Advancing Maturity of Software Engineering Discipline -
A Case Study in Distributed Softwar e Development

Thomas E. Potok

Nenad lvezic

Kimberly D. Barnes

Oak Ridge National Laboratory Oak Ridge National Laboratory Oak Ridge National Laboratory

potokte@ornl.gov

Abstract

Accderating the maturation process within the software
engineering discipline may result in boosts of devdopment
productivity. One way to enable this accderation is to
deveop tools and processes to mimic evolution of traditional
engineering disciplines. Principles established in traditional
engineering disciplines r epresent high-levd guidance to
congtructing these tools and processes. This paper discusses
two principles found in the traditional engineering disciplines
and how these principles can apply to mature the software
engineering discipline. The discusson is concretized through
description of the Collaborative Management Environment, a
software system under collaborative devdopment among
several national laboratories.

1. Introduction

There are two mgjor forces present in today's software
development community, 1) the shortening of development
lifecycles, and 2 ) the incressed flexibility of the
programming team. A few years ago it was common to
develop a software project on a 2-3 year cycle with a
dedicaed team of f ull-time programmers on the project.
Today, the development cycles are often a year or less and
the programming team is typicaly made up of consultants,
subcontractors, and full-time employees. These two forces
have begun to shift the focus of software development from
the creation of new systems to the enhancement or merger of
exiging systems. For the mogt part, enhancing an older
system, or merging two legacy systems is far less expensive
than developing an entirely new one. These types of changes
will most likely drive down the cost of developing software;
however, these ¢ hanges resulti n severa i slues
Fundamentally, how can sysems be easily enhanced and
merged, and how can people be brought t ogether from
various backgrounds and locations to collaborate on a project.

There are a wide number of technologies that focus on
addressing these fundamental productivity issues. A
commonly accepted approach today is to incrementally apply
the latest technology to a given problem. However, it has been
shown that the latest technologies do not necessarily produce

ivezicn@ornl.gov

barneskd@ornl.gov

the best productivity returns; likewise, they do not necessarily
apply to a given development environment [1, 2]. We believe
that software engineering will develop in much the same way
as traditiond engneering disciplines have. We a re
invegtigating the hypothesis that legps of maturity in this field
are achievable by taking advantage of successul business
patterns from meture engineering disciplines.

The rest of the paper is organized as follows. Section 2
presents a summary of the related work. Section 3 outlines
the working hypothesis of this paper. Section 4 describes the
Collaborative Management Environment, a system to
automate management of f inancial data from m ultiple
research organizations. Here, we present our findings from
the perspective of the stated hypothesis. Finaly, Section 5
presents the conclusions of this paper.

2. Related Work

There is a great ded of speculation about what factors
truly impact software development productivity. Some argue
that productivity gains can be found through improvementsin
the personnel aspects of the software development team,
while others claim it is either the methodology followed; the
maturity of the software development process or the effects
of the governing business practices.

Briefly summearizing the related work, there appears to be
no conclusive evidence that the makeup of the development
team’, or the methodology followed consistently effects
productivity [2, 3, 4, 5, 6, 8]. There is some evidence to
suggest t hat t he maturity of the software development
processes and the contralling business process can effect
productivity [9, 7, 10].

! There have been numerous studies over the years on the effects
of the team capabilities vs. software development
productivity. Most studies show evidence of such a
correlation, however, there are a significant minority that
show no evidence. It is hard to draw a definitive conclusion
based on these studies.



3. Hypothesis

Our working hypothesis is that it i s possble to increase
the maturity of the software development process, not only
through organizational maturity as suggested by the Software
Engineering Ingtitutes Capability Maturity Modd (CMM),
but also through supporting and accderating maturation of
software engineering discipline asawhole[10, 11].

We are interested in the effects of providing tools and
implementing processes within software e ngineering to
mimic evolution of traditional engineering disciplines. In this
way we hope to anticipate the emerging phenomena typicd of
other traditional engineering fields and take advantage of
these phenomena to boos the productivity within software
development practices. At ahighlevel, these phenomena, can
be summarized by widely adopted engineering principles. In
this gudy, we investigate relevance of two principles found in
the mature engineering disciplines to software engineering:
(1) Enhanced endineering communication; and (2) Principled
selection of technologies.

