
Advancing Maturity of Software Engineering Discipline -
A Case Study in Distributed Software Development

Thomas E. Potok
Oak Ridge National Laboratory

potokte@ornl.gov

Nenad Ivezic
Oak Ridge National Laboratory

ivezicn@ornl.gov

Kimberly D. Barnes
Oak Ridge National Laboratory

barneskd@ornl.gov

Abstract

Accelerating the maturation process within the software
engineering discipline may result in boosts of development
productivity. One way to enable this acceleration is to
develop tools and processes to mimic evolution of traditional
engineering disciplines. Principles established in traditional
engineering d isciplines r epresent high-level guidance to
constructing these tools and processes. This paper discusses
two principles found in the traditional engineering disciplines
and how these principles can apply to mature the software
engineering discipline. The discussion is concretized through
description of the Collaborative Management Environment, a
software system under collaborative development among
several national laboratories.

1. Introduction

There are two major forces present in today’s software
development community, 1) the shortening of development
life-cycles, and 2) the increased flexibility of the
programming team. A few years ago it was common to
develop a software project on a 2-3 year cycle with a
dedicated team of f ull-time programmers on the project.
Today, the development cycles are often a year or less, and
the programming team is typically made up of consultants,
subcontractors, and full-time e mployees. These two forces
have begun to shift the focus of software development from
the creation of new systems to the enhancement or merger of
existing systems. For the most part, enhancing an older
system, or merging two legacy systems is far less expensive
than developing an entirely new one. These types of changes
will most likely drive down the cost of developing software;
however, these c hanges resul t i n several i ssues.
Fundamentally, how can systems be ea sily enhanced and
merged, and how can people be brought t ogether from
various backgrounds and locations to collaborate on a project.

There are a wide number of technologies that focus on
addressing these fundamental productivity issues. A
commonly accepted approach today is to incrementally apply
the latest technology to a given problem. However, it has been
shown that the latest technologies do not necessarily produce

the best productivity returns; likewise, they do not necessarily
apply to a given development environment [1, 2]. We believe
that software engineering will develop in much the same way
as traditional engineering disciplines have. We a re
investigating the hypothesis that leaps of maturity in this field
are achievable by taking advantage of successful business
patterns from mature engineering disciplines.

The rest of the paper is organized as follows. Section 2
presents a summary of the related work. Section 3 outlines
the working hypothesis of this paper. Section 4 describes the
Collaborative Management Environment, a system to
automate management of f inancial data from m ultiple
research organizations. Here, we present our findings from
the perspective of the stated hypothesis. Finally, Section 5
presents the conclusions of this paper.

2. Related Work

There is a great deal of speculation about what factors
truly impact software development productivity. Some argue
that productivity gains can be found through improvements in
the personnel aspects of the software development t eam,
while others claim it is either the methodology followed; the
maturity of the software development process; or the effects
of the governing business practices.

Briefly summarizing the related work, there appears to be
no conclusive evidence that the makeup of the development
team1, or the methodology followed consistently effects
productivity [2, 3, 4, 5, 6, 8]. There is some e vidence to
suggest t hat t he maturity of the software development
processes and the c ontrolling business process can effect
productivity [9, 7, 10].

1 There have been numerous studies over the years on the effects

of the team capabilities vs. software development
productivity. Most studies show evidence of such a
correlation, however, there are a significant minority that
show no evidence. It is hard to draw a definitive conclusion
based on these studies.

3. Hypothesis

Our working hypothesis is that it is possible to increase
the maturity of the software development process, not only
through organizational maturity as suggested by the Software
Engineering Institutes Capability Maturity Model (CMM),
but also through supporting and accelerating maturation of
software engineering discipline as a whole [10, 11].

We are interested in the effects of providing tools and
implementing processes within software e ngineering to
mimic evolution of traditional engineering disciplines. In this
way we hope to anticipate the emerging phenomena typical of
other traditional engineering fields and take a dvantage of
these phenomena to boost the productivity within software
development practices. At a high level, these phenomena, can
be summarized by widely adopted engineering principles. In
this study, we investigate relevance of two principles found in
the mature engineering disciplines to software engineering:
(1) Enhanced engineering communication; and (2) Principled
selection of technologies.

