
Coordinating Management Activities
in Distrib uted Software Development Projects*

Fawsy Bendeck, Sigrid Goldmann, Harald Holz, Boris Kötting1

AG Expert Systems, University of Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany
e-mail: {bendeck, sigig, holz, koetting}@informatik.uni-kl.de

1. in alphabetical order

Abstract

Coordinating distributed processes, especially engineer-
ing and software design processes, has been a research
topic for some time now. Several approaches have been
published that aim at coordinating large projects in gen-
eral, and large software development processes in specific.
However, most of these approaches focus on the technical
part of the design process and omit management activities
like planning and scheduling the project, or monitoring it
during execution.

In this paper, we focus on coordinating the management
activities that accompany the technical software design
process. We state the requirements for a Software Engi-
neering Environment (SEE) accommodating manage-
ment, and we describe a possible architecture for such an
SEE.

1 Intr oduction

Large-scale, systematic software development is a pro-
cess where different team members with different skills
perform different activities. Usually, a distinction is made
between technical-oriented and management-oriented ac-
tivities, the former denoting activities that are part of the
technical process (e.g. designing, coding and testing),
while the latter denotes activities that are concerned with
the administration and control of thetechnical activities.

[15] identifies several different technical (e.g. Require-
ments Engineer, Designer, Coder) and management roles

(e.g. Project Planner, Project Manager, Quality Assurer)
that should be present in systematic development process-
es. Each role is responsible for performing a specific set of
activities and can be performed by more than one project
team member, just as it is possible for a team member to
perform more than one role.

Since communication becomes both increasingly diffi-
cult and more important as project size increases, coordina-
tion mechanisms are needed for large projects, especially if
they are distributed geographically as well as logically. In
the past, the coordination of technical roles in the software
development process has been a research issue, but the in-
tegration and coordination of management roles has been
mostly neglected. Here, we concentrate on coordinating the
management activities in a large-scale project. Our goal is
to coordinate the whole software development process (i.e.
the management activities as well as the technical process),
providing a notification mechanism that keeps all team
members up to date on the current project state. We try to
provide everybody with all information necessary to fulfill
their tasks, thereby making geographical distribution as
transparent to the team members as possible. Though glo-
bal project distribution creates additional problems that we
do not address here (e.g. data security, time difference,
etc.), and which need further consideration, we nonetheless
believe that our proposed system will solve the most press-
ing problems posed by distributed project coordination.

In section 2, we state the general requirements that an en-
vironment for distributed software development and man-
agement, i.e. a management-oriented Software
Engineering Environment (SEE), should meet, as well as
the requirements for such an SEE from the perspective of
the management roles. Section 3 describes scenarios that

*This work is supported by theDeutsche Forschungsgemeinschaft, Sonderforschungsbereich 501



might occur during the software process, which underscore
the necessity to integrate management roles into project co-
ordination. Section 4 introduces anarchitecture proposal,
and maps this architecture to the requirements stated in sec-
tion 2. Section 5 describes the existing systems that our im-
plementation will build on and extend. Finally, section 6
summarizes related research projects.

2 Requirements for a management-oriented
SEE

Below, a list of requirements is presented that we believe
an SEE must meet in order to support the coordination of
management activities in software development projects.
General requirements have been derived from activities
that frequently have to be performed during project man-
agement. Role-specific requirements have been obtained
by focussing on the different management rolesintroduced
by [15] individually.

2.1 General Requirements

(1) Process modeling and planning support
Basic concepts of software process modeling like prod-
ucts, processes, product flow, control flow, resources,
attributes and roles as well as quality models should be
provided. They serve as a means to represent general,
company-specific knowledge about processes, products
and quality standards. This knowledge will have to be
refined and instantiated in order to create a project-spe-
cific plan.

(2) Scheduling support
During scheduling the plan has to be augmented by
time and resource allocations in accordance to estima-
tions on time, cost and resources in the plan. Informa-
tion like resource workloads and critical paths should
be provided to support resource and time levelling.

(3) Monitoring support
During plan enactment, the SEE should provide appro-
priate views for different management roles to allow for
monitoring the project’s progress. Management activi-
ties require information about individual product, proc-
ess and resource states as well as global information on
the project like the number of processes finished or
products completed. Other aspects of interest are cost
information and quality values gained by measurement
activities.

(4) Evaluation support
Project enactment must be evaluated to identify devia-
tions from the project’s schedule, cost or desired qual-
ity. Deviations should be classified in order to help the
manager to focus on the most important ones. As far as

possible, support should be given to identify the source
of the deviations by analysing event/activity chains in
the project history.

