
MACAO - A Journey into CAx Interoperability and Collaborative Design

Florian Arnold
Research Group for Computer Application in Engineering Design (Prof. C. W. Dankwort)

University of Kaiserslautern, Germany
http://rkk.mv.uni-kl.de
arnold@mv.uni-kl.de

Abstract

The increasing parallelisation of development
processes as well as the ongoing trends towards virtual
product development and outsourcing of development
activities strengthen the need for 3D co-operative design
via communication networks. Regarding the field of CAx,
none of the existing systems meets all the requirements of
very complex process chain. This leads to a tremendous
need for the integration of heterogeneous CAx systems.
Therefore, MACAO, a platform-independent client for a
distributed CAx component system, the so-called ANICA
CAx object bus, is presented. The MACAO client is able
to access objects and functions provided by different CAx
servers distributed over a communication network. Thus,
MACAO is a new solution for engineering design and
visualisation in shared distributed virtual environments.
This paper describes the underlying concepts, the actual
prototype implementation, as well as possible application
scenarios in the area of co-operative design and
visualisation.

1. Introduction

Today, no single CAx system is able to meet all
requirements of modern engineering design and
manufacturing process chains, e.g. in automotive industry.
Hereby, the abbreviation CAx stands for all computer-
aided techniques applied during product development, e.g.
CAD (Computer Aided Design), CAE (Computer Aided
Engineering), CAM (Computer Aided Manufacturing),
and CAS (Computer Aided Styling). An enormous
number of different CAx tools is used for diverse
purposes and the design of different parts of complex
products.

Thus, to ensure the needed CAx interoperability, up to
now a file-based data exchange by means of neutral file
formats or direct converters has been essential and
unavoidable. But this general practice has serious
shortcomings like discontinuity of the design activity,

limitation of parallelisation, loss of information,
occurrence of conversion errors, and frequently the need
for manual error correction.

As result of this, the idea of a distributed object-
oriented CAx system consisting of components from
various system suppliers and a common interface (a
common access layer, respectively) to interlink the
heterogeneous components across system and platform
borders arose [1]. The targeted distributed component
CAx system should be configurable according to process
demands and it should allow for co-operative 3D design in
a distributed shared virtual environment.

2. Fundamentals

To support a better understanding of the main concepts
and techniques of the new approach to component CAx
systems [2], some fundamentals are first explained: The
international standards CORBA and STEP as well as the
concept of the CAx object bus.

2.1. CORBA

The Common Object Request Broker Architecture
(CORBA) [3] is a standard for the interoperability of
distributed systems defined by the Object Management
Group (OMG).

The central component of the specification is the
Object Request Broker (ORB) which allows for
interoperability and interaction between objects and
applications in heterogeneous distributed environments.
Therefore, an ORB can be seen as a (programming)
language- and platform-independent object bus.

In order to use an ORB, the interfaces of the objects to
be distributed via the object bus have to be defined using
the CORBA Interface Definition Language (IDL).

2.2. STEP

STEP (STandard for the Exchange of Product model
data) is an international standard (ISO-10303, Industrial

automation systems and integration - Product data
representation and exchange [4]) for the computer-
interpretable representation and the exchange of product
model data. STEP is becoming the lingua franca in the
area of modelling and exchanging product data.

One part of STEP is the formal specification language
EXPRESS describing an information domain in terms of
entities which are pure data descriptions, i.e. they do not
contain any functionality for accessing or manipulating the
data. Within STEP, so-called Application Protocols (APs)
have been specified for several application domains.

To meet the specific demands of automotive industry,
the AP 214 Core Data for Automotive Mechanical Design

Processes [5] has been defined. STEP AP 214 describes a
data model for the process chain of automotive
development from product definition, styling, engineering
design, prototyping, production planning etc. to quality
control.

