic inverse motion first Piola—Kirchhoff stress
[wg]t € L3 : T*B; — T*Bp, namely

[mé]t = 0yt = det(F5) 1 cof (f2) + det(£%) 0,3} (3.53)
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with cof(f) = det(f!) [F1]* being obvious, compare Appendix B.1. Moreover, a Piola transforma-
tion with respect to B, yields the intermediate elastic inverse motion Cauchy stress [®1]t - cof (F8) =

[Ei]t € L3 :TB, x T*B, — R, see e.g. Murnaghan [Mur51, Sect. 1.3]. After some straightforward
computations, we obtain

(S5 = det(F3) [l]t - [£2]

= det(F3) YR G+ det(FY) 9,9k - (£

~ n 3.54
= e F) UG + 2 der() (9 Fi 008 0T+ 35 o1 at |- pgi 7

~ = n ~
= det(f}) 95 [G']' 2 det(f}) [ Co- 0408 — X 050 - A7

based on Eq.(3.5), which allows interpretation as one possible Eshelby stress tensor. Please note that
alternative derivatives of appropriate representations of the free Helmholtz energy densities (¢ and
1t) with respect to j’lhD and f " render further formats of Eshelbian stress tensors. One could addition-
ally consider the direct motion problem monitored by ¢(X,t), see e.g. Steinmann [Ste01] for a com-
prehensive survey within a non—dissipative setting.

Next, by summarising terms and from Egs.(3.18, 3.33), we observe

det(F3) [SF) — g (Gt = —[M] -2 3. Z, - A =27 & (3.55)
i=1
together with the remarkable result
~f ~ ~f ~ ~ ~b  ~b =~
¢ 3=3.¢ ad 8.6 =0 (3.56)

b
since Y is symmetric throughout, compare Svendsen [Sve01b] for a similar approach in terms of FE).

Naturally, push—forward and pull-back operations with respect to FE, and fE, can be applied to this
introduced Eshelbian stress measure which result in

. |
[odt = [Fi - (B0 [FY = b - [ol]' =ob - b and [0d' & =¢ - o)

(3.57)
. of
[ZEF = [FEE- (B [FA) = BL . [Si= 3. B and [B' Ch=C) - 3.
Moreover, the isothermal pointwise dissipation inequality in B}, allows representation as
—=h =b &
Dy = [M]:L - 098 :Dfi - ; D41 Y8 [f5.Dsal] — 8,9 Diw
—=fh =h
= (ML~ (008 £ (Do fh- FE
o~b
+ Xz | fiuTeal + 2L [0 al Y™ | 4 B Dk
1=
[ rasbag LN A
= |[M] +2_Zzz"Ai]3L (3.58)

' o D B L
+ | det(FE) [Z - yf G ] Lo+ % 2P A + hDys

ro—Hh noo~h o~ N ~h ~h
= MY+ 2% 2, A + dei(FE) (2] — 451G ] L
| &
[t noo~h o~ ~h LN p %t
+ (M7 +2Y Z, A,.] L.+ > Z:1PA; + hDir > 0
L i=1

S
[
—_
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whereby the relation Dy (f3- F§) =0 = —D; fi- Fi = fi.D, Fi = L\ = L' — I and Eq.(3.54)

have been applied. Thus, based on the common argumentation of rational thermodynamics, the re-
duced format of the dissipation inequality reads

i

I i o =~h noo~b ~f
edpp = [qu [G]" — det(F2) [Z]! ];Lp n 21 Z,: LPA + hDyk
1=
(3.59)
- —2[¥ -G | Ly + > Z: 1P A + hDik > 0,

~
Il
—_

~h o~
compare Egs.(3.55). Apparently the incorporated stress measure Y - Gr'ﬁ turns out to by symmetric
with respect to [é”]t with the Eshelbian stress [Ei]t being likewise symmetric but the Mandel ten-
sor [I\//.\T |* being obviously non-symmetric in general, compare Eq.(3.56). In this context, the non—

symmetric part of ip (with respect to [é“]t) remains undetermined and thus the incorporation of a
plastic spin is superfluous within the proposed framework with respect to B, (when choosing a Carte-
sian setting), compare Svendsen [Sve01lb]. For a general discussion on plastic spin, we refer to Dafalias
[Daf98] and references cited therein. Push—forward and pull-back operations of the isothermal point-
wise dissipation inequality in B}, to the spatial and material setting nevertheless yield

n

DL = 2 [y bE] 1)+ ) 2 :Lia! + hDik > 0,

1=

. (3.60)
©edpd = —2 [Y?.BY): L4 + Y Z2:D, Al + Dk > 0,

=1

with g’ - bg and Y- Bg) being non-symmetric in the general anisotropic case (with respect to [gh]t and
[G?]'). The corresponding associated evolution equations for the hardening variable & and the incor-
porated strain measure, e.g. bg, which leaves the evolution of the plastic spin undetermined are exactly
those which are proposed in the current framework, compare Eqgs.(3.37, 3.23-3.25, 3.44, 3.47, 3.50).

3.7 Numerical time integration

Concerning the integration of the evolution equations within the proposed anisotropic framework, we
consider the usual decomposition into a finite number of time intervals

N
T=|J [, "]. (3.61)

n=0

In order to guarantee incrementally objective integration algorithms within the spatial setting, we ap-
ply pull-back operations of the spatial fields to the reference configuration, then the integration is per-
formed in By and finally, a push—forward of the obtained quantities to the Eulerian setting yields the
demanded variables. The approach allows similar interpretation as the concept of a Lie—derivative.
Without loss of generality, the incorporated contra—variant spatial flow directions are defined by

Fi, Beop PP = Bjyupp POID! = g?.t]b (3.62)
whereby the notations [¢°]” and [e!]’ indicate the thermodynamic forces Y’, Z? and y’, 2, respec-
tively. Moreover, spatial contravariant trial fields are obtained via

n+l gl n[.o]ﬁ — ntlph nglh n[.t]ﬂ — Atph n[.t]ﬂ - trial[.t]ﬁ (3.63)

?

incorporating the abbreviations [¢°]* for B%,Ag and [ef]! characterising b, a’.

;- Based on these spa-
tial fields, we seek a robust and simple integration technique. Since no exponential algorithm is con-

veniently available, due to the non—coaxiality of the trial values and the flow directions, we apply a
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simple Euler backward approach which results in

n+1bg — trialbg + AX n+1§ﬁyb )
ntlgf = wialgl 4 A\l (3.64)
n+1K; — trialh: + A n—|—1£h .

see Section 5.3 and Appendix E.1 for applications of higher order (implicit and explicit) Runge-Kutta
methods.

Within the subsequent numerical examples, a staggered solution technique is applied, that is a
Newton-type algorithm to solve the system (3.64) is embedded into a scalar-valued iteration for the
Lagrange multiplier A\, see Algorithm 3.1 and e.g. Engeln-Miillges and Uhlig [EMU96, Chap. 2 &
6] for a survey on standard procedures to solve non-linear equations. In view of the Newton itera-
tion, we obtain the following residua

plajt _— n—l—lbﬂe _ trialbg — A) n—|—1£:Ililb :
ol = il ol axengl, 59
har,r — n—l—lﬁ _ trialh./ — A) n+1£h
and Jacobians h u
plaujbg = ab”e pla.f , plaujag — 8(1? pla :
fibih fib ¢ fibsh _ lat
i — Tyt 155 1, at 5,1;1, Plap:, (3.66)
harj — ah har,r’

which define a system of linear equations within each iteration step

i plajh plajh plajh

bg ag - agb B Abg T B _ pla,'.ﬁ T
fibsh fibsh fibsh fib
Jlbg Jlaﬁ e ih at Aaﬁ — Tg
o : = : , (3.67)
fibsh fibsh fibsh Aa! _ fibyf
'ln bg 'ln ag e ‘ln aﬁn " "
harj L Ak _ L har,r A

with the notation o denoting the appropriate contraction. It thereby turns out to be convenient to
approximate the Jacobians by a first order difference scheme, see Appendix E.2 and Dennis and Schn-
abel [DS96, Chapts. 4 & 5]. A similar approach is applied within a finite element setting for the spa-
tial algorithmic tangent operator, L; 7% = % algogt . 1, g”, as advocated by Miehe [Mie96b].

Remark 3.3 Apparently, the Euler backward integration scheme does not satisfy the commonly as-
sumed constraint of plastic incompressibility, i.e. det(FE,) = 1 = det(b?) = det(b*). This topic needs
further investigations and interpretations within a general anisotropic setting and is beyond the scope
of this Chapter (see also Remark 6.6). However, a numerical correction (within every iteration step)
is advocated in Sarma and Zacharia [SZ99] which — transmitted to the present framework — yields

ntlpl - det%(”"'lbﬁ) det—%(n—klbg) ntiph 1.

e cor

 For the specific case of a plastic incompressible and isotropic setting we usually deal with inelastic potentials that
b b
are un—affected by the spherical part ¥ g = 9"y =tr(y’) or 9 = 9" : 7' = tr(7%) respectively, see e.g. Remark
b
3.4. Therefore, the contribution ¢ ngl =g bl = tr(b?) is un—determined and can be chosen such that the constraint
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Algorithm 3.1 Staggered solution technique: Newton—type algorithm to solve the set of non-linear
equations in bg, ag,___’n and k embedded into a scalar—valued iteration (e.g. modified regula—falsi
schemes) to compute the Lagrange multiplier A\.

(Finite Element Method)  for given "t'F* do
if Ye@t|, .1 > 0 then
(scalar—valued iteration) dowhile | Y@ (AN)|, 41 > tol
AN =
(Newton—type method) dowhile ||Papt|| 4 ||iPpf|| 4 |Baryr| > tol
ntlpt +Ab s ntlpd
"al L, +Aal_, — ",
ntly + Ak g
enddo
enddo
endif

3.8 Prototype model

In view of the subsequent numerical examples, a specific prototype model is chosen that accounts for
elastic, plastic and deformation induced anisotropy. In order to obtain a manageable setting, we in-
corporate a subset of the complete list of invariants as monitored in Tables 3.1 and 3.2, respectively.

3.8.1 Free Helmholtz energy density

In the sequel, the assumption of an additive decomposition of the free Helmholtz energy density is
adopted which is well-established in the computational mechanics literature and reads with respect

of plastic incompressibility is generally satisfied. In particular we seek f € R as the solution of (ngim = 3)

det (4Bt + fg') — det(b!) =0 with VB =bi — 19T g! and [%VbE+ fg'] s b (t-1)

being obvious, compare e.g. Miehe [Mie95] or Bonet [Bon01]. The fundamental relation
det(d + e) = det(d) + cof®(d) : e+ d : cof'(e) + det(e) V d, e € L?, (1.2)

whereby, e.g., cof(d) = d” —tr(d) d+ 1 [tr’(d) —tr(d”) ] I is always defined and I € S3. denotes the second order identity,
results for the present context in (recall the relations det(f f) = f* det(f) and cof (f f) = 2 cof(f) with f € R, f € L?)

det(d+ ff)—d=0 <<= f>det(f)+ f°d:cof*(f) + fcof'(d): f +[det(d) —d] =0 (+-3)

which apparently is a cubic equation in f. Next, by placing emphasis on Eq.(f.1) we obtain

G5 £ £ Ly [ TG [ = 5 = T = dee) —der(E) (1)
with 9 UL, = g [devbg g - devbg] = tr ([*VBE]?), 9" %L =0 and det(g*) = \/ig € R;. Alternatively, the substi-
tution f = % g"bl I, from Eq.(1.1), yields a cubic equation in tr(b%), namely

L P g 9Tty 8" g, 2 97 [ det(b) — det(VbE)] . (1.5)

Egs.(1.4, 1.5) can be solved either numerically by any appropriate iteration scheme or analytically via Cardan’s formula.
The latter approach is based on the normalised format of cubic equations, say 9% + r9% + s +¢ = 0 with 9 = f or

9 =90 1, respectively, and r = 0 since tr(4Vb#) = 0. Hence, the first (real) solution (the others possibly being conju-

gate complex) to the problem at hand is represented by ¥y = v — 35 with v = Y —% + 4/ % + %.
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to the spatial setting as
) = Bopf(g’, bl X) + 2iyf (g, b, af 5 X) + Mo (3 X)) - (3.68)

Moreover, we only consider two additional arguments in the anisotropic part of the free Helmholtz en-
ergy density, i.e. ag’Q # 0 and ag’___’n = 0. Thus, if a§72\t0 are of rank one, we model an initially or-
thotropic material within the elastic domain.

The isotropic contribution isowé is consequently defined by three basic invariants or, alternatively,
three principal invariants as appearing in the underlying characteristic polynomial, e.g. the determi-
nant,

by bph bph
PRI =g b, PRI, =[g"-bi.g"]:bl, oL = [gb.[bg.gb]2] b,
(3.69)
det(b}) = 1 [29"”513 — 390t Py, 4 9"”51%] ,

compare Appendix B.2. Next, in analogy to the work by Spencer [Spe84] within linear elastic or-
thotropy, we incorporate the following four invariants

bt bt

T = g aﬁp T, = [g°-bl-g']: aﬁ ;

» y (3.70)
Gzl = g ag, vosl, = [gb ' bg 'gb] : ag

into the anisotropic part 4} of the free Helmholtz energy density and additionally consider two fur-
ther invariants

b ot b ot
clio]; =) : al, 2], = ¢ : al) (3.71)
which account for the fact that the structural or rather anisotropy tensors are not constant in Bj,.

In view of the isotropic contribution, we apply a standard Neo—Hooke—type function, namely
; . _ #
g = § [ der @) P = 3] + 4 [4 [ —1] —m(aer'20) | @

as reiterated in Eq.(C.7). The anisotropic part ani?ﬁé of the proposed prototype model reads as

. f #
anlqu -~ |:')’1 [gba1,2[4 — 1] + 7 [gba1,216 — ]_]] [gbngl - 3]
b b b8
+ gl 1P+ g [T T - 1
i #
TRl 112 4 fye [0 el 177
# i
+ v [gba1,2I4 _ 1] [9ba1,216 — 1] (3.73)
i #
+ 78 [ exp( gba1’214 -1) - gba1’2f4]
+ g'af 2. — 1) — g'a} 2],
79 | exp(? 2ls — 1) 2T

+ 5710 c:ag’”l [gbbgh —31%+ 5y Cgagﬂfz [gbbgfl -3
within orthotropic symmetry if ag o have rank one, compare Eq.(3.9). The chosen prototype free
Helmholtz energy density is similar to the approach by Spencer [Spe84] — for two orthogonal fibres
which are not mechanically identical — but additionally enlarged by two exponential contributions and
two further terms that account for 2112 not being constant. Concerning the hardening part ') in
terms of the scalar—valued internal variable x, an additive combination of an exponential saturation—
type and a parabolic function is adopted

haryp, = [Yoo —Yo|[k+ 61_1 exp(—01 k) — (51_1] + %(52 K2 (3.74)

see e.g. Steinmann et al. [SMS96].
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With this model at hand, the corresponding stress fields can be computed. Based on Eq.(3.15),
the isotropic part of the Kirchhoff stress, 7% = °7f 4 anirt from Eq.(3.68), is given by

iso.rt — [g [det(bf) — 1] — € det=/3(bf) fbﬂzl] gt + G det™'/3(bf) b (3.75)

and the anisotropic complement reads
ani gbaﬁ gbaﬂ
T = 2 [ [T 920y — 1] 4y [T 205 — 1]

4 4
+[ 7o Cgal’zh + 711 Cgal’zb] [gbbgfl - 3]] bl
4 ,
+ [ 75[gba1’214—1]+’)’7[gba1’216—1]
g"agz g°bh #
+  ys[exp( 2 —1)—=1]4+m] I1—3]]a1 (3.76)
i , '
+ [ 76 [ ¢ Ig = 1] + 7 [ #4021, — 1]
gba}iz gbbtI i
+ plexp(? 2Ly~ 1) ~ 1]+ [0 — 3] | af
+ 2 ys[702L; —1][bE- g - af ]V

+ 2 74[gb“1’217—1][bg'gb'aﬁ2]3ym] :

Furthermore, the thermodynamic forces can be computed and within this prototype model, Eqgs.(3.68,
3.72-3.74), we obtain for the stress conjugate to the elastic Finger tensor

is0q b — [% [1—det(bl)] + < det™1/3(bf) gbbﬁzl] ¢ — < det™1/3(bE) g’ (3.77)
wy = [71 [1— %L ] 4 yo[1 = P02 Lg] 4 [y “he ]y + 7y U] [3 - 98T, ]] g
+ o [B-7"0]g al-g +ul3-T"N]g ab- g’ (3.78)

byl
+ % [9beI1—3]2[710c2-a§-c2+’711cz-ag-c'é]

with gy’ = 809> 4 anig?  Fyrther straightforward computations render the thermodynamic forces due
to the fields agg that account for anisotropy
bl b ol
Zli,z = [ Y6 [1— 9 2Iy6] +y7 [1—9 %206 4]
bt i
+ s [1—exp(elig —1)] + a3 - 70| g (3.79)
b ol by
+ 13,403 = T N2L5r]g" bf - g — g0 [90N 3] e

and the (proportional) hardening stress results in
h=[Yy—Yx]|[l—exp(—d1 k)] —d2k. (3.80)

Finally, placing emphasis on the implementation of the model within a finite element setting, the com-
putation of the elastic tangent operator is a straightforward exercise. Once more separating into an
isotropic and anisotropic contribution, we end up with

et = [ 28 det Y3(b]) P8I + K det(b) | ¢ @ g*
+ [ & det™!/3(bh) BRI + K1 det(bg)] [9°® 9" +9° @] (3.81)

26 qet™1/3(bl) [b B gt + g O BE],
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anie! = 4 [ Y10 %2 Ty + 1y cgaﬁ,?b] bl ® bl
4 v [bl®al +al @b
4 v, [b! ® @’ + af, @ bf ]

[
[ 75 + 78 exp(¥ UL, — 1)] a} ®a}

+
=~

fl
4 [ Y6 + Yo exp(gbalﬂI()- — 1)] ag ® ag

4 yldl®dl+a)®adl]

(3.82)

16 3[bl-g’-al M@ [bl- g a} ]

16 mu[bl-g ailvme[bl- g af ™

+ o+ o+ + o+

b # — —
2 73[9“1,2I5—1][bﬁ@a'{+bg@a§+a§®bg+a§@bg]

b B _ —
+ 2 q[P%en 1] [bi@al+ bi@al + ai B b+ ab @b ).

3.8.2 Inelastic potentials

In view of the computation of the plastic potential, recall Eq.(3.35), we define the deviator of the
stress conjugate to the elastic Finger tensor via

dev

v =y —ngn v :g'1g (3.83)

with 7gim characterbising the appropriate dimension in space, compare Appendix A.1. The invariants
of the deviator ““¥'9' 1,2,3 are obviously functions of the three basic invariants of y’, say I3y iy, i)
as given in Table 3.2. Thus, we introduce the invariant

devybgﬁj2 _ [devyb ] gﬁ ] devyb] . gﬂ’ (3.84)

in oder to account for Jo—type contributions in the plastic potential, see e.g. Simo [Sim98, Sect. 50]
for an outline on the numerical treatment of (isotropic) Jo—plasticity. Moreover, we incorporate two
additional tensorial arguments of second order, namely ag’ 4, for the construction of the plastic poten-
tial P2@’. Thereby, without loss of generality, rank one properties

f
ag _ Fh* A%Nﬁ ® Fh* AgNﬂ ) azﬂ; — Fh* AﬁNﬂ ® Fh* AiNﬂ , AaNt e U2 T*By — R (3.85)

in the spirit of structural tensors are assumed. A rank three second order tensor aﬂ5 could alterna-
tively be introduced to set up a Hill-type criterion in terms of a fourth order tensor ag(ag;X ) via
Plagt = o0 . ag : *, compare Steinmann et al. [SMS96]. Next, similar to the construction of the pro-
totype free Helmholtz energy density 1§, the following contributions are selected from the complete

list of invariants as monitored in Table 3.2

devybag,41.4 — devylz . ag , devyba‘g,4I5 = [devyb . gﬂ . devyb] : aﬂg ,
deVybagAIﬁ _ devyb . ai ’ de"yl’(z,g,‘lI7 — [devyb . gﬂ . devyb] . azﬂp (386)
bl
9%aJs = [ag-gl’-ai]:gl’.

Based on these ingredients and in analogy to Eq.(3.73), we consider the following prototype plastic
potential

plagt = [t gbagAIS]devybgﬁIQ o devybag’41.4 devybagAI(S ( )
3.87

dev, bl dev, bl dev, bl dev, bl
+2 n Y a3,4I5 + 213 y CL3,4I7 + % N4 Y a3,4[Z + %7’5 Y a3,4]62
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within orthotropic symmetry, compare Eq.(3.39). Please note that the term ey gt 15 represents a

¢,
b f

whereby 9 %.4]g essentially characterises the angle between the fibres F¥, 434 N which define al{j’:,4'

The computation of the corresponding associated flow direction is straightforward and results (for the
three-dimensional setting) in

devyb

b
classical Jo—type plasticity which has been enlarged by the additional contribution ng 7 %34 Iy

£§/b _ 8yb plagt _ 3devyb plagt . ayb devyb

= a0 [ L[ B g +9' 00| - 10" B

b4
2 m +ng 9 %l gt devy’ - gf

dev dev

[ N4 ybag14I4 + 76 ybagAIG] devag (388)

dev dev

’
[ 75 yba3’416+776

4 1p[gh- vy - al v — L[4y’ af] gt

b
y a3,4I4] devai}4

+ + + 4+

4 73 [gﬁ . devyb . alﬁl]sym _ %773 [devyb . ai]gﬁ

with devagA = ag,4 - ngl}n (g : agA]gﬂ being obvious.

The prototype hardening potential, in terms of the hardening stress h(x), as well as the associated
flow direction are rather standard and follow as

Wip L L[V - K2, &= 0nh0 = 2[Yo -, (3.89)

whereby Y{ represents a constant threshold.
Finally, we assume possible prototype, say fibre potentials 1P
sets of invariants

to depend on the following two

zti,?“gﬂh = 25 ai{ ) zl{ﬂag’:’fs = [2- a§ 2] a'{ :

z§,2a§’212 = 2:d}, ZI{:’L’“%#’L; = [2}-d}-2)]: al,
(3.90)

Zbgﬁh _ Zli : gﬂ ’ Z?,zguI?’ _ [zli . gﬂ . zli] : gﬂ ,

25 59! L, = zg . gﬂ , 2 29" I, = [zg . gﬂ . zg] . gﬂ .

These ingredients enable us to construct different types of evolution equations. To be specific, we
chose on the one hand

b b b b b b b b
ﬁb@%x - %n9z1,2a1,2112 + %/,710 21,2“1,2122 + %/,711'31,2‘11,213? + %7712 Z1,2“1,2IZ (391)
which retains the symmetry class of the body B since the corresponding flow directions
b o b f
Eig , = azli 2ﬁbd§%x =19 21’2a1’211,2 a§,2 + 110 21,2"'1,2]374 ag,Z . ZILZ . aq,Q (392)

show identical rank and principal directions as the structural tensors aq,Q, respectively. On the other
hand, the introduction of

. b gl b gl b g b ot

ﬁb@éha = %779‘7‘1’29 112 + %7710 #1,29 I22 + %nuzl’?g Ig + %7712 #1,29 IZ (3.93)

results in a change of the underlying symmetry class of the material, defined by g, since the corre-
sponding flow directions

b b ot

Ei'{ , = az'i 2ﬁb¢(t:ha = 19 21,29 11’2 gﬂ + 110 21,29 13,4 gﬁ . zli,Q . gﬂ (394)

are of rank three and thus do not preserve the rank one property of the initial anisotropy tensors

ag’z lt, (compare Section 5.2 for a detailed discussion in this regard with application to continuum

damage mechanics where we additionally comment on the positive dissipation contribution of the cho-

sen prototype model).
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Remark 3.4 For comparative reasons, assume a Jo, or rather a v. Mises—type, plasticity in terms of
y® or 7!, respectively, within an isotropic setting, ag,___’n = 0. The appropriate yield functions and the
associated evolution equations follow immediately as

viegt, = “ygirl/2 f[YO_
ylz

. devyp g 12
g, = VILPgdey gt — Lkt = DA €,
(3.95)
. bdev —
&, = g TuIzl/QQb'deVTﬂ'gb = Lib, = -2 D g€,

with 4Vt = 'rﬂ — ny; [g 'rﬁ 1 g* bemg obv1ous compare Eqs.(3.37, 3.45),. Since the mixed—variant
tensor fields g° be, ce gﬂ, v -gt, g’ Tt g {?j,, and §|’T -g' commute for this specific case, we observe

from Eqs.(3.95) that the evolution equation for L;bf due to y* or 7! have identical principal direc-
tions and sign (recall that y® and ! have different signs and bg always being positive definite). More-
over, in the case of metal plasticity with bg — g" and c'g — g’ both representations of associated v.
Mises—type evolution equations in Eqs.(3.37, 3.45)1 differ only by a scalar factor.

As previously mentioned, we have several options to relate the fields ag, 4, Which enter the plastic
potential P2@*, to the anisotropy tensors aqg defining the functions 1§ and i’®!, compare Egs.(3.41).
In this context, single invariants in terms of agA determining P'2®* could be replaced by the corre-

lated invariants due to ab or the complete set could even be substituted. Within the subsequent nu-
merical examples, we account for four representative options

dev,b
(0) case a: plagt  —  plag! ( "I I, X)
. dev dev b ﬂ b fl
(i) caseb: plagt  —  plag! ( v, 3aly 7,9 a3’4I8;X)
(if) case c: plagt = plagt ( Y, devybau A P gbaﬁﬂfs; X)
(3.96)
ﬁb@%X = ﬁbqst ( 21, 2a1 21 4 X)
dev l> dev b ﬂ #
(iii) cased: plagt = plag! ( ‘ 120y 7,9 al,QIg;X)
fibggt  _ fibgt [z
Pha = Pn ( 120" I, 45 )

with respect to Eq.(3.95) for case a and Eqgs.(3.87, 3.91, 3.93) concerning cases b—d. In particular,

case a accounts for isotropic v. Mises—type plasticity. Within cases b—d, orthotropic elasticity defined

via a%jz and orthotropic plasticity characterised by aiﬂ’),ﬁl are incorporated. For case b, all structural

tensors are assumed to remain constant in By but a§,2 #* ag’ 4- On top of that, case ¢ accounts for an
evolution of aq,Q which retains the material symmetry group of the body B. Finally, within case d,

we set ag, 4= ag,Q and incorporate evolution equations for aq,Q which result in a change of the under-
lying symmetry group of the material.

3.9 Numerical examples

The following numerical examples account for the four different combinations of the coupling due to
the elastic and inelastic properties of the considered material as summarised in Eqs.(3.96). Thereby,
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the set of material parameter has been chosen as

K = 164.28, G = 80.23, Yy = 0.45, Yoo = 0.715,

5 = 16.93, §, = 0.01, a = 2YZ,

4! = 10 ’ V2 = 15 ’ it = Oé/6 ’ 2 = C‘é/lo )

V3 = 20 3 Y4 = 25 3 n3 = a/S 3 N4 = 05/2() y (397)
5 = 30 ) Y6 = 35 3 75 = 04/16 ) Tle = 04/10 )

Y7 = 10 3 Y8 = 10 3 nr = 05/10 ) 8 = Oé/20 )

v = 15, y10 = 10, n = af10%, mo = a/10%,

1 = 15, m = af/10%, me = a/10%,

similar to the work by Steinmann et al. [SMS96]. Moreover, the incorporated initial fibre—orientations
read with respect to a Cartesian frame as

Ao N = [+2e1+1ey+0e3]/V5, Ao N = [+1e1+2ey+ 1es]/V6,

(3.98)
Alo N = [—1le;+2es+ 1es]/V6, Adlo N = [4+2e; —1ley+0e3]/V5,

with [4tlto Nt . A2lto N = [4slto N]t . 44lto N' = 0 and || A1, 4|, = 1 being obvious.

3.9.1 Simple shear

To set the stage, we discuss in the sequel the homogeneous deformation in simple shear, i.e. F =
I +ye; ®e? with respect to a Cartesian frame whereby I = (Fij e; ® e/ denotes the second order iden-
tity tensor and <y the shear number, respectively. The loading behaviour for v € [0 — 1] is discussed
in particular and on top of that we consider unloading/reloading with respect to the deformation his-
toryye[0—1,1—0].

Case a: For comparison reasons, let the body B transform isotropic elasto—plastic, i.e. v. Mises—
type plasticity and no structural tensors are incorporated. For this setting, Figure 3.3 monitors the
deviatoric norm of the Kirchhoff stress || 97| and the appropriate thermodynamic force || 4¢Vg/||
over the shear number . Furthermore, stress components of interest are highlighted with respect
to a Cartesian frame, 79 = €’ - 7% . €7 and Yij = €; - Y- ej, respectively. In addition, the unload-
ing/reloading behaviour is visualised in Figure 3.4.
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Figure 3.3: Simple shear, case a: Deviatoric norm and components of the Kirchhoff stress || V¥,
712, 722 (left) and deviatoric norm and components of the thermodynamic force || Vy”||, — 319, — 122
(right).
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Figure 3.4: Simple shear, case a, unloading/reloading: Deviatoric norm and components of the Kirch-
hoff stress || 4¢V7t||, 712, 722 (left) and deviatoric norm and components of the thermodynamic force

| 4Vy|l, — y12, — y2o (right).

Case b: Next, with four different structural tensors at hand which enter the free Helmholtz energy
density and the inelastic potentials, compare Eqs.(3.98), we apparently obtain a rather different re-
sponse of the Kirchhoff stress 7! and the introduced thermodynamic force 4 as visualised in Figure
3.5. Moreover, the anisotropy measure J(bg,Tﬂ) is not equal to zero due to the incorporated struc-
tural tensors which are assumed to be constant with respect to By, see Figure 3.6 and Appendix D.1
for the definition of the anisotropy measure. The unloading/reloading behaviour is monitored in Fig-
ures 3.7 and 3.8.
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Figure 3.5: Simple shear, case b: Deviatoric norm and components of the Kirchhoff stress || de"TﬁH,
712 722 (left) and deviatoric norm and components of the thermodynamic force || ¥y’ ||, — y12, — o2

(right).