3.1. Enhanced engineering communication

Engineers work with a high level of understanding of the
application domain. For example, a structural engineer can
communicate a bout a structure in very precise terms with
another structural engineer, an architect, or construction
engineer with whom he or she has never met or worked.

In contrast, the software developers typically rely on the
expertise of a “domain expert” to p rovide insight i nto a
system being developed. In other cases the domain expert is
taught t he basics of software design and led through the
design process with the help of software experts.

3.2. Principled selection of technologies

Engineers apply technology as needed to solve a given
problem, i.e., the problem determines what t echnologies
should be used, not the other way around. For example, a
good structural engineer will carefully evaluate the risk
associated with building a long-span bridge using a low-
strength, low-durability, or a brittle material that could all lead
to near-term or long-term catastrophe.

Most successful software development efforts are done
based on the development teams knowledge or expertise with
a given computer language, methodology, or process, not
necessarily on h ow well suited the technology is towards
solving the problem [12, 14].

4. Collaborative Management Environment

We are in the final stages of the development of a pilot
system to automate the management of financial data from

multiple independent research organizations. The system is
named the Collaborative Management Environment (CME)
and its development is a collaborative effort among several
national laboratories: Oak Ridge, Lawrence Berkeley, Ames,
Los Alamos, and Fermi.

The development of this system follows the above two
key principles found in mature engineering disciplines. Our
development approach is to (1) develop a precise
understanding and definition of the concepts of the domain in
which we are working, not to solely rely on outside expertise;
and (2) devise a solution that is based on the most suitable
technology available, not merely ones with which we a re
familiar.

This s ection g ives account of the motivation,
requirements, issues, overall findings, and future steps for the
CME project in relation to the research hypothesis we are
investigating.

4.1. Motivation

The pilot we are developing is based on the need at a
congressional level to understand how research funding is
allocated and spent. The Department of Energy is
responsible for funding a vast amount of energy related
research. There are a number of national laboratories that
receive research funds, and these laboratories work in a
very broad range of areas. Any request for information
about performed research must be asked of each of these
laboratories. Not surprisingly, each of these laboratories
follow research management processes that are tailored to
their expertise. Likewise a rtifacts resulting from these
processes are in different formats and levels of
granularity. For example, a multipurpose laboratory may
track a wide variety of research expenditures at a very low
level of detail, while a single purpose laboratory may
track fewer expenditures in a high level of detail.

The process of submitting and funding research
proposals is currently a paper process with many of the
labs having electronic proposal submission capabilities.
The goal of this research pilot is to develop a system that
provides the support for automating the research proposal
submission process and providing the capability to report
at various levels how research funding is allocated and
spent.

4.2. Requirements and Issues

At the outset this project seems rather straightforward;
however, several previous development groups have not been
successful. The first key challenge was addressing the
changing and conflicting requirement which can be
summarized as:

1) The labs own the data and will be very hesitant to supply
additional data.

2) The system requires additional data for it t o b e
acceptable. The c urrent system was not acceptable
primarily due to a lack of data integration. Without new
data, the proposed solution would provide little benefit
over the existing system.

3) The data must be kept at t he labs. This data can be
sensitive, particularly research funding proposals that
contain new and potentially productive ideas.

4) The system must assure the financial data is accurate,

5) The system is scalable.

6) The system has good response time performance.

7) The system is highly secure.

We have developed several proposals to address these
requirements based o n a variety of technologies. At a
conceptual l evel, the system needed to b e ca pable of
accessing and analyzing legacy data from several labs through
a secure, distributed, and high performance system. A variety
of issues were a ddressed in the development of this pilot
system, with the two most significant being:

1) the development of a semantic data model used to
represent individual laboratory data in a common format,
and

2) the creation of a model driven development environment
that supported the rapid development of databases and
applications.

We further determined that an iterative development
process was best suited to this environment, given the wide
ranging requirements and the need to d emonstrate results
early in the development process[12].

4.3. Semantic Data Modeling

From a technological view point, there are many ways of
dealing with h eterogeneous data. We e valuated what we
believed were the best technological solutions and worked
with laboratory representatives to find an agreeable solution.
We applied our hypothesis in two ways. First, by working
with a wide range of potential users of the system to fully
understand how the c urrent system works. Secondly, by
resisting the temptation to use familiar technology on a new
problem. We summarize our technical evaluation of this
problem below.