(5) Support for the selection of corrective actions
Evaluation only is concerned with the identification of
deviations. Further support is needed to determine the
right corrective actions to bring the project back in
track. Change impact analysis techniques should be
available to assist managers in the selection of changes
to be made to the project’s plan or schedule.

(6) Replanning and rescheduling support during enactment
Changes selected must be applied to the plan and/or
schedule while it is being enacted. Replanning and
rescheduling should be supported by notifying all team
members concerned by the change (e.g. new processes
require additional scheduling and measurement plan-
ning; deleting or modifying a process currently in exe-
cution requires informing the team members
responsible for its scheduling and execution, etc.).

(7) Interleavable planning, management, and enactment
The development of complex products cannot in
advance be planned to a level of detail that requires no
further process refinements. In practice, planning,
scheduling and enactment have to be interleaved. Dur-
ing enactment of a high-level plan according to sched-
ule, sub-plans will have to be created for individual
processes. Depending on the level of detail, these sub-
plans will also require measurement planning, schedul-
ing and other management activities of which necessity
the responsible team members have to be informed.
Furthermore, the resources and estimated duration in a
sub-plan for a process might violate the process’s
resource restrictions, estimated duration or scheduling.
If this violation can not be solved by changing the sub-
plan, the team member responsible for the high-level
plan or schedule has to be notified of the problem.

(8) Notification support
The above requirements already mentioned the neces-
sity to coordinate management activities and to inform
other managers and technical agents about changes.
Hence, the concept of to-do lists as well as the notifica-
tion system that forms the basis for coordinating techni-
cal activities has to be extended to include
management. A sophisticated notification system for
sending and receiving general process coordination
messages as well as change notifications between both
management and technical roles must be provided by
the SEE.

(9) Dependency and change management
Local changes to project information (e.g. the plan or
documents that have already been produced) frequently
occur during software development projects. To prevent



inconsistencies, changes must be propagated in order to
identify all project information effected by a local
change. Therefore, dependencies between activities
must be maintained to allow for an automatic recovery
of a consistent project state; furthermore, the dependen-
cies have to be analysed in order to identify team mem-
bers that must be notified in case of changes. In
addition, dependency management serves as a basis for
change impact analysis (see requirement (5)).

(10) Include legacy software
Project information might be stored in legacy software
tools, and agents might have preferred tools that they
should be allowed to work with (e.g. MSWord, MS-
Project, AutoPLAN, etc.). The first point raises the
requirement to at least view data stored in legacy tools,
while from the second point, the requirement emerges
for communication between legacy tools and our SEE.

2.2 Role-specific Requirements

Project Planner (PP)
The Project Planner’s task is to create a project plan to

reach the project goals (e.g. to produce a product with spec-
ified quality attributes inside a time scope or deadline pre-
scribed by a contract), while heeding the project
characteristics, such as available staff, or company-wide
rules about best practice processes, general quality goals,
etc.

In order to create a project plan, the PP accesses the ex-
perience base, and reuses product and process models as
well as quality models1 yielded by former projects.

Since software projects tend to deviate from the plan on
a regular basis, the PP also needs to be able to change the
plan during project execution whenever necessary.The
Project Planner needs tobe notified when changes to the
project plan become necessary. On the other hand, changes
in the plan must bepropagated to the team members con-
cerned by the changes.

Another service the system should provide for the Project
Planneris statical and dynamical project plan analysis, e.g.
consistency checks and simulations.

Measurement Planner (MP)
The planning of measurements to be taken during project

execution is usually regarded as part of the Project Plan-
ner’s responsibilities. Here, we distinguish between gener-
al planning activities and measurement planning, because
the latter is an important activity by itself, and this distinc-
tion frequently occurs in Software Engineering practice.

The Measurement Plannershould take a goal-oriented
approach[1] at measuring process, product and resource

1. A quality model contains information about desired values for quality
attributes, which has been gained by experience in past projects.

attributes, and can specify desired values for those at-
tributes.In cooperation with the Quality Assurer (see be-
low), the MP builds a measurement plan to be enacted and
monitored by the Quality Assurer during project execution.
Since the measurement plan depends on the project plan,
the Measurement Planner needs to be notified when the
plan changes. In turn, the Measurement Planner must be al-
lowed to change the project plan in order to addmeasure-
ment activities, and to prepare the measurements, e.g. by
creating questionnaires to be filled in by technical agents,
and by specifying measurement tools which will take the
required measurements during project execution.