The STEP Standard Data Access Interface (SDAI) [6]
was designed to be an API for access to data repositories
containing data organised around EXPRESS schemas and
does neither offer appropriate high-level access functions
nor functions to manipulate CAx models. Therefore, the
functionality offered by SDAI is not sufficient for online
CAx interoperability including access to data structures
and high-level functionality.

2.3. The ANICA CAx Object Bus

To fill the concept of CAx interoperability with life,
the project ANICA (ANalysis of access Interfaces of
various CAx systems) [7], [8] was carried out by the
Research Group for Computer Application in

Engineering Design at the University of Kaiserslautern,
Germany, from 1995 to 1998. ANICA has been supported
by the German automotive industry (Audi, BMW,
DaimlerChrysler, Porsche, Volkswagen), the Rhineland-
Palatinate Foundation for Innovation, as well as several
leading CAD system suppliers.

The objective of this project was to create the basic
architecture of a distributed platform- and system-
independent CAx system. Thereby the individual server
components offer their functionality as services across a
common interface which interlinks the components. This
unified common interface defined in CORBA IDL is
called CAx object bus (see Figure 1).

The fundamental approach for the definition of the
CAx object bus was to analyse various conventional CAx
systems in order to develop a uniform common access
interface for CAx systems. Thus, during the ANICA
project, the CAD systems CATIA (Dassault Systèmes),
DesignPostDrafting (Computervision), SolidEdge
(Intergraph), the CAD kernels and development
environments ACIS (Spatial Technology) and CAS.CADE
(Matra Datavision), as well as the anthropometric human
model RAMSIS (Tecmath) have been analysed.

The definition of the common interface was on the one
hand based upon the CORBA standard to make
interoperability between different distributed components
possible. On the other hand it was influenced by the
(hierarchy of) entities defined in STEP AP 214 subset
CC1 (Conformance Class 1). Since these entities are pure
data descriptions, suitable operations had to be added to
form complete and reasonable CAx classes respectively
interfaces. The specification of such “canonical“,
”normalised” or “standardised“ operations defined on

CAx Object Bus

ANICA Adapter

C
A

E
 S

ys
te

m

C
A

M
 S

ys
te

m

A
N

IC
A

 c
o

m
p

lia
n

t

C
A

x
C

o
m

p
o

n
en

t

C
A

D
 S

ys
te

m

ANICA Adapter ANICA Adapter

Figure 1. Different ways to connect CAx components to the ANICA CAx object bus
which is based on CORBA and STEP standards

STEP entities was derived from the analysis and
comparison of different peculiarities of semantically
equivalent or similar functionality in the APIs
(Application Programming Interface) of the analysed
systems.

This new approach of an online connection between
different CAx systems allows for transparent access to
data and functionality of the integrated CAx systems
without any file-based data exchange. The connection
between existing conventional CAx software systems and
the object bus is carried out by system-specific software
adapters which map the API of the respective legacy CAx
system to the common interface of the CAx object bus and
vice versa.

The first industrial application of the ANICA concepts
was the project ProDMU [9], [7] which was carried out by
the Research Group for Computer Application in
Engineering Design in co-operation with Volkswagen
from 1997 to 1998.

This project had the objective to improve the process
of virtual collision and assembly checks in the scope of
co-operative digital mock-up (DMU). This aim was
achieved through a closer and more flexible integration of
the participating CAD systems as with the traditional data
exchange via neutral file formats. The ANICA CAx object
bus formed the main part of the novel solution in form of
an online coupling of the participating legacy CAD
systems Pro/Engineer (PTC) as the client and CATIA as
the server system. The new DMU process significantly
improved the efficiency of working procedures and the
quality of communication.

Despite its success, the ProDMU prototype did not
address all problems. For example

• There is only a one to one relationship between clients
and servers, not a more general m to n relationship.

• There are only "fat" servers, i.e. wrapped legacy
systems. There are no newly created "thin" CAx
components which can be connected to the CAx object
bus without an adapter.