Case c: Now, we additionally account for an evolution of the structural tensors ag,z which nev-
ertheless, does not change the material symmetry of the body B of interest. Figure 3.9 reflects the
character of the Kirchhoff stress and the thermodynamic force whereby, once more, the saturation ef-
fect of the non-linear hardening model is clearly seen in the plot of y°. The anisotropy measure due
to strain and stress as well as the evolution of the norm of the structural tensors A§’2 are addition-
ally shown in Figure 3.10. In analogy to case b, the response under unloading/reloading is monitored
in Figures 3.11 and 3.12.

Case d: Finally, the anisotropy tensors in the free Helmholtz energy density and in the plastic po-
tential are assumed to coincide. The corresponding operation of the relevant stress fields are moni-
tored in Figure 3.13. Beside this, the incorporated evolution equation of the anisotropy tensors re-
sults in a change of the underlying material symmetry group. In other words, the actual anisotropy
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Figure 3.6: Simple shear, case b: Anisotropy measure d(bf, ) (left) and norm of the structural ten-
sors || A3, [l 43| (right).
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Figure 3.7: Simple shear, case b, unloading/reloading: Deviatoric norm and components of the Kirch-
hoff stress || V7|, 712, 722 (left) and deviatoric norm and components of the thermodynamic force

| 4Vy|l, — y12, — y2o (right).
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Figure 3.8: Simple shear, case b, unloading/reloading: Anisotropy measure §(bf, ) (left) and norm
of the structural tensors ||An1||, ||Aﬂ2|| (right).
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Figure 3.10: Simple shear, case ¢: Anisotropy measure §(b%, 7#) (left) and norm of the structural ten-
sors || A}, [[A3]] (right).
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Figure 3.12: Simple shear, case c, unloading/reloading: Anisotropy measure §(b%, 7#) (left) and norm
of the structural tensors || A%||, | A%|| (right).

tensors Ah are not coaxial to the initial structural tensors Ah\to. Thus, in addition to §(b, 7F),

we can compute a non—vanishing anisotropy measure § (Ang, A§,2|t0), see Figure 3.14. Lastly, Figures
3.15 and 3.16 summarise the unloading/reloading behaviour.
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Figure 3.13: Simple shear, case d: Deviatoric norm and components of the Kirchhoff stress || V¥,
712, 722 (left) and deviatoric norm and components of the thermodynamic force || €Vy”||, — 312, — 122
(right).

Please note that the amount of single stress components or appropriate norms of the stress tensors
strongly depend on the considered model, here case a—d. This effect is apparently due to the increase in
stiffness of the anisotropic material when additional fibre orientations and evolutions are incorporated.

3.9.2 Strip with a hole

As a typical boundary value problem, we consider an initially symmetric strip with a hole of dimen-
sions 120 x 40 x 5 (length x width x height) whereby the radius of the drilled hole is 10. To solve
this problem numerically, the finite element method is adopted, see e.g. Oden [Ode72]. Thereby, the
chosen discretisation of the geometry of the specimen is performed by 32 x 8 x 4 enhanced eight node
bricks (Q1E9) as advocated by Simo and Armero [SA92]. Usual Dirichlet boundary conditions are ap-
plied, namely one end of the strip is completely clamped, say u? = 0 at X - e; = 0 with respect to a
Cartesian frame, while the other end is stretched in longitudinal direction, u? = uP e; at X -e; = 120.

Case a: We once more consider the isotropic v. Mises—type, or rather Jo—type, setting for compar-
ison reasons. Figure 3.17 highlights the undeformed initial geometry and the deformed configuration
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Figure 3.14: Simple shear, case d: Anisotropy measure d(bf, 7t), 5(A§, Ag\to), 5(Ag,Ag|t0) (left) and
norm of the anisotropy tensors ||A§||, ||Ag|| (right).
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at a longitudinal stretch A = 1.2 =1 + 4?/120. Due to the applied boundary conditions and the lack
of anisotropy, we observe a completely symmetric response of the specimen, see the plots of a longi-
tudinal section in Figure 3.18. Moreover, the typical necking effect is clearly monitored by the cor-
responding load—displacement curve as given in Figure 3.20. In addition, Figures 3.20 and 3.21 visu-
alise the dispositions of || 4¢Vr¥||, |[4¢vy®|| and k, respectively. As an interesting side aspect, we exam-
ine that ||9V7¥|| and ||9¢Vy’|| are related by a factor of about two since the elastic strains are almost
small; compare Section 3.5.

Figure 3.17: Strip with a hole, case a: Deformed configuration at a longitudinal stretch A = 1.2 and
initial undeformed geometry.

Case b: Now, within an anisotropic setting and constant structural tensors in By, the deformed
configuration generally features a non—-symmetric response under symmetric loading and boundary
conditions. This effect is clearly shown in Figure 3.22 with respect to a longitudinal stretch A = 1.2.
Thereby, a sharp “out—off-plane” deformation is recognised, see Figure 3.23. The corresponding load—
displacement curve monitors a weaker necking compared to the overall isotropic case and is given in
Figure 3.24. Furthermore, Figure 3.25 visualises the contributions of ||4¢V74|| and ||9¢Vy’|| which are
obviously not related by the factor two. In addition to the proportional hardening variable k, the now
non-vanishing anisotropy measure §(b%, 7¥) is monitored in Figure 3.26.

Case c: This anisotropic case incorporates an evolution of the structural tensors aﬁ o which retains
the material symmetry group. Figures 3.27-3.31 highlight the deformed conﬁguratio,n at A =1.2, a
cut through the specimen, the underlying load-displacement curve, ||4¢V74||, ||9¢Vy||, x and §(bE, 7).
In addition, Figure 3.32 monitors the evolution of the norm of the structural tensors Agg. Remark-
ably, we observe a strong decrease and increase which allow interpretation as damage and hardening
effects, respectively.

Case d: Finally, we account for an evolution of the anisotropy tensors which results in a change of
the initial material symmetry group. Figures 3.33-3.38 are in analogy to the presentation of the pre-
vious cases a—c. Supplementary, Figure 3.39 highlights the anisotropy measure § (Aﬁm, A§,2|t0) which
apparently differs from zero as soon as an inelastic deformation takes place.
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Figure 3.20: Strip with a hole, case a: Norm of the deviatoric Kirchhoff stress ||4°V7*|| (left) and of

the proposed thermodynamic force ||4¢Vy’|| (right).
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Figure 3.22: Strip with a hole, case b: Deformed configuration at a longitudinal stretch A = 1.2 and

initial undeformed geometry.
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Figure 3.23: Strip with a hole, case b: Different views on a longitudinal section of the
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Figure 3.24: Strip with a hole, case b:

4.0000E+01
3.6000E+01
3.2000E+01
2.8000E+01 X v
2.4000E+01
2.0000E+01
1.6000E+01
1.2000E+01
8.0000E+00
4.0000E+00

6 12
[[w?]|

18

3.0000E+00
2.8333E+00
2.6667E+00
2.5000E+00
2.3333E+00
2.1667E+00
2.0000E+00
1.8333E+00
1.6667E+00
1.5000E+00

24

specimen.

Load—displacement curve (longitudinal).

Figure 3.25: Strip with a hole, case b: Norm of the deviatoric Kirchhoff stress ||4°V7|| (left) and of
the proposed thermodynamic force ||4€Vy’|| (right).
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Figure 3.26: Strip with a hole, case b: Hardening variable  (left) and anisotropy measure §(bf, 7¥)

(right).

Figure 3.27: Strip with a hole, case c: Deformed configuration at a longitudinal stretch A = 1.2 and

initial undeformed geometry.
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Figure 3.28: Strip with a hole, case c: Different views on a longitudinal section of the specimen.
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Figure 3.29: Strip with a hole, case ¢: Load—displacement curve (longitudinal).

It is clearly seen from the load—displacement curves in Figures 3.19, 3.24, 3.29 and 3.35 that the
force level in the longitudinal direction F; for given prescribed displacements u? strongly depends on
the considered model, here case a—d. This effect is obviously due to the type of incorporated fibres
and the correlated increase of stiffness of the material.

Lastly, note that the Jacobians within the solution of the local ordinary differential evolution equa-
tions and the global finite element setting have been approximated numerically, recall Section 3.7.
Thus, we should spend some words on the convergence of the performed examples. In this context, the
machine precision was set to 16 digits and a perturbation parameter € = 10~ has been adopted, see
Appendix E.2 for a reminder on the numerical approximation technique of Jacobians. In this context,
Table 3.3 highlights the quadratic convergence for an elastic and an inelastic setting. Thereby, we ob-
serve almost identical performances within the elastic range when applying the exact or numerically
approximated tangent operator. Moreover, the convergence behaviour for the isotropic v. Mises—type
case a is monitored. In the same direction, Table 3.4 highlights typical convergence properties within
the inelastic anisotropic cases b—d. Obviously, the overall property for all these examples is monitored
by quadratic rates of convergence.
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3.9. Numerical examples

Figure 3.30: Strip with a hole, case c: Norm of the deviatoric Kirchhoff stress ||9¢Vr#|| (left) and of

the proposed thermodynamic force || 4¢Vy’|| (right).

Figure 3.31: Strip with a hole, case ¢: Hardening variable & (left) and anisotropy measure &(bf, %)
(right).

0///

Figure 3.32: Strip with a hole, case ¢: Norm of the first structural tensor ||A§ || (left) and Norm of the

second structural tensor ||Ag|| (right).
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Figure 3.33: Strip with a hole, case d: Deformed configuration at a longitudinal stretch A = 1.2 and

initial undeformed geometry.

Figure 3.34: Strip with a hole, case d: Different views on a longitudinal section of the specimen.
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Figure 3.35: Strip with a hole, case d: Load—displacement curve (longitudinal).
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Figure 3.36: Strip with a hole, case d: Norm of the deviatoric Kirchhoff stress ||4¢V7#|| (left) and of

the proposed thermodynamic force ||9¢Vy|| (right).

Figure 3.37: Strip with a hole, case d: Hardening variable « (left) and anisotropy measure §(bf, %)
(right).
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Figure 3.38: Strip with a hole, case d: Norm of the first structural tensor ||Al:jl || (left) and Norm of the

second structural tensor ||Aﬂ2|| (right).
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Figure 3.39: Strip with a hole, case d: Anisotropy measure 0 (Ali , A§|t0) (left) and anisotropy measure

5(A%, Abl;,) (right).
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Table 3.3: Strip with a hole: Residual norm. Elastic range: Cases b—d, load step u? € [0,48] with ex-
act tangent operator (left) and numerically approximated tangent operator (middle). Inelastic range:
Case a, load step u” € [0, 2] with numerically approximated tangent operator (right).

cases b—d: Yy — oo cases b-d: Yy — o0 case a: Yy = 0.45
exact: uP € [0,48] numer.: u? € [0,48] numer.: u? € [0,2]
no. R no. IR no. R
1] 3.21994 E + 02 11321994 E+02 1| 1.34164 FE +01
2| 221262 E+05 2 | 221262 E +05 2 | 4.55349 FE + 02
3| 7.56261 E 404 3 | 7.56261 FE +04 3| 1.23884 E +02
4 | 245944 FE +04 4 | 2.45944 FE + 04 4 | 7.07282 FE+01
5| 7.17088 E +03 5| 717089 E 403 5| 1.83575 E +01
6 | 1.46425 FE + 03 6 | 1.46425 FE + 03 6 | 1.13941 E +01
7| 2.64768 FE + 02 7| 2.64768 E + 02 7 | 8.83643 FE + 00
8 | 4.37246 FE + 01 8 | 4.37247 FE +01 8 | 6.03734 FE + 00
9 | 1.75701 E +00 9 | 1.75702 FE +00 9| 3.76384 FE + 00
10 | 2.50026 FE — 03 10 | 2.50030 E —03 10 | 5.64753 FE — 02
11 | 5.94743 FE — 09 11 | 5.93833 FE —09 11 | 5.06373 FE — 05
12 | 3.00627 FE — 10

Table 3.4: Strip with a hole: Residual norm. Inelastic range: Case b, load step u? € [0,4] (left); case
¢, load step uP € [0,4] (middle); case d, load step u? € [0,2] (right) — all of them based on numeri-
cally approximated tangent operators.

case b: Yy = 0.45 case c: Yy = 0.45 case d: Yy = 0.45

numer.: uP € [0,4] numer.: uP € [0,4] numer.: u? € [0,2]

no. IR no. IRl no. IIR||
1]2.68328 FE +01 1]2.68328 FE +01 1]2.01246 E +01
215.98994 FE + 02 215.66343 FE + 02 21295349 FE + 02
313.47484 E + 02 313.59314 E + 02 3(1.71933 E + 02
415.27901 FE +01 414.71192 E +01 4| 1.620656 FE + 02
511.11731 E +01 511.37008 FE +01 511.13449 FE + 01
6229268 FE —01 6(1.28591 FE —01 6 | 8.86933 FE —01
711.03728 E —03 71746116 FE —04 71120462 E — 02
8 17.35647 E — 09 819.85912 FE —10 8 12.63357 E — 06

911.80916 FE —10







Chapter 4

Anisotropic hyper—elasticity based on a
fictitious configuration

ngefidt3 der Vollftdndigleit meiner analptifhen Ergebnif-
fe Blieb miv nidyt8 iibrig, al8 dem Deifpiel jener For-
fyer su folgen, welde fo glii€lidy find, die unfhdgbaren
- wenn qudy verfilimmelten Refte ded Altertums aus lon-
ger Begrabenbeit an den Tag su bringen.

Siegmund Freud [1856 — 1939]

Within the setting of geometrically non-linear continuum mechanics, the incorporation of structural
tensors into the free Helmholtz energy density is one common strategy to model anisotropic materi-
als, see the previous Chapters 2 and 3. Here we highlight an alternative approach based on an ad-
ditional, fictitious configuration which is related to the standard reference configuration via a linear
tangent map. Anisotropy comes into the picture if this mapping is non—spherical. Consequently, we
deal with a reduced, but physically motivated set of invariants in terms of pre—specified combinations
of the invariants of the structural tensor approach. Without loss of generality, this formulation holds
for elastic and inelastic processes. Nevertheless, in order to clarify concepts, we place emphasis on the
case of hyper—elasticity in this Chapter and focus on continuum damage mechanics and the coupling
to multiplicative elasto—plasticity in the subsequent Chapters 5 and 6.

The Chapter is organised as follows: As the key issue of this Chapter, Section 4.1 presents the
kinematical framework of anisotropic hyper—elasticity based on a fictitious, isotropic configuration.
The relations between this formulation and the classical structural tensor approach are highlighted
in Section 4.2. Specifically, we compare the invariants implied by the fictitious configuration concept
for various cases of anisotropy with the invariants that are obtained by the introduction of structural
tensors. Finally, numerical examples within the homogeneous deformation in simple shear and a gen-
eral finite element setting are highlighted in Section 4.3 which underline the practicability of the pro-
posed framework.

4.1 The concept of a fictitious configuration

The proposed concept of a fictitious isotropic configuration allows the interpretation as a multiplica-
tive composition of the standard deformation gradient and an attached additional anisotropy map.
The principle of strain energy equivalence (or rather the fundamental covariance relation) — well known
in continuum damage mechanics, see e.g. Sidoroff [Sid81], Betten [Bet82b] and Murakami [Mur88] —
renders two sets of invariants with respect to either the fictitious isotropic configuration or the un-
deformed anisotropic reference configuration. Based on these sets, stress—strain relations within the
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hyper—elastic context are obtained. Obviously, anisotropy is incorporated as soon as the fictitious map
is non—spherical. In particular, the specific form of the anisotropy map affects the type of material
symmetry and it turns out that a reduced formulation of orthotropy is obtained.

4.1.1 Kinematics of the fictitious configuration

In addition to the Lagrangian (Bp) and the Eulerian setting (5:), we introduce a fictitious isotropic
configuration (B) with natural tangent space T'B and corresponding co-tangent or rather dual space
T*B (and naturally identify 7**B = TB). In analogy to the intermediate configuration within the
multiplicative decomposition of elasto—plasticity, the fictitious configuration is generally incompati-
ble. Mathematically speaking, we deal with a non-Euclidian space, i.e. the underlying metric tensors
determine a non—vanishing Riemann—Christoffel tensor and the conditions of compatibility are gener-
ally not fulfilled. The corresponding non-singular direct fictitious linear tangent map, which trans-
forms fictitious tangent vectors into material tangent vectors in reference to curves in By, is denoted

by P € Li : TB — TBy and takes the interpretation of a non-holonomic Pfaffian, see e.g. Haupt
[Hau00, Sect. 1.10] or Eringen [Eri71, Chap. 4]. For the proposed multiplicative composition, F* al-
lows interpretation as pre-deformation. Figure 4.1 gives a symbolic graphical representation of the
multiplicative composition of the linear tangent maps F" and F".

P(X,1)

Figure 4.1: Non-linear point map ¢ and linear tangent maps F" and F*.

Accordingly, we introduce the convected base vectors in the fictitious configuration, which are not
derivable from position vectors but are rather defined by the linear map Fh,

GieR:T"B5R and G €R:TB-R. (4.1)
Then, similar to Egs.(2.2), the corresponding metric tensors of the fictitious configuration follow as
usual L, S ~ _ ~ o
G = GijGZ(X)G]ESi:TB x TB — R, Gij = Gi-Gj, (42)
& = GiGieG eS TBxTB + R, G = &.¢
and, in analogy to Eq.(2.3), the appropriate mixed—variant identity is obtained as
G=GoG cl? : T"BxTB—R. (4.3)

Therefore, the linear tangent or rather anisotropy map of the direct and the inverse fictitious map-
ping respectively read

Fh:G’i@G’ie]Li:TB—)TBO and }h:c‘:i®GieLi:TBo—>TB . (4.4)
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Consequently, four different symmetric kinematic tensor in the fictitious configuration are a natural
outcome (compare Egs.(2.6) and footnote x* on page 27)

C = F*C’ = [F'.C"F' = g¢; GoeG €S :TB x TB — R,
B" = f.,B = B[ = g7 oG, S} TB x T"B - R, ws)
C, = F*G@ = [F'" & - F = G; GG ¢S} :TB x TB — R,
Bl = "¢ = P& ' = ¢ ;oGS : T*B x T'B - R,

with B* = detfl(éb) cof((_Z'b) and Bg = detfl(él(’)) cof((_Z'l(’)) being obvious, see Appendix A for nota-
tional details. Now, among several possible strain measures as highlighted in Eqs.(2.7, 2.8), we apply
similar to the standard Green-Lagrange strain tensor E’ a fictitious strain metric tensor in the se-
quel, which is introduced as

E-F"B-F' B F=14-6;]GeG S : TBxTB-R | (4.6)

Remark 4.1 For conceptual simplicity, we restrict ourselves in this Chapter to the composition F* P
and the introduction of a Lagrangian fictitious configuration which is related to the material setting.
Alternatively, one could account for an additional Eulerian fictitious configuration that allows inter-
pretation as an intermediate configuration with respect to the Lagrangian fictitious configuration and
the spatial setting, compare Chapter 6 in the context of Continuum damage mechanics coupled to
multiplicative elasto—plasticity.

4.1.2 Energy metric tensors

Next, for the computation of the scalar—valued free Helmholtz energy density 1)y, we introduce the
contra—variant energy metric tensors A" and A* in addition to the co variant strain metric tensors

E’ and E’
Aﬂ :Aijéi@)éj ES?}_: T*B_XT*B—)]R, Al :AijG,‘®Gj ESi :T*By x T*By — R. (4.7)

Thereby, we set

F'oA = F A [P =AY — A = AV = const | (4.8)

Note that constant coefficients of the energy metric tensor are assumed since we deal with a non—
dissipative material in this Chapter and furthermore that A* is supposed to substitute the contra—
variant metric tensor G* in the definition of the free Helmholtz energy density. As the underlying
idea of the proposed formulation, the fictitious configuration is isotropic and thus the fictitious energy
metric tensor has to be spherical. We therefore set

Al = & (4.9)

throughout this contribution. Consequently, F may be interpreted as a pre-deformation of a ficti-
tious isotropic hyper—elastic material. Finally, the scalar—valued free Helmholtz energy density is re-
stricted to remain invariant under a superposed diffeomorphism (covariance), which is represented
here by the linear tangent map Fh, and we consequently obtain

Po(E’, A% X) = Q(E’, A% X) (4.10)

which is established as the principle of strain energy equivalence in the context of continuum damage
mechanics, see e.g. Sidoroff [Sid81] .

1 Following the outline in Section 2.2, the free Helmholtz energy density allows representation as

Yo =o(g’, F' - F*, A" = @', X) € R. (1.1)
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To underline the nature of the proposed framework, we now stress that Eq.(4.10) includes all as-
sumptions of the material modelling. Nevertheless we clearly deal with a reduced representation of
anisotropy which is highlighted in Section 4.2. As an advantage, note that besides the introduction of
the fictitious configuration, no further assumptions or additional material parameters have to be in-
cluded since standard isotropic free energy functions can be applied to model anisotropic behaviour.
Of course isotropy is included for Al = By G, By € Ry and anisotropy enters the formulation if Al is
a non—spherical tensor.

4.1.3 Hyper—elasticity

Since TB, T*B refer to a fictitious isotropic configuration, a set of merely three basic invariants
B A I 2.3 defined in terms of the fictitious strain and energy metric tensors E’ and A" is given as

BAL G B - A (4.11)

with ¢ = 1, 2,3, compare Table 3.1 and Appendix B.2. Next, the set of invariants EbAuILQ,g with re-

spect to the anisotropic reference configuration By is obtained by expressing E’ and A% in terms of
E’ and A! via a pull-back operation determined by F" as defined via Egs.(4.6, 4.8). Then, straight-
forward calculations result in the following set of basic invariants in By (i = 1,2, 3)

BAL -Gl B A (4.12)
The relations #°4* I, = B A I; obviously hold and moreover, the hyper—elastic constitutive law for the
second Piola-Kirchhoff stress tensor S¥ = Oty is now expressed as

St = Opoary, YO A* + 205 4 YG[AF- E - A"+ 30 aty, Y0 (AP E° - AP B AF) |, (4.13)

obeying the identical structure of an isotropic setting. Next, the correlated tangent operator Ef =

812?,,®E,, 1/18 € $33 . T*ByxT*ByxT*ByxT*By — Rresults in (see Appendix A.1 for notational details)

E = 9 Py Al Af

EbAl I EbAﬁII

+ 482E|’AuIZEI’Aﬁ[2¢8 [AﬂEbAﬁ](g[AﬁEbAﬂ]

+ 9 aQEIWiI3El’AﬁIg,¢8 [Aﬂ'Eb'Aﬁ'Eb'Aﬁ](X’[Aﬂ'Eb-Aﬂ-Eb-Au]

+ 4 oy, ¥ :Aﬁ(g,[Aﬁ.Eb.Aﬂ]]SYM
+ 12 82EbAu12EbAu13¢8 :[Au'Eb'Aﬂ]®[Aﬂ-Eb-Aﬂ.El’.Aﬂ]]SYM (4.14)
+ 6 BQE"AﬁIIEbAﬁ13¢8 :Au®[Au-Eb-Aﬂ-E|’.Au]]SYM

T 0 poat 1, Y0 [AFR A+ AF @ AF]

+ 3 aEl,Aﬁjsipg [Aﬁ@[Aﬁ,Eb.Aﬂ]_i_Au@[Aﬂ.Eb.Aﬂ]]SYM

A transformation of the arguments to B together with the fundamental covariance relation yields
Yo =o(F F g, f FLIFF FF L AN X) = o(CF, A5 X) = o(B', 4% X) (+2)

whereby ff. }'h* [F* . Fh] = G" is redundant and the replacement E e being obvious. Naturally, we can apply
push—forward operations to obtain representations of the free Helmholtz energy density in Bo and By, respectively, namely

Yo = Yo(B’, AN X) = o(FUELFLALX) = ¢3(E, A% X),

3
YO(f B Fi AL X) = gf(e’,af; X) 9
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which is apparently similar to an isotropic setting and relatively concise compared to the Hessian
based on structural tensors in Egs.(2.52-2.54). It is obvious that the general formulation in terms
of structural tensors ends up in enormous analytical and numerical costs. In contrast, the approach
based on a fictitious configuration is much cheaper. Actually, the computational effort is in the same
range as that for standard isotropy.

Remark 4.2 Usually, isotropic hyper—elasticity is formulated in terms of the three principal invari-
ants @' Ji23 of the right Cauchy-Green tensor C® (or alternatively in terms of the Finger tensor
bﬂ) instead of the basic invariants E*¢* I, 5 3 determined by the Green-Lagrange tensor, compare Ap-
pendix B. Selecting the principal invariants ¥ GH J1,2,3 with respect to the strain metric tensor E’ ren-
ders contributions that include the inverse [EI’]_1 when the stress tensor S* and the corresponding
Hessian E* are computed. Since [E’] "' might not be defined, especially for the undeformed state (or
any other deformation that results in a strain measure of improper rank), one has to re—express the
inverse strain metric tensor via the Cayley—Hamilton theorem to end up with a singularity—free for-
mulation, compare Appendices B.1, B.2 and footnote 1 on page 60. We alternatively invoke the ba-
sic invariants here — as given in Eq.(4.12) — defined by the strain metric tensor because the fictitious
configuration is directly based on the concept of strain energy equivalence and these invariants turn
out to be conveniently applicable.

4.2 Relations between structural tensors and the fictitious configu-
ration

The main goal of this section is to highlight the relations between the two frameworks based on ei-
ther structural tensors or on the advocated fictitious configuration, respectively. Therefore, one has
to compare the arguments of the free Helmholtz energy functions, i.e. the corresponding sets of in-

variants. Conceptually speaking, the task is to compute EbAuIl,273 = EbAu11,2,3(EbA§2I1,___’9).

4.2.1 Review of orthotropic hyper—elasticity based on structural tensors

For convenience of the reader, we briefly reiterate the Lagrangian setting of orthotropic hyper—elasticity
: f f

based on two structural tensors A§’2 = 42Nt @AL2 N = const in By with “12N* € U?: T*By — R,

fully outlined in Chapter 2. Thus, the appropriate set of invariants reads as (i = 1,2, 3)

EbA’}in — Gh . [Eb_Gﬂ]i’

E"A§2I4 _ A'{ B, E'>A§215 — Ali [E -G E],

(4.15)
EbAﬁzIG - Aﬂg . EI” EbA§2I7 = Ag : [E|7 . C}'ﬁ . Eb ],
EbA§218 _ Ag:[Gb-Ag], EbA§2Ig _ Ag:[Gb-Ag-Eb],

compare Table 2.1. Note that the denomination EbAﬁ?Ig has been chosen for notational simplicity
and that this contribution, which is practically related to the angle between the two incorporated fi-
bre orientations, stays constant during the deformation. Further restrictions like the orthogonality
of Al Ntora vanishing fibre vector A5 Nt yield classical orthotropic and transversely isotropic be-

haviour, respectively. The hyper—elastic constitutive law for the second Piola—Kirchhoff stress tensor
S = 09 (E°, Ai}ﬂ; X)) renders (see Appendix A.1 for notational details)

St PG+ 20 WG E -G +30 W[GHE -G E -G

El’A”

T Omat,, %A +28EbA:32[5¢8[G“-E"-Aﬁ]sym (4.16)

EbAg2I2 EbA§2I3

+ Opat, ¢0A +23Euqzh¢8 (Gt E’ - AL vym 429 Po[At. G’ ALy

Eb AQZ Ig
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which obviously incorporates more than twice as many terms than Eq.(4.13). The corresponding Hes-
sian within the Eulerian setting is highlighted in Eqs.(2.52-2.54) and therefore skipped here.

4.2.2 Incorporation of structural tensors into the fictitious linear tangent map

In order to demonstrate the nature of the energy metric tensor, we make a specific ansatz for the fic-
titious dual base vectors. In particular, we give a representation of G* which reads

_ _ . . 2
G =[F' G =G+ X o AN AN (4.17)
]:

and emphasises the heart of the proposed formulation whereby 45 N represent the components of the
contra—variant fibre orientations and A} N denote the co—variant complement of these unit—vectors §.
Conceptually speaking, Eq.(4.17) defines G in terms of G and the fibre directions AgﬂN #. The two—
point tensor Ff = G; ® G’ now takes the following format with respect to By

_ 2
F'=opG' + Y 0 AT with Al=AINIg AN’ |. (4.18)
=1

Remarkably, beside this ansatz, no further assumptions to model anisotropy are required. The intro-
duction of F" as a symmetric quantity with respect to G is no severe restriction since the energy
metrlc tensor A" remains generally symmetric. Next, straightforward calculations with A" = F, A
and A" = G* render the energy metric tensor in By

At =BGt + B AL+ B AL+ 283 (AL G- ALY (4.19)

whereby we introduce the abbreviated notations
Bo=oy, PLi=2mar+o], fo=2aar+03, f3=o109, (4.20)

and Aqﬂ = Al Ntg A§,2N ¥ allow similar interpretation as structural tensors. Consequently, the rela-
tions between structural tensors and the fictitious configuration with respect to the proposed ansatz
can easily be verified by the incorporation of Eq.(4.19) into Eq.(4.12) and comparing the obtained re-
sult to Eq.(4.15).

Remark 4.3 The parameters ag 1,2 have to be chosen such that det(Fh) € Ry. In this context, we
consider the following cases:

(i) @y #0, a1 = as =0: This isotropic situation ends up in the restriction oy > 0 which is as-
sumed to hold throughout.

(i) a > 0,00 # 0, as = 0 : Application of the Sherman—Morrison—Woodbury theorem, see
e.g. Householder [Hou75, Sect. 5.1], results in the constraint oy > —«y for this transversely
isotropic case.