If changes in the project goals come up during project ex-
ecution (e.g. through contract alterations or changes in the
company’s quality goals), the measurement plan will need
to be adapted, which in turn might makeproject plan
changes necessary. The resulting communication between
the Measurement Planner, the Project Planner and maybe
the Project Manager should be supported by amanage-
ment-oriented SEE.

Additionally, the SEE should be able to trigger the spec-
ified measurement tools, so that measurements can be tak-
en automatically, and questionnaires be presented for
technical agents to fill in.

Project Manager (PM)
The Project Manager ensures the correct and timely exe-

cution of the project. His/her responsibilities are to assign
agents and other resources to the processes prescribed in
the plan, determine the processes’ start and end times in ac-
cordance with milestones and deadlines dictated by the
plan (thereby creating a schedule for the project), and to
watch the project plan execution to ensure that the project
stays on time and meets other quality requirements de-
scribed in the plan, like for example compliance to best
practice processes. In order torectify deviations from these
requirements, the PM needs to be able to takecorrective ac-
tions concerning the schedule. If changes to the project
plan become necessary, the Project Manager will cooperate
with the Project Planner to initiate these changes.

Our SEE needs to implement a notification mechanism
which will inform agents assigned to processes of this as-
signment, and give them an opportunity to negotiate it. In
order to point out deviations from prescribed timing or
quality attributes to the PM, the system needs to monitor
the process timing as well as specified attribute values and
notify the PM in case of deviationsfrom the desired values.

The Quality Assurer (QA)
The Quality Assurer is responsible for the compliance of

process and product quality to the quality goals dictated by
the contract and by company policy. In order to control this
compliance, the QA takespart in creating the measurement
plan, andduring project execution, monitors the quality at-



tributes introducedby the measurement plan. If these at-
tributes deviate from the desired values, or if the project
history suggests that they might deviate in the future, the
QA will trigger corrective actions by notifying the Project
Manager, and if necessary, the Project Planner. These three
will then debate the best course of action to take in order to
meet the project’s quality requirements.

In order to fulfill these responsibility, the QA needs ac-
cess to all measured data (provided by measurement tools),
and should also be provided with a monitoring service that
notifies him/her if desired values are not met.

The Product and Quality Managers
These two roles in the software development process are

responsible for the data in the experience factory (for a de-
scription of the two parts of an experience factory, see[2]):
The Product Manager controls the versioning and configu-
ration of product data produced during project execution
and stored in a project specific part of the experience facto-
ry, while the Quality Manager is responsible for generaliz-
ing the experience from the company’s projects, and
packages it for reuse in later projects. These two roles have
no direct influence on the project course and therefore will
not be discussed further in this paper.

The Technical Roles in the Software Process
The technical roles are responsible for the execution of

the processes described in the project plan. Technical roles
are for example the Requirements Engineer, the Designer,
the Programmer, the Tester, etc.

Coordinating these roles during project execution is an
issue that has been much discussed, and is still not com-
pletely solved. In this paper, however, we will concentrate
on themanagement-oriented roles, and omit the require-
ments that arise from coordinating the technical roles in an
SEE. (See for example[5], [6] for a discussion of these re-
quirements).

3 Scenarios for Distrib uted, Cooperative
Software Development

In this section, we outline the management activities that
need to be handled during a software development project.
Assume a company with branch offices all over a country.
The software development and its management can be dis-
tributed to these offices. Based on the roles described in
section 2.2, we will now describe a number of scenarios for
each of these roles.

3.1 Scenario from the Perspective of a Project
Planner

Due to a contract change, the Project Planner receives a

request for a change in the qualityrequirements: the reli-
ability of the whole software product must be less than 1
fault (former 3 faults) in the final acceptance test. Here are
some possible activities the PP might perform in order to
increase the reliability of the software product:

• Contact the Quality Manager in order to request a new
quality model concerning the relation of fault rate and
effort distribution over the project stages.

• insert another test iteration into the project plan.

• make a new time estimation and increase the quantita-
tive value of the quality attribute calendar time for the
whole software development process from ten months to
twelve months.

The concerned employeesmust be notified about all
changes.