3. MACAO

3.1. General Concept

MACAO (Multi-context Adaptive Client for the
ANICA CAx Object bus) is the first ANICA compliant
component for the CAx object bus, i.e. it has been
developed from scratch and can be connected to the CAx
object bus without the need for an adapter (compare
Figure 1).

The MACAO client has been designed as a thin client,
i.e. it has no own local CAx functionality, but it has access
to all the remote CAx server functionality connected to the
CAx object bus. The client is only based upon the

standard interface (i.e. the CAx object bus) and thus
independent from any specific CAx server system. Hence,
other CAx systems can also easily be added to the CAx
object bus without the need for redesigning the MACAO
client.

In contrast to the approach used in the projects ANICA
and ProDMU, the MACAO concept is not based on the
transmission of mathematically exact geometrical and
topological data from client to server (e.g. degrees,
control points, and weights of NURBS surfaces). Instead,
the common interface of the CAx object bus has been
supplemented to allow for the transfer of tessellation data
enhanced by references to the corresponding faces and
edges in the server model.

Today, there is no real triangulated shape
representation within the STEP standard. Only the
facetted_brep entities come close to this but they are not
well-suited for this task. Therefore, new data structures
and appropriate access functions have been defined which
have been derived from the data structures found in the
APIs of the analysed CAD systems.

The transferred tessellated (or facetted) data consists of
triangles representing faces and of points which define
polylines representing curves (Table 1). This information
is sufficient not only for visualisation but also for
interaction because it enables the client to access the
associated server-side mathematical description of
surfaces and curves if needed.

Table 1. Comparison of the data managed by
client and servers

MACAO Client MACAO Servers

Tessellation (facetted)
data:

• triangles

• plus references to the
server faces

• polylines (sequences
of points)

• plus references to the
server edges

Mathematically exact
geometrical and topological
representation of:

• faces and underlying
surfaces (NURBS surfaces,
planes, cylindrical surfaces
etc.)

• edges and underlying
curves (NURBS curves,
lines, arcs etc.)

Despite its lightweight structure, MACAO is much
more than only an online viewer: It enables the client to
use all the CAx server functions coupled with the CAx
object bus. Instead of pure static viewing it allows for
dynamic interaction and the manipulation of server
models. Thus, its allows for true co-operative 3D design

and visualisation across system and platform borders. To
show the feasibility of this concept, a few fundamental
CAx functions have been added to CAx object bus and are
therefore accessible for client applications (compare
chapter 3.2).

Besides the capabilities described above, the engineer
working with the client is able to define his own working
context by specifying a 3D selection box according to his
regions of interest of the remote model. Then, only those
faces and edges of the remote server model which lie
inside the defined 3D box are transmitted to the client, i.e.
the necessity to transfer complete models no longer exists.

The MACAO client also has a context-sensitive GUI,
i.e. a GUI which is self-adapting at run-time according to
the objects to operate on and the functionality available to
manipulate them. The main difference to a conventional
context-sensitive GUI is that the set of available objects
and functions depends on the kind and number of CAx
servers connected to the CAx object bus at runtime. Each
server may provide different objects and/or different
functionality applicable to these objects. Thus, the
available kinds of objects and functions may dynamically
change during a session. Therefore, the client needs some
meta-information about the capabilities of each CAx
server actually coupled with the CAx object bus, and the
client must adapt its GUI according to this meta-
information at runtime. In this context, general
considerations about taxonomy and granularity of CAx
components were necessary which are omitted here due to
space limitations.

3.2. The MACAO Prototype

The actual prototype implementation consists of the
MACAO client and two CAx servers. The client was built
using Java and the Java 3D API, the ORB Visibroker for
Java (Inprise) on a Pentium II PC with Windows NT. The
Java 3D API [10] is a scene-graph-based 3D application
programming interface for the development of complex
3D applications with Java. Today, Java 3D
implementations for Microsoft Windows, Linux, Sun
Solaris, HP-UX and SGI IRIX exist. Additional
implementations for other platforms are under way. The
usage of Java technology makes the client highly portable.