3.1. Enhanced engineering communication

Engineers work with a high level of understanding of the
application domain. For example, a structura engineer can
communicae about a gructure in very precise terms with
another dructural engineer, an architect, or congruction
engineer with whom he or she has never met or worked.

In contragt, the software developers typicaly rely on the
expertise of a “domain expert” to provide indghtinto a
system being developed. In other cases the domain expert is
taught the basics of software design and led through the
design processwith the help of software experts.

3.2. Principled selection of technologies

Engineers apply technology as needed to solve a given
problem, i.e., the problem determines what t echnologies
should be used, not the other way around. For example, a
good gructura engineer will carefully evaluate the risk
asociated with building a long-span bridge using a low-
grength, low-durability, or a brittle material that could all lead
to near-term or long-term catastrophe.

Mog succesful software development efforts are done
based on the development teams knowledge or expertise with
a given computer language, methodology, or process not
necessarily on how well suited the technology is towards
solving the problem [12, 14].

4. Collabor ative Management Environment

We are in the find stages of the development of a pilot
system to automate the management of financia data from

multiple independent research organizetions. The system is
named the Collaborative Management Environment (CME)
and its development is a collaborative effort among severa
national |aboratories: Oak Ridge, Lawrence Berkeley, Ames,
Los Alamos, and Fermi.

The development of this system follows the above two
key principles found in mature engineering disciplines. Our
development approach is to (1) deveop a predse
understanding and definition of the concepts of the domainin
which we are working, not to solely rely on outside expertise;
and (2) devise a solution that is based on the mogt suitable
technology available, not merely ones with which we are
familiar.

This s ection g ives account of the motivation,
requirements, issues, overall findings, and future steps for the
CME project in relation to the research hypothesis we are
investigating.

4.1. Motivation

The pilot we are developing is based on the need at a
congressiona level to understand how research funding is
allocated and spent. The Department of Energy is
responsible for funding a vast amount of energy related
research. There are a number of national | aboratories that
receive research funds, and these laboratories work in a
very broad range of areas. Any request for information
about performed research must be asked of each of these
laboratories. Not surprisingly, each of these laboratories
follow research management processes that are tailored to
their expertise. Likewise artifacts resulting from these
processes are in different formats and levels of
granularity. For example, a multipurpose laboratory may
track awide variety of research expenditures at a very low
level of detail, whilea single purpose laboratory may
track fewer expendituresin ahigh level of detail.

The process of submitting and funding research
proposals is currently a paper process with many of the
labs having electronic proposal submission capabilities.
The goal of this research pilot is to develop a system that
provides the support for automating the research proposal
submission process and providing the capability to report
at various levels how research funding is allocated and
spent.

4.2. Requirementsand |ssues

At the outset this project seems rather straightforward;
however, severd previous development groups have not been
successul. The first key chalenge was addressng the
changing and conflicting requirement which can be
summerized as.



1) Thelabs own the data and will be very hesitant to supply
additiona data

2) The system requires additional data for ittobe
acceptable. The c urrent system was not acceptable
primarily due to alack of data integration. Without new
data, the proposed solution would provide little benefit
over the existing system.

3) The data must be kept at the labs. This data can be
sendtive, particularly research funding proposals that
contain new and patentially productive ideas.

4) The system must assure thefinancid dataisaccurate,
5) Thesysemisscdable.

6) The system has good response time performance.

7) Thesysemishighly secure.

We have developed severd proposals to address these
requirements based on a variety of technologies. At a
conceptud | evel, the sysem needed to b e capable of
accessing and analyzing legacy data from severa labs through
a secure, digtributed, and high performance system. A variety
of issues were addressed in the development of this pilot
system, with the two most significant being:

1) the deveopment of a semantic data model used to
represent individual laboratory data in a common format,
and

2) the creation of amode driven development environment
that supported the rapid development of databases and
applications.

We further determined that an iterative development
process was best suited to this environment, given the wide
ranging requirements and the need to d emondrate results
early in the development procesq12].

4.3. Semantic Data Modeling

From atechnologica view point, there are many ways of
deding with h eterogeneous data We evaluated what we
believed were the best technologicad solutions and worked
with laboratory representatives to find an agreesble solution.
We applied our hypothesis in two ways. First, by working
with a wide range of potential users of the system to fully
understand how the current system works.  Secondly, by
ressting the temptation to use familiar technology on a new
problem. We summearize our technicd evauation of this
problem below.