(i) ap > 0, 12 # 0 : Within this general case, the determinant is again computed via the
Sherman—Morrison—Woodbury theorem and takes the following format

a1 0 Al

det(l_?u) =ad[ag + 1] {1—%—% — 2Jg| >0 (4.21)

o7} (o7 +a1/a0

with EbAE?Ig = Ah1 : [Ag]t. Thus, possible solutions can be obtained by the restrictions

2 2
a1 > mMax {—O[o, %o [Oé() + a2] } , Q9 > 5 %0 [ao + 051] . (4.22)
g &

b Al b Al
ag Qa9 EAUIg — o) — Q2 1 EA12I8 — Oég — Q1

$For notational simplicity the underlying shifter, say [Sh‘ I*: T*Bo — T*B, is omitted in Eq.(4.17).
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4.2.3 Two arbitrary fibres

In the following, the most general case of two arbitrary, mechanically non—equivalent («; # «a3) fibres

#
41,2 N is discussed in detail. Within this setting, the first invariant EbAufl in terms ofEbAgz I, g reads
f f f f
BAL = yig PG 0y 4 g PP AR Iy 4y PP AL I + oy P AT I (4.23)
together with the scalar-valued coefficients 71, (5;)

Yio=0, yv1=5, m2=PH, M3=203. (4.24)

Similar computations for the second basic invariant, which is quadratic in the strain metric tensor,
end up with
b Al b oAl b Al b Al
EA Ly = yoo BRIy 4y BT 4y B4R TR

E* AL, 12 E" Al E"AY, 12 EfAb, 71
+ Y23 12[6 + Y24 12 [7 + o5 1219 12[8
E°Al, 7 E"Al, 1 EbA E* A%, 12
+ v 12], 12 J 12Jg + 12I9 (4.25)
b 4l b Al B Al B Al
+ yor Bhialy B Ao v 12fg 121

+ 29

EbAu 1/2 E"Aﬁ
12]8 12] o4

and the corresponding coefficients 7o, (/3;) result in

Yo = B3 Y21 = 2B B, Yo = pi,

Y3 = f3, You = 2B B2, Y25 = 21 P2, (4.26)
6 = 203, Yor = 4P18s, Y28 = 4P20,

Y20 = 4BoPs,

with EbAﬁZIred — ANt B G!- E. AN - see Remark 4.4. The invariants EbA§2I4,___,g of the struc-
tural tensors as given in Eq.(4.15) include only terms up to order two with respect to the strain metric
tensor. Thus, we have to apply the Cayley—Hamilton theorem for the comparison of the third invari-
ant. Thereby, the relations G : Ai},z = 1 have been taken into account and moreover, the determi-
nant of the strain metric tensor 7, , z» comes into play which reads in terms of the basic invariants as

Vo = & |27 M2ty =3P Mgy Py 4 B3] (4.27)

After some tedious algebra we obtain the result
b oAl b Al b Al b All b Al
B A, v30 B2 Iy 4 ygy B[y B AL [ gy B2
b Al b Al b Al b Al b Al
V33 [E A AL — : [E A - F A12I2] B AL + ’YdetEb]
b Al b Al b Al b Al b Al ball
Y34 E A12I6 E AIZI7 + Y35 E Alng + Y36 E A1214 E A12Ig E A12I8 1

b Al At b Al bl Al —1/2 Eb Al
yar B A Iy B A2 2 BAL L 4 g B AL BP AL 2 B AL L

# # # # #
30 |:E|7A12[1 EI’AHI7 _ % [EbA12112 _ EbA1212] E"A1216 + Vit B ] (4.28)

Eb Al 72 B A
v310 ~ 121 12Jg 4+ y311

b Al b Al b At b Al b At b Al bat - —1/2 gb Al
7312EA121—8 [EAHISEAHIG_I_EA12I4E‘A12I7+2 EAlngEAlzIB / EA12Ired]

b oAll b All
E *412]62 E A1219

AL EPAL 2 EP AR, -1 EPAY p2 EPAY
7313[ 12]y 1219 12[8 + 12[4 12]6

Al BPAl, 2P Al, -1 EPAY,  EPAY, 2
7314[ 12 [ 12]9 12]8 + 12], 12[6

+ + 4+ + + o+ o+ + 4+

b oAl b Al —1/2 mb Al b Al b All
15 [E A12I4EA12IS / EA12Ired_|_EA12[5EA121—9]
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+ 7316 - EbA§2Ie EbA’ing_I/Q EbAﬂ?Ired + EbA§2I7 EbAgng]

+ 317 :EbAgle EbAkIs EbAgﬂg + EbAkIg EbAgngl]

+ 7318 -EbA§2I1 EbA§2I§/2 EbAﬂ2Ired -3 [EbA§2I12 - EbA‘i?I?] EbA’{ng + 2%t B EbAgzIS]
+ 319 - EbA’i?L; EbA’i?Is EbA’i?Is EbA’izI9 + %EbAgZIg] '

The scalar—valued coefficients 3, (5;) are defined by the following formulae

0 = B3, v = 3Bof, 2 = B},

33 = 3650, 31 = 3Bobs, 35 = [,

36 = 307 P2, var = 3b1B3, 38 = 68006102,

39 = 305 P2, 30 = 60703, a1 = 65303, (4.29)
312 = 300f3, 313 = 3B1p3, 314 = 3p2f3,

Y315 = 68006153, Y316 = 650620, Y317 = 6518208,

318 = 66563, 319 = 665.

!
So far we have chosen two arbitrary vectors A2 Nt with oy # ao in order to keep the relation to the
fibre orientations as transparent as possible. In the sequel, emphasis is placed on certain dependencies
of these vectors which result e.g. in classical orthotropy or transverse isotropy. Trivially — for vanish-

i .
ing A2 Nt isotropy is included. Moreover, the energy metric tensor A* is generally symmetric such
that it’s spectral decomposition can be applied which is pointed out in Section 4.2.8.

Remark 4.4 Please note that G : [E’ - Ag B Ag LB = ]517“111218_1/2 EbAgng B Al red 1S not an
invariant but reducible. For an outline on the derivation we refer to Spencer [Spe84, Eq.(33)].

4.2.4 Two equivalent fibres

As a special application of constitutive equations that incorporate two structural tensors, we consider

4 .. .
the case of two different fibre orientations 12N * with identical characteristics, namely as = o.
With respect to Eq.(4.19), the corresponding scalars to compute the energy metric tensor A" read

Bo = o, Br=2ap01 +0of, B2 =P1, B3 =oaf. (4.30)

b
EA‘iI1

Next, in view of Eq.(4.23) the first invariant is related to structural tensors via

Y10 = Bo ; Y11 = P, Y12 =711, T3 =203 (4.31)

Taking Eq.(4.25) into account, we find that the correlated scalars 7o, for two mechanically equivalent
fibres are

Y0 = B2, Y1 = 2pop1, Yo = f%,
Y23 = 722, Y24 = 721, Y25 = Y21,

. (4.32)
Y26 = B3, Yor = 401083, Y8 = Y27,

Y9 = 40053,
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and furthermore with respect to Eq.(4.28), the computation of the third invariant ends up with

0 = B3, a1 = 3B0pi, 2 = B7,

33 = 3630, Y34 = Y31, Y35 = V32,

Y6 = 3732, Y37 = 736, Y38 = 2731,

Y39 = 33, 310 = 6703, Y311 = Y3105 (4.33)
312 = 3B0f3, 313 = 38163, Y314 = Y313,

Y315 = 68061 Ps, Y316 = V315, Y317 = Y310,

318 = 605303, Y319 = 6033,

4.2.5 Two orthogonal fibres

#
Next, we consider the case of two orthogonal fibres A2 Nt with generally different mechanical charac-

teristics, often denoted as classical orthotropy. This orthogonality assumption results in B AL, Igo=0
and moreover, the energy metric tensor A can be computed via

Bo=ap, Pr=2mor+a], fa=2aas+aj, f3=0. (4.34)
The first basic invariant is characterised by

Y10 = Po Y11 = b1 T2 = B2 (4.35)

and 713 = 0. The second basic invariant correlates to

Y0 = B, Yo = 2Boph, Y2 = P, (4.36)
Y23 = [, Yoa = 20 P2, Y5 = 2P152
and 7g,....9) = 0. Finally, B’ AF I3 is related to structural tensors via the following equations
0 = B3, 1 = 3B, V2 = [,
33 = 383 P, 34 = 3Bop3, 35 = 3, (437
36 = 36% B2, v3r = 3PP, Y38 = 65oP1pB2,
Y39 = 355 pe

and 7y319,...,19] = 0

4.2.6 Transverse isotropy

. . . . . i .
For a transversely isotropic material with only one fibre we obtain EbA12I6,___,9 = 0 in terms of struc-
tural tensors and the coefficients to compute A" read

Bo=af B1=2ap01 +af, B2 =0 B3 =0. (4.38)

) b )
These relations render £°4*I; in terms of

Y10 = Bo Y11 =B (4.39)

and 7[p,3) = 0. The second basic invariant is obtained via
Y20 = 05, Y1 =201,  v2 =P (4.40)

and 7y[3,... 9] = 0. Moreover, exploiting Eq.(4.38) results in
wo=06, wm=36p, m=p, m=3604K (4.41)

and 3[4,...,19] = 0.
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4.2.7 Isotropy

For completeness, we finally consider the case of an isotropic material whereby it is obvious that no

EA

. . i . .
structural tensors are taken into account via 12], o = 0. The computation of the energy metric

tensor A! and the isotropic invariants EbAﬁIl,Q’g are defined by the following formulae

Y10 = Bo Y20 = B3, Y30 = B3 (4.42)

and Y1[1,2,3] = Y2[1,...,8] = V3[1,...,19] — 0.

4.2.8 Spectral representation

Since the energy metric tensor A is of second order, positive definite and symmetric, the appropri-
ate spectral decomposition reads

3
Ali:z A”/\iA”N?@A”N?=noGﬂ+mA”N§®A”N§+n2A“N§®A”N§ (4.43)
i=1

with Au)\i ERy,m = Aﬁ)\3, m = Aﬁ)q — Au)\;},, Ny = Au)\Q - Aﬁ)\g and AﬁNg- e U?: T*By — R, com-
pare Svendsen [Sve0lb]. The relations to classical orthotropy, transverse isotropy and isotropy are
self-evident (see Eq.(4.19) or e.g. Negahban and Wineman [NW93] among others), namely

m=Bi, B3=0 and YNLQANt= A" with i=0,1,2; j=1,2. 4.44
J J J

For two mechanically equivalent fibres (o = «1) with arbitrary orientations, these representations

. . . . . t
are not that obvious. Without loss of generality, the following relations between the vectors A2 N
which define the incorporated anisotropy (fibre directions) and the eigenvectors AN ; hold by taking
basic geometrical considerations into account

ANt = (AN AN 2 eos()], AINE = cos() 4NN} 4 sin(g) 4N,
(4.45)
NG = [N AN Jl2sing)], NP = cos(g) VN —sin(g) N,

EbAﬁ 1/2
121g"")

whereby 2 ¢ = arccos ( denotes the angle between the two fibres — compare Spencer [Spe84].

The underlying idea is based on the fact that AL N* and 42 N'* have to be interchangeable for two me-
chanically equivalent fibres and hence AN §,2 denote admissible reflections that allow representation

as rethm =G -2 AuNg,Q ® AbNILQ, compare Eq.(2.19);. With these relations at hand, the sym-
metric part [Ag el Ag]sym of Eq.(4.19) reads

[Al.GP. Ajpym = 1 [2 cos?(¢) Nt @ A'NE — 2 sin?(¢) ' NE @ A”Ng] (4.46)
and the computation of the coefficients 71 2 yields
m=a3, m=4ai[aycos®(¢)+acos®(¢)], n2=4a[apsin®($) + a; sint(4)]. (4.47)

Furthermore, based on these modified scalars — which as a matter of fact bring the invariant EbAgng
into the picture — the standard formulae of classical orthotropy as pointed out in Eqgs.(4.35-4.37) can
be applied.

Remark 4.5 A computation based on the proposed (reduced) framework with respect to the ficti-
tious configuration is numerically significantly cheaper than the standard approach in terms of struc-
tural tensors as presented in Chapter 2. Egs.(4.16, 4.13) of the corresponding stress tensors and es-
pecially the Hessians in Eqs.(2.52-2.54) and (4.14) underline this fact most impressively. It is our be-
lief that the general structural tensor approach with no further constitutive assumptions results in an
almost unmanageable numerical setting, especially within the computation of inelastic materials. On
the contrary, the proposed framework based on a fictitious configuration ends up with nearly identi-
cal numerical costs compared to standard isotropy.
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Remark 4.6 For geometrically linear anisotropic elasticity based on structural tensors, transverse
isotropy and orthotropy contain five and nine independent material parameters, respectively. On
the contrary, the formulation based on the fictitious configuration incorporates three independent
material parameters in the case of a transversely isotropic material and four independent parame-
ters for orthotropy (thereby the two Lamé constants are taken into account, and thus the additional
isotropic parameter og is not independent). This underlines that we deal with a reduced formula-
tion. For the sake of clarity, we consider, e.g., a linear elastic material of St.—Venant Kirchhoff type,
0 (B’ A% X) = \/2 B> A} IZ+yu B’ A} Iy, which results in the following tangent operator

Ef =00, p =AA'@ A" + u[A'T A" + AP A7]. (4.48)

Now, referring to a Cartesian frame we choose in view of Eq.(4.43) or Eq.(4.19), respectively, the spe-
cific case of A =1y I+n1 e; ® e1+12 ea@es (with Irepresenting the second order identity and e; obvi-
ously denoting the principal axis of A). Based on Voigt’s notation, the coefficients of the Hessian read

[E; Eo E3 0 0 O

E, E4 Es 0 0 0
, Es Es E¢ 0 0 0
voip | __
Bi=10 0 0 E 0 0 (4.49)
0 0 0 0 Eg 0
0 0 0 0 0 Eg,

whereby E; g are not entirely independent but are defined via four (independent) material parameters

Ev =[A+2u][no+m]?, Eo=Amo+m]+2pu[no+mn2], Es=2Anp[n+m],
Es=[A+2u][no +n2]?, Es = Ao [10 + 72], Es = [A+2u]ng, (4.50)
Er=wplno+m]llno+mn2], Es=pno[n +ne], Eo = pno[no+m].

We obviously deal with a sub—class of rhombic symmetry — compare e.g. Haupt [Hau00, Sect. 9.3.2],
Suhubi [Suh75, Sect. 2.15.1] or Love [Lov44, Sect. 109] — and the corresponding symmetry group
reads G = {+ I, R(e;), ™ R(ey)}, compare Eq.(2.19). Nevertheless, the general linear constitutive
equation 93(E, Ay 2; X) incorporating two orthogonal fibres in terms of structural tensors

U = REMRIE AL (5,540, 5B L) PAv, (ws1)
+ 2:“’1 E'A12I5 + 2#2 EA12I7 + %3_ EA12IZ + 574 EAlng + 55 EA121'4 EAI6 ’ .

as given e.g. by Spencer [Spe84], results with respect to a Cartesian frame and A; = e; ® e;, for
j=1,2in

Er=A+261+603+2p+4p, Eo=A+01+d0+65, E3=X+61,
E4:)\-|-252-|-64+2/L+4/1,2, E5:)\+(52,E6:)\+2,u, (452)
Er=2[p+p], Es=2[p+pm], Eo=2[p+pm +p2],

whereby nine independent material parameters are incorporated. Thus, the coefficients E1 . ¢ within
the framework of a fictitious configuration represent a specific reduced form but with identical sym-
metry properties. The derivation of the corresponding relations for transversal isotropy is straightfor-
ward. Recall that the determination of the formulation based on the fictitious configuration in terms
of structural tensors is always possible while the opposite does not hold. Moreover, the proposed
framework allows representation as a specific application of the introduction of a (rank three) fabric
tensor as e.g. outlined by Cowin [Cow85] and Zysset and Curnier [ZC95].

4.3 Numerical examples

To discuss the implications of anisotropic material behaviour, we first point out an example of a ho-
mogeneous deformation in simple shear. Three-dimensional finite element computations subsequently
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underline the applicability and the numerical efficiency of the proposed anisotropic framework. A
non-linear constitutive equation of Kauderer—type is thereby incorporated

St = [3K k- 2G V] BA L AF L 2G Vs AF B - AY, (4.53)

as highlighted in Eq.(C.8) and the material parameters are chosen as: K = 8.3333 x 10%, G =
3.8461 x 104, sphyc — devie, — (.5 and SPhky = 9V, = 0.25. The energy metric tensor is constructed
by two unit vectors which we define via the following spherical coordinates 91 = 5/67, 9% = 1/6,
93 = 1/3 7, 93 = 1/2 7, compare Figure D.15. Moreover, the corresponding scalars are set to g = 1.0,
a1 = 0.25 and as = 0.5. In order to visualise the effects of the underlying anisotropy, we apply the
anisotropy measure ¢, the method of stereo—graphic projection and the determinant of the acoustic
tensor, compare Appendix D.

4.3.1 Simple shear

In the sequel, we consider a homogeneous deformation in simple shear. Hence, referring to a Cartesian
frame, the deformation gradient reads F = I + ye; ® e? with I = 62 e; ® e’ characterising the sec-
ond order identity. The non—coaxiality of the strain metric tensor and the stress tensor is monitored
for three different shear numbers y by the stereo—graphic projection and highlighted in Figure 4.2.

v=0.25 v=1.0 v=1.5

Figure 4.2: Simple shear: Stereo—graphic projection due to the principal directions of strain E’:o
and stress S* : o for different shear numbers ~.

Next, as a measure of the degree of anisotropy we compute the scalar—valued quantity ¢ (EI’, S ﬁ),
see Appendix D.1. Figure 4.3 monitors that this anisotropy measure shows a strong dependence on
the shear number .

05
0.07t
0.4f 0.06
— 0.05f
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= 02f 0.03t
0.02t
0.1f
0.01f
0 ‘ ‘ ‘ ‘ o
-0.25 -0.2 -0.15 -0.1 -0.05 0

Y Y

Figure 4.3: Simple shear: Anisotropy measure §(E”, S*) for v € [—0.25,0.0] (left) and v € [0.0,2.5]
(right).

Finally, the acoustic tensor g! within the proposed anisotropic framework based on the fictitious
configuration is discussed, see Appendix D.3 for a short reminder on the underlying theory. Within
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an isotropic linear elastic St. Venant—Kirchhoff material, the determinant of the acoustic tensor turns
out to be independent of the wave propagation direction and hence persists constant. In particular
one obtains

det(g")livi° =G? [2G+ K], (4.54)
see e.g. Marsden and Hughes [MH94, Sect. 4.3]. Nevertheless, in the context of non-linear hyper—
elasticity at large strain kinematics, det(q") remains no longer constant. Figure 4.4 highlights this de-
pendence on the wave propagation direction n’ € U2 : TB; — R at v = 0.25 for the anisotropic case
with a1 = 0.25, ay = 0.5 (det(g)®™) and the isotropic setting based on a; = ag = 0.0 (det(q)*°).
Thereby, the spherical coordinates 912 define the wave propagation direction, compare Figure D.1,.

Figure 4.4: Simple shear: Determinant of the acoustic tensor g' at v = 0.25; anisotropic setting (left)
and isotropic setting (right).

4.3.2 Cook’s problem

For this finite element example, we investigate a three dimensional version of the classical two dimen-
sional Cook’s membrane problem (in analogy to Section 2.4.2.2). Thus, the standard discretisation in
the e 2 plane, is extended into the e3 direction. The geometry as well as the boundary and loading
conditions are visualised in Figure 4.5 whereby the following parameters are chosen: L = 48, H; = 44,
Hy =16, T = 4. The discretisation consists of 16 x 16 x 4 eight node bricks and invokes enhanced ele-
ments (Q1E9) as advocated by Simo and Armero [SA92]. Recall, that the conservative force F' is con-
sidered as the resultant of a continuous shear stress with respect to the undeformed reference geometry.

Since the axes 4N 1,2, which characterise the incorporated anisotropy, do not lie in the e 2 plane
we consequently observe a severe out—off-plane deformation. Figures 4.5 and 4.6 show the deformed
mesh for ||F|| = 1.28 x 105. Furthermore, we study the displacement of the mid point node at the top
corner, Py, which is highlighted in Figure 4.7. In order to compare these results to an isotropic set-
ting incorporating a spherical energy metric tensor P" A* we demand

sph AF — sphey ) GF with  ||5PRAF|| = || A%. (4.55)
Based on Eq.(4.34), this evident assumption renders
1/2
Mg = [BE+ o+ B2+ [Bo+ B12] 77 (4.56)

with By = ap, f1 = 2ag a1 + o2, Bo = 2ap as + o2. Figure 4.8 monitors the corresponding displace-
ment curves of the mid point node at the top corner, which are obviously within the same range as
those of the anisotropic setting. We additionally highlight the results of a computation based on stan-
dard tri-linear eight node bricks (Q1), which show a stiffer behaviour compared to the previous com-
putation with enhanced elements (Q1E9). Table 4.1 summarises the convergence of the computations
within these three different settings. Thereby the residual norm of the corresponding Newton itera-
tion steps are tabulated for the rather large load step ||F|| : [0, 5.12 x 10*].
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Figure 4.5: Cook’s problem: Anisotropic (Q1E9); geometry, boundary and loading conditions, dis-
cretisation with 16 x 16 x 4 eight node bricks (left) and deformed mesh at || F|| = 1.28 x 10°.

Figure 4.6: Cook’s problem: Anisotropic (Q1E9); different views on the deformed mesh at ||F|| =
1.28 x 10°.
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99

| F|| x 1073

Figure 4.7: Cook’s problem: Anisotropic (Q1E9); displacement curves of the mid point node at the
top corner.

40 80 120
|F|| x 103

|F| x 1073

Figure 4.8: Cook’s problem: Load-displacement curves of the mid point node at the top corner;
isotropic setting (Q1E9, left) and anisotropic setting (Q1, right).

Table 4.1: Cook’s problem: Residual norm for the load step ||F|| : [0, 5.12 x 10*].

Q1E9, anisotropic

Q1E9, isotropic

Q1, anisotropic

no. IR no. IRl no. IRl

1] 2.35695 E + 04 1] 2.35695 E + 04 1235695 E + 04
2| 1.70059 E + 05 2| 2.35936 E + 05 2| 1.57264 E + 05
3| 38.71217 E+03 3| 5.65492 E + 03 3| 3.81568 E + 03
4| 2.59480 E + 06 4| 1.24521 E + 02 4 6.76394 E + 04
5| 1.16144 E + 04 5| 5.51955 E — 02 5| 7.16359 E + 03
6| 1.32396 E + 04 6| 1.89174 E — 08 6| 5.46791 E + 00
7| 3.76553 E + 03 7| 1.47482 E + 00
8| 3.93106 E + 03 8 | 3.25775 E — 07
9| 4.76101 E + 02 9| 1.95022 E — 08

10 | 1.17589 E + 02

11| 5.68824 E — 01

12 | 1.48105 E — 04

13 | 1.02527 E — 08







Chapter 5

Anisotropic damage based on a ficti-
tious configuration
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lie Erfindung, und ebenfo bas Multiplizieren.

Sir Karl Raimund Popper [1902 — 1994]
Vorlesung in Mannheim, 08.05.1972

To capture the anisotropic nature of damage within a phenomenological model, one has at least to
introduce a second order internal variable, see e.g. Leckie and Onat [LO81]. Hence, the main goal
of this Chapter is the development of a framework for geometrically non—linear, anisotropic, tensorial
second order continuum damage whereby, depending on the corresponding rate equations, the cate-
gories of quasi isotropic and anisotropic damage evolution are classified.

We enlarge the framework highlighted in Chapter 4 in particular to tensorial second order con-
tinuum damage whereby the incorporated fictitious, isotropic configuration is assumed to represent
the undamaged material. Conceptually speaking, the fictitious, undamaged, microscopic configura-
tion corresponds to the effective space of the classical, isotropic [1 — D] damage theory which is sup-
plemented to the damaged, macroscopic, undeformed and deformed configurations. In contrast to the
classical approaches of Betten [Bet82a] and Murakami [Mur88], the present damage theory, is based
on the notion of a second order damage metric tensor. The framework of generalised standard dissi-
pative materials is strictly applied. This approach consequently leads to the introduction of an ad-
missible domain, the postulate of maximum dissipation and associated evolution equations. For the
general anisotropic case, these rate equations represent a reduced set compared to a general tensor—
valued tensor function in terms of e.g. the strain metric and internal variables, see e.g. Betten [Bet85]
and the reiteration in Appendix B.3.

Concerning the numerical integration of the evolution equations with respect to multi-stage Runge—
Kutta methods, two different categories of algorithms are classified. Namely, within the first category,
only the actual configuration is forced to remain in the admissible domain whereby the second cat-
egory additionally demands the algorithmic intermediate stages to satisfy this constraint. The algo-
rithmic treatment is straightforward and several implicit and explicit Runge-Kutta algorithms of dif-
ferent order are outlined.

The Chapter is organised as follows: Based on Chapters 3 and 4, Section 5.1 reiterates the applica-
tion of the Coleman—Noll entropy principle in the present context. The framework of generalised stan-
dard dissipative materials is subsequently highlighted in Section 5.2. Finally, after the introduction of
appropriate integration algorithms in Section 5.3, we give several numerical examples, Section 5.4.
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5.1 Coleman—Noll entropy principle

Similar to the outline in Section 3.3 on the Coleman—Noll entropy principle as represented by the
Clausius—Duhem inequality, we now focus on the Lagrangian setting in the following. Furthermore,
an additional internal, scalar—valued hardening variable « is introduced for completeness and an ad-
ditive split of the free Helmholtz energy density 19 of the form

U (B, A%, 5 X)) = SamyQ (B, A%; X)) + Parpy (; X)) (5.1)

is assumed, compare footnote { on page 87. Thereby, based on the concept of a fictitious configura-
tion, the symmetric, positive definite second order tensor A replaces the contra—variant metric tensor
G" and represents an internal variable which will be denoted as damage metric tensor in the sequel.
The local format of the dissipation inequality in By for an isothermal processes consequently reads as

DY = §4:D, B’ — Dyl = [sﬂ—aEH/Jg] DB — 040Dy A — 90Dk > 0. (52)

Following the common argumentation of rational thermodynamics, being that for a purely elastic,
non—dissipative motion the constitutive equation is defined via [Sﬂ — BEwﬁg ] : Dy E’ =0V D Eb,
we obtain reasonable definitions for the hyper—elastic second Piola-Kirchhoff stress tensor S*, a co—
variant damage stress tensor Z beS?: TBy x TBy — R and a scalar—valued hardening stress h € R

St =0gy), 2= -4, h=—0u. (5.3)

Based on this, application of the introduced stress fields to the pointwise isothermal Clausius—-Duhem
inequality (5.2) results in the reduced format

redpd — 2 : D, AP+ hDyk > 0. (5.4)

Moreover, following the standard scheme, a convex dissipation surface ¥*@ is introduced which de-
fines an admissible domain A where no damage evolution or hardening takes place

A0 = {(2°,1; X) | ¥iea0 = Yed (2", by A%, X) = 9m0(2"; A, X) + M0 X) < 0} | (5.5)

with 92m@0(Z°: A' X) representing the damage potential and "'@(h; X) = h(x; X) — Yy whereby Yy
denotes a constant threshold and "#'& is known as equivalent stress. Next, the postulate of maximum
dissipation renders associated evolution equations

D; A* =Dy A0, Y800 = Dy 19, %9m@0, Dk = Dy A0,V e@° = Dy A 0,""® = Dy \. (5.6)

Here D¢ A denotes the Lagrange multiplier and the Kuhn—Tucker conditions completed by the consis-
tency condition read

D: A >0, ieg0 < D; A Yieg? — ¢, D; A D, Y€@% = 0. (5.7)

For notational convenience, the (relevant) second order derivatives of the free Helmholtz energy den-
sity 10 are abbreviated by

E = Bmeb Yy € S>3 T*By x T*By x T*By x T*By — R,
AN o= P, a¥) € S¥P:TBy x TBy x TBy x TBy — R,
BY = P ¥ € PP TBy x TBy x T*By x T*By — R, (5.8)
cl = 02 W0 € S3*3 . T*By x T*By x TBy x TBy — R,

k= 82,98 € R,
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with Cf = [Bh]T being obvious, compare Appendix A.1. Next, based on the consistency condition, the
Lagrange multiplier D; A allows the following representation for an inelastic process

Oy vieg0 . B ;. D, B

Dt A = . . . :
[8Aﬁy1e¢0 _ azb yieg0 . Ab] . 8Z" yie@0 _ f

(5.9)

Ultimately, the material time derivatives of the hyper—elastic second Piola-Kirchhoff stress tensor D; S*
and the Green-Lagrange strain tensor D, E’ are combined by a symmetric fourth order tensor which
is denoted as "¢Ef € §3%3 : T*By x T*By x T*By x T*By — R (continuum tangent stiffness), in detail
[CH:0,,Y°0% ] ® [0, 7ed° : B ]
09000 : A — 931000 | : 9,,¥7000 + &

D; 8" = ™E!: D, B* with "eE!=E! - (5.10)

Standard pull-back and push—forward operations applied to the second order stress tensors again ren-
der
f.8 = s ft = 8 e€S3: By x T"By — R,
(5.11)
F*z' = [F1'. 2. F" = 2’ ¢S*: TBy x TBy — R,

whereby 5" and Z’ allow interpretation as effective stress fields, see footnote ** on page 27 Appendix
C.3 for a reminder on homogenisation concepts in the context of isotropic continuum damage me-
chanics. Moreover, the set of invariants due to Eq.(4.12) defines the tensorial stresses in Eq.(5.3) and
straightforward computations in analogy to Eq.(4.13) yield

st = 8E'bAuI1¢8Aﬂ + 2aEbAﬁI2'¢8Aﬁ.Eb.Aﬂ + 33EbAﬂI3¢8Aﬂ.Eb.Aﬂ.Elz.Aﬁ’ 512
5.12
7 = 8EbAuI1¢8Eb + 26EbAuI2¢8EI7.Aﬂ.EI7 + 36EbAﬁ13¢8Eb'Aﬂ'Eb'Aﬂ'Eb.