Each CAx server consists of a legacy CAD system
(including its API), an ORB implementation, and some
adapter code which also performs some data and reference
management tasks. Both servers have been built using
C++ and ORBacus (Object Oriented Concepts, OOC) on
an SGI O2 with IRIX operating system. One server makes
use of Pro/Toolkit, the API of the CAD system
Pro/Engineer (PTC), while the other server is built upon
UG/Open and UG/Open++, the APIs of the CAD system
UG (Unigraphics Solutions).

To show the general feasibility, a few fundamental
CAx functions have been added to the CAx object bus to
be accessible for client applications (see table 2).
Whenever the client calls a server function (e.g. blend
edge) which changes a server-side model, an automatic
online update of the changed, created and deleted faces
and edges takes place. This means that the client- and
server-side models are synchronised automatically.
Therefore, true simultaneous engineering becomes
possible. After making such changes to remote server-side
models from client-side it is possible to save the changed
models at server-side from within the client.

The UG-based server can only be used in interactive
mode whereas the Pro/Engineer-based server can be used
in both interactive and batch mode.

Table 2. CAx server functionality coupled with
the CAx object bus and therefore accessible

from client-side

CAx server based on
Pro/Engineer

CAx server based on UG

Pro/Engineer functionality
coupled with the CAx
object bus:

• highlight face

• highlight edge

• update the client-side
model (after changing the
server-side model
locally)

• transfer partial model
(transfer only that part of
a model which lies inside
a particular 3D selection
box defined on client-
side)

UG functionality coupled
with the CAx object bus:

• highlight face

• highlight edge

• blend edge

• chamfer edge

Figure 2 shows two quite complex models loaded in
the MACAO client prototype (upper middle screenshot)
as well as each of the two parts in its original CAx server
system. Both models consist of more than 300 faces. One
model comes from the server based on UG (lower left
screenshot) and one model is provided by the server based
on Pro/Engineer (lower right screenshot).

Altogether, three faces have been highlighted at client-
side: two faces of the upper model and one face of the
bottom model. This highlight information has also been
transmitted back to the servers. The highlights can
therefore also be seen in the server-side models, i.e. the
engineer working with UG sees one highlighted face in his

local UG model and the engineer working with
Pro/Engineer sees two highlighted faces in his local
model.

The performance of the MACAO prototype is already
noticeably better than the ProDMU solution as well as the
file-based data exchange using STEP physical files.

3.3. Application Scenarios

One possible area of application scenarios for
MACAO is the collaboration between different
departments of the same company (or between a
manufacturer and his suppliers) e.g. working on different
parts of the same product while using two different CAD

systems. For example, one CAD systems may be used for
developing all parts and assemblies situated in the engine
compartment and another CAD system for car body
development. In this example, the MACAO client may be
used by DMU working groups which have to carry out
DMU examinations with CAD models originating from
both CAD systems.

For such digital mock-up purposes, the client could be
enhanced to carry out local collision detection algorithms
based either on tessellation data or mathematically exact
data which would additionally have to be transferred from
the servers. The communication could happen within
LANs or virtual private networks. The usage of MACAO
in combination with video- or teleconferencing tools

Figure 2. Screenshots of the MACAO client (upper middle screenshot), the UG-based server (lower
left screenshot) and the Pro/Engineer-based server (lower right screenshot). Altogether, three faces

have been highlighted at client-side. This highlights can also be seen in the server-side models.

would be particularly reasonable. By these means, true
interactive and co-operative DMU sessions with
participants from a DMU working group as well as from
the two development departments may take place.