3.2 Scenarios from the Perspective of a
Measurement Planner

During project execution, it might turn out that the
planned course of action is not practical, and the plan has
to be changed: processes will be deleted, and others added.
In this case, the Measurement Planner has to be notified, so
that the measurement plan can be adjusted accordingly. In
a next step, the MP will add attributes to the new project
plan, and insert corresponding measurement activities into
the plan. The MP will then assign tools to these activities
and/or specify questionnaires which at execution time will
be presented to the responsible agents to fill in.

3.3 Scenario from the Perspective of a Project
Manager

(1) An agent has to finish a process up to a given deadline.
The system has already sent a message to the agent to
remind him/her of this process. If the process has not
been finished by the assigned end time, the Project
Manager receives a corresponding notification from the
system. The Project Manager contacts the agent to clar-
ify the problem. Depending on the seriousness of the
problem he/she needs to react accordingly. The agent is
not able to do his/her work in the estimated time which
can have multiple reasons, for example:

• the assigned end time was calculated too restrictively
and has to be recalculated

• the agent’s skill level is not as high as defined in the
model, and the model has to be adapted

• the agent has to perform other process with higher prior-
ity so he/she cannot work on the concerning process. In
this case, the agent’s workload has to be reduced, or the
process has to be rescheduled for a later time.
If other processes depend on the delayed process’ out-



put, the delay must be propagated to subsequent proc-
esses which will result in a correction of their start and
end times. If there are fix delivery milestones, and the
delay caused by the process in question would violate
them, some other processes must be replanned and/or
rescheduled in order to make up for the lost time. If this
is not possible, the company’s management must be
informed about the delay, and the contract must be re-
negotiated.

(2) The Project Manager gets a notification that an agent is
on sick leave. He/she needs to assign a new agent for
the process. This decision should be supported by sug-
gesting agents for a new assignment, and explaining
this suggestion; possible explanations are:

• suggested agent is in the same development team

• suggested agent has nearly the same skills

• suggested agent is declared as the sick agent’s stand-in

• suggested agent has low workload.
The Project Manager changes the schedule and the
selected agent is notified.

(3) A process, which was scheduled to be finished on
Wednesday, was finished on time. On Thursday, the
responsible agent discovers an error and decides to re-
execute it. In addition to informing the agents responsi-
ble for subsequent processes that their inputs are no
longer valid, the responsible Project Manager has to be
notified that the corresponding scheduling decision is
now invalid, while the Project Planner needs to replan,
and introduce a new copy of the process into the plan.

3.4 Scenario from the Perspective of a Quality
Assurer

(1) The Project Planner has changed a quality model in the
project plan, and the Measurement planner has adjusted
the measurement plan accordingly. The Quality Assurer
needs to be informed about the changes, which might
include:

• new measuring methods and/or tools for some quality
attributes

• new quality defaults and new desired values

• new attributes plus their handling and desired values.

(2) The Quality Assurer watches the progression of the
robustness of a certain software component. The
desired value for the component’s robustness (accord-
ing to the measurement plan) is less than two errors in
the last component test. There are still five days to go
until this desired value has to be reached, and a quality
model from the Experience Base suggests that a com-
ponent should have reached a robustness of less than
seven errors at this development stage in order to be

able to meet the desired value of less than two error at
the last component test. Hence, the QA informs the
Project Manager to take a look at this attribute. The
Project Manager can apply to the responsible technical
agent to find reasons for the problem and to look for a
solution, which in turn might lead to plan changes.

4 Approach

Figure 1

Figure 1outlines the architecture we proposefor a sys-
tem that handles the above scenarios. We will give a short
description of the system components, and then show how
this architecture undertakes to meet our requirements.

The Modeling Component
The Modeling Component is a store for process, product,

and quality models which have been retrieved from the Ex-
perience Base (EB) and then customized for the specific
project. The Modeling Component provides several meth-
ods to workon each modeled process. The Project Planner
or a technical agent can select one of these methods and
thereby build and/or refine the plan.

This component also provides statical and dynamical
analysis mechanisms to evaluate the model and possible
plans derived from the model.

The Kernel Component
The Kernel Component maintains the plan and schedule

as well as the project’s execution state. It tracks dependen-
cies between planning, scheduling and execution activities,
andimplements a notification system that keeps the con-
cerned agents up to date on changes.

The Kernel Component is composed of several sub-com-
ponents:

• The Resource Repository provides a complex resource
system that represents roles, properties and skills of
agents.



• The Project Plan Management handles the project plan
and schedule.

• The Workflow Engine contains the project trace, man-
ages plan execution, and handles the measurements
specified in the measurement plan.

• The Dependency Management administers