Remark 5.1 Note that for the general case, when AY is a non-spherical tensor, the introduced stresses
S* and Z° in Eq.(5.3) do not commute with respect to their conjugate variables E® and A"

Remark 5.2 Since the damage metric tensor A" is determined by the fictitious stretch field, one
could assume the rotational part of F" to be constant. Then, with this reduced mapping at hand, it
is obvious that standard, not necessarily isotropic, damage formulations can conveniently be applied
in B, compare Section 6.4.3.1 in regard to the coupling with plasticity or the contributions by Carol
et al. [CRWO1] where emphasis is placed on small strain continuum damage.

5.2 Generalised standard dissipative materials

Referring to the theory of generalised standard dissipative materials, as introduced by Halphen and
Nguyen [HNT75] — compare footnote * on page 53, the construction of rate equations for the internal
variables is highlighted in the following, whereby the hardening stress h(x; X) and thus "*'® are as-
sumed to remain constant throughout this Chapter without loss of generality (the case '’ # const
is discussed in Chapter 6).

Based on this, the existence of a damage potential 99™@ within an associated setting is adopted
which represents a reduced ansatz compared to a general tensor—valued tensor function to compute
the rate D; A! in terms of the damage stress Z” and the damage metric itself Af, see Appendix B.3
where the general canonical form of the evolution equation is reiterated.

In this direction, the overall representation of the damage potential 42m@0 = damg0( Z b; Al X ) is
zb At 8en
I,

of course based on the set of ten invariants, say .10 similar to Table 3.2, which renders the (re-
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stricted format of an) associated evolution equation

10
Dy AP = DiA 32"darngzso (ZbAuIlgffl.,lo;X) = DA X szAﬂIse“damdjO Bz"ZbAuIigen
i=1 ‘

— DyA [ O, gen damgg0 3t | 9 O, 4 g damg0 3t . Zb . ot
+ 3 Opoargen O G2 .G 2. G 6.3

+ aszuI$endam¢0 Al 4+ aszuISgendaméo Al .Ggb . Al

+ 2 8ZbAuI§endam¢0 [G’ﬁ .7 . Al Jsym

+ 2 aZbAﬂIlggnda'rnéo.l4.lj‘Zb‘.l4.lj ] .

In this work, we nevertheless adopt the concept of a fictitious isotropic configuration for the damage
potential in analogy to the free Helmholtz energy density. Hence, the appropriate set of three invari-
ants reads as (i = 1,2, 3)

ibAﬂIi _ ot [Zb ) Aﬂ]i =Gi:[Z" AY] = ZbAﬁIi (5.14)

and the associated format of the evolution equation results in

3
Dy AF = Dy, 9eme0 (7 A 5 X) = DA Y O, W90 9,7 A
=1 ‘

= DA [0, BB AT 420,45, PmB0A 2 AT : (5.15)

+ 304, M0 AP 2 AP 2 Aﬂ]

On this basis, two selected representations of Eq.(5.13) seem to be natural, compare Schreyer [Sch95]:

The direct formulation is actually based on a second order, positive definite tensor Z*(A*; X) €
Si : T*By x T*By — R which is assumed to be negatively proportional to the damage rate
itself, namely D; A" = —D; A =*. Within an associated setting, this relation is one-to-one
with d2m@) — —Z° . 5% and straightforward calculations using the inelastic loading condi-
tions Y€®? < 0 and D; A > 0 yield the reduced, pointwise and isothermal dissipation inequality
redpd = D, Aharg > 0. As a first example, the simplest case of this direct formulation is intro-
duced via E' = A" which ends up with

damégx = ZIJ . Aﬁ — _ Zl’AﬁIl’

(5.16)
D; A" = —D;)A".

Although the damage metric is just scaled down (in the case of damage evolution), this approach
differs significantly from the standard isotropic [1 — D] continuum damage formulation since A
is not necessarily a spherical tensor and thus possibly renders overall anisotropic material be-
haviour. However, in the context that the damage rate D; A* commutes with the damage met-
ric A* itself, Eq.(5.16) is denoted as quasi isotropic damage evolution in the sequel.

The formulation based on conjugate variables constitutes the damage rate via a linear map of the
damage stress, in detail D; A* = D; A =f : Z’ whereby =AY X)) e $P3 L T* By x T*By x
T*By x T*By — R represents an appropriate fourth order tensor. For the considered associated
setting we obtain the damage potential dam@gha = %Zl’ : =f : Z” which renders the reduced,
pointwise and isothermal Clausius-Duhem inequality of the format D) = —2D; A %*¢ > 0.



5.3. Numerical time integration 105

The damage evolution is identified as truly anisotropic if D; A" and A* are not coaxial. The ro-
tation of the principle damage directions is generally included, e.g. for =t — A'® A" which rep-
resents the simplest choice within the formulation based on the conjugate variable and results
in (see Appendix B.1 for notational details)

oy,

= 17 [A'g At 2 = 124,
2 2 (5.17)

D, A' = D,A[A'TAY: 2 = D,AAL. 20 (Al

Based on these two introduced types of damage potentials, together with the character of the ini-
tial damage metric tensor Au|t0, a general classification of the coupling of hyper—elasticity and dam-
age becomes possible and the following four categories are obtained:

i) isotropic hyper—elasticity Aﬂ|t0 = By G*) & quasi isotropic damage dam@gx)
i) isotropic hyper—elasticity Aﬂ|t0 =B, GY & anisotropic damage damdigha)

(5.18)

( ( ) (
( ( ) (
(iii) anisotropic hyper—elasticity (Aﬂ|,g0 #+ Bo Gﬂ) & quasi isotropic damage (dam@gx)
( ( ) (

dam@O

iv) anisotropic hyper-elasticity (A*|;, # B0 G*) & anisotropic damage ha)

Moreover, by assuming a material of St. Venant—Kirchhoff type, category (i) correlates to the classi-
cal [1 — D] damage formulation via A* = 8y G* = [1 — D]?> G*. In this case, 8 represents three equal
eigenvalues, which degrade for increasing damage, e.g. characterised by D. Note that formulations
within category (ii) become especially anisotropic within the purely elastic domain for unloading af-
ter damage evolution has taken place.

Remark 5.3 An alternative motivation for Eqs.(5.16, 5.17), which practically characterises the type
of inelastic anisotropy, is based on the quadratic form

damgd, =172 [ GFOG +&[G'RG + GG ] : 22 =167} + 6,7, (5.19)

whereby the structure of the fourth order tensor =*(G*; X) coincides with the representation of lin-
ear isotropic elasticity. Now, due to the central idea of the proposed framework, the contra—variant
metric tensor G* is replaced by the damage metric A

damgd, = 170 [5, AP @ A+ 5, [A'TA + AP A*]]: 22 = L6742+ 5, 7 4L, (5.20)

Note that the first term, incorporating the scalar §1, correlates to quasi isotropic damage evolution
and that the second term, incorporating the scalar d, represents an anisotropic damage potential.

5.3 Numerical time integration

Based on the rate-independent framework given in Section 5.1, a staggered algorithmic treatment is
applied (similar to Algorithm 3.1). Thus, from the computational point of view, the time interval of
interest T = Uf:]:o ["t,"*t] is actually split up into n time steps which define the strain driven algo-
rithm. Please note that for the subsequent Algorithms 5.1, 5.2 and 5.3 loading and unloading condi-
tions are exclusively checked by the trial step at ntl g,

To set the stage, we firstly consider quasi isotropic damage evolution. Since the principle direc-
tions of the damage metric A stay constant during the inelastic process, an exponential scheme can
be conveniently applied, compare Weber and Anand [WA90, Eq.(26)]. For the specific example as
given in Eq.(5.16), the obtained algorithm reduces to a scalar—valued iteration with respect to the La-
grange multiplier, see Algorithm 5.1.
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Algorithm 5.1 Exponential integration algorithm for quasi isotropic damage, Eq.(5.16).

(Finite Element Method) for given "' F? do
if viegO (22 (1B n AY): 7 AF) > 0
(scalar-valued iteration) dowhile |[Ye@0(AN, Z°( "1 E" nt1 AF); ntl Al)| > tol
A= .
n+1 AF = exp(—AN) "Af
enddo
endif

Several families of algorithms to solve for the roots of non-linear scalar—valued equations exist, see
e.g. Engeln-Miillges and Uhlig [EMU96, Chap. 2] for a detailed outline. Within the subsequent nu-
merical examples, we prefer modified regula—falsi schemes, e.g. the algorithm by Anderson and Bjoérck
which results in more stable computations than interpolation or Newton—type methods (in this case).

For the general anisotropic case as highlighted in Eq.(5.17), exponential schemes can no longer con-
veniently be applied since the damage rate does not commute with the damage metric itself. Neverthe-
less, e.g. multi-stage methods of the Runge—Kutta family can be adopted for the integration of the ob-
tained system of ordinary differential equations (initial value problem), see e.g Hairer et al. [HNW93,
Chap. II] among many others. In the following outline, we focus on implicit methods. Apparently, ex-
plicit schemes are included and result in scalar—valued iterations with respect to the Lagrange multi-
pliers. The underlying (s—stage) Butcher array defines general Runge-Kutta methods and is reiterated
in Appendix E.1 where the coefficients of some typical algorithms are briefly summarised. On this ba-
sis, general higher order methods with several intermediate stages Ag are (implicitly) defined by I

S .
Al =mAl 4 AN El aij gy yie@0 (n+e; Fb, Ag.) (5.21)

and the actual damage metric "1 A" is computed via

nHIAN =" AR L ANY by 9,700 (B, AY) | (5.22)

S
=1

These non-linear equations are solved for given A); by a local Newton algorithm which yields the fol-
lowing linear system of equations within each iteration k (the notation o denotes the appropriate type
of contraction and the incorporated fourth order identity is defined in Appendix A.1)

[symG? — A apy St —Adjapdi - —Axja i) [AAl] [ R
— A/\Q asi Jhl symGh — A)\Q a9 Jg e — AAQ a9gg JE, AA% Rg
o =— (5.23)
I — AXjag ¥ —Adsapldy o MG Aljag i | | AAY | R! |

together with

S .
the residua: Rf = kA,Lﬂ — Al — AN\ J;l Qij ale, yle¢0( nte; Eb, kAg)
. : ) 5.24
the Jacobians: JE. = 822';®kA§ yieg0(ntei g kAf) (5.24)
and the update: k+1Ag = kAg + AAg

TFor notational simplicity we abbreviate ¥'°®° ("% 2’ ("t E", A}); A%) by Y*@®("+* E’, A") and furthermore Z}
represents Z’ ("t B, Ag)
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Remark 5.4 It turns out to be useful to apply Voigt’s notation within the solution of the system of
equations (5.23); AAg = AVIA, ARg > AVOILR; symGh .y voisym] a4 JE — VO');. Then, symmetry
relations yield AV' A;, A" R; € R® and consequently vosy™| Vo), ¢ R® x RS.

Remark 5.5 The Jacobians with respect to Eq.(5.17), are defined by

K= 0 u([xAl® Al 12))

2
= [3kAg(kAg®kAg)] Pk 2] — R AL B pAL] A (5.25)
_ (@B A 2]+ G A 2] [ AE A A
= ®[rA; - kZi ]+ G B[rA; - 1k Z]] [k A; @ kA ] kA .
The fourth order Hessian A’ = — N Z" has already been defined in Eq.(5.8) and reads in detail (af-
ter some straightforward computations) as
b _ 2 0 b b
A = 8EbAﬂII gbatp 70 E'®FE

b b b b
+ 4 aébAﬂI2El’AﬁIZI¢)8 [E A" E |®[E -Aﬂ-E]

+ 9 a%bAﬁng"AhSd)g [E'-A' B A E’|Q[E A E - A B
A :E"®[El’.Aﬂ.Eb]]SYM

+ 12 0% poang, V0 :[Eb'Aﬂ'Eb]®[E"-A”-Eb-Aﬂ-E"]]SYM (5.26)
+ 6 0%y mary, V0 :Eb®[Eb'Aﬂ-Eb-Aﬂ-Eb]]SYM

+ Omat, V) [B°CE +E QE]

+ 3 D at 1, VY [Eb®[E".Aﬂ.Eb]+Eb@[Eb.Aﬂ.Eb]]SYM

Referring to the applied staggered solution strategy, namely the Newton iteration for the damage
metric embedded into a scalar—valued iteration to compute the Lagrange multiplier, two different ap-
proaches are possible. Within the first type of algorithm, the intermediate stages, Ag, are not forced
to satisfy the constraint of the damage condition and Y*@%(Z E ; Ag, X) > 0 is possible. Since solely the
actual setting must lie in the admissible elastic domain A, which requires Y¢g%("+t1Z I’; ntl Af X ) =0,
this scheme results in only one damage multiplier, see Algorithm 5.2.

Algorithm 5.2 Integration Scheme 1: Intermediate stages may violate the damage condition.

(Finite Element Method) for given "' F* do
if Yieg0(Z} ("L EP, 7 A%): 7 AF) > 0
(scalar—valued iteration) dowhile |V @0 (AN, Z° ("1 E? vl AF); vt AR)| > tol
AN =
(Newton—type methods) dowhile ||Rf|| > tol

S .
Ag ="Af 4 AN J;l agj BZ; Y1e¢0(n+CjE|7, Ag)

enddo
S .
nHIAR =" A L AN Y by D Ye@0 ("R, AY)
i=1 ¢
enddo

endif
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Alternatively, the second integration category forces the intermediate stages to satisfy the dam-
age condition. All stages of interest now lie in the admissible elastic domain A but from the numeri-
cal point of view several scalar—valued iterations for different Lagrange multipliers due to each inter-
mediate stage come into the picture, see Algorithm 5.3. Furthermore, if the considered interval in-
cludes damaged and purely elastic regions as well, the rate equation is no longer smooth which may
cause numerical instabilities for large integration intervals.

Algorithm 5.3 Integration Scheme 2: Intermediate stages are forced to fulfil the damage condition.

(Finite Element Method) for given "*1F" do
if Yieg0(Z" ("t E", " A%); " A%) > 0
if Yieg0(Z° ("t B, " AF); " AF) > 0
(scalar—valued iterations)  dowhile |[Yed%(AN;, Z°; A§)| > tol
AN =
(Newton-type methods) dowhile ||Rzﬂ|| > tol

i |
141lj =nAl 4 AN D a4 62*{ y1e@0(n+cj-E|7’ Ag)
i=1 ’
enddo
enddo
endif
(scalar—valued iteration) dowhile |Ye@O(AN, Z° ("1 E, "1 A%); nt1 AF)| > tol
Al =
ntlgf = nAf 4 AN > b 0 V@ (HE B, AY)
1=
enddo

endif

Remark 5.6 Note that both algorithms (5.2, 5.3) are identical in the case of an Euler backward in-
tegration.

Remark 5.7 The intermediate strain metrics are usually defined by linear interpolation ntei g =
¢i" E" +[1—¢;]™E’. Moreover, it is useful to choose m‘Ag- = Ag for ¢; > ¢; as an initial guess (ini)

within diagonally implicit Runge-Kutta schemes instead of the standard initialisation i“iAg- = nAF,

5.4 Numerical examples

To discuss overall anisotropic behaviour within the proposed framework of coupling hyper—elasticity to
continuum damage, the homogeneous deformation in simple shear is considered. Both types of dam-
age evolution as highlighted in Eqgs.(5.16, 5.17) are discussed. Furthermore, even the initial hyper-
elastic setting is anisotropic and the subsequent examples consequently represent categories (iii) and
(iv). Thereby, the constitutive function of a compressible Mooney—Rivlin material has been applied
with respect to the fictitious undamaged and isotropic configuration

W= [TV =3+ [T n 3]+ §1n2(0"A“J§/2) —2[e1 +26] 1n(0"A“J§/2) . (5.27)

compare Eq.(C.3). The chosen material parameters read ¢; = 10, ¢ = 20 and A\’ = 5 and a constant
threshold "*® = —10 is adopted. Moreover, the initial damage metric Aﬂ|t0 is determined by 7y = 1,
m = %, o = %, 91 = %ﬂ', 92 = %7‘(’, 95 = %ﬂ' and 93 = éw — see Eq.(4.43) and Figure D.15. In order
to visualise the anisotropic material behaviour, the method of stereographic projection is applied, as
emphasised in Appendix D.2.
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5.4.1 Simple shear

Within the subsequently considered homogeneous deformation in simple shear, i.e. F =TI+ ve; ® e
with I = sz e; ® e/ when referring to a Cartesian frame, anisotropic hyper—elasticity coupled to quasi
isotropic and anisotropic damage are discussed in detail.

5.4.1.1 Quasi isotropic damage

For quasi isotropic damage evolution in terms of the potential 92™®9 as defined in Eq.(5.16) together
with the non—spherical metric Aﬁ|t0, we end up with a damage formulation in category (iii). Thus, the
strain field E’ and the stress field S* do not commute but, nevertheless, the eigenvectors of the dam-
age metric A remain constant for arbitrary deformations. Figure 5.1 visualises these effects by the
method of stereo—graphic projection for different shear numbers ~.

Figure 5.1: Simple shear, quasi isotropic damage: Stereo—graphic projection due to the principal di-
rections of strain E” : o, stress S' : @ and the damage metric A" : x for different shear numbers .

Concerning the numerical integration of the obtained rate equation for D; Af, see Eq.(5.16), an
exponential scheme is ap}ﬂied, as summarised in Algorithm 5.1. Finally, the corresponding degrada-
tion of the eigenvalues 4°); of the damage metric is depicted in Figure 5.2.

L4 ]

Figure 5.2: Simple shear, quasi isotropic damage: Degradation of the eigenvalues Af A

5.4.1.2 Anisotropic damage

Next, within the same setting as above, we account for anisotropic damage evolution in terms of the
potential dam@gha, compare Eq.(5.17). Since the initial damage metric Aﬁ|1g0 is non—spherical, we deal
with a damage formulation in category (iv). The strain field E’ and the stress field S* are conse-

quently non—coaxial and the initial damage metric Aﬂ\to and actual damage metric Aﬁ|t additionally



110 5. Anisotropic damage based on a fictitious configuration

do not commute as soon as damage evolution takes place. Once more adopting the method of stereo—
graphic projection, we give graphical representations of these anisotropic characteristics in Figure 5.3
for different shear numbers ~.

)

s %)

v=0.1 v=0.5 v=1.0

Figure 5.3: Simple shear, anisotropic damage: Stereo—graphic projection due to the principal direc-
tions of strain B’ : o, stress S* : e and the damage metric A" : « for different shear numbers ~.

Since the eigenvectors of the initial damage metric Al N7 f feature non—vanishing components
with respect to all three Cartesian directions e;, and, moreover, since the anisotropic damage poten-
tial dam@gha is additionally applied, the eigenvalues of the damage metric AF A; degrade differently, see
Figure 5.4 (this reference solution has been computed within a fourth order Runge-Kutta scheme for
rather small load steps, h : Ay = 0.02).

Figure 5.4: Simple shear, anisotropic damage: Degradation of the eigenvalues Au/\i.

Now, for the integration of the rate equation of D; A* — Eq.(5.17) — explicit Runge-Kutta schemes
of order one up to four are applied. Because of stability reasons, the load steps h, actually in terms
of strains, must be so small (here e.g. h : Ay = 0.1) that the accuracy of the integration scheme
is no longer substantially significant, as depicted in Figure 5.5 for the smallest and second damage
eigenvalue Aﬁ)\]_’g. Although the considered integration algorithms render somewhat different results
at v = 0.4, they end up with identical eigenvalues Al A; for increasing damage — as far as can be seen.
Furthermore, integration Scheme 2 was applied (see Algorithm 5.3) which is not of fundamental im-
portance for such small load steps.

Next, a rather large integration interval is considered which starts in the elastic area and ends up
in the damaged domain, (h : [y = 0.1,y = 1.0]). Thereby, implicit Runge-Kutta methods within
Scheme 1 and 2 are applied (see Algorithms 5.2 and 5.3). Recall that the intermediate stages are re-
quired to satisfy the damage condition within Scheme 2 and otherwise are not constrained (Scheme
1). Figures 5.61,._4 again visualise the numerical results for the smallest and second damage eigen-
value with respect to integration Scheme 1 whereby algorithms of order one up to four are analysed,
see Appendix E.1 for some details. For this rather large loading interval, the numerical results for dif-
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O Euler: s=1,
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- 1.4 B QO Euler: s=1,

T T
14 p=1 p=1
12 | O Heun:s=2,p=2 ] 12 O Heun: s=2, p=2
L < Heun: s=3, p=3 ] ' < Heun: s=3, p=3

Figure 5.5: Simple shear, anisotropic damage: Degradation of the smallest and second damage eigen-
value Aﬁ/\l,g within explicit integration algorithms due to Scheme 2, Algorithm 5.3.

ferent integration algorithms deviate significantly — especially for the smallest eigenvalue of the dam-
age metric. Diagonally implicit Runge-Kutta schemes (DIRK) within Scheme 1 (Algorithm 5.2), as
monitored in Figures 5.63 4, show similar upshots as standard Runge-Kutta schemes which are high-
lighted in Figures 5.61 2. On the contrary, integration Scheme 2 (Algorithm 5.3) forces the interme-
diate stages to satisfy the damage condition. As depicted in Figures 5.65 6, the numerical results ob-
tained by DIRK methods are most accurate.

Finally, an integration interval is considered which lies completely in the damage domain (h: [y =
0.25,v = 1.0]). In analogy to Figure 5.6, the corresponding numerical results are depicted in Figure
5.7. Now, the integration interval is comparatively smaller than in the above example and, moreover,
the integrated function is smooth. Hence, the numerical results for all settings become more accurate.
Nevertheless, the standard implicit Runge-Kutta algorithms within Scheme 1, see Figures 5.7; 2, ren-
der aberrant eigenvalues and, again, DIRK methods within Scheme 2 end up with the most accurate
computations, compare Figures 5.75¢.

Remark 5.8 Obviously, integration algorithms within Scheme 2 require several scalar—valued itera-
tions to compute all Lagrange multipliers. Nevertheless, the overall numerical costs are in general not
necessarily higher than applying Scheme 1 since each iteration reaches faster convergence compared
to the single one within integration Scheme 1. Apparently, Scheme 2 behaves numerically more stable
than Scheme 1 as far as large integration intervals for a sufficiently smooth function are considered.

5.4.2 Cracked plate under mode 3 loading

The subsequent finite element setting is based on anisotropic damage evolution in terms of the po-
tential 94m@Y,  compare Eq.(5.17). In analogy to Section 5.4.1.2, the initial damage metric Ay is
non—spherical which results in a damage formulation within category (iv). We consider a plate-like
structure of dimensions 40 x 80 x 4 whereby the discretisation is performed by 12 x 24 x 4 enhanced
eight node bricks (Q1E9) as advocated by Simo and Armero [SA92], see Figures 5.8 and 5.9. One side
of the specimen is completely clamped while we apply typical mode 3—type displacement constraints
(u3) to the opposite ripped side. Similar to Section 3.9.2, simple Euler backward integration and a
numerical perturbation scheme to approximate the “global” numerical tangent operator are adopted
whereby the perturbation parameter ¢ = 10~8 has been chosen and the precision corresponds to 16
decimal points, compare Section E.2.

The overall behaviour of the considered setting is monitored by representative load—displacement
curves. In this context, let the notation F3 characterises force—components with respect to the direc-
tion which is perpendicular to the initial plane of the specimen. Moreover, the abbreviation F?)jE de-
notes the sum over sign(ug) F3 with respect to the free boundary at the ripped side, see Figure 5.10.
Likewise, we additional highlight the norm of the resultant force || F|| at the same constrained surface
which would obviously vanish for an isotropic setting.
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Figure 5.6: Simple shear, anisotropic damage: Degradation of the smallest and second damage eigen-
value Aﬁ)\l,g within implicit integration algorithms due to an elastic-damage interval.
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Y

Figure 5.8: Cracked plate under mode 3 loading, anisotropic damage: Geometry and boundary con-
ditions of the specimen.

Figure 5.9: Cracked plate under mode 3 loading, anisotropic damage: Deformed mesh at |uz| = 13.34
and discretisation of the specimen.
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Figure 5.10: Cracked plate under mode 3 loading, anisotropic damage: Load—-displacement curves.
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Figure 5.11: Cracked plate under mode 3 loading, anisotropic damage: Smallest damage eigenvalue
A )\p at |us| = 13.34.
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Figure 5.12: Cracked plate under mode 3 loading, anisotropic damage: Anisotropy measure d (EI’, S*)
at |ug| = 13.34.
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Figure 5.13: Cracked plate under mode 3 loading, anisotropic damage: Anisotropy measure
5(A¥, A%, at |uz| = 13.34.
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The contribution of the smallest damage eigenvalue is visualised in Figure 5.11. Remarkably, the
amount of this damage indicator boils down from 1.00 to 0.32 which corresponds to a high degree of
damage evolution. In order to focus on the “fracture zone”, a cut through the specimen is addition-
ally highlighted in the sequel. For the considered anisotropic setting neither the strain field (Eb) and
the stress field (S*) commute nor the initial (A®|;,) and the actual damage metric (A*) possess iden-
tical principal directions as soon as damage evolution takes place. Hence we obtain non-vanishing
anisotropy measures which are monitored in Figures 5.12 and 5.13.



Chapter 6

Anisotropic damage coupled to multi-
plicative elasto—plasticity based on fic-
titious configurations

t i8 the nature of a real thing to be ineghaugtible in con-
tent; e can get an ever deeper infight into thid content
o by the continual addition of new egperiences, partly in

apparent contradiction, by bringing them into hormony
with one another. In thid interpretation, thingd of the real world
are approgimate ibeas. From thid arifed the empirical daracter of
all our Enowledge of reality.

Hermann Weyl [1885 — 1955]
Space-Time-Matter, 1922

Based on the concept of fictitious configurations as worked out in Chapters 4 and 5, we develop a
model formulation for anisotropic damage which is kinematically coupled to inelastic deformations,
see e.g. the work by Hansen and Schreyer [HS94] or Menzel et al. [MS01g, MESRO02]. Here we adopt
the well-established framework of multiplicative elasto—plasticity; compare Chapter 3 and for a sur-
vey the reader is referred to Lubliner [Lub90, Chap. 8], Haupt [Hau00, Chap. 11], see also references
cited therein, and the discussion by Naghdi [Nag90]. For conceptual clarity, we restrict ourselves to
the rate-independent case without loss of generality. In particular, the previously highlighted frame-
work of Lagrangian fictitious, microscopic configurations is adopted which has until now been mainly
used in continuum damage mechanics; see e.g. Briining [Brii01] for a similar approach. In this con-
tribution, we relate elements of the tangent spaces of an undamaged, microscopic configuration and
the standard intermediate configuration of multiplicative elasto—plasticity via a damage deformation
gradient. Thereby, the previously mentioned covariance postulate is applied to the free Helmholtz en-
ergy density and the assumed damage dissipation potential. On top of this, a second fictitious con-
figuration of Eulerian type is introduced and claimed to represent an isotropic setting with respect
to the assumed plastic dissipation potential. Then, based on an essential kinematic assumption, the
well-accepted concept of effective stress with respect to the construction of a yield function is a natu-

ral outcome of standard transformations in non-linear continuum mechanics, compare e.g. Lemaitre
and Chaboche [LC98, Chap. 7].

The Chapter is organised as follows: To set the stage, the underlying kinematics related to the
introduction of fictitious configurations are given in Section 6.1. Based on this, we set up the spe-
cific format of the free Helmholtz energy density, see Section 6.2. Later on, the Coleman—Noll entropy
principle as based on the Clausius—Duhem inequality is applied within multiplicative elasto—plasticity
as highlighted in Section 6.3. Thereby, the incorporated Finger—type metric tensor in terms of a ficti-
tious linear tangent map is treated as an internal variable and denoted as damage metric tensor. Sec-
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tion 6.4 deals with the framework of non—-standard dissipative materials. Finally, we focus on the inte-
gration of the obtained evolution equations — Section 6.5 — and give some numerical examples in sim-
ple shear and a general finite element setting, see Section 6.6.

6.1 Kinematical framework of fictitious configurations

For convenience of the reader, this Section reiterates the concept of fictitious configurations in the
context of multiplicative elasto—plasticity. In particular, we deal with two additional incompatible fic-

titious configurations, one of Lagrangian type (B) which is attached to the intermediate setting and a
second of Eulerian type (B) being connected to the spatial configuration.

In this direction, we first consider the fictitious configuration B which is assumed to be isotropic
with respect to the free Helmholtz energy density and attached to the intermediate configuration of
multiplicative elasto—plasticity. The corresponding tangent space and the dual space are denoted by
TB and T*B (with T**B = B, respectively. Consequently, the direct fictitious linear tangent map F
allows interpretation as pre-deformation. The corresponding fictitious natural and dual base vectors,
the metric tensors and the identity are defined in Eqgs.(4.1-4.3). In contrast to Chapters 4 and 5, this
Lagrangian fictitious configuration B is here attached to the intermediate setting B, (and not to By)
since the framework of multiplicative elasto—plasticity allows the picture of an elastic setting with re-
spect to the intermediate configuration B,. Now the linear tangent maps of the direct and inverse La-
grangian fictitious motion consequently read

FF=Gi®G el . TB-TB,, f =G ®G cl®:TB,TB, (6.1)

see Figure 6.1 for a graphical representation.