Comparing the application of the MACAO technology
with e.g. the traditional data exchange using STEP
physical files, some important differences can be
recognised: The communication between the involved
engineers can be noticeably improved by the complete
transmission of information about problematic areas, e.g.
transfer of highlighted faces and edges back into the
server system which are therefore visible within the
original model. Furthermore, the previously existing
interruptions of the design process, which have been
caused by the activities necessary for the file-based data
export and import, can be avoided.

4. Conclusions

The MACAO client in combination with the ANICA
CAx object bus allows for a new form of distributed
collaborative 3D engineering design in shared virtual
environments. The MACAO prototype shows the
feasibility of the concepts as well as its suitability for
practical applications in the fields of co-operative design,
DMU, and virtual product development via
communication networks.

Regarding performance, the MACAO prototype is
already superior to the traditional file-based data-
exchange and substantial gains in productivity can be
reached.

The prototype implementation, especially the chosen
CAx systems, represent only one special case of
application. The integration of additional CAx systems
can be done without the need to change the common
interface of the CAx object bus or the MACAO client.
Obvious candidates for integration are other CAD systems
(CATIA, I-DEAS, etc.) and computer-aided engineering
(CAE) tools for finite element analysis (FEA). In the latter
case, changes to the product model based on FEA
calculations could be carried out from within the CAE
tool.

Another possible enhancement of the MACAO client
for even more flexible DMU examinations is the
combination of CAD models transferred via the CAx
object bus with e.g. VRML models locally loaded (from
files) by the client. The integration of Java 3D object
loaders for VRML, DXF, 3DS (3D-Studio), OBJ
(Wavefront) etc. with the MACAO client can easily be

done, because file loaders for these formats are already
available.

References

[1] C. W. Dankwort: "CAx System Architecture of the Future",
in: D. Roller, P. Brunet (Eds.), “CAD Systems Development,
Tools and Methods“, 1997, pp. 20-31

[2] Further information about ANICA, ProDMU, the CAx
object bus and CAx components: http://rkk.mv.uni-kl.de/
ComponentCAx/ComponentCAx_engl.html

[3] Object Management Group (OMG), ”The Common Object
Request Broker: Architecture and Specification”, Revision
2.3.1, October 1999

[4] International Organization for Standardization, ISO 10303-
1: Industrial Automation Systems and Integration - Product Data
Representation and Exchange (STEP), Part 1 (International
Standard), "Overview and fundamental principles", Geneve,
1994

[5] International Organization for Standardization, ISO/IS, DIS
10303-214, Industrial Automation Systems and Integration -
Product Data Representation and Exchange, Part 214 (Draft
International Standard): "Application Protocol: Core Data for
Automotive Mechanical Design Processes"

[6] International Organization for Standardization, ISO 10303-
22, Industrial Automation Systems and Integration - Product
Data Representation and Exchange (STEP), Part 22 (Draft
International Standard): "Standard data access interface
specification" (SDAI)

[7] A. Janocha, "CAx-Systemintegration auf Basis von CORBA
und STEP", Produktdaten Journal, Nr. 1, June 1996, pp. 45-48

[8] F. Arnold, A. Janocha, B. Swienczek, T. Kilb, “Die CAx-
Integrationsarchitektur ANICA und ihre erste Umsetzung in die
Praxis“, in: Tagungsband zum Workshop Integration
heterogener Softwaresysteme (IHS ’98), 28. GI-Jahrestagung
Informatik '98 - Informatik zwischen Bild und Sprache,
Magdeburg, September 1998, pp. 43-54

[9] B. Swienczek, F. Arnold, T. Kilb, A. Janocha, R. Sartiono,
“Online-Kopplung von CAx-Systemen für die virtuelle
Produktentwicklung: Ein Vergleich mit dem dateibasierten
Datenaustausch“, in: VDI Berichte 1435: “Prozeßketten für die
virtuelle Produktentwicklung in verteilter Umgebung“, 1998,
pp. 219-238

[10] H. Sowizral, K. Rushforth, M. Deering, “The Java 3D API
Specification“, Java Series, Addison-Wesley, 1998