Probably the most popular way of dealing with legacy
data is the notion of wrapping legacy data with software that
enforces a known interface. We encountered several problems
with this approach. Most notably in this case is that the data
is independently owned, and there is little external motivation

to share it. Why should a laboratory spend its time and effort
to wrap a financial database when there is little benefit to
them for doing so?

There was also a great deal of resistance to the
laboratories loosing control of the data. One of the early
project notions was to have agents traverse the independent
databases and derive information structures for each. Besides
being a c hallenging problem, the labs adamantly opposed
having “outsiders” tramping through their systems.

The c ompromise that was eventually reached was to
define a common data model that a lab could populate as they
see fit. The choice of populating a data field was strictly up to
the lab. This represents the notion of a federated database.

We spent a great deal of time working with experts from
various aspects of the research funding system to understand
precisely how this process works. We e xpressed this
understanding in terms of a data model. The focus of these
sessions was to thoroughly understand and do cument t he
domain and to accurately understand what common terms
mean. These sessions revealed three major issues with the
data: 1) The data is often informally grouped, such as
projects, or research areas. These groups are not defined nor
related to the current data. 2) The identifiers of the data can
change from year to year so relating data from one year to the
next may not be possible. 3) The data is presented in various
levels of granularity, some as a collection of proposals, others
as individual subproposals.

At the outset, these issues were not clearly understood by
the experts with which we dealt. Through detailed modeling
and analysis it became clear that we were gaining a broader
view than the experts’ view of the overall process. Likewise
we were a ble to tailor a technology to b est suit our
understanding.

This led to an expansion of our initial data model t o
address these three major issues. This expansion was a fairly
simple exercise. The challenge is in gathering the needed data
with minor impact on the labs. The information that we
needed is contained in two places, the mind of the researcher
who submitted the proposal, and the mind of the program
manger who funds the proposal. The approach that we used
was to allow these two people the ability to augment available
information with their knowledge and to be able to store that
knowledge in a structured way.
4.4. Rapid Application Development (RAD)

Having applied a level of enhanced engineering
communication to the first part of the project, we now focus
on the principled selection of technology for the remainder of
the project.

By following the iterative development process, we
needed to develop health chunks of software in a very short
amount of time. The catch phrase for this type of development

is RAD or Rapid Application Development. The general
approach to “RAD” is to develop prototypes of the desired
system using software design tools built for this purpose. The
idea being that t he tools can automate some of the
development t asks, such as the development of the user
interface. The ideal case for this type of development appears
to be one where the solution is driven by the end user view
into the system, such as enhancing the interface to a legacy
database.

In the case we are presenting, the system is driven by the
data a nd the structure of that data. It i s common for the
structure of the data to change as the understanding of this
structure increases. In this type of environment, one typically
defines an agreed to d ata model from which an iterative
develop process may begin [13,14]. In our case, we needed
to d emonstrate the feasibility of the project l ong before a
universally agreed to model could be developed even though
it is based on changing data requirements. Furthermore, any
model developed would certainly change a fter the
development of the system took place.

The solution we chose for this problem was to enable the
generation of a database definition and object class definitions
from the c onceptual semantic model we developed. For
example, we c ould make c hanges to a c onceptual object
model diagram and from this diagram produce corresponding
relational database definitions and ob ject class definitions.
This allowed us to rapidly develop new data a nd class
definitions whenever the data model changed. Obviously,
significant changes to the data will require changes to the
functional code. This encouraged the use of layering and
encapsulation which further insulates the code from changes.

The most technologically innovative aspect of the system
is its distributed nature. We reviewed three approaches to
developing this system. The simplest was to bring all the data
to a central database and build an interface to the database
that provided the functionality needed. This is a typical
application development approach that can provide good
performance a nd security; however, it does not provide
support for distributed d ata. The second approach was to
build a distributed database system where every lab would be
responsible for maintaining a database of their data, and our
system would remotely access this data. This approach had
several significant drawbacks, chief among them being the
high cost to the labs to setup and maintain a database. The
approach we chose was to keep the data a t t he labs, and
represent the data in XML format so that it could be searched
for and viewed by web browsers or parsed into a database if

needed. The data can be easily stored and maintained by the
labs, and the labs can benefit from easy access to this data.
Through the use of architectural neutral l anguages (i.e.,
Tcl/Tk) and communication sockets, we can use the Internet
to enable a robust distributed system. To enhance
performance we developed a caching scheme to limit the need
for multiple remote accesses for each query.