Second, think of an Eulerian fictitious configuration (l~3) which is isotropic with respect to an as-
sumed plastic dissipation potential. Moreover, let this configuration B be attached to the previously
introduced fictitious configuration B and as well to the spatial setting B;. The corresponding tangent
space and the dual space are respectively denoted by T B and T*B (naturally we identify T**B = T'B)
and in analogy to Eq.(4.1) one obtains fictitious natural and dual base vectors

g, eR:T"BR, g eR:TB-R (6.2)

whereby it is again the outcome that no interpretations as derivatives with respect to position vec-
tors hold. The corresponding fictitious metric tensors and the second order identity consequently fol-
low straightforward as

7 = 3,008 c¢S:TB x TB — R,
¢ = §g;®g; €S : T"B x T'B - R, (6.3)
¥ = ;8¢ eS:TBxTB — R,

and §* = det™(§’) cof(g"). Likewise, the linear tangent maps of the direct and inverse fictitious mo-
tions read as

Fl=geGecld: TB - 1B, f

e
o= g;®g' €ld: TB - TB;, 7 - g;®g €ld: TB, — TB,

Gi®g'el: TB — TB,

(6.4)

see Figure 6.1 for a graphical representation. In particular we end up with the useful relations

F:Fh.jrh.fh 'fh:ﬁ'g.fh.fg_ (6.5)



6.2. Construction of the free Helmholtz energy density 119
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Figure 6.1: Non-linear point map ¢ and linear tangent maps F?, FE,, FE, Fh, Fﬂ, f’h.

6.2 Construction of the free Helmholtz energy density

For the construction of the free Helmholtz energy density 9§ with respect to the intermediate config-
uration, a contra—variant energy metric or rather damage tensor (Finger—type) is introduced and, in

analogy to Chapters 4 and 5, denoted by A" in B and ;lﬁ € Si’L : T*Bp x T*Bp, — R, respectively,
with A" = F' A being obvious.

In this context, we adopt the common ansatz of an additive decomposition of the free Helmholtz
energy density into an elastic or rather damage contribution and an additional hardening term de-
fined by a scalar-valued hardening variable &, i.e. 93(E’, A, k; X) = damy0(E°, A% X) 4-haryp, (k5 X)
in By, compare Eq.(5.1) and footnote I on page 87. For the crucial relation between the intermediate
and the attached Lagrangian fictitious configuration, we obtain

_ _p = ~b ~
dam’lﬁo(EZ,Au;X) + har’lﬁo(k&;X) — damqu(Ee,Aﬁ;X) + har,(po(m; X) (6_6)

~b ~b ~b
with E, = %[Ce — G |, compare Egs.(2.7, 3.3). Conceptually speaking, the free Helmholtz energy
density remains invariant under any covariant action of a non—singular linear tangent map, here F
whereby it is obvious that the elastic strain tensor transforms as

~b

FE. = -EB-f=E,. (6.7)

Since the fictitious configuration is assumed to be isotropic, three (basic) invariants in terms of

E €S?:TBxTB — R and A’ determine the elastic or rather damage contribution to the free
Helmholtz energy density. Application of standard transformations renders two corresponding sets of
invariants (i = 1,2, 3)

B -G B4 =& B &) = By, (63)

now in terms of the elastic Green-Lagrange strain tensor.
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Remark 6.1 As an alternative formulation to the classical scalar—valued hardening contribution
—b ~
hareyo (k3 X) in Eq.(6.6), one could introduce 23 4p (K ,Aﬁ; X)) incorporating a symmetric second or-

—b _ _  —~b
der tensor K € S? : TB,xTB, =+ Ror K " K , respectively, as an internal hardening variable.
Then, based on the assumption of an isotropic fictitious configuration, similar to Eq.(6.8), we obtain
two sets of three invariants which determine the hardening contribution to the free Helmholtz energy
density
=T _ _ _ 7 ~ —~b ~f7% ~ o~
KA _ Gt [Kb-A"] _a. [K -Aﬂ] _ KA (6.9)
with ¢ = 1,2,3. Nevertheless, for the sake of conceptual clarity, we focus on the classical scalar—valued
hardening approach in this Chapter as highlighted in Eq.(6.6). For a detailed outline on the applica-

tion of Eq.(6.9) within small strain kinematics see Menzel et al. [MESRO02] or Ekh et al. [EMRS02].

6.3 Coleman—Noll entropy principle

We now reiterate the Coleman—Noll entropy principle in analogy to Sections 3.3 and 5.1 and obtain
the local form of the iso—thermal Clausius—Duhem inequality with respect to the intermediate config-
uration as

=1

Dg = [M ]t M L —8Eb'lp(l)) : DtEe—azu’lpg :DtA

— Ok (I))th‘GZO- (610)

whereby the notation D; denotes the material time derivative, [Z/\Z h]t characterises the Mandel tensor,

see Eq.(3.16), and
b

L= fi . Fi=fi.D,Fi+ D, Fy - f4 = L.+ L (6.11)

determines the mixed—variant pull-back of the spatial velocity gradient with respect to the interme-
diate configuration, compare Eqs.(3.12, 3.17). Now, by taking into account the relationship

~b S oAb A b b ~ppsym
2D, B, =Dy [Fi]' g’ - Fi+[Fi] g’ D, Fi = [T G+ C. - Ti=2 [CL-E] T, (612)
the dissipation inequality allows the representation
Y VT ~b =l ~1
Dy = [M]:L - [C-o,9k | Lo — 0,048 : D A = 9eyf Dy
¢ (6.13)

— ~b ~ ~b ~ ~
= [ - €L 0,98 Ti+ [Co- 008 ] Ty — 0408 : DA — 04 Dis > 0.

Following the standard argumentation of rational thermodynamics, appropriate stress fields are de-
fined by

=i - = o

~b b
[M ]t = Ce'aﬁl’wg = Ce' aEl’damw(l)) = Ce'S y

~b . m 6.14
-7 = o = o, (6.14)

—h = 0wh = 9 M.

Thereby, with respect to the representation of the basic invariants in Eq.(6.8), the derivatives of the
damage contribution of the free Helmholtz energy function damqu take the following format

~f 3. m N PN S T
S = leaﬁggulida oy A" [E, - A"]i1,
= (6.15)
~b ) N T PN
-Z = Z:lzaﬁ'ggﬁfida ¢(I)) Ee'[A "Ee][Z 1]7
1=

compare Eq.(5.12). Now, with these definitions at hand, the reduced format of the isothermal dissi-
pation inequality results in

~ ~ ~b ~b -~
DA +hDs=8:D,+2 D, A +hDir>0 (6.16)
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~b ~b =
whereby the symmetric tensor D, = [C, - Li]sym € S*: TB, x TB;, — R has been introduced, com-
pare Maugin [Mau94] with application to the more general framework based on the Eshelby stress ten-

sor and det(FE)) # 1. Note that W, =[C, - LE, A e W2 TB, x TB, — R, which characterises the
~b
plastic spin with respect to C,, is obviously undetermined within the representation in Eq.(6.16)s.

Next, following the standard framework, we introduce an admissible elastic cone with respect to
the intermediate configuration

AP — {([A’Z”]t,l‘r“,h; CA;’h,X)‘ yieqﬁp([ﬁ“]t,ﬁh,h;é“,x)
(6.17)

1

= viag (B ]t,F“;&“,X) + b (i X) < 0}

which is determined by the convex functions P2@P and "2'®. Moreover, the existence of a dissipation
potential of Lemaitre-type is assumed, see e.g. Lemaitre and Chaboche [LC98, Sect. 7.5.2] and Sec-
tion 3.4, namely

—h. _ ~b ~f ~ ) —b. - N ~b ~
pige (M, B b, 236 A, X)) = viear (D], B 1 G, X)) + @man(Z A, X) | (618)

which are specified in Section 6.4. In this context, appropriate evolution equations allow e.g. the fol-
lowing representation

5 _ 1
L, = DA a[ﬁh]t POtGP = D, A 8[1’\7Ih]t plagp

DA = Daa, ™R = DAo, G, (6.19)

Dik = DiA0h POtGP  — Dy A Gy harg

We obviously deal with associated evolution equations for the plasticity and hardening contributions
but the damage part nevertheless remains non—associated.

Remark 6.2 Recall that, in view of Eq.(6.16)2, an alternative format of an associated evolution equa-

tion for Ei can be introduced via

~b

D, = DiAoy plagp
_ 1 ) A~ ot
- Dt)\a[ﬁh]tpaqsp.agu[ce S] .
_ plagp . L[ =AY L A& o &F (6.20)
= DA, P00 1 C.8G +Cal |

~b sym
— D\ [Ce . a[ﬁh]t pladjp]

compare Miehe and Stein [MS92] and Section 3.5.

—b
Remark 6.3 Please note that the incorporation of the second order tensor K € S? : TB,xTB, — R,
which accounts for hardening, results in a reduced dissipation inequality of the format

A~ Ab AN ——~
L+ Z D, A+ H

f

—~ AI?
redpb — [M Dy K >0 (6.21)

— —b
with HIj = — 0 My € §3 . T*B, x T*B, — R. In addition, the evolution equation D; K =
K

1 ~b
D; A Bﬁup"t@’ =D; A Bﬁuharﬁp(ﬂ ﬂ; A, X) is a natural consequence, compare Menzel et al. [MESR02]
or Ekh et al. [EMRS02]. .
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6.4 Non—standard dissipative materials

In this Section we discuss the construction of the inelastic potentials within a Lemaitre—type model.
We thereby choose different approaches concerning each single contribution. For the damage part, we
apply the fundamental covariance postulate with respect to the intermediate and the Lagrangian fic-
titious configuration — similar to Section 5.2. Concerning the scalar—valued hardening contribution,
well-established constitutive equations are adopted as introduced in Eq.(3.89). Finally, a specific kine-
matic assumption is incorporated for the plasticity framework, which essentially enables us to deal
with the concept of effective stress.

6.4.1 Construction of the damage potential

We choose a quasi isotropic potential in the sequel which is quadratic in the damage stress field, namely

~ o~ ~ ~b ~ ~
damgp = 15 2812 p, A" =D, A4 (2 Aﬂ] Ak (6.22)
compare Eqs.(3.91, 5.16). For anisotropic damage evolution, the previously applied representation
PN N ~f oAb~
damgp =15, 2%, — DA =D A Z - [AT) (6.23)

is adopted, see Egs.(3.93, 5.17). Recall that a detailed discussion of this prototype damage model
(without coupling to plasticity) was given in Section 5.2 where we additionally commented on it’s pos-
itive dissipation contribution).

6.4.2 Construction of the hardening potential
For completeness, we reiterate the applied proportional hardening potential

harg = — LYy — h(k)]? = Dir=DyA2[Yy— h(k)] (6.24)
as introduced in Eq.(3.89).

Remark 6.4 Similar to Remark 6.1, we alternatively obtain two sets of invariants under the isotropy
assumption A’ = G’ for the fictitious configuration (i =1,2,3)

T _ _ _ ) —~ ~h o~ 3 ~
rmp_ Gt [A"-H“]Z:Gh; [A .H”]Z: necys (6.25)
—~ —~bh ~ — -~
with H' = —0_,"yP(K’, A, X) and H' = §, H', which define the alternative hardening poten-
tial har@P( A HA L, o).
6.4.3 Construction of the plastic potential

Next, for the definition of the invariants which enter the plastic contribution of the dissipation poten-
tial, we assume the Eulerian fictitious configuration B to represent an isotropic setting. Now, similar
to A" within the damage formulation, 173[’ € Si : TB x TB — R denotes a co—variant inelastic metric.

In the following, ﬁl’ = §I’ is assumed and we thus define an isotropic configuration for

Pag = PRg(7 p’; X) = Ped(7 g X) (6.26)

whereby 7= ?h* eSS T*BxT*B—>R represents the pull-back to B of the Kirchhoff stress ten-

sor in B;. Standard transformations now yield the plastic potential with respect to the intermediate
configuration

~ o~ b o—h e =k —h. = kb —f =h. — ~f ~b
Pag — PG (F¥, 1L P p Y, X) = Pleg(FY, 8% P X) = Phar(§E P, X)), (627)



6.4. Non-standard dissipative materials 123

Please note that gﬂ = Fu fﬂ* }i* = fe* 7! denotes the pull-back of the Kirchhoff stress to the in-
termediate configuration. Based on this, we make the key assumption of the proposed plasticity frame-
work, namely that the fictitious elastic linear tangent map F;, equals the elastic linear tangent map Fh
of the multiplicative decomposition. Consequently, in view of the involved Cauchy—Green-type ten-
sors, we obtain the crucial relationship (for notational simplicity the underlying shifters are ignored)

Fl=F — P = Frp = [F)t p F
(6.28)

~b
Fi*g’ = [Fi]' . ¢" . Fi = C,

based on ﬁb = §b. In this direction, the plastic part of the yield function with respect to the interme-
diate configuration results in

plag (?ﬂ;ﬁ",X> _ pag (Fh* 7o Fg*ﬁb,X) _ plagp (gﬁ; Fox Pb,X)
= olagp ( . Pl Ce,X) = Plage (fh c. .5 é“,X) (6.29)
= vhgr (MG, X) = vhor (M), F G, X)

— Y
with the modified Mandel stress [MEi]t = Fi C.: 5 eLs: TBp x T*Bp, — R. The fundamental co-
variance postulate has thereby been applied and an appropriate set of invariants is given by

L= g [9#]
_ & :13".5”]" - PEp
= ¢ [elg) = mawy, (6.30)
_ o az_fh*g.ﬁ]z _ GpE
= & . [y = G0

for 4 = 1,2,3 which is based essentially on the assumed isotropy of B for the plastic potential. Note
that in contrast to the free Helmholtz energy density, the linear tangent map F explicitly enters the
yield function. Pausing for a moment, we see that this is obviously a nice feature since the introduc-
tion of a damage spin within the coupling to plasticity is possible. Note that the set of invariants al-
lows the representations

GGy, — GUME
= a“:[ée[fu]t@ﬂ]i = az[fh]tgﬁfz'
- ¢ :[6"’ §§ch]l = &%y, (6.31)
with & = [[FIBFY] - €
and 8% = [far ¥

~

— ~b
for 4 = 1,2, 3, which underlines that the modified Mandel stress tensor [M (hi]t =Ceppe Sﬂ, entering

~b
the plastic part of the yield function, is essentially obtained by a linear map of C, via the fourth order

tensor [}'h]t ® [}h]t which accounts for anisotropy and degradation. Conceptually speaking, the appro-
priate metric tensor, with respect to the intermediate configuration, is modified such that anisotropy



124 6. Anisotropic damage coupled to multiplicative elasto—plasticity based on fictitious configurations

and degradation are incorporated into the yield function. Alternatively, a modified or rather effec-
tive stress tensor can be introduced to construct the appropriate set of invariants which is then de-
termined by the linear mapping of 5" under the action of F'® 7°. Further, when referring to the La-
grangian fictitious configuration, we deal with the well-accepted postulate of effective stress for the
construction of the plastic potential.

Next, in view of Eq.(6.19)1, the corresponding associated evolution equation is given as

Au t
L, = DA oo

—~ —~
= D; ) 8[1\7'ji]tpla¢p : 8§u [Mj]t: aﬁh S

~b St1=x0 A =Y
= D;\ 3[A751]tplagpp : % |: [Ce[fn]t . Be] G + C¢ @Be] (6.32)
. —f t 1 ~b ~ — b ~b ~ 1
with agu[Md] = 3 [Ce[fh]t®G +Ce[fh]t@G ]
of ey
and 8[1\//\Ih]ts = B,®G

~ ~ ~b
whereby the applied relation Bi = det™!(C,) cof (C,) has been introduced in Eq.(3.3). Summarising,
we obtain the more compact format

L = DAL[B & a0 Pear 4 B [0, Page] . &
po— 5[ e el Yzl + e'[ (M)t ] e[fh]t]
=1 ~p m
L A AT ey (6.33)

. N N T
= Dy) th(Nd,Ce[mt,Be) with N =95 PR

d

which has a surprisingly similar structure compared to Eq.(6.20).

Remark 6.5 For the sake of transparency, consider the isotropic case of a spherical damage mapping
with ||1:"u|| = /3[1 — D]. The proposed framework then boils down to the classical isotropic [1 — D]
damage formulation with coupling to plasticity, see e.g. Steinmann et al. [SMS94] or Lammer and
Tsakmakis [LT00].

6.4.3.1 Prototype model

Concerning the plastic part of the dissipation function, the evolution of the damage spin is neglected
for clarity’s sake and the rotational term of fh is thus not incorporated; for a discussion on plastic
spin, we refer to Dafalias [Daf98] and references cited therein. In this context, the polar decomposi-
tion theorem yields

F = R.U=V.FR, o wea =t

R € 0 : TB —TB,, e 0% : TB, —» T8, 630
U' €13 : 7B xTB —R, @' e 13 : T*B, x TB, — R, '
Ve L : "B, x TB, >R, o € L} :T'B xTB —R,

with [Rh]t = [Rh]_1 = 7 and @', Vh, ot U" turn out to be symmetric with respect to G" and (_;'h,
respectively. Furthermore, note that the fictitious right and left stretch tensors are now determined
by the damage metric tensor :Liﬁ since the rotational part is assumed to equal the identity mapping;
Ri=#.1In particular, we obtain

A=v.¢.wr=v.¢ vy, @Az at=p-6 ot (6.35)
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With these assumptions at hand, the following restricted format of the plastic dissipation function is
a natural outcome,

plagp pla@p( [ [[{,h]t@[ﬁh]t] : al;] . ,§ﬂ; ah’X)
(6.36)

— ~ ATt t
pla@p<[Mi[ﬁ”]t]t;Gh’X> B pla@p(G Magahy! —’1,2,3;X)

whereby a similar abbreviation as defined in Eq.(6.31) has been applied. Recall that the alternative

representation of the invariants, which was directly related to the postulate of effective stress refer-
~b b — ~ ~

ring to the fictitious configuration, results in pla¢p(ce . [[uh ® uh] : .S'ﬁ ] ; Gh, X). Next, we define a

stress deviator with respect to the Eulerian fictitious configuration (recall ﬁﬂ = §ﬂ)

dev f = F

-3 BT B

val . of AP AR
dev g = [Ce[mt .8 ] B (6.37)

W=

vl N ~p
CMagglt = Mol — § |G M| @

which allows us to set up a v. Mises—type function

b

—~ ~ Ah dev i ~ ~b ~f72
plagp ([Md [ﬁh]t]t; Gh> . G [Md[ih]t]tIQ -G : [Ce ot devSIj ) (6.38)

Finally, for completeness, we take into account the relation

~h . =1 — A
devG -~ aAh deV[Md[z_;h]t]t — [G ]t®G

'® G
7 P ® (6.39)

with 4G’ ; [f\Zf Ei wipel = dev [J/\Z (hi wie]' being obvious (compare Appendix A.1) and with these defini-
tions at hand, the v. Mises—type model results in the associated evolution equation

= — =1~y
I = DIANLy (Nd,Ce[@h]t,Be),
Lk o — iy — A
with N4 = 8dev[1\/2’i[5h]t]tpla¢p .devigl — 9 dev[Md[@h]t]t . [[G ]t G ] ,
b o 6.40
and  Clppye = 1B ] [[Fi g Fi, (6.40)

for  [A [ - G - o,

and B, = fi-g'- [fi]",

compare Eq.(6.33).

6.5 Numerical time integration

Let the time interval of interest be given by N time steps T = Uf:]:O[ "¢, "1t]. In the following, we
highlight a strain driven staggered algorithm with respect to the Lagrange multiplier Dy A and the
variables Fg, Zﬂ, k. Recall that loading and un—loading have to be checked by each trial step at

n+1F8  An outline of the numerical setting for multiplicative elasto—plasticity is given, e.g., by Simo
[Sim98, Chaps. IIIV] and Miehe and Stein [MS92].

For conceptual clarity, we apply an Euler backward integration with respect to the quasi isotropic
damage setting

nt1 2% — n 4" L AN 5 [n+12b : n+1:‘iﬂ] n+12ﬁ’ (6.41)



126 6. Anisotropic damage coupled to multiplicative elasto—plasticity based on fictitious configurations

as well as for anisotropic damage evolution (compare Section 5.3)

nt13f _n gt AN G, n+134f . nt13’ . nt1 3t (6.42)
and, once more for the proportional hardening variable

ntlg ="k +AX2[Yy— h("T1K)]. (6.43)

Although plastic incompressibility is not a key issue here, since plasticity is coupled to continuum
damage, we adopt an exponential integration scheme for FE,. The corresponding evolution equation
is constructed via Egs.(6.11, 6.40) and reads as

D, F:. fi =L =D, AN{p —> Dy F\=D;ANpy-Fb. (6.44)

Based on this, straightforward application of the exponential integration scheme results in

n+1FE) = exp (A n+1ﬁl€fh1t) . nFE) . n+1fE) _ nfE) exp (— AX n+1ﬁ?ﬂ}t) ) (6.45)

see Weber and Anand [WA90]. In this direction, the elastic part of the deformation gradient allows
the representation

nHLFE = L pE L Ll — LRl exp (— AN Ml/ﬁ?ﬂ]t) (6.46)

etri

and n+1ﬁ?fﬁ]t being obviously neither symmetric nor coaxial to ""’16‘2 = ["T1Fi]t . g° - "R com-
pare Eqgs.(6.34,6.40) and Remark 6.6. With these integration schemes at hand, we are able to set up
an outline of the applied algorithm — similar to Sections 3.7 and 5.3, see Algorithm 6.1. We choose
a modified regula—falsi scheme in particular for the iteration of the Lagrange multiplier and a New-
ton algorithm to compute the set of internal variables. This strategy results in the following system
of linear equations within each Newton iteration k

-4 4 ~ ~
daszﬂ damJFg AAﬂ . damRﬂ
plan‘jt pla 5‘75 o| AF! | = | —PapR! (6.47)
har - Ak _ har,,.
Ik

whereby the notation o denotes the appropriate type of contraction and additional abbreviations have
been introduced, in particular the residua

damﬁgix — n+12§€ _ nﬁﬂ — A)\ 51 |:n+121;€ . n+12§€] n—|—1:‘i?C
~ ~ ~ ~ ~b ~
R S TS R A S,
plaRh _ n-Hng _ n+1FE,tri - exp ( — A) n+1/ﬁl€fh]tk)
har,r _ n—|—1,<”C — Mg o A)\%[Y()—H_Hhk]
and the Jacobians
d 4 . d =i d 4 . d =t
ausz’i — 6n+12§c am B , amJFE — 8"+1F2k am B ,
la gt _ la la |k la pah .
Pty = 0, PR, g, Ousrpt "ORE, (6.49)
harj'C — 8"+1nk har,r .

An outline on the “exact” derivation of a Jacobian similar to plaJiph is discussed by de Souza Neto

[dSNO1]. Here, we nevertheless adopt a numerical perturbation scheme to compute the Jacobians
within the subsequent numerical examples. Moreover, within a finite element setting, it turns out to
be advantageous to apply this finite difference approximation in addition to the global tangent oper-
ator. For convenience of the reader, Appendix E.2 reiterates the adopted algorithm.
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Algorithm 6.1 Staggered solution technique: Newton-type algorithm to solve the set of non-linear

equations in A , FE and k embedded into a scalar—valued iteration (e.g. modified regula—falsi schemes)
to compute the Lagrange multiplier A\.

(Finite Element Method)  for given "t1F! do
if YegP|, .1 > 0 then

(scalar-valued iteration) dowhile | Y€@P(AN)|,41 > tol
AN =
(Newton-type method) dowhile ||damﬁﬂ|| + |[Pl2 RE|| + |Parp| > tol

n+129€+1 _ n+1:&?c + AA°

1l _ 1 h
mt Fek—|—1 = "t Fek + AFE}
e = "Mey + Ar
enddo
enddo

endif

Remark 6.6 Recall that closed representations of exponential functions of second order tensors con-
veniently exist if the argument is symmetric or skew—symmetric (spectral representation, Euler—
Rodrigues formula). In the case of a non—-symmetric second order tensor, one has to apply a series
expansion. From the computational point of view this procedure might be comparatively expensive
since the series expansion should not be terminated until an appropriate norm of an element falls be-
Iow a chosen tolerance. However, higher order powers allow representation via the Cayley—Hamilton
theorem, which yields in the present context

b

ep(N) = ¥ LN, [N

m=0

= gy [Nt — gy N2 4 g [NT3 (6.50)

compare e.g. Miehe [Mie96a] and Appendix B.1 I. For a discussion on the computation of general
tensor function we refer the reader to Betten [Bet84].

Remark 6.7 In order to underline that the numerical approximation of the Jacobians is appropri-
ate for the presented framework, we give an example of the exact, analytical evaluation of one single

fourth order contribution. Thus, the derivation of the “simplest” Jacobian dam/jljan is highlighted. In
the case of quasi isotropic damage evolution, we obtain

] N ~ N ~ N b
dam?, [1-axa, i1z’ ”+1A”] smg! _ AN, A e [”sz _ntig A | 61

and anisotropic damage results in

-~ ~f -~ ~b
dam:ih;iﬁ — syme + AN (52 |:n+1Aﬂ®n+1Aﬂ] - A

~ ~ ~b ~f ot _y1]5YM (6.52)
- A>\51[ G @["“A Ltz ] +G @["HA .ntly H

I' Application of the identity det(exp(d)) = exp(tr(d)) ¥V d € L” to the problem at hand yields det(exp(AX N ) =
exp(tr(AX ﬁh)) whereby the tr—operation refers to the appropriate metric, compare e.g. Weber and Anand [WA90] and

Gurtin [Gur81, Sect. 36]. From Eq.(6.45) it is then obvious, that F € M} : TBo — TB,, if tr(l/V\h) = 0, which represents
plastic incompressibility, see Remark 3.3 and footnote  on page 60 with respect to non—exponential integration schemes.

Similar we obtain with Eq.(6.44) the equivalent relation D; det(F") = cof(F?%) : [ifJ Pl =0 = tr(ii) =0.
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whereby the fourth order tensor Symé” and A\b are defined in Appendix A.1 and in Eq.(5.26), respec-
tively. The complexity of this “comparatively simple” contribution justifies the numerical approxima-
tion of the Jacobians in Eqs.(6.51,6.52), and apparently the approximation of the other fourth order
Jacobians in Eq.(6.49). Moreover, it turns out that this approach is not immoderately expensive.

6.6 Numerical examples

For the following numerical examples where we discuss the overall anisotropic behaviour of the pro-
posed framework, a typical compressible Neo-Hooke material is adopted. In particular, we choose

damyp = 4 [CA T 3] — o (BF ) + 4 2 (CF g,) (6.53)

as given in Eq.(C.4). The setting of anisotropic elasto—plasticity and the coupling to quasi isotropic
and anisotropic damage are considered in detail. For both cases the anisotropy, or rather damage met-
ric Aﬁ|t0 is assumed to be non—spherical. In particular, we choose the initial anisotropy metric to be
determined by the spherical coordinates 91 = %7‘!‘, 9?2 = %W, 9 = %7‘(‘, 92 = %7r and the scalars ap = 1,
o] = i, Qg = % Thus, from the beginning, the elastic behaviour is anisotropic. The material param-

eters for the Neo-Hooke material are assumed as p = 10* and A = 103.

Moreover, concerning the hardening part of the free Helmholtz energy density, we account for the
established additive decomposition into a saturation—type contribution and a quadratic term with re-
spect to the scalar-valued hardening variable

bargpo(k) = [Yoo — Yok + 05" exp(—d3r) — 85" ]+ & 64 2

(6.54)
= h(k) = [Yo—Yoo][l—exp(—d3k)] —dsk

as introduced in Section 3.8 with Yy = 103, Y, = 2 x 10 and 03,4 = 10.

In order to highlight the principal directions of specific symmetric second order tensors, like
e.g. stress and strain, the method of stereo—graphic projection is applied and in view of the overall
anisotropic material behaviour, the anisotropy measure § is monitored, compare Appendix D.

6.6.1 Simple shear

Within the subsequent numerical examples of a homogeneous deformation in simple shear (F =
I +ve; ® e? with respect to a Cartesian frame and I = 6ij e; ® €’), it is clearly seen that the evolu-

tion of the norm of the deviatoric modified Mandel tensor ||4¢V [1/\2 Ej ¢+t ||, which essentially enters the

yield function, displays a typical saturation effect. On the contrary, due to the incorporated contin-
uum damage, the corresponding norm of the spatial nominal Kirchhoff stress ||de"7'ﬂ||, decreases. In
the sequel, components of tensorial fields refer to a Cartesian frame, e.g. [8] = e’ - [o]* - €.

6.6.1.1 Anisotropic elasto—plasticity

To set the stage, we firstly discuss a purely elasto—plastic body whereby no damage evolution takes
place, 012 = 0. In this context, Figures 6.2-6.4 highlight the overall anisotropic behaviour. Represen-
tative properties of the Kirchhoff stress and the non—-symmetric, modified Mandel tensor are given in

Figure 6.2. The anisotropy measure in terms of strain and stress, §( Ei, S g ), shows a strong depen-
dence on the shear number 7y and, due to the fact that no damage evolution is incorporated, all eigen-
values of the anisotropy metric remain constant during the deformation process, see Figure 6.3. In
addition, the non—coaxiality of stress and strain is highlighted in Figure 6.4 for different shear num-
bers v by applying the method of stereo—graphic projection. Next, we reverse the shear direction
and consider unloading/reloading with respect to the deformation history v € [0 — 1,1 — 0]. Fig-
ures 6.5 and 6.6 monitor the contributions of the Kirchhoff stress, the modified Mandel stress, the
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anisotropy measure and the damage eigenvalues which are trivially constant for the considered set-
ting. Against intuition, we do not observe an exclusive reloading behaviour as experienced in an
isotropic setting, i.e. A" o G!. Apparently, this immediate loading effect results from the incorpo-
rated anisotropy and the comparatively small threshold. Finally, in analogy to Figure 6.4 we discuss
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(E,,S : ) and eigenvalues of the anisotropy metric Au}\1,2,3.

the evolution of the principal directions of strain and stress for reverse loading within the shear inter-
val vy € [0 — 2.5, 2.5 — 0.1], see Figure 6.7.