Probably the most popular way of deding with legacy
data is the notion of wrapping legacy data with software that
enforces aknown interface We encountered severa problems
with this approach. Mogt notably in this case is that the data
is independently owned, and there is little externd motivation

to share it. Why should a laboratory spend its time and effort
to wrap a financia database when there is little benefit to
them for doing s0?

There was dso a great ded of resgance to the
laboratories loosing control of the data. One of the early
project notions was to have agents traverse the independent
databases and derive information structures for each. Besides
being a challenging problem, the labs adamantly opposed
having “outsders’ tramping throughtheir systems.

The compromise that was eventualy reached was to
define a common datamodel that alab could populate as they
seefit. The choice of populating a data field was grictly up to
the lab. This represents the notion of afederated database.

We spent a great ded of time working with experts from
various aspects of the research funding system to understand
precisdly how this process works. We e xpressed this
understanding in terms of a data modd. The focus of these
sessons was to thoroughly understand and document t he
domain and to acaurately understand what common terms
mean. These sessons reveded three major issues with the
data 1) The data is often informaly grouped, such as
projects, or research areas. These groups are not defined nor
related to the current data. 2) The identifiers of the data can
change from year to year o relating data from one year to the
next may not be possble. 3) The data is presented in various
levels of granularity, some as a collection of proposals, others
asindividual subproposals.

At the outset, these issues were not clearly understood by
the experts with which we dedt. Through detailed modeling
and anadysis it became clear that we were gaining a broader
view than the experts view of the overall process. Likewise
we were able to tailor a technology to best suit our
understanding.

This led to an expanson of our initid data mode to
address these three mgjor isues. This expanson was a fairly
smple exercise. The chdlenge isin gathering the needed data
with minor impact on the labs. The information that we
needed is contained in two places, the mind of the researcher
who submitted the proposa, and the mind of the program
manger who funds the proposal. The approach that we used
was to alow these two people the ability to augment available
information with their knowledge and to be able to store that
knowledge in a structured way.

4.4. Rapid Application Development (RAD)

Having applied a level of enhanced engineering
communicaion to the firgt part of the project, we now focus
on the principled selection of technology for the remainder of
the project.

By following the iterative development process, we
needed to develop hedth chunks of software in a very short
amount of time. The catch phrase for this type of development



is RAD or Rapid Application Development. The genera
approach to “RAD” is to develop prototypes of the desired
system using software design tools built for this purpose. The
idea being that t he tools can automate some of the
development t asks, such as the development of the user
interface Theided case for this type of development appears
to be one where the solution is driven by the end user view
into the system, such as enhancing the interface to a legacy
database.

In the case we are presenting, the system is driven by the
data and the dructure of that data. It is common for the
gructure of the data to change as the understanding of this
gructure increases. In this type of environment, one typicaly
defines an agreed to data modd from which an iterative
develop process may begin [13,14]. In our case, we needed
to demongrate the feagibility of the project long before a
universally agreed to model could be developed even though
it is based on changing data requirements. Furthermore, any
model developed would cetainly change a fter the
development of the system took place

The solution we chose for this problem was to enable the
generation of a database definition and object class definitions
from the conceptual semantic model we developed.  For
example, we could make changes to a conceptua object
model diagram and from this diagram produce corresponding
relational database definitions and object class definitions.
This dlowed us to rapidly develop new dataand class
definitions whenever the data model changed. Obvioudy,
dgnificant changes to the data will require changes to the
functiond code. This encouraged the use of layering and
encgpsulation which further insulates the code from changes.

The mogt technologicaly innovative aspect of the system
is its digributed nature. We reviewed three approaches to
developing this system. The smplest wasto bring dl the data
to acentral database and build an interface to the database
that provided the functiondlity needed. This is a typicd
application development approach that can provide good
performance and security; however, it does not provide
support for distributed data. The second approach was to
build a distributed database system where every lab would be
respongble for maintaining a database of their data, and our
system would remotely access this data. This approach had
severd dgnificant drawbacks, chief among them being the
high cogt to the labs to setup and maintain a database. The
approach we chose was to keep the data at the labs, and
represent the datain XML format so that it could be searched
for and viewed by web browsers or parsed into a database if

needed. The data can be easly stored and maintained by the
labs, and the labs can benefit from easy access to this data
Through the use of architectural neutrd | anguages (i.e,
Tcl/Tk) and communication sockets, we can use the Internet
to enablea robugt digributed sysem. To enhance
performance we devel oped a caching scheme to limit the need
for multiple remote accesses for each query.