4.5. Summary of findings

Our preliminary results are qualitative in n ature, but
nonetheless, show promising findings. The biggest problem
we encountered were directly related to the communication
issues addressed by our first hypothesis. Several experts used
what we initially considered to b e c ommonly understood
terms but under persistent questioning, we learned that these
terms were vague and had d ifferent meanings for different
people. For example, there is a c oncept of a “research
project” that sounds very straightforward; however, the
domain experts all have a different views of it. Representing a
research project i s a key aspect of the system we were
developing, and even a slight misunderstanding of this term
will most likely require significant changes. Had we followed
the a pproach of relying on a domain expert for an
understanding of the system, the system would not have
worked properly and most likely would have required a large
amount of rework. It i s clearly premature to speak of
productivity gains, but t his does give us motivation to
continue with our hypothesis.

We a re not at a point t o d etermine the benefit of the
principled approach to technology mainly because the
benefits or drawbacks of this approach will be seen over time.
What we have observed is that working with well established
technology is a safer approach for developing a project but
also yields a higher risk of obsolescence in the future. We
have spent a large amount of time weighting the risk of a not
proven technology against a proven but fading technology.
We have fairly consistently selected newer technology,
primarily because of the capability of the technology and the
promise that it holds in the market place.

4.6. Next step

Our next steps are the basic software development
processes of testing and deploying the system. Following this,
we e xpect t o significantly expand the functionality of the
system and deploy it to those interested in it.

In the light of our working hypothesis outlined in Section
3 and b ased o n our experiences with the CME project,
advancing the development framework to include
collaborative information modeling capabilities is one of the
most interesting aspects of the future work.

Our experience shows that building of the shared
information framework for the distributed p articipants is
perhaps one of the most costly development activities. We
are motivated to make this step much less cumbersome. Our
main v ehicle for achieving this is development of a
collaborative semantic modeling environment which would
allow participants to p ropose, negotiate, and q uickly
implement t he shared information framework. The basic
assumption for such an environment i s existence of a
semantic meta-modeling language [15].

A semantic meta-modeling language of the CME domain
captures a number of ubiquitous modeling approaches, is
extensible, and provides a basis for information description
and interoperability. Modeling languages that describe
specific a spects of information systems, such as
implementation details or interoperability requirements will
be derivable from this meta-language (Figure 1). We believe,
this common basis will enable e fficient building of shared
understanding among collaborating participants.

Our principal approach is focused o n information
modeling languages that are becoming, or have been
promulgated as, modeling standards. For example, Unified
Modeling Language (UML) is becoming the de facto
standard in the Object Oriented Analysis and Design
community and is endorsed b y the Object Management
Group. Knowledge Interchange Format (KIF) is a first order
logic representation language developed within a DARPA
program and is widely used b y the software e ngineering
community and is accepted as a standard by ANSI. Process
Interchange Format (PIF) is a process representation language
developed at DARPA with a potential t o b ecome a nother
accepted standard. We will use the proposed meta-

descriptions for these languages to develop the core of the
unified meta-modeling language for CME. The
standardization of modeling languages, together with other
activities in the industry (e.g., component-based software
development, software pattern-based development) seem to
signal a start of a maturation stage in software engineering.

Figure 2 illustrates our objective -- to develop the mixed-
initiative modeling and d evelopment process in which an
integration engineer, the CME domain experts, and
information providers (i.e., participating national laboratories)
develop information models as a basis for making the
information services interoperable. To achieve this goal, we
plan to develop and experiment with a number of tools. We
will provide an information modeling tool for participating
laboratories to describe their information services. In the
course of modeling, the information provider will interact
with the integration engineer to request support for the
modeling task. This s upport will be possible to request
through a synchronous or an asynchronous channel. In most
situations, support will come through asynchronous collabor-
ation u sing the information modeling assistant. The
modeling assistant will be c reated and maintained b y the
integration engineer. The integration engineer will use the
modeling assistant workbench to develop modeling support
specific for each participating information provider.

Domain experts, on the basis of the information models,
will interact among themselves to negotiate a model t o
propose to the information providers. Using the domain
modeling tool, developers and domain experts will be able to
negotiate the shared domain model prior to its publication.