6.6.1.2 Anisotropic elasto—plasticity coupled to quasi isotropic damage

Next, we consider the coupling to quasi isotropic damage, with §; = 102 and d, = 0. Similar to the
previous setting, Figure 6.8 monitors the Kirchhoff stress and the non—-symmetric, modified Mandel
tensor. Now the eigenvalues of the damage metric decrease, see Figure 6.9. Apparently, these eigen-
values, AuA172,3, are uniformly scaled down during the deformation process which is due to the na-
ture of quasi isotropic damage evolution. Moreover, Figure 6.10 highlights the non—commutativity of
strain and stress for different shear numbers vy and the case of reverse loading is visualised in Figures
6.11-6.13 in analogy to Section 6.6.1.1.
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Figure 6.10: Simple shear, anisotropic elasto—plasticity coupled to quasi isotropic damage: Stereo—

graphic projection of strain (E, : ) and stress (S" : x) for different shear numbers .
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Figure 6.13: Anisotropic elasto-plasticity coupled to quasi isotropic damage, unloading/reloading:

~b ~
Stereo—graphic projection of strain (E, : ) and stress (,S'Ij D %).

6.6.1.3 Anisotropic elasto—plasticity coupled to anisotropic damage

Lastly, we take anisotropic damage evolution into account with §; = 0 and d; = 10%. Figures 6.14-
6.21 highlight the corresponding results in analogy to the previous settings. Please note that besides
~h ~ ~f ~ .
( E,, Sﬂ) Figures 6.15 and 6.19 monitor the anisotropy measure (5(Aﬂ,Aﬁ|t0) which underlines the
evolution of the principal axes of the damage metric. Furthermore, due to the nature of anisotropic
damage, the eigenvalues of the damage metric now degrade differently during the deformation pro-
cess. The same effect is clearly reflected by the method of stereo—graphic projection in Figures 6.17
and 6.21 where the contributions of the actual damage metric A are compared to the initial damage

metric 21“|t0. Similar to the previous examples, Figures 6.16 and 6.20 visualises the non—coaxiality of
strain and stress for different shear numbers ~.
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Figure 6.14: Simple shear, anisotropic elasto—plasticity coupled to anisotropic damage: Kirchhoff
stress 7! and modified Mandel stress [M (hi ee]"-

6.6.1.4 Numerical aspects

As mentioned in Section 6.5, we applied a regula—falsi-type algorithm for the iteration for the La-
grange multiplier and Newton’s method based on approximated Jacobians for the damage and plastic
contributions and the exact Jacobian for the hardening part. Concerning the scalar-valued iteration
scheme for the Lagrange multiplier, one must choose two initial values in order to start the computa-
tion. The trial guess zero is obvious but the second value affects the convergence of the iteration. Table
6.1 highlights this influence within the setting of anisotropic elasto—plasticity coupled to anisotropic
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Figure 6.17: Simple shear, anisotropic elasto—plasticity coupled to anisotropic damage: Stereo—graphic

projection of the actual damage metric (2 : ) and the initial damage metric (2 |t, : %) for different
shear numbers .
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hoff stress 7¢ and modified Mandel stress [M hd )
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Figure 6.21: Anisotropic elasto—plasticity coupled to anisotropic damage, unloading/reloading:
Stereo—graphic projection of the actual damage metric (ﬁﬂ : o) and the initial damage metric (2 lto :

damage evolution for the rather large load step v € [0,0.5]. Moreover, the convergence of the New-

Table 6.1: Influence of different initial values for AA; on the convergence of the regula—falsi-type it-
eration for the Lagrange multiplier within the load step v € [0,0.5].

No. Ay yiegp Al yiegp Al yiegp
0.000 E-16 | 2.068 E+08 0.000 E-16 | 2.068 E+08 0.000 E-16 | 2.068 E+08

1 | 1.000 E-06 | 1.018 E+08 1.000 E-05 | 2.803 E407 1.000 E-04 | 1.325 E4-06
2 | 1.969 E-06 | 7.710 E+07 1.156 E-05 | 2.482 E407 1.010 E-04 | 1.301 E4-06
3 | 4.995 E-06 | 4.640 E+07 2.369 E-05 | 1.246 E+07 1.370 E-04 | 3.621 E+05
4 | 9.569 E-06 | 2.905 E+07 3.591 E-05 | 7.704 E+06 1.500 E-04 | 1.282 E+05
5 | 1.722 E-05 | 1.726 E+07 5.570 E-05 | 4.217 E+06 1.580 E-04 | 1.955 E4+04
6 | 4.454 E-05 | 1.017 E4+07 7.963 E-05 | 2.259 E4-06 1.590 E-04 | 1.260 E4-03
7 | 6.607 E-05 | 5.821 E4-06 1.070 E-04 | 1.079 E4+06 1.600 E-04 | 1.335 E401
8 |9.232 E-05 | 3.198 E+4+06 1.330 E-04 | 4.418 E+05 1.600 E-04 | 9.230 E-03
9 | 1.200 E-04 | 1.628 E406 1.500 E-04 | 1.351 E4+05 1.600 E-04 | 1.752 E-03
10 | 1.420 E-04 | 7.330 E4+05 1.580 E-04 | 2.416 E4+04 1.600 E-04 | 4.346 E-07
11 | 1.550 E-04 | 2.679 E+05 1.590 E-04 | 1.631 E4+03

12 | 1.590 E-04 | 6.663 E+04 1.600 E-04 | 2.128 E401

13 | 1.600 E-04 | 8.115 E+03 1.600 E-04 | 1.902 E-02

14 | 1.600 E-04 | 2.836 E+02 1.600 E-04 | 3.610 E-03

15 | 1.600 E-04 | 1.255 E+00 1.600 E-04 | 1.141 E-06

16 | 1.600 E-04 | 8.920 E-04 1.600 E-04 | 1.711 E-09

17 | 1.600 E-04 | 1.690 E-04

18 | 1.600 E-04 | 1.202 E-08

ton algorithm inside each regula—falsi step is crucially affected by the incorporated perturbation pa-
rameter ¢ for the numerically approximated Jacobians, compare Appendix E.2. For the above exam-
ples we chosen a precision of 16 decimal points. The influence of the perturbation parameter is given

in Table 6.2 within the load step v € [0,0.5] whereby || R|| abbreviates the sum ||dam1/%ﬁ|| + [P RY)|.

6.6.2 Stamping of a sheet

Within the subsequent finite element setting, we account for anisotropic elasto—plasticity coupled to
anisotropic damage evolution with §; = 0 and §, = 10. The considered specimen consists of a plate—
like structure of dimensions 10 x 10 x 0.5 and a rigid square block with a cross—sectional area measur-
ing 2.5 x 2.5, see Figure 6.22. The discretisation of the plate is performed by 16 x 16 x 8 enhanced
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Table 6.2: Influence of different perturbation factors € on the convergence of the local Newton itera-
tion within the load step v € [0,0.5] for A\; = 107,

| R|| for e = 1012

|R|| for e =108

|R|| for e = 10~*

No. step 1 step 2 step 1 step 2 step 1 step 2
1 | 2.970 E4+01 | 3.264 E-06 2.995 E4+01 | 3.451 E-06 3.001 E4+01 | 9.142 E-06
2 | 7.390 E+01 | 2.570 E-09 7.397 E401 | 1.584 E-11 7.448 E+01 | 1.522 E-08
3 | 9.324 E+00 9.383 E+00 9.366 E+00
4 7.997 E-01 6.915 E-01 6.663 E-01
5 1.296 E-01 1.217 E-01 1.191 E-01
6 3.985 E-03 3.525 E-03 3.360 E-03
7 4.920 E-06 4.418 E-06 5.030 E-06
8 1.405 E-09 1.889 E-12 1.771 E-09

eight node bricks (Q1E9), as advocated by Simo and Armero [SA92]. Boundary conditions and the
applied loading are given in Figure 6.23.
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Figure 6.22: Stamping of a sheet, anisotropic elasto—plasticity coupled to anisotropic damage evolu-
tion: Geometry and discretisation of the specimen.

A typical necking behaviour is indicated by the load—displacement curve in Figure 6.24. Further-
more, the subsequent plots refer to a deformation ||u|| = 1.46 which is almost triple the thickness of
the plate itself. Figure 6.25 monitors the distribution of the deviatoric norm of the Kirchhoff stress
|[9¢v7#||. In addition, one quarter of the body is zoomed. Even though geometry, boundary conditions
and loading imply certain symmetries, the response of the specimen is completely non—symmetric
which is due to the incorporated anisotropies. Apparently, the property of the contribution of the

deviatoric norm of the modified Mandel stress ||9¢Y [1/\2 h]d[ﬁhmt || is different from those of the Kirch-
hoff stress, see Figure 6.26. The smallest eigenvalue of the damage metric tensor is visualised in Fig-
ure 6.27. Please note that Aﬁ)\l boils down from 1.00 to 0.55 which underlines a high degree of dam-
age evolution. A typical indicator for anisotropy is the anisotropy measure § (EZ, g'ﬂ) as highlighted
in Figure 6.28. Moreover, the evolution of the principal axes of the damage metric is represented via
the non—vanishing scalar o (ﬁﬂ, :éiﬂ|t0) which allows interpretation as deformation induced anisotropy,
see Figure 6.29. Finally the contributions of the hardening variable £ are monitored in Figure 6.30.
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Figure 6.23: Stamping of a sheet, anisotropic elasto—plasticity coupled to anisotropic damage evolu-
tion: Boundary conditions and loading of the specimen.
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Figure 6.24: Stamping of a sheet, anisotropic elasto—plasticity coupled to anisotropic damage evolu-
tion: Load-displacement curve.
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Figure 6.25: Stamping of a sheet, anisotropic elasto—plasticity coupled to anisotropic damage evolu-

tion: Deviatoric norm of the Kirchhoff stress ||4¢V7!|| at ||lu|| = 1.46.
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Figure 6.26: Stamping of a sheet, anisotropic elasto—plasticity coupled to anisotropic damage evolu-

vy

h]t]tH at ||u|| = 1.46.
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tion: Deviatoric norm of the modified Mandel stress |9V
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Figure 6.27: Stamping of a sheet, anisotropic elasto—plasticity coupled to anisotropic damage evolu-

tion: Smallest damage eigenvalue A\ at ||u|| = 1.46.
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Figure 6.28: Stamping of a sheet, anisotropic elasto—plasticity coupled to anisotropic damage evolu-

b~
tion: Anisotropy measure 0(E,, Sﬂ) at ||u| = 1.46.
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Figure 6.29: Stamping of a sheet, anisotropic elasto—plasticity coupled to anisotropic damage evolu-

tion: Anisotropy measure 6(2ﬂ,2ﬂ|t0) at [|u|| = 1.46.
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Figure 6.30: Stamping of a sheet, anisotropic elasto—plasticity coupled to anisotropic damage evolu-

tion: Hardening variable k at ||u| = 1.46.
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6.6.2.1 Numerical aspects

As previously mentioned, we numerically approximated the algorithmic tangent operator within the
finite element setting, compare Appendix E.2. In this context, Table 6.3 monitors the dependence of
the global convergence of the finite element scheme on the perturbation factor € with respect to the
residual norm || R||, similar to Section 3.9. We thereby chose one load step which results from ||u| =0
in ||u|| = 0.34 and Ay € [1,0.98] whereby the computations have been performed with the arc—
length method. Recall that the chosen precision corresponds to 16 decimal points.

Table 6.3: Influence of different perturbation factors € on the convergence of the global Newton iter-

ation within the load step ||u|| € [0,0.34].

e =10"12 e=10"8 e=10"*
No. K [E [E
1 2.6998 E+03 2.6983 E+03 2.6985 E+03
2 6.8412 E+02 6.7962 E+02 6.8185 E+02
3 5.9166 E+01 5.1878 E+01 5.1816 E+01
4 2.4510 E4+00 1.0577 E4+00 1.0275 E4+00
5 1.4148 E-01 2.0344 E-02 2.0650 E-02
6 1.2744 E-02 8.3972 E-07 2.4782 E-04
7 7.6180 E-04 2.7513 E-09 3.2112 E-05
8 4.7580 E-05 4.5746 E-06
9 5.2422 E-06 6.5566 E-07
10 1.1622 E-06 9.4023 E-08
11 1.3666 E-07 1.3699 E-08
12 1.8831 E-08




Discussion

a8 babe idy getan — fagt mein Gedddtnis. Dasd fann idy
9 nidt getan haben — fagt mein Stol und bleibt unerbit-
s terlidy, Endlidy — qibt da8 Gedddytnid nady.

S, @'\)

Friederich Nietzsche [1844 — 1900]
Jenseits von Gut und Bose, 1886

The main objective of this work is to develop and compare two rational, modular and thermodynam-
ically consistent frameworks of anisotropic inelasticity which are especially well suited for general nu-
merical settings, e.g. the finite element method.

On the one hand, a spatial formulation of anisotropic multiplicative elasto—plasticity is deduced in
terms of the elastic Finger tensor and an arbitrary number of additional symmetric second order ten-
sors (typically structural tensors). In particular, the derivation is based on the general representation
theorem of isotropic tensor functions — or alternatively on the fundamental covariance relation of the
free Helmholtz energy density. As a result, we proved the generalisation of the celebrated Truesdell
or rather Murnaghan formula to anisotropic multiplicative elasto—plasticity. On this basis, it seemed
natural to incorporate the thermodynamic force conjugate to the elastic Finger tensor into the plastic
potential, although this stress measure differs from the stress in the equilibrium equations. Further-
more, we discussed the interpretation of this thermodynamic force within the framework of Eshelbian
mechanics and additionally showed that the proposed approach embeds the well-established formu-
lations of isotropic large strain plasticity. It turns out that the stress tensors and the elastic tangent
operators result in a specific additive structure with respect to the appropriate ingredients of the free
Helmholtz energy density. Thus, in view of numerical applications, standard formulations for non—
linear hyper—elasticity or multiplicative elasto—plasticity can be conveniently enlarged to anisotropic
constitutive equations. In analogy to a texture development, we accounted for an evolution of the ad-
ditional second order internal variables, whereby a Lemaitre-type model has been adopted. The char-
acter of the obtained evolution equations for these tensorial fields is of cardinal importance since they
influence the material symmetry group of the modelled body of interest. Concerning the numerical
examples, the chosen prototype models accounted for an initially (elastic) transversally isotropic and
orthotropic material, respectively. Furthermore, the initial symmetry group of the plastic potential
is assumed to be orthotropic. As it is clearly monitored by the numerical examples within a homo-
geneous deformation in simple shear and finite element settings, the proposed formulation allows the
representation of strongly anisotropic solids. For the inelastic case, an evolution and change of the in-
corporated anisotropy is optionally included. Recall that due to the conceptual beauty of this frame-
work, we are not restricted to a specific configuration and thus choose the most convenient environ-
ment — the physical space. As an interesting side aspect, all internal variables and flow directions re-
main symmetric and simple integration techniques were suitably applied. Summarising, it is believed
that the developed formulation serves as a very convenient framework for anisotropic hyper—elasticity
and multiplicative elasto—plasticity.

On the other hand, we compared the previous approach to the concept of fictitious configurations
within a hyper—elastic setting. Thereby, the underlying motivation for the latter strategy relies in the
consideration of an energy metric tensor which allows the interpretation as a fictitious Finger tensor
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characterising a pre—stretched material. The concept of strain energy equivalence between an isotropic
fictitious and the anisotropic reference configuration was strictly applied and a specific ansatz for the
fictitious linear map has been chosen in order to introduce an analogue to structural tensors. On this
basis, the comparison of the incorporated sets of invariants underlines that the framework within the
fictitious configuration deals with a reduced set of invariants and generators compared to the struc-
tural tensor approach and is restricted at least to orthotropic symmetry. As a main advantage of
this framework, standard isotropic constitutive equations can be applied to model orthotropic mate-
rial behaviour. Recall that correlated numerical computations end up in similar costs compared to
the computation of an isotropic material which is a significant benefit of the formulation. With this
framework at hand, a large strain second order continuum damage formulation has been discussed
whereby the well established concept of generalised standard dissipative materials was adopted. Based
on the introduction of a dissipation potential and appropriate flow rules, two types of damage evo-
lution were classified, namely quasi isotropic damage with constant principal damage directions and
generally anisotropic damage incorporating an evolution of the principal damage directions. Both cat-
egories allow the coupling to either isotropic or anisotropic hyper—elasticity, respectively. Then, the
coupling of continuum damage to multiplicative elasto—plasticity was developed in a kinematically
consistent manner. Consequently, the previously introduced fictitious configuration has been attached
to the intermediate configuration and another additional fictitious configuration for the yield function
has been introduced. A specific kinematical assumption enabled us to define a modified stress ten-
sor of Mandel-type which enters the plastic potential with respect to the intermediate configuration.
This particular stress tensor accounted for anisotropy and degradation in view of the plasticity frame-
work. Referring to time integration for the proposed rate-independent staggered formulation, differ-
ent higher order methods have been applied. Since no exponential scheme for the general anisotropic
damage case is conveniently available, Runge—Kutta algorithms have been used for the computations.
Thereby, two different schemes were outlined, either tolerating intermediate stages outside of the elas-
tic domain or forcing the intermediate stages to remain in the elastic domain. For the highlighted
numerical examples diagonally implicit Runge-Kutta algorithms especially rendered results of satis-
fying accuracy for large integration intervals. In the case of full coupling of hyper—elasticity, contin-
uum damage and plasticity in the context of overall anisotropy at large strains a simple Euler back-
ward integration for the damage part and an exponential scheme for the plasticity contributions were
successfully applied. In conclusion, it turns out that the developed kinematically and thermodynam-
ically consistent framework for anisotropic second order continuum damage coupled to plasticity re-
sults in a manageable numerical setting which is a main advantage of the proposed formulation.

Outlook

aIS sugleidy erfaﬂ'en s wollen. ... ‘Die’ €toffg[elcbung
fiir ein reale8 Material, die rmrfhcb a8 gefamte Verhal-
ten forveft wiederqibt, mitb man nie angeben fdnnen.

Arnold Krawietz
Materialtheorie, 1986

It is obvious that the development of specific physically and micro-mechanically motivated evolution
equations, the comparison of the numerical results with appropriate experimental data and the iden-
tification of the incorporated material parameters are of cardinal importance and constitute future re-
search — however, neither of these tasks being trivial.

The extention of the proposed anisotropic frameworks to more general thermomechanical formula-
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tions seems to be worthwhile. In this context, the set of (possibly hemitropic) response functions reads

[IT% = [IT']([e]) € L? : T*By — T*By,
g = d'([e]) € R® : T*By = R,
0 = efls]) €R, o)
m = mo([e]) € Ry,
o = o(fs]) € R,
[¢] = {F% D F' G*0,Grad0, A} ;X },

whereby ¢ and (X, t) are excluded from the set [o] due to the principle of material objectivity, [IT°]"
denotes a mixed-variant stress tensor, g* characterises the heat flux vector, Ati,m’n collects a set of
additional (possibly internal) variables and 0, €y, 7m0 € R4 as well as ¢y € R represent the absolute
temperature field, internal energy, entropy and the free Helmholtz energy densities, respectively, with
o = €g — 0my, Grad@ € R® : TBy — R and usually m = 0 or m = 1, compare e.g. Truesdell and
Toupin [TT60, Chap. E], Truesdell and Noll [TN92, Chap. D 1], Green and Adkins [GA70, Chap.
VII], Suhubi [Suh75], Lavenda [Lav93, Chap. 3], Capriz [Cap89, Part ], Antman [Ant95, Sect. XI.14],
Silhavy [Sil97, Chap. 9], Maugin [Mau99, Sect. 3.3.B], Gurtin [Gur00, Chap. A.9] or Rivlin [Riv73]
for an overview **. Then, the Coleman—Noll entropy principle as based on the Clausius—Duhem in-
equality is assumed to take the following local format

—Dypo — oD 0+ [T : D, F? + 671 g* - Grad 6 > 0 (0.2)

which results in (the notation o denotes the appropriate contraction)

n
[[IT4* — 8papo ] : Dy Fo — Ony, w0 DI F - Zl 8 4140 0 Dy Al 03
i= v .

— [0 + B9t ] : Dt @ — Ocradgto : Dy Grad @ + 61 q'- Gradf® > 0

with Dy Al:jt,...,n =Dy Ag,...,n([']) ft. Following the lines of rational thermodynamics by applying the
classical Coleman—Noll argumentation, we demand this inequality to restrict the constitutive equa-
tions (0.1). In particular, inequality (O.3) is claimed to hold at a material point at fixed time ¢ for
arbitrary variables of the set [¢] and Dy F* D;?ntll F% D, 6, D; Grad @ since it is always possible to find
a motion and temperature field which satisfy this constraint (every deformation-temperature path al-
lows realisation in a process). Please note that the response functions (0.1) are unaffected by Dy F?,

**For conceptual clarity, the dependence of the constitutive functions on the temperature rate is neglected. Indeed,
for rigid bodies (C" = Gb) is turns out that we deal with a parabolic heat conduction equation (infinite propagation
velocity of the thermal field) while the incorporation of D; 6 results in second order time derivatives of § in the energy
balance and consequently in a hyperbolic setting (finite propagation velocity of the thermal field). A detailed outline is
given in Suhubi [Suh75, Sects. 2.3 & 2.7].

1 Naturally, balance of mass (dM = dm) and angular momentum (S*, 7% € S®) is assumed to hold throughout and
from linear momentum, we obtain the pointwise balance equation

D; p; = Div [IT*]" + **%bg (t1.1)

with p'(’J = pog’-D;x € R®: TB, — R whereby po denotes the referential density in By and *°%b}) € R® : TB; — R. Appar-
ently, balance of entropy is defined in terms of the difference in increase of total and reversible entropy, namely the entropy
production Iy = D; So — Dy "™VSo > 0 with Iy = fBo YodM, So = fBo nodM and "V Sp = fBo ety AM + f@Bo ht-nbdA
whereby ¢"*ro characterises a source of entropy and h* € R® : T*By — R denotes the entropy flux vector in connection
with the outward unit-vector n’ € U?: TBo — R. The corresponding local format results in

Yo = Dimo — [entro + Div hﬁ] ) (11-2)
Yo = Demo — 671 [enero +Divg' +67' ¢ -Grada] ) (t1-3)

whereby the representation (11.3) is based on the constitutive relations h¥ = 71 qﬁvand e“trp = 97! enepy (*"py denotes
an energy source term), compare e.g. Truesdell and Toupin [T'T60, Sect. E IIb] or Silhavy [Sil97, Sect. 9.2].
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D%ﬂ F% D, 0, D; Grad § and that the contributions D; Ai}’._,n allow interpretation as being constitu-
tive functions themselves and thus dot not permit to be independently varied. Based on these rela-
tions and the fact that the inequality (O.3) depends linearly on Dy F", D;?ntlth, D; 6, D; Grad 6, con-
stitutive equations for a mixed-variant hyper—elastic stress field (first Piola—Kirchhoff stress) and the
entropy density as well as the independency of 1y (just as €y and 79) on the mth time derivative of
the motion and temperature gradient in addition to the reduced format of the Clausius—Duhem in-
equality are a natural consequence .

[IT°)' = Optpo, 10 = — Dgtbo %%Fhlﬁo =0, Ocrado¥o =0,

n (0.4)
~ 3 800D AL+ 671 gt- Gradd > 0.
=1 ?

Next, we consider a moderate and simple prototype model with respect to the Lagrangian set-
ting. The following ingredients [o] = {C’, G, 0, A'; X } with A* € S? : T*By x T*By — R and
q' = q*(Grad#,[e]) together with the assumption D; Agw
(i =1,2,3)

.n = 0 result in the hyper—elastic format

S* = 29,y) = 2B*. [agu¢8-G”+3Au¢8-A”]
_ S”@.gﬂ.[Cl’.Gﬂ]i—l+5”¢4Aﬂ+5ﬂ¢5[Aﬁ-Cb-Gﬂ]sym (0.5)
with Sﬂ¢1,...,5 _ Sﬁ(f’l,...,S(Gh : [Cb . Gﬂ]i, C’ - Aﬁ, [CIJ .Gt Cb] : Aﬁ’ 9) ,

whereby the free Helmholtz energy density is assumed to represent a hemitropic scalar—valued tensor
function. Since the constitutive equation for the heat flux vector is generally not based on any poten-
tial, we obtain (i = 1,2, 3)

¢ = 74;Grad6-G!-[C"-GI]i™?
+ ¢¢4Gradf- A+ P s Gradf- A'-C" - G + P ¢ Grad 0 - G* - C” - A!
with Ty g = qu¢1,...,6( G':[C"-G'),C: A% [C"-G'-C"]: AL 0, (0.6)
Gradf-G*-[C”-G']'"! - Grad#,
Grad@- A*.Gradd, Gradg- Aﬁ-cb-Gﬁ-Grado),

compare Zheng [Zhe93a] or Antman [Ant95, Sect. XI.13.9] for the applied representation theorem of
hemitropic vector—valued tensor functions and see Wang [Wan84| for a discussion on the underlying
symmetry. Alternatively, Egs.(0.5,0.6) allow a direct formulation in the Eulerian setting whereby the
stress relation is essentially defined by the general covariance of the free Helmholtz energy density and
the heat flux vector results in the Piola transformation gf|g, - cof (f%) = qf|, (g, b*, 0, grad 6, a*; X).
Nevertheless, the incorporation of additional arguments At{,“_,n (possibly higher order structural ten-
sors), the introduction of different sets Af},...,r and Ag,___’t into 1y and the constitutive function for gf, re-
spectively, or the definition and application of appropriate evolution equations such that D, Ag,___,n #0
is straightforward but tedious. Finally, it is clear that the incorporation of the temperature field gen-
erally allows the modelling via multiplicative decompositions with respect to an additional thermal
linear tangent map Fg € ]Li, see Figure 7.31; for a graphical representation of the decomposition
F' = F). F: . Fh.

# 1t is clear that the highlighted thermomechanical framework deals throughout with dissipative processes (even if
D A} ., = 0 we end up with § ' ¢* - Grad# > 0 for a non-isothermal setting, 0 < 6 # const and ¢* # 0). An alter-
native non—dissipative framework, which nevertheless accounts for thermal effects, is highlighted in Green and Naghdi
[GN91, GN93]. Thereby, the key idea relies on the introduction of a thermal displacement field o = a(X,t) € R which
essentially characterises the integral of the thermal field with respect to time, a(X,t) = :01 0(X,t) dt + ao(X). Then,
from the list of arguments of the set [e], the contribution Grad @ is replaced by Grada € R? : TBy — R which finally re-
sults in a hyper—elastic format for the heat flux (determined via the derivative of the free Helmholtz energy density with
respect to Grad ).
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A

TB, TBy

Y

F}

Figure 7.31: Non-linear point map ¢ and linear tangent maps F*, F%, FE, Fg within a thermome-
chanical setting (left) and linear tangent maps F*, "F2, *F for the generalised Maxwell model (right).

The extension of the developed hyper—elastic framework to visco—elasticity is straightforward and
allows a similar outline as multiplicative elasto—plasticity, see Chapter 3. In this context, let (no sum-
mation over the positive integer 7)

Fi=OF . OF with ‘F}cl? :TBy - T'B, and °‘Ficl?:T'B, - TB (0.7)

represent a generalised Maxwell model with respect to a finite number of intermediate configurations
‘B,, compare Govindjee and Reese [GR97], Haupt [Hau00, Sect. 10.2], Bonet [Bon01] and Nedjar
[Ned02] and see Figure 7.31, for a descriptive visualisation. Next, we accept the following additive
decomposition of the free Helmholtz energy density into

Y8 = 2y(C”,GH AL X)+ X Wd(C B AL, s X) (0.8)
2
whereby Ag,m’n, iABH_L_“,m € S*: [T*By x T*Bol1,..m — R collect symmetric second order tensor
fields and the relations iAﬂnH’___’m =ifl, i:ﬁiiﬂ,___’m, iBf =it iE;'” €S3 : T*By x T*By — R are
obvious. With these relations at hand, the isothermal dissipation inequality in local format reads
Dy = [M = 2 0u>u-GF -2 00 Al

j J
— 23 Oigt "y ‘B, -2} 0; 41" - ‘A L (0.9)

i i

_ zi:aiBEi,ﬁg:DtiBE,— Zj:8A§w¢8:DtAg.—ZZJ:BiAg%g:Dt"Ag > 0.

#
n+1,...,

mation induced anisotropy) and the strict constraints — 9, Buiwg : DtiBE, > (0 are commonly accepted.

The tensor series Ag,...,n and A ., are usually assumed to remain constant in By (material, defor-

Based on this, the visco-hyper—elastic constitutive function for the Mandel stress [M IJ]t =C". s
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suggests an additive decomposition of the second Piola—Kirchhoff stress into a symmetric equilibrium
(00) and a symmetric non—equilibrium (neq) part, namely

= = 2B | 0geyl G + % 0y Al
j J
(0.10)

neagf — 2Bt [Z@BWSJ‘B“Z T z‘Ajli].
1 5]

Concerning the evolution equations for the viscous contributions ‘B, it is established to introduce

v?

the mapping
D, ‘B! ='B!: B! (0.11)

whereby iBE, € S¥3 . T*By x T*By x TBy x TBy — R is negative definite in order to satisfy the re-
duced dissipation inequality and generally accounts for the deformation history and anisotropy, com-
pare Section 5.2. For applications of anisotropic visco—elasticity within finite element settings, we re-
fer to the recent contributions by Kaliske [Kal00] and Holzapfel and Gasser [HGO1].

It is straightforward to expand the developed frameworks to visco—plastic models of classical
Perzyna—type. Thereby, the Lagrange multiplier D; A is replaced by the constitutive functional
D Ay = [27]7 [V @ + |V D] ], see e.g. Mihler et al. [MERO1] or the contributions by Spencer [Spe01]
and Sansour and Kollmann [SK01] with special application to anisotropy. Finally, recall that the
framework of a fictitious configurations is optionally included in the previous reiterations on thermo-
mechanical materials, visco—elasticity and —plasticity when neglecting the additional tensor series, like
e.g. Ag,m,n, and replacing the Lagrangian metric tensor by an anisotropy or rather damage tensor.