4.5. Summary of findings

Our priminary results are quditative in nature, but
nonetheless show promising findings. The biggest problem
we encountered were directly related to the communication
isues addressed by our firgt hypothesis. Several experts used
what we initidly considered to be commonly understood
terms but under persistent questioning, we learned that these
terms were vague and had different meanings for different
people. For example, there is aconcept of a “research
project” that sounds very gsraightforward; however, the
domain experts all have adifferent views of it. Representing a
research projectis a key agpect of the sysem we were
developing, and even a dight misunderstanding of this term
will mogt likely require Sgnificant changes. Had we followed
the a pproach of relying on a domain expert for an
understanding of the system, the system would not have
worked properly and most likely would have required a large
amount of rework. Itis clealy premature to spesk of
productivity gains, but t his does give us motivation to
continue with our hypothesis.

We are not a a point to determine the benefit of the
principled approach to technology mainly because the
benefits or drawbacks of this approach will be seen over time.
What we have observed is that working with well established
technology is a safer approach for developing a project but
also yields a higher risk of obsolescence in the future. We
have spent alarge amount of time weighting the risk of a not
proven technology againgt a proven but fading technology.
We have fairly consgtently sdlected newer technology,
primarily because of the capability of the technology and the
promisethat itholdsin the market place

4.6. Next step

Our next geps are the basc software development
processes of testing and deploying the system. Following this,
we expect to significantly expand the functionality of the
system and deploy it to thoseinterested init.



In the light of our working hypothesis outlined in Section
3 and based on our experiences with the CME project,
advancing the development framework to include
collaborative information modeling capabilities is one of the
mogt interesting aspects of the future work.

Our experience shows that building of the shared
information framework for the digtributed p articipants is
perhaps one of the most costly development activities. We
are motivated to make this step much less cumbersome. Our
main v ehicle for achieving this is development of a
collaborative semantic modeling environment which would
allow participants to p ropose, negotiate, and g uickly
implement the shared information framework. The basic
assumption  for such an environment i s exigence of a
semantic metasmodeling language [15].

A semantic meta-modeling language of the CME domain
captures a number of ubiquitous modeling approaches, is
extengble, and provides a basis for information description
and interoperability. Modding langueges that describe
secific a spects of information systems, such as
implementation details or interoperability requirements will
be derivable from this meta-|language (Figure 1). We believe,
this common basis will enable efficient building of shared
understanding among col laborating participants.

Our principa approach is focused o n information
modeling langueges that are becoming, or have been
promulgated as, modeling standards. For example, Unified
Modeling Language (UML) is becoming the de facto
dandard in the Object Oriented Anayss and Design
community and is endorsed by the Object Management
Group. Knowledge Interchange Format (KIF) is afirst order
logic representation language developed within a DARPA
program and is widdy used by the software engineering
community and is accepted as a standard by ANSI. Process
Interchange Format (PIF) is a process representation languege
developed at DARPA with a potentia to become another
accepted dandard. We will use the proposed meta

descriptions for these languages to develop the core of the
unified metamodding language for CME. The
sandardization of modeling languages, together with other
activities in the industry (e.g., component-based software
development, software pattern-based development) seem to
sgnal agart of amaturation stage in software engineering.

Figure 2 illugtrates our objective -- to develop the mixed-
initiative modeling and d evelopment process in which an
integration engineer, the CME domain experts, and
information providers (i.e., participating nationd laboratories)
develop information modds as a bads for making the
information services interoperable.  To achieve this god, we
plan to develop and experiment with a number of tools. We
will provide an information modeling tool for participating
leboratories to describe their information services.  In the
course of modeling, the information provider will interact
with the integration engineer to request support for the
modeling task. This support will be possble to request
through a synchronous or an asynchronous channdl. In most
dtuations, support will come through asynchronous collabor-
ation using the information modeling assgant. The
modeling assstant will be created and maintained by the
integration engineer. The integration engineer will use the
modeling assstant workbench to develop modding support
specific for each participating information provider.

Domain experts, on the basis of the information models,
will interact among themsdlves to negotiste a modd t o
propose to the information providers. Using the domain
modeling toal, developers and domain experts will be able to
negotiate the shared domain modd prior to its publication.