We a re in the process of developing quantitative
measurement and analysis procedures for the changes we are
implementing. The natural approach would be to measure the
output of the software development process and statistically
compare this rate to a known output rate. From this we will be
able to state whether the types of changes we are proposing
really do provide productivity benefits.

Adaptation and Integration

Unified
Modeling
Language

(OMG)

Knowledge
Interchange

Format
(ISO)

Process
Interchange

Format
(DARPA)

Unified Semantic Meta-Modeling Language

Modeling Language Creation and Elaboration

Modeling Language 1

Meta-modeling
Languages:

Modeling Language 2

Figure 1. A common meta-modeling language will provide the basic tool for establishing shared information network.

5. Summary

In this paper, we presented initial observations from a
study into maturation of software e ngineering discipline
through mimicking evolution of traditional engineering
disciplines. We started by presenting related work in the area
of software development productivity. Then, we presented
two governing principles from traditional engineering
disciplines. The a pplication of these two p rinciples was
presented in detail for the ca se of development of the
Collaborative Management Environment, a software system
under collaborative development among several national
laboratories.

6. References
 [1] T. K. Abdel-Hamid. "The Slippery Path to Productivity
Improvement," IEEE Software, 7/1996, pp. 43-52.

[2] T. E. Potok and M. A. Vouk, “Productivity of Object-Oriented
Software Development,” Technical Report CACC-TR-96/31, Center
for Advanced Computing Communications, North Carolina State
University, Raleigh, NC 1996.

 [3] J. W. Bailey and V. R. Basili, “A Meta-Model for Software
Development Resource Expenditures,” Proceedings of t he Fifth
Internations Conference on Software Engineering, 1981, pp. 107-
116.

[4] Boehm, B. W., Software Engineering Economics, Prentice-Hall,
Inc. Englewook Cliffs, N.J., 1981.

[5] D. R. Jeffery and M. J. Lawrence, “Managing Programming
Productivity,” The Journal of Systems and Software, Vol.5, 1985 pp.
49-58.

[6] B. A. Kitchenham, “Empirical Studies of Assumptions that
Underlie Software Cost-estimation Models,” Information and
Software Technology, Vol.34, No.4, 1992, pp. 211-218.

[7] T. E. Potok and M. A. Vouk. “The Effects of the Business Model
on Object-Oriented Software Development Productivity,” IBM
Systems Journal, Vol.36, No.1, 1997, pp. 140-161.

[8] C. E. Walston and C. P. Felix, “A Method of Programming
Management and Estimation,” IBM Systems Journal, Vol.16, No.1,
1977, pp. 54-73.

[9] R. Dion. “Process Improvement and the Corporate Balance
Sheet,” IEEE Software, Vol.7, No.28, 1993, pp. 28-35.

[10] M. C. Paulk, B. Curtis, M. B. Chrissis and C. V. Weber,
“Capability Maturity Model, Version 1.1,” IEEE Software, 1993,
pp. 18-27.

 [11] Humphrey, W., Managing the Software Process, Addison-
Wesley, Reading, MA, 1989.

[12] Boehm, B. W., Software Risk Management, IEEE Computer
Society Press, 1989.

[13] Booch, G., Object-Oriented Design with Applications, The
Benjamin/Cummings Publishing Company, Inc., Redwood City,
CA, 1991.

[14] Rumbaugh, J,, M. Blaha, W. Premerlani, F. Eddy and W.
Lorensen. Object-oriented Modeling and Design, Prentice Hall
International, Englewood Cliffs, NJ, 1991.

 [15] N. Ivezic, T. E. Potok, and K. D. Barnes, “Achieving Maturity
of Compositional Software Engineering Discipline” Proceedings of
the Workshop on Compositional Software Architectures,
http://www.objs.com/workshops/ws9801/papers/paper100.doc,1997.

Integration
Engineer

Distributed
Information
Providers

Shared Model
Space

Domain Modeling and
Negotiation Tool

Modeling
Assistant

Modeling
Assistant
Workbench Information

Modeling
Tool

Software Modeling Phase

Domain Modeling Phase

Domain
Experts

Figure 2.The mixed-initiative modeling and development process relies on supporting tools that facilitate collaborative
information modeling and communication between all the actors in the process.