In order to manage the occurring localisation (e.g. for softening behaviour), a number of modi-
fications of the standard Boltzmann continuum description, so called regularisations, have been pro-
posed during the recent years, e.g. non—simple, non—local and micropolar continua, higher order gra-
dient methods, rate dependency, fracture energy approaches or the introduction of discontinuous dis-
placement fields (and combinations thereof). Practically speaking, an internal length scale is intro-
duced. One of the most promising approaches in computational mechanics relies on the incorpora-
tion of higher gradients, typically second order material gradients in terms of the Laplace operator of
a scalar measure. For the developed anisotropic continuum damage model, these gradients should be
somehow related to the second order damage metric tensor A", In the subsequent brief outline, we
adopt the approach highlighted in Borino et al. [BFP99] and introduce an inelastic domain B C By
in connection with a split (internal, external) of the boundary surface OB = 9ntBire | J g extpine, In
particular, B})ne represents a finite region, namely larger than a specific limit which is e.g. determined
by an internal length scale £y. Referring to the anisotropic continuum damage model of Chapter 5,
the local format of the isothermal reduced dissipation inequality results in

rdpd = Z2°:D, A* 4+ ¢ > 0 with §dv =0 (0.12)

ine
BO

whereby hardening contributions have been neglected and (o € R is established as a non-locality resid-
ual (¢§ =0 in By \ Bi®). Next, the gradient of the damage metric and the conjugate stress field are
additionally introduced as

" =  Grad A! : TBy x TBy x T*By — R,
(0.13)
28 = - Opyd(B’, @5 AL X) : T*By x T*By x TBy — R
and incorporated into the reduced isothermal dissipation inequality
redpd = Z°:D, AP 4+20:D, @ +¢) = TZ2°: D, AF > 0 014
0.14

= =-2:D,A-2D,@+12:D, A
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With this setting at hand, the constraint in Eq.(0.12), yields

e dV:/V [sz -z —Div[zh]t] :D;A'dV + [ N°.[27':D;A*dA=0, (0.15)
ane Bbﬂe 6861]5

whereby N > € U? : T*By — R denotes the surface normal and N’ - [Zh]t =2 . N Apparently,
Eq.(0.15) is satisfied for

12> — 2" —Div[2¥' =0 in B and Z¥- N° =0 on §*Bir°, D, A" =0 on §™ B | (0.16)

Based on this, the correlated inelastic potential is determined in terms of ' Z " e §*:TBy x TBy — R.
Apparently, in the case of scalar—valued internal variables, anisotropy optionally enters the non—local
formulation if specific weighting characteristics for the gradients of the internal variables are intro-
duced. Likewise, different length scales with respect to the gradients of diverse scalar—valued internal
variables (which could be attached to typical deformation modes like tension and compression) allow
the modelling of anisotropic material behaviour, see e.g. Comi [Com01]. For a detailed discussion of
the underlying gradient enhanced theory and numerical applications to damage and plasticity, we re-
fer to Steinmann [Ste96, Ste99], Svedberg [Sve99] and references cited in these works. A physical mo-
tivation of higher gradient methods for single and polycrystal plasticity within small strain kinemat-
ics is highlighted in Menzel and Steinmann [MS98, MS00].

Until now, we solely incorporated linear fictitious tangent maps F' ]IE‘Ir : TB — TBy to rep-
resent the relations between fictitious and nominal configurations, e.g. Af = [I_J’h®1_7u] A € S3.
Apparently, “more” general mappings are possible whereby the map AP = . A% ¢ I[fj_, with
F! ([6]; X) € L3*3 . [TBxTB] — [TBy x TBy ], represents a typical reduced format (compare Section
1.3.4) which needs to be further investigated — especially in the context of large deformations. Other
enhancements in terms of additional contributions of a Taylor series of the fictitious mapping like
A= F AN F [ATRAT )+ ... € L3, with $([8]; X) : [TBXTBXTBXTB] — [TByxTBy], seem
to be unmanageable in an appropriate numerical setting. However, the incorporation of gradients of
the linear tangent map F likely constitute future research. It is obvious that these gradient fields en-
ter the definition of the Christoffel symbols (of the first kind or rather the connection coefficients) via

Tijk = Gi- 060G = Gi - [ - 0r ' - Gj = 1 [061Gji + B Git, — 01 G (0.17)

compare e.g. Murnaghan [Murb1, Sect. 2.4] or Lodge [Lod51] among others. The corresponding in-
tegrability, or rather compatibility conditions, are satisfied if Curlj’h =0, i.e. Jgr fZ] = Ogj fzk, which
constitutes another likely argument to enlarge the framework developed so far, compare the contri-
butions by Steinmann [Ste96] and Acharya and Bassani [AB00] — with application to plasticity — and
references cited therein.

Finally, the introduction of a fictitious configuration allows convenient extension to the modelling of
materials with growth (recall that we deal with a reduced representation of a fabric tensor approach),
see Epstein and Maugin [EMO00], Rodriguez et al. [RHM94|, Chen and Hoger [CHOO] for a general
outline. A (very) simple prototype model could be defined via the following evolution equations

Dy = p° [71_%_17/18—ref1/)3] with v = g™ and m>I,
(0.18)
D, Af = A9, rotg0 with Pot@0 = fibg0(z, Af x) _ refydt = o

whereby 09,00 € R4 characterise initial and actual density—type fields, respectively,
B2, 5’“, “*fng , refiﬁ()“u € Ry and m,! denote positive integers *. In addition, the introduction of dead
zones is a natural consequence and specific assumptions on the coaxiality of the anisotropy metric A*

* Due to the nature of materials with growth, the mass of such bodies no longer remains constant. We therefore ob-
tain in general D, fBo po dV = fBo V@ av + faBo AG dA # 0 whereby po € R, represents the density in Bo, VG € R

denotes a volumetric mass source and “G = “G* - N’ characterises a boundary flux term (“G* € R® : T"Bo — R,
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and the stress field S* as well as decompositions for the evolution equation of A’ e.g. in a spheri-
cal and a deviatoric part are established approaches for small strain kinematics. Based on the frame-
work of linear elasticity, numerical applications within finite element settings are developed in Jacobs
et al. [JSBC97] and moreover, Weng [Wen98| advocated a formulation which is based essentially on
the spectral decomposition of the continuum tangent operator.

N’ € U?: TBy — R), compare footnote 1 on page 145. The corresponding local form with respect to the Eulerian set-
ting consequently results in the mass balance

Dip= ”g—{—divagﬁ —pdivDx (x.1)

via Cauchy’s theorem 8; po|x = VG + Div *G* with the density p = det(f*) po € R+ in B, *g = det(f*) VG € R and
agh = AGH . cof(f%) € R® : T*B; — R. Please note that the balance of linear momentum (similar to Eq.(11.1)) together
with Eq.(*.1) yields a coupled problem in analogy to the previously highlighted thermomechanical setting — Eqgs.(7}.1,
11.2). A detailed outline on the balance of linear and angular momentum (S*, ¥ € L®) as well as energy and entropy
are given in Epstein and Maugin [EMO00]. Moreover, volumetric growth allows similar representation with thermal ex-
pansion. Therefore, a multiplicative decomposition of the total deformation gradient — like e.g. Fb = F? - FE - Ftﬁs with
Ff, FE; € L3 - is a natural consequence, compare Figure 7.31;. The physical interpretation of these three contributions
is essentially based on a stress—free, unloaded reference configuration By of the body B. The linear tangent map F?s re-
lates the tangent space of Bo to the tangent space of an intermediate configuration which takes the image of stress—free
infinitesimal elements which are obtained from cutting B into infinitesimal sections. Thereby the growth of each ele-
ment (increase or decrease in volume) may be anisotropic and we obtain a geometrical misfit, i.e. the considered inter-
mediate configuration is incompatible. Consequently, the linear tangent map F% deforms every section such that we can
“glue” the (grown) elements together and thus deal with a compatible but stressed intermediated configuration whereby
the underlying tangent space is related to the tangent space of By by the inverse of the linear tangent map Fi. th. Fi-
nally, external loading is represented via the linear tangent map F? which relates the tangent space of the compatible
intermediate configuration to the tangent space of the spatial configuration Bs.
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Notation

b}@ be proper manner of calligrapbhy i8 nothing other than
24 \Q not being carele8s, but in thid wap one’s mwriting will
&@ fimply be fluggifh and ftif. One fhould go beyond this

) sand bepart form the norm. THi8 principle applied to

all things.

Yamamoto Tsunetomo [1658 — 1719]
Hagakure, The Book of the Samurai, 1979

Referring to convective coordinates, we adopt the notation highlighted in the monograph by Marsden
and Hughes [MH94, Chap. 1] and indicate e.g. the spatial co—variant metric tensor with g’ € S, the
spatial contra—variant metric tensor with g' € S" and spatial contra—, co-variant second order iden-
tity tensor with g' € L (mixed-variant fields are generally characterised by the symbol ). Now, let
ab, bﬁ,Q € R™ be spatial vectors, uhL2 € L™ represent spatial contra—, co—variant second order fields

and ug’4 € L™ spatial co—, contra—variant second order fields, 'vg,Q, w'i,Q € L™ are assumed to denote

spatial second order tensors, yg "o zb € S™ characterise spatial symmetric tensors of second order
yoees

and vq, wﬁ € L"*™ are fourth order tensors, respectively; see Section A.2 for a definition of the under-
lying spaces.

A.1 Useful abbreviations

In this work, we apply two types of non-standard dyadic products which are defined via

[u] ® uf]:uf =] uf- (i, (uf ® ui]:uf =] [uf] - [u’,

[wf ® wi]:uf =u} - uf W), (v ® ui]:u) =} [ -]

(u} ® ui]:ovf =] o} - [wd)t, (uf ® uh]:ovf =i - W, )
[0 ® wil:w) =} w [, (u e ui]:wl = W, |
[w) ® wh]: v} =w} . o} - [wh, [w) ® wh]: v} =w) - - [wh,

[v] ® vi]:w) =} - w} - P, (v} ® vi]:wh =2} [l Wi,

whereby the applied transposition operation for second order fields reads as (see footnote ** on page 27)

b -ul-al =al-[ui]'-b}, b ool by=b- [0, o wi-ai=af-wi]'-al. (A2)

"Eqgs.(A.1) highlight the definitions of the applied non-standard dyadic products by double contraction to the right.

The corresponding double contraction to the left (e.g. w} : [v! @ vh] = [v!]t-w} v} and w’ : [v} @ vh] = [v]t-[w}]-vh)

is obvious and thus omitted.
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When referring to fourth order tensors, two different types of transposition are similarly introduced, i.e.

whviiwh =l ', wiiviiw) = wh:(Vi]T:wi, a3
'u'i:wli:'uﬂ2 = v’i:[wlﬂt:[vg]t, vﬁ:wg:vg = vg:[wlﬂT:vg

which are established as minor (t) and major (T) transposition. The definition of transposition op-
erations for different mixed—variant fourth order tensors is straightforward and thus not highlighted
here for clarity’s sake.

It arises naturally to introduce specific notations for higher order tensors. We apply the following
abbreviations specifically for mixed—variant spatial fourth order fields

g = 484, i = g e,
g = g rgeg], [ = g
wvgt = 3[8'®g -g'®g], il = svgh o,
Tgt = g ded, [piPeh = whgt o, (A4)
devgh - gh_Sphgh’ [,Uti]dev — devgh . Uti’
i = Wmgh—shgl, il = “giym ¢ o,
e = Vg Phgl, CHEE

which map contra—variant second order tensors to contra—variant second order tensors f. The deriva-
tion of mixed—variant fourth order fields which map co—variant second order tensors is straightfor-
ward and thus skipped here. Generally, similar abbreviations for symmetric, skew—symmetric, etc.
co—variant second order tensors are adopted. Even for mixed—variant second order fields, the spherical
and deviatoric operations are a natural outcome. On the contrary, the symmetry and skew—symmetry
transformations need further attention since a mixed-variant field and it’s transposed belong to dif-
ferent spaces and thus cannot be added, compare footnote *x on page 27. We can nevertheless intro-
duce these operations for mixed—variant fields with respect to the identity. To give an example, let the
symmetry and skew—symmetry operation for uh1 refer to the mixed—variant identity g%, to be specific

[u} - g#]vm = ¥mgh: [u) . gf] and [u}-g*]%" = Skvgf: [u) . gf]. (A.5)

Furthermore, within the Lagrangian setting, the fourth order tensors in Eq.(A.4) are denoted by G',...
and when applying a Cartesian frame, we prefer to use the abbreviations I,... Next, as examples of
frequently considered derivatives, we highlight the following relations

duvi = g'8d, Oyl = PiT®W

Il = g'@d, Ol = i eRil

opul = @B, —oumdlT = [ig B[Rl g, (A.6)
Oulull = lgf'eg,  —dulll = [Wi7-g)e|mi g,

opyl = g, —oulll Tt = W E ] T el

with the corresponding derivatives in terms of a co-variant fields, e.g. w’ and 2’ or co- , contra-

variant fields, e.g. ug, being obvious.

Concerning the symmetry and skew—symmetry operation for fourth order contra— or co—variant
fields, we prefer not to introduce mappings via eighth order tensors and thus define the correlated

¥The components of all fields are assumed to be real. Thus the (general) Hermitian is throughout denoted as a sym-
metric field.
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transformations by

e = L], M = L [T,
(A7)
[wb]skw — %[[Wb]_[wb]t], [Wb]SKW — %[[Wb]_[wb]T]

whereby these representations are respectively established as minor (sym, skw) and major (SYM,
SKW) symmetry and skew—symmetry.

Finally, in order to keep the notation of some formulae manageable, we apply the following sim-
plifications

t
b b b b b
[’!Ig,j,...,k‘zl]q = [yf-zl] ) [yg--zl]'----[yi-zl] = [[zl-yi,j,...,i]q] (A.8)
—— ~ ~ - ——
qXx g x[...] qXx
and .
b b b b b
[yg,j,...,k'zl]qz [?Jg'zl'yg'zl'---'zl'yi] = [[31 'ygg,j,...,i]Q] . (A.9)
—— ~——
qXx q X

A.2 Denomination of spaces

In the following, the applied notation of spaces is reiterated, which is standard as far as possi-
ble. Thus the set of real numbers is denoted by R with useful subsets Ripy, = {z € R : z # 0},
Ro={z €R: z >0} and Ry = {z € R: z > 0}. The Euclidian point-space of dimension n (with n
being a positive integer) is indicated by E” and moreover, let V" specify an associated affine vector—
space. The representation U” = {& € R" : ||| = 1} characterises a unit—sphere in R" withm =n—1
whereby the norm refers to an appropriate metric. As usual, the space of mappings of R” into R" is
denoted by L™ with useful subspaces L}, = {y € L" : det(y) € Rinv}, L§ = {y € L" : det(y) € Ry},

mv
Lt ={yelL”: det(y) e R },S"={yel": y=9'},S}, ={y €S": z-y-x € Ripy, Ve € R, = #
0},S; ={yeS":z-y-zcRy,Ve eR", x #0}, ST ={yeS": z-y-z € R, Vz € R", © # 0},
Wt={yel":y'=—-y},0"={yel’: ¢y y=y -y =1}, 07 ={y € O": det(y) = 1},
M" = {y € L" : det’(y) = 1}, M = {y € L" : det(y) = 1}, whereby I denotes the second order
identity and [e]' indicates transposition. Finally, let the space of linear mappings of L™ into L.° (with

o being a positive integer) be represented by L°*" and the mapping of " into S° by S°*".

A.3 Denomination of functions

What we call mapping is a sufficient smooth function a from one space X to another space Y; o : X —
Y. A composite mapping foa: X — Z with 8: Y — Z is defined by (a0 8)(z) = B(a(x)), z € X.
Moreover, the mapping induced by e between spaces on differential forms (D, elements of the dual- or
rather co-tangent space) are denoted by a* and the mapping induced by a between spaces on chains
(C, elements of the tangent space) read o, compare e.g. Flanders [Fla89, Sects. 3.3 & 5.11] or Abra-
ham and Marsden [AM78, Def. 1.7.16]. Figure A.1 gives a graphical representation of these mappings.

Push—forward and pull-back operations are applied throughout this work especially to contra—, co—
variant, contra—variant and co—variant second order tensors with respect to linear tangent maps, e.g.
F e I[f]_ : TBy —» TB;and f € ]Li : TB; — TBy defined by the diffeomorphisms ¢(X,t) : ByxR — By
and P(x,t) : By x R — By, respectively. We denote these operations by ., ¢* and ¥,, $* and
adopt the abbreviations F,, F™ and f b Vi “* for the analogous operations in terms of the linear tan-
gent maps. Moreover, since ¢ represents the direct non—linear deformation mapping and @ the in-
verse complement, we often do not thoroughly distinguish between ¢* and @, or ¢, and ®*, respec-
tively. For convenience of the reader Eqgs.(A.10) summarise these transformations with respect to sec-
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a*

D(X) ~—— D(Y)

(Boa)"

:a*oﬂ*

Y
Z

D(Z)

CX) —— + o)

(ﬁOa)* IB*

:,B*oa*

C(2)

Figure A.1: Composite mappings between spaces.

ond oder tensors, denoted u”, v¥, w® in the spatial setting and Uh, 173 W' as their material counter-
part (with a slight misusage of notation for the mixed—-variant transformations)

prul = flLut = 1 Fi =
d. 08 = fLot = i et L[ =
prw’ = F* b = [qu]t w’ i =
P Ul = Fh* U? = Ft Ut . fh _
. VI = FLVE = F' . VPR =
FW = oW o= [fI . W . ff =

i
U
oY

wij

U’;
%&

GG = Uh,
GG, = Vﬂ,
GG = W,
(A.10)
g;®g9" = ul,
gi®g; = v,
g®y = w,

compare footnote ** on page 27.



Appendix B

Some comments on isotropic ten-
sor functions

gder, der mid) fennt, weif, wie verhoft mir Febler find.
voe Wenn idy in einem Budy auf einen Febler foge, wer-
5> De id) fogleid) Guferft ungebolten und frage midy, wo8 id
@ wobl von einem Autor lernen fann, der fidy bereitd in
minbeftens einem Punft erwiefenermagen geicrt hat. Geben die Febler
auf mein Konto oder Getrefien fie meine Arbeit, erfaft midy moflofer
Sorn. Der Lefer diefed Budes fann fidy daber unfdywer die Jertnir-
fdung aufmalen, die midy beim blofen ®edanfen daran iiberfommt,
dafy meine Freunbe und Kollegen nady der BVerdfentlidung Dusenbe
fdywermiegender Febler finden, die fie - fdhadenfrobh oder mitfiihlend -
dem perfeftioniftifhen Autor hinterbringen.

Murray Gell-Mann
Das Quark und der Jaguar, 1994

An (hemitropic) isotropic tensor—function remains invariant under the action of (proper) orthogonal
tensors. The underlying painstaking analysis to compute general irreducible representations has been
developed over several decades, see Spencer [Spe71] for the polynomial case and Wang [Wan70], Rivlin
[Riv70], Smith [Smi71a], Boehler [Boe77] and Zheng [Zhe93a] with emphasis on non—polynomial set-
tings. In this Chapter, we place special emphasis on the scalar—valued case, i.e. the free Helmholtz
energy density which is assumed to define hyper—elastic constitutive functions.

B.1 Characteristic polynomial

Let u? € L™ be an Eulerian contra—, co-variant second order field. The underlying eigenvalue problem
lefp?  [Xigt —uf] =0 and [)\igh—uh]-rigngio (B.1)

corresponds to the characteristic polynomial

det(\gf —u) = [—1]™ Jp (uf; [g"]t) XP~™ = 0 (B.2)

gL

0

whereby lefn'; , rigng € R" denote the left and right eigenvectors and let \;, J,,, € R represent the sets
of eigenvalues and principal invariants (with Jy = 1 and J,, = det(u!)), respectively, compare Erick-
sen [Eri60, Sect. 37 & 38], Eringen [Eri71, Sect. 1.10] or Lodge [Lod74, Sect. 2.8] §. Furthermore, the

) 8A sufficient condition for non—complex eigenvalues A\; € R — which implies J,, € R, *n’ : TB;, — R and
“gn§ : TB; — R — is given by u' = ¢* - 2” with y* € ST and 2’ € S”, compare Section 3.5.
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constraint that u? satisfies its characteristic polynomial results in

32 11" s [0 [ 7 = 0 (B3

and with these equations (Cayley—Hamilton theorem) at hand, we obtain the derivatives of the prin-
cipal invariants with respect to the argument u” via the relation (m > 0)

%%Wmngﬁmmmww%wW- (B.4)

In case that u® € L2, i.e. u? is non-singular, Egs.(B.3, B.4) result in 9,; det(uf) = det(u?) [uf]~* =

cof (u?) Y.

B.2 Useful relations between different types of invariants

The specific case of a three-dimensional setting in terms of the positive definite co—variant and sym-
metric right Cauchy—Green tensor C’ ¢ Si’_ ends up with

C’ )3 _ c"GﬂJl C"y2 + c"GﬂJ2 chy chﬂJP’ 1 =0,

B.5
c.Ggt.c.Ggt.ct - ¢y C¢.GHC + ¢, ¢ - C¢L @ = o, (B.5)

and the principal invariants and their derivatives read
CbGﬂJI _ Cb . Gﬁ’ achbGﬁJl _ Gﬂ,
ety = 1 [C"G“J%—[C"-Gﬂ-c"]:aﬁ] . 0GPy, = CE LG -G C - GE, (BS)
CbGﬂJg = det(Cb), aCbeGﬁjg = COf(Cb) = CbGﬁJ?, Bﬂ,

with B! = det™!(C”) cof (C*) = [B!]' and, moreover, the relation % J, = G’ : cof(C”) holds, com-
pare e.g. Murnaghan [Mur51, Sect. 3]. From Eq.(B.5), it is obvious that the principal invariants al-
low representation in terms of eigenvalues which are summarised in Eq.(B.7). For completeness, these
connections are additionally highlighted for the set of basic invariants

TR = Ca+Pa+ P, CEL = Pa P a+ D,
PR o= CNTRt RN TN, L = OO CN, (BT
CEgy = N TA ), CEL = OX 4+ TN+ N

For an isotropic Lagrangian setting, the free Helmholtz energy density is usually defined in terms
of the invariants with respect to c’ or, alternatively, with respect to an appropriate strain measure,
e.g. the Green-Lagrangian tensor E’ = : [C” — G”). In this context, the following equations

CG g = 34220
CGJ, = 344 PO 2 PO, 1o PP (B.8)

CC gy = 142 PG g PG 8 PG 9 PG R _y BGL BIGE, 4 4 P

and
EbGﬁfl = % [—3+ CbGﬁjl]
PG, = 1 [3 _CG g _gCG C"G"J%] (B.9)

PO = L [343CF R 4600 p13 0 3 O R g O Oy, 4 OB

T The definition of the cofactor for singular fields (i.e. tensors of improper rank) is highlighted in Silhavy [Si197, Prop.
1.1.5].
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summarises the relations between the principal and basic invariants of C’ and E".

The introduction of several typical dissipation potentials is often conveniently based on the appli-
cation of Haigh—Westergard invariants, see e.g. Maugin [Mau92, Sect. 1.4] or de Boer [dB00, App.
C]. These coordinates (here denoted by H; 2 3) have a specific geometric interpretation in the space
spanned by the principal axes of a symmetric second order tensor (length along the space diagonal,
radius in the deviatoric plane Lode angle) and allow interpretation as invariants. In terms of, e.g.,
the Kirchhoff stress 7f = Tﬁ)\ n ﬂ ®™n ﬁ € S%, one obtains

1/2
i, = LnguIl, P, — [%gbdevTﬁI2] / , bdev 4

7 "THy = : [arccos (\/(_i ngﬂH2_3 ’

13) ] (B.10)

and the corresponding derivatives with respect to 7* result in

t 1 b

8 gT = Tga
bdevf
6.,.ugTH2 —_ 9 ™r 1/29 dev ﬂ g’ (B.ll)
Pt grdevrts oo —1/2
049" Hy = — 1- T T,
g - sw-g"-m—zgT"hrﬂ+[2f”f%/3—g"f"fz]gﬂ_ EEiatal PULL N Y
ngqu gb devTﬁH4 gb dev.rﬁ[;/z

B.3 Tensor—valued isotropic tensor functions of second order

Let L zg,zg,zg,yﬂ € S? denote symmetric, second order Eulerian tensors which define the tensor—
valued tensor function L zbl =1Ly zbl(zg,yﬂ). Furthermore, zki and y* represent conjugate variables
which are assumed to be connected within an associated setting via L; zli =Dy A Oy @t(zg, y") whereby
@ represents an appropriate dissipation potential and D; A denotes the correlated Lagrange multi-
plier of the underlying constrained optimisation problem. Now, following the outline given in Betten
[Bet85], the general canonical form of this rate equation reads

2 , .
Lz, = Li25(zh,yf) = ;) iz : [g" [gl’-yu]’] with
- (B.12)

bl

. 2 o . SYM
7 = Y pmig [ 19" 25)] B9 + g g 25)] @]
]:

whereby the nine scalar-valued functions z; ; with 4,7 = 0,1, 2 are generally defined by the appropri-

ate set of ten invariants; z9; ; = zZi,j(zgyull,m,lo), compare e.g. Table 3.1. The assumption of a dissi-
pation potential &' = @t(zg, y") within an associated setting yields

_ t _ ¢ _ ¢
2200 = DiA (9zgyu14¢ , 2201 = Dt)\azgyuh@ , 2202 = DtkazgyuI o,
8

1 t 1 t -1 t

7210 =5 DA 8z5yn15¢ y 2211 = 5 Dt)\azganqu y 2212 = 5 Dt)\azgyﬁho@ ; (B.13)
1
2290 =3 DA azgyul P, 2991 = 0, 2992 = 0.
6

These relations apparently represent a restricted form of Eq.(B.12) which is naturally based on the
fact that #9° Lips = g" : [2}-g"]"?? are independent of y* which consequently yields 6yuzgyu Iip3=0.

B.4 First and second derivatives of the basic invariants

For the presented non—dissipative anisotropic hyper—elastic setting in Chapter 2 we obtain invariants
Iy, .. (vi) s given in Table 2.1 with the help of the general representation theorem of isotropic scalar-

valued tensor functions whereby Ag,___,n = const has been assumed. This set enters the definition of
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the free Helmholtz energy density as highlighted in Eq.(2.9). In the sequel, we focus on the Eulerian
setting. Hence the second order generators, determined by the first derivatives of these invariants with
respect to the spatial metric tensor g°, read (see Appendix A for notational details)

Oplyy = b,
Oplay = 2 b g ¥,
Opliiiiy = 3 b -[g" b
(B.14)
Opliiyy = ag,
Oplyy = 2 [bﬂ g’ ag]sym,
agl,I(m-) = [ag’j e [
Moreover, the computation of the derivatives with respect to the Finger tensor b* results in
Optly = g,
Optliiny = 2 g-b-g,
Oy Tty = 3 g - [b-g")? (B.15)
Opl) = g -al-g,
Oty = — e - [ag,j g -e.

Finally, taking derivatives with respect to the elements of the tensor series ag,___,n, we end up with

Opliy = 8

8(131(,,) = g -b.g,

Opley = g d}-SPm, (B-16)
Ol = [g-af-]™

Next, again referring to the spatial setting, the derivatives of these generators due to g°, b* and ag,___,n
are computed which are, practically speaking, second derivatives of the invariants. In particular, one
obtains (see Appendix A for notational details)

Bopley =  [VFOU+U @b,
] SYM

8, Iuy = 3 [bﬁ®[bﬂ-g"-bﬂ]+b”@[bﬁ-g"-bﬂ]

7
(931,@9,, I(v) = [bﬂ ® ag + bIi ] ag ]SYM

for the second derivative with respect to the spatial co—variant metric tensor, compare Eq.(B.14).
Next, based on the generators in terms of the Finger tensor, see Eq.(B.15), we end up with

Fyppe L) = 9T’ +9'29’],
Opapliin = 3 [gl@[gb-bﬂ-gb]+gb@[g"-bﬁ-gb]]SYM,
8§ﬁ®an(vi) = [ cbg[cb-ag-gl’-ag-cl’]ﬁ‘ym
+cglc-d-g'-al-& ]sym]SYM, (B.18)
Opoatley = 3 (989 +d0g'],
az‘i@agI(vi) = -3 [Cbg[cb'ag"gb]+cb®[cb-a§--gb ]SYM,

N[ —
0
&
GW_
Q‘Eﬂ
QQW_
+
0

2
Opoat o9 =~
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Finally, the derivatives with respect to the elements of the additional tensor series result in

8¢21§<>zzb'i Ty = 1 g +9' 9],
825®bu1(m) — % [cb@[gb ag ¢+ elg ag & ]SYM’

B.19
63?@!1‘*](“‘) - 3 [C"®[g"-a?-c"]+c"@[gb.ag.cb]]SYM’ (B-19)
121,§®a,§,1(vi) L [¢Bc+g @cSYM = 8‘21§®agj(m).

The correlated outline within the Lagrangian setting is obvious and thus omitted here.

B.4.1 Alternative proof of the spatial anisotropic stress relation: Application to
hyper—elasticity

In the following, we highlight an alternative proof of Proposition 2.1. Conceptually speaking,
the point of departure is based on the material covariance of the free Helmholtz energy density
P(C’, G, Ag,___,n;X ), compare Marsden and Hughes [MH94, Chap. 2 & 3], Menzel and Steinmann
[MS01h] and Lu and Papadopoulos [LP00].

We consider a material diffeomorphism w(X,%) : By x R — B;, as introduced in Eq.(2.15), which
defines the linear tangent map F%(X,t) € L} : TBy — TB,. Then the correlated material time
derivative reads Dy F% = 13- F! with 1% € L? : T*B, xTB, — R (compare Section 2.2.1.1) and the com-
mon ansatz D; F& - f2 + F2.D; f% = 0 (recall the notation f% = [F4]~!) ends up with D; f2 = —f£.15.
Now, the definition of material covariance ¢8(CI’, G, Ag’___’n; X) = (02" C’ w, G w, Aq,___’n; X) -
compare Section 2.2 (and recall the abbreviation £2 = w™!) - results in the necessary condition

D, 3 (n Cb,w*Gﬁ,w*A‘L__’n;X) ‘Fh —0 V w:ByxR—B;. (B.20)
One obtains in particular

* b
Dl (2 C 0. G w. AY LX) |

_ By o1 : Dy (£2° C’")‘

Ft
o O D@. G|
+ ;::1 9. 4190 : Dt (w. A}) .
- Og- ¥l DS C - 1) |,
+ Oy, 48 : Du (Fh - G- [Fi]Y) | (B.21)
£ 50, Ui DR AL R |
- Og- 98 : [ 27 C* + 27 O -1
+ O, 8 |- w. G + w0, GF- L]
tY 0, ah: [Bw Ao, AL ]
= 0

Next, by taking advantage of the symmetry of the terms O,. [-W(o) s O, [,]upg , and £2* [¢]’, w* [o]f, re-
spectively, we end up with

n
2~ 0. 8 : [(2°C” 1Y 40, uuf: [ 0. G ™+ 370, el : (1w, A5 ]

s=1
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= 2 [—8Q*Cb¢8-ﬂ* C'+w.G 9, g+ w. A9, qupg] 1 (B.22)
s=1

=258 =0 V I£:T'B, xTB, - R.