We are in the process of developing quantitative
measurement and analysis procedures for the changes we are
implementing. The natural approach would be to measure the
output of the software development process and satigticaly
compare thisrate to a known output rate. From thiswe will be
able to gate whether the types of changes we are proposing
redly do provide productivity benefits.

Unified
Modeling
Language

Meta-modeling
Languages

(1S0)

Knowledge
Interchange
Format

Process
Interchange
Format
(DARPA)

(OMG)
T

¥ Y

1]

| Adaptation and Integration |

'

| Unified Semantic Meta-Modeling Language

v

'

| Modeling Language Creation and Elaboration

!

!

Modeling Language 1

Modeling Language 2

Figure 1. A common meta-modeling language will provide the basic toal for establishing shared information network.



=

Modeling
Assistant

: e \
Modeling Software Modeling Phase
Assistant v
Workbench Information
< > L , <> Modeling
. i Tool
Integration Distributed
Engineer Domain Modeling Phase Information
Providers
Domain

Experts

A 4

Shared Model«€
Space

Domain Modeling and
Negotiation Tool

Figure 2.The mixed-initiative modeling and development processrelies on supporting tools that facilitate collaborative
information modeling and communication between al the actorsin the process

5. Summary

In this paper, we presented initial observations from a
study into maturation of software e ngineering discipline
through mimicking evolution of traditiona engineering
disciplines. We started by presenting related work in the area
of software development productivity. Then, we presented
two governing principles from traditiona engineering
disciplines. The applicaion of these two principles was
presented in detail for the case of development of the
Collaborative Management Environment, a software system
under collaborative development among several national
laboratories.

6. References

[1] T. K. Abdd-Hamid. "The Slippery Path to Productivity
Improvement,” |EEE Software, 7/1996, pp. 43-52.

[2] T. E. Potok and M. A. Vouk, “Productivity of Object-Oriented
Software Development,” Technical Report CACC-TR-96/31, Center
for Advanced Computing Comnunications, North Carolina State
University, Raeigh, NC 1996.

[3] J W. Bailey and V. R. Badili, “A MetaModd for Software
Development Resource Expenditures” Proceeadings of the Fifth
Internations Conference on Software Engineering, 1981, pp. 107-
116.

[4] Boehm, B. W., Software Engineering Economics, Prentice-Hall,
Inc. Englewook Cliffs, N.J., 1981

[5] D. R. Jffery and M. J. Lawrence, “Managing Programming
Productivity,” The Journal of Systems and Scoftware, Vol.5, 1985 pp
49-58.

[6] B. A. Kitchenham, “Empiricd Studies of Assumptions that
Underlie Software Cogt-etimaion Modds” Information and
Software Techndogy, Vol.34, No.4, 1992, pp. 211-218.

[7] T. E. Potok and M. A. Vouk. “The Effects of the BusinessModel
on Object-Oriented Software Development Productivity,” IBM
Systems Journal, Vol.36, No.1, 1997, pp. 140-161.

[8] C. E. Wdston and C. P. Fdix, “A Method of Programming
Management and Estimation,” 1BM Systems Journal, Vol.16, No.1,
1977, pp. 54-73.

[9] R. Dion. “Process Improvement and the Corporate Baance
Shedt,” IEEE Software, Vol.7, No.28, 1993, pp. 28-35.

[10] M. C. Paulk, B. Curtis, M. B. Chrisss and C. V. Weber,
“Cagpability Maturity Moddl, Version 1.1,” |EEE Software, 1993,
pp. 18-27.

[11] Humphrey, W., Managing the Software Process Addison-
Wedey, Reading, MA, 1989,

[12] Boehm, B. W., Software Risk Management, IEEE Computer
Society Press, 1989.

[13] Booch, G., Object-Oriented Design with Applications, The
Benjamin/Cummings Publishing Company, Inc., Redwood City,
CA, 1991

[14] Rumbaugh, J,, M. Blaha, W. Premerlani, F. Eddy and W.
Lorensen. Object-oriented Modeding and Design, Prentice Hall
International, Englewood Cliffs, NJ, 1991

[15] N. Ivezic, T. E. Potok, and K. D. Barnes, “Achieving Maturity
of Compositiona Software Engineering Discipline” Proceedings of
the Workshop on  Compositional  Software  Architectures,
http: /Mmww.objs.com/wor kshopsws9801/paper §paper 100.doc, 1997.