Hence the contribution = hT must vanish. In this context, we choose the cases FhT = Fi¢ ]Li :TBy —
TB; and FhT =Gl e ILEL :T*Bg x TBy — R as special applications without loss of generality and ob-
tain the anisotropic spatial and material stress relations (recall the notation Bf = det ™’ (CI’) cof(C l’))

n
Fil=F' — Iptl = b ogdt gt + ) ag.aaw(t).gﬂ (0051,
s=1

(B.23)

Fi=G' = 0oy = G'-0gyl-B' + ¥ Al-0,90-B' = [9m9]",
s=1 s

which obviously proves Proposition 2.1. Note that the specific choice of a material isometry with
Fi € 0% I8 € W2 results in the definition of a scalar-valued isotropic tensor function, which has
been applied for one tensorial argument in, e.g., Truesdell and Noll [TN92, Sect.84] or Silhavy [31197,
Prop. 8.2.2]. Then, due to the skew—symmetry of lhT, the contribution = hT is forced to be symmetric,
ie. D 1y and £2* C’ commute (for this isotropic case).

B.5 First and second derivatives of the basic invariants

For the presented dissipative anisotropic hyper—elastic setting in Chapter 3 we obtain invariants
Ii;), .. (zi) @s given in Table 3.1 with the help of the general representation theorem of isotropic scalar-
valued tensor functions. Recall that the developed elasto—plastic framework allows interpretation as
an elastic setting with respect to the intermediate configuration (By), that the additional tensor se-

ries ?ﬂ,___,n was generally not constrained to remain constant (in By, By or B;) and furthermore, that
the set of invariants enters the definition of the free Helmholtz energy density.

The first and second derivatives of the invariants I(;) () are of course similar to those highlighted

for the non—dissipative setting in Section B.4. In the context of multiplicative elasto—plasticity and

with respect to the spatial configuration, one simply has to replace the fields bg — bf and c'é -,

respectively. The remaining task is to compute the derivatives of I(ys), .. (zi)- In this context, we ob-
tain with respect to the spatial metric g° the contributions
#

Ogv L(wii) = 2 ag g’ -aj, Ogs L(wiiiy,...,(zi) = 0 (B.24)

and in view of the elastic Finger tensor bg, one ends up with

Optlwiny = 0,

Oy lwiiy = — €& ai-cl,

Oylisy = —2 c - [agyj e, (B.25)
Oply = — - [laly- ™ +lal, ™ + el i) <,

Oplwiy = — < [[a’g,i,i,l ceblo+2(afy; - )7+ [al cg]‘*] e

see Appendix A.1 for notational details. Finally, the correlated derivatives in terms of the anisotropy
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tensors aq,___yn read
Oplwiy = 2 ¢ -al-g,
aag iy = c,
Opliny =  c-aj-cl,
Opliny = ciraj-cl,
Oply = c-laf,-Qli™ e, (B.26)
Opley = claf; ™ e,
Ol = e[l alf™ e,
aagfm) =2 ¢ [a’g,l,l -ei™ e
6«15‘1(”) = 2 c- [a‘lﬂ,i,i " eh.
The computations of 8;1, ®gbI(vii),...,(;ci) consequently result in
8317@,;'» lwii) = a; ®a; + af®al, a;b®gb Tviiiy,... (2i) = 0. (B.27)
The remaining second order derivatives of the invariants I(,;;) yield
3§g®bgf(m) = aig@)ng(vii) = 8zg®a§I(W) =0, i§®agI(vii) =9'®9 +9' 29" . (B.28)

Although tedious, it is straightforward to specify the extant derivatives due to I(y),...,(zi)- Neverthe-
less, the procedure is quite lengthy and thus not reiterated here. A final note is that the outline with
respect to B, or By is of course similar and thus omitted.

B.5.1 Alternative proof of the spatial anisotropic stress relation: Application to
multiplicative elasto—plasticity

In analogy to Section B.4.1, the fundamental covariance property of the function 1y can be applied to
prove the constitutive equations (3.15, 3.18, 3.21). The free Helmholtz energy density thus remains
invariant under the action of any arbitrary but non—singular linear tangent map, namely
~b ~ ~
D, ¢} (f3* G, F, ¢ FiL Al x)|, =0 VF:ell, :TB,—T5.. (B.29)

mv

F

e,p

with f2 = [F&] 1. Note that 9§ in Eq.(B.29) could be replaced by 4§ or 93 and a correlated linear
tangent map without loss of generality. Next, let the velocity gradient in terms of FhT be denoted by
I8 =D; Fi . f2 — and we additionally obtain 1 = — Dy f . F% from D; (F2 - f1) = 0 — which allows
to represent Eq.(B.29) as

) ~H i
Dy 1/18 (fﬂ* Ce7F’h7'*G ,FE* A1,...,n§ X)

Fh

- 9.8 DI C) [,
t O W DG |
+ sé Oy, 310 DeFLAD [, (B.30)
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~b ~b
= = 0¥ [ O+ £ 1
+ Ope gt [B-FLG +FLG 1]
n ~ ~
t X Op vl [ FL AL FLAL )]
s= Tx g
=0

Please note that FE and FE, are kept fixed and as a result, no additional time derivatives as, e.g.,

Dy ?1‘1,___,” occur. Moreover, all incorporated derivatives of the free Helmholtz energy density are obvi-
ously symmetric which enables us to rewrite Eq.(B.30) as

~p ~f oLt
2[_3 P G+ FL G0, b+ S FLLAN AWP];lh =0
fE_*CZ'(pO f’T e T* FE-*G 0 sgl T* L35 FE—*AS 0 T (B31)

V I8:T*B, xTB; —» R.

Thus, the terms in brackets have to vanish identically and with this relation at hand, specific choices
for Fi, ie. Fi=FiclL? :TB, —TB, Fi =G €L :T"By x TB, — R and Fi = fi € L} :

T

TB, — TB,, yield

Fi=F. — Ouyb = b opvh -g8 + X ab- 9uvf g = [9puf],
€ s=1 i
A ~ ~x LI =t
Fi=G = 940 = G- 9g9f Be + Y A, 9] By = [0597]' | (B.32)
¢ s=1 s e
n
Fi=f, = 0¥l = By Oyl B + ¥ Al dyv0 B = [9¥(]"
s=1 s

which proves Eqgs.(3.15, 3.18, 3.21).
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Hyper—elastic constitutive functions

= it miifen die ... Anfdouung aufgeben, daf man
fi) auf die jedem individuellen oder eingelnen Ding
inbdrenten wefentlidyen Eigenfdaften berufen fann, um
SO OVeal a8 Berhalten diefed Dinged su erfldren. Denn die-
fer Anfhauung gelingt e3 durdpaud nidyt, Lidyt ouf dad Problem ju
werfen, warum verfdiedene individuelle Dinge fidy auf dhnlide Wei-
fe verbalten follen. Wenn gefogt wird: ,,Weil ihre wefentliden Eigen-
fdaften dhnlidy find“, fo erbebt fidy die neue Frage, warum es nidyt
ebenfo viele verfdiedene wefentlide Eigenfhaften geben foll, wie e3 ver-
fdyiedene Dinge gibt.

Sir Karl Raimund Popper [1902-1994]
Ratio, Vol. 1, 1957

In the sequel we briefly reiterate some typical examples of free Helmholtz energy densities whereby
special emphasis is placed on the isotropic and transversely isotropic case.

C.1 Isotropy

The free Helmholtz ener%y density of an isotropic material allows modelling in terms of, e.g., the
principal el J1,2,3, BG J1,2,3 or basic CbGuIl,gyg, EbGuIl,g,g invariants (here referring to the right
Cauchy—Green tensor C” € S:j_ with respect to the Lagrangian setting without loss of generality for
the isotropic case). The unconstrained general format is typically represented by

0 P q r
¥ = 9§ (C"G”Jm,s) = Y %o [C"G"Jl - 3] [C"G”JQ . 3] [ G g 1] ,
p,q,r=0

(1)
0 _ 40 (FPGH] xR EPGH pp EPGE 19 BYGH pr
Yo = %o 123) = 2 o Cpgr 1 2 3
P,q,7=

compare Ogden [Ogd97, Sect. 4.3.5]. Two fundamental restrictions thereby have to be obeyed, namely
b b
Wp_gn =0 = “ego0 = ¥ egoo =0,

(C.2)
b b b b
2000 pret = Op ¥l m_es =0 = “cigo+2 Teoro0 @ eoor = Flergo = 0.

Several additional constrbaints can now be incorporated into the free Helmholtz energy density |,
such as the restriction €"¢* J3 = 1 which represents an incompressible material defined in terms of

Il Tt is obvious that physics restrict the response functions. In view of the constitutive equation for appropriate stress
fields we commonly agree to the picture that “stress follows strain”, namely the strict monotony condition

w= [[Hh]t(g",Fh +65”,G“;X)—[Hh]t(g",F”,G”;X)] B e Ry i1
1
VField, VE " £0€l®, VOER:0<6<1, [F1 455 ELS
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congpd = °°n¢8(CbGu Ji,2). The specific case where all ¢,, are zero with the exception of ¢i9 = ¢; and
cg1 = ca, is established as MooneyfRivl}in material. Here, we apply a compressible version that is ad-
ditively enlarged by the function UJ (¢ a J3) which takes the format

Yo = g (CbGﬁJ1,2,3)
- con,lpg (chﬁJI,2> n U(? (chﬁJ3> (C.3)

= [CbGujl _3] + ¢ [C"G“J2 _3] + % In2 (chﬁJ§/2) —2[e1+2¢]In (CbG”JQ/Z) ’

see Simo and Taylor [ST82]. Further restrictions like, e.g., )] = ‘:"“'zpf))(CbGn Jp) result in Neo—
Hookian functions. In this work, two different compressible types are adopted, namely

» (CbGﬁJ1,2,3) " [CbGnJl B 3] —uln (chﬁJ§/2) n )\71’ In2 (chﬂJ§/2> (C.4)

) 4[] [ w(eA)] e

Furthermore, a decomposition of Flory—type can be applied by separating the volume preserving and
changing part of the linear tangent map

Fi— [chﬁJ?}/?ndim gu] . [CbGuJ?’_l/anim Fh] _ [cl’GﬂJg—lﬂndam Fh] ] [cl’GﬁJ;/?ndim G’h] (C.6)

with ngjn, characterising the dimension in space. On this basis, the contribution Conwg is constructed
via €' G* Js Unaim gty g o give an example, the Neo-Hookian material in Eq.(C.5) then reads as

I B ) I R R G )

We additionally adopt a non-linear constitutive equation in the spirit of Kauderer [Kau49]

in this work which is determined by the first and second invariant, %] = J( EbGﬁIl,g) =
=0 BG BGH P EVG 1T Congequently, the second Piola-Kirchhoff stress tensor reads

Sﬂ - [3Ksphﬁ _ %Gdevm] E"GﬁI1 Gﬁ +2Gdevlﬁl Gﬂ . Eb . Gﬁ’ (C.S)

whereby [IT h]t is the stress field dual to F¥, and that extreme strains give extreme stresses, i.e. for a hyper—elastic ma-
terial we claim

Yo(g’, F*,G* X) 5> 00 as det(F') » 04 oras [||F*||+ ]| cof(F")| + det(F")] = oo (1-2)

which allows alternative representation in terms of principal stretches. The second constraint can be replaced by the
sharper version 3{a,a,b,c € Ry; 8 € R} such that ¥o(g’, F#,G*; X) > a[||F!||* + || cof (F!)|* + det*(F*)] + 8.
Moreover, assuming that [IT h]t is differentiable and taking the derivative of w with respect to § at § = 0 yields
w=E": 0 [IT*]': E' € Ry V E" #£0 € L® . For £ rank one, w € R, defines the strong ellipticity condition together
with it’s stronger restriction t € R4 (the latter one being directly related to the (determinant of the) acoustic tensor,
compare Appendix D.3). For the considered hyper—elastic setting as based on the free Helmholtz energy density o, the
strong form of ellipticity allows generalisation to rank—one convexity

Yo(g’, F' + 5 5% G* X) < [1-6]¢o(g’, F*,G" X) + d¢o(g’, F* + E°,GY; X)

. (11-3)
VField,VE €L : rankone, VO ER:0<d<1, weR,, [FI+6E"] €LY

compare e.g. Ball [Bal77, Def. 3.2] or the monographs by Ciarlet [Cia88, Exer. 5.15], Antman [Ant95, Eq.
X1/12(2.9)] and Silhavy [Sil97, Prop. 17.3.3] (for 1o € C? (at least) the relation @w € Ry V =% € L® : rank one,
corresponds to the strong Legendre-Hadamar condition). However, the properties: convexity — poly—convexity
(Yo(g", F*, G X) = ol(g°, F,cof (F'),det(FY), G¥; X with ¢ being convex in {F% cof(F%),det(F")}) — quasi-
convexity (volume™" (B¢) fBE lpo(g",Fg—l-Eh, G X)dx > wo(g",Fg, G¥; X)) at a particular Fg € L3 and with B¢ C Bo,

EN(X) = 0xx(X) € L3V x(X) : B¢ = B; such that Fg E%(X) € L3) — rank-one convexity hold throughout and
especially the existence theory (of hyper—elastic materials, static settings and dead loading) as based on the minimisa-
tion of the potential energy, is substantially based on the poly—convexity condition. Detailed background informations
are given in the previously cited references; Ball [Bal77], Ciarlet [Cia88, Chaps. 4,5 & 7], Antman [Ant95, Sect. XI/12]
or Silhavy [Sil97, Chaps. 16-18].
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whereby K and G respectively denote the constant compression— and shear—-moduli. Note that this
structure coincides with a St. Venant—Kirchhoff-type material, whereby non-linearities are introduced

via the scalar—valued dimensionless functions PPk and 9¢Vk. We choose a polynomial ansatz in the
following
sth‘(sphLl) 14+ sthl sphLI + sthI2 sphb2 +...,
devK/(devLQ) - 14+ devlk‘./2 devL2 + devlk‘./4 devL4 +..., (CQ)
. bt bt bt
with sph,1 — %EG I, and dev,2 :% [EG 12_%EG 112]
The incorporation of constant, linear and quadratic terms — PPx; = 0, 4 = 3,...,00 and devh‘,j = 0,
j=6,...,00 — renders the following identification of constants
_ 1 1 _
020 = E K - g G 9 cOl - G ?
c30 = 5 KsPhyy, co2 = 2 Gy,
— 2 dev 1 sph _ 4 dev
C40 = 27 G Ko + 19 K K2, Co1 = 9 G K2, (ClO)
_ 16 d _ 16 de
6o = — =55 G k4, ca1 = st Gk,
_ 16 d _ 16 d
co3 = 7 Gka, 2 = — 577 Gky

sph

and cpy = 0 otherwise. Moreover, additionally neglecting the second order terms ( kp1 = 0 and

de"mi\Q = 0) results in the following coefficients

Cop = 1 K — 1 G Copt = G

2 3 Y )
C30 — % K Sphh’,l y Cp2 — % G devﬁg ; (C.ll)
o = 3 Gy, 1 = — 5 Gk

with ¢,q = 0 otherwise.

Finally, please note that an outline with respect to an intermediate or Eulerian setting is straight-
forward. Moreover, within the framework of fictitious configurations, anisotropy enters the constitu-
tive equations simply by replacing the set of three invariants. It is clear that these anisotropic for-
mulations can alternatively be expressed in terms of structural tensors. The opposite — to represent
a constitutive equations based on structural tensors within the framework of a fictitious configura-
tions — is obviously not generally possible.

C.2 Transversal isotropy

For the formulation of a transversely isotropic material based on one structural tensor within the La-
grangian setting, we adopt an additive decomposition of the free Helmholtz energy density into a
purely isotropic part and an anisotropic contribution

) = $(C", A} X) = 5oy (C”; X) + iyl (C’, AL X). (C.12)

Thereby, the isotropic term %] is generally defined by Eq.(C.1) and for the anisotropic contribution
we choose (see e.g. Eq.(2.49) for the definition of the invariants A} Ius)

. r 2
anlqu — a[CbGngneXp<ﬂ CbAtiLL_l]_I_é[CbAi}LL_l] +€|:CbA§I5—1i|

e :CbGﬁJ1_3] [ch§I4_1]> (C.13)

in [CG 1] —p [@aln —1] —e [Paln—1] ]

for the anisotropic contribution which is frequently employed in the literature on soft tissues whereby
a, 3,6, ¢,m and n are additional material parameters, see e.g. Almeida and Spilker [AS98].
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C.3 Some remarks on homogenisation concepts

Three different homogenisation approaches are well established and are usually directly related to con-
tinuum damage mechanics, namely the concepts of equivalent strain, equivalent stress and equivalent
strain energy, see e.g. Lemaitre and Chaboche [LC98, Chap. 7]. For the sake of clarity, we restrict
our brief outline here to the common [1 — D] model whereby the scalar—valued variable D is assumed
to represent inhomogeneities.

Within the equivalent strain concept, the homogenised, effective and nominal metric fields are dic-
tated to be identical; C’ = C". We consequently end up with different stress fields and obtain
the relation §* = 20590 = [1 — D] 8% with y§(C°, D; X) = [1 — D] H(C"; X).

Next, based on the assumption of equivalent homogenised, effective and nominal stress, S S b we
obviously end up with different strain fields. Via 93(C”, D; X) = [1 — D]} zﬁg(éb; X)), straight-
forward computations yield C’ = [1-D]C".

Finally, the hypothesis of equivalent strain energy, 1§ (C’,D; X) = zﬁg(éb; X)), results in different
homogenised, effective and nominal strain and stress fields. Apparently, this assumption is sat-

isfied for §: C” = [[1-D]"'8*]:[[1-D]C’] = §*: C".

Recall that the fundamental covariance relation of the free Helmholtz energy density is directly corre-
lated to the postulate of equivalent strain energy and possibly the concept of a fictitious configuration.



Appendix D

Visualisation of anisotropy

d geftebe swar, daf dad Fermatfde Theorem al8 ifolier-
ter Sap fiir midy wenig Jnterefle bat, denn e loflen fidy
b eine Menge folder Sde leidyt aufftellen, die man we-
er beweifen, nody wiederlegen fann. ...

Allein idy bin fibergeugt, wenn a8 Glid mebhr tun follte, al3 idy er-
warten darf und mir einige Hauptfdpritte in jener Theorie gliiden,
audy der Fermatfe Sag nur ald eines der am wenigften interefan-
ten Corollarien dabei erfdeinen wird (Difquiftioned Arithmeticae).

Carl Friedrich Gauf§ [1777 — 1855]
Brief an W. Olbers, G6ttingen, 21.03.1816

Unfortunately, it is a non—trivial task to give a clear graphical representation of anisotropic material
behaviour — especially within a three-dimensional setting. In the following we reiterate three differ-
ent approaches and with that, try to handle this problem.

D.1 A scalar—valued anisotropy measure

For an anisotropic constitutive equation, e.g., the stress (S* € %) and the strain (E” € S%) metric
tensors are generally not coaxial. Here we highlight the material setting and the non—symmetric part
of their product thus reads

E.-§G-G- -8 E=FSW(E, S)eW: TByx TBy — R. (D.1)

III} the general anisotropic case, when the strain and stress field do not commute, we have
B SuWI’(EI’, Sﬁ) # 0 and thus, as an appropriate scalar—valued measure of anisotropy, we propose to
compute the quantity 5(EI’, Sﬁ) € Ry to indicate anisotropy which is essentially determined by the
skew-symmetric tensor E'S qu(Eb, 5% in a normalised format

| E'S'w (B, S|
12| |87

§(E’,8%) = | E’, S" 40 (D.2)

and 6(E’,S8") = 0 otherwise, whereby the notation ||[e]| abbreviates the appropriate norm with
I[e]f]1? = [[o]f - G’] : [G® - [o]!] and ||[e]’||* = [[#)* - G*] : [G* - [e]’]. Apparently, this anisotropy mea-
sure can be applied to any arbitrary pair of second order tensors (in one configuration).

D.2 Stereo—graphic projection

To visualise the non—coaxiality of, e.g., the strain and stress fields (or any other appropriate pair of
symmetric second order tensors) the method of stereo—graphic projection is adopted, which is well-
known from crystallography and represents the homomorphism (O)i_ — M?, see e.g. Altmann [Alt86,
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Chap. 7]. Conceptually speaking, the eigenvectors of symmetric second order tensors — interpreted as
elements of the unit sphere U? — are projected onto the equatorial plane by viewing from the south
pole, see Figure D.1;.

€2,

\

o
S
NZAZ oy

€3

3
2

Figure D.1: Stereo—graphic projection and spherical coordinates.

Moreover, to define the axis of anisotropy we apply spherical coordinates. For the sake of simplicity

we refer to a Cartesian frame e;, thus one possible parametrisation of the direction—vectors of inter-

est nj =nle; € U? results in n; = sim?} sim??, n? = cos 19? and n} = cos®} sin13, see Figure D.15.

D.3 The acoustic tensor

As point of departure, we consider the incremental equation of motion in the absence of body forces
Div §(F? - §*) = Div (0F"- 8* + F' . §S")
= GraddF": §* + 6F"- Div S* + Grad F* : §S* + F' - Div §§"*
= Ox0F": 8+ 6F%. [0xS" : [G]'] + Ox F* : 68 + F"- [0x 68" : [G]']
= pg 0% 0z

whereby py denotes the initial mass density and ¢ represents time, compare e.g. Antman [Ant95, Sect.
XM /2] or Ogden [Ogd97, Sect. 6.4]. Typically a homogeneous state is examined (F" = const) and,
moreover, the following incremental relation holds

Fb.§8" =TE": 6F" with TEh:Fh-Eﬂ:[[[Fh]t-gb]@G“]t] (D.4)

and 'Ef = 'EY ! g, © G; ® ¥ ® G; € L33 : [T*By — T*B;] — [T*By — TB;] whereby the minor
symmetry of the Hessian E* has been taken into account. For an overview on Eulerian tangent oper-
ators, see e.g. Steinmann et al. [SLR97]. Next, we adopt the usual wave propagation ansatz

bx=mif(n’-x—ct),
(D.5)
ceER,, teR, meR}: T*B, - R, n’cU?: TB, > R, feC?.

Straightforward calculations with §F" = 9x 6z € L render the acoustic tensor gf = qij g, 99 €lL3:
T*B: x TBy — R which occurs in the following eigenvalue problem for the wave speed c¢ in the propa-
gation direction m’ with corresponding polarisation vector m!

(D.6)
with N’ =[F9'.n’cR: TBy - R and fq'=[g'®@ N’]: tE".- N’.



Appendix E

Numerical aspects

<SRNy

”ur ill8 and fated do fo contrary run
b, That our deviced fHill ave overthrown,
Our thoughts arve ours, their end none of our own.

William Shakespeare [1564 — 1616]
The Player King in Hamlet, 1604

We focus on two subjects that are frequently applied in this work for the computation of the numer-
ical examples. Some essentials on specific Runge-Kutta integration schemes and the numerical ap-
proximation of Jacobians are particularly reiterated.

E.1 Some Runge-Kutta schemes

For completeness and convenience of the reader, some Runge-Kutta schemes are given in the follow-
ing with respect to the Butcher array (whereby the relations Y7, b, =1 and ¢; = E; a;j hold)

C1 ailp a2 -+ Qig
C2 a1 Q22 -+ QA2
Cs as1 Qg2 - Qgs

b, by, --- b,

which is documented in various standard textbooks, e.g. Ascher and Petzold [AP98, Chap. 4] or Lam-
bert [Lam91, Chap. 5]. Without loss of generality, the intermediate stages are defined by ¢; = 25:1 ajj
and furthermore, all other subsequently not mentioned coefficients equal zero. Following standard no-
tation, s denotes the stage and p the order of accuracy.

The simplest explicit method (Euler forward, s = p = 1) is defined by b; = 1. Combining several
Euler steps ends up in Heun methods, e.g. s =p =2 for ae; =1 and by = by = %, which practically
represent explicit predictor/corrector schemes.

Next, three families of implicit Runge-Kutta methods are outlined, Gau$ (including the midpoint
rule), Radau Ila (including Euler backward) and Lobatto Ma (including the trapezoidal rule). One
considered algorithm of the family of highest possible order — Gaul — for s = 2 and p = 4 is given by
a1l = agg = %, alp = % [3— 2\/5], as1 = 11—2 [3 +2\/§] and by = by = % A two stage scheme of the
Radau Ila type of order p = 3, generally including stiff decay, reads a1 = %, ajg = —%, as1 = b = %
and a9y = by = %. From the computational point of view, algorithms due to Lobatto Ila are less ex-
pensive than expressed by their stage s since the first intermediate state '# coincides with the known
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one at "t. For s = 3 and p = 4 one has a9 = %, a9y = %, ag3 = —ﬁ, a31 = by = azz3 = b3 = % and
aza = by = %

Finally, diagonally implicit Runge-Kutta methods (DIRK) are numerically interesting since they
do not blow up the system of equations within the Newton iteration. A two stage Gaul DIRK scheme
with p = 3 is determined by a11 = a22 = ag, as1 =1 —2ag and by = by = % with ag = %[3 +3].
The Radau Ia DIRK algorithm for s = 2 and order p = 2 similarly takes the form a11 = a2s = by = ag
andaglzblzl—aRWithaR:%[Z—\/i].

E.2 Numerical approximation of Jacobians

A variety of algorithms can be applied to solve non-linear (systems of) equations. Among the most ef-
fective strategies, the standard Newton—Raphson scheme is usually a good choice since quadratic con-
vergence can be obtained (at least close to the solution). As a drawback, the correlated Jacobians have
to be computed which may result in tremendous analytical costs. The underlying idea to avoid this
analysis is based on a numerical approximation of these fields. Conceptually speaking, the analytical
tangent is replaced by an appropriate difference scheme. To be specific, following the outline given in
Dennis and Schnabel [DS96, Chap. 5], we consider a function f(x) with & € R" and appropriate step
sizes €; € R, referring to a Cartesian frame e;. Then, the analytical tangent operator can be approxi-
mated by, e.g., a (first order) forward difference formula or a (second order) central difference formula
of(®z) _ flw+eie)— flz) 0f(x) flzteie)—flx—cie)

_ . — 2 E.1
ey . +0(e), PP e +0()  (E1)

with z; = & - e;. The optimal step sizes ¢; again guarantee quadratic convergence; for a discussion and
examples with respect to applications in computational plasticity at small strains, see Pérez—Foguet
et al. [PFRFHO00].

In this work, we are concerned with the (global) consistent tangent operator for a geometrically
non-linear finite element setting, see Algorithm E.1, and the computation of (local) Jacobians within
the integration of evolution equations, see Algorithm E.2. We adopt and briefly re—iterate here — for
convenience of the reader — an approximation algorithm as highlighted by Miehe [Mie96b]. In prac-
tice, the chosen step sizes €; crucially affect the quality of the convergence. It turns out and can be
proved that a perturbation factor of 1078 is an optimal choice for a store up of 16 digits.

Algorithm E.1 Numerical computation of the consistent algorithmic tangent operator by a (first or-

der) forward difference scheme whereby ~* (kst) 'YIZk ) and I'! (k’l), FIZk,l) denote appropriate spatial and

material base vectors and 1, j, (k), (l) = 1,2, 3.

Eulerian algo. tangent operator, 8ef ¢ L3*® : T*B, x T*B; x T*B; x TB; — R

b _ b b b b
gt = "+1Fh+%[[gﬁ"Y(k)]‘@H(l)'Fh]+[9ﬂ'7(l)]®[’¥(k)'Fh]]
# _ # b
i k) — mHirl (k1) (n+1Fs (k1)? " )
algeij(kl) _ % [sz(kl) _ Tz'j] _ % [gz'k il 4 gil 73k ik gil 4 il gjk]

Lagrangian algo. tangent operator, 28E" ¢ 13*3 : T*By x T*By x T*By x T*By — R
MLy = E g g 1P Ty e Ty + (g [ Ty | @ T

¢ — f b
n—HS‘E k) = n—l—lSE (k) (n+1F€ (ki) )

wES = 1|88, - 5]
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Algorithm E.2 Representative examples of (first order) forward difference schemes to approximate
Jacobians whereby ~* (k’l)"VIZk ) and F%l) denote appropriate spatial and material base vectors and
i,7,(k), (1) = 1,2,3 (The outline in the material or intermediate setting is similar and thus omitted.).

Numerical derivatives wrt [.]ﬁ’ jh e L33 . T*B, x T*B; x TB; x TB; — R

n—H[.]E(kl) — n+1[.]ﬁ +e~tk) @~tD)
rE0 =gt (mri D)
- ij ORI
i = 2 [7"5]( )_M]

Numerical derivatives wrt [o]’, P el33  TB, x TBy x T*By x T*B; — R

el = Pl ey @)
b
’“Z(M) = ("H[']s(kl),---)
it = %[Tsij(kl)—w]

Numerical derivatives wrt [o]%, J* : [TBy — TB;] — [TBy — TB;]
n+1[.]5(k()l) _ n+1[.]h + ¢ 7ﬂ (k) R I"ﬂl

0
1) i (nepirert (8)
RI®) R ( [o]f (l),...)

I I LAN
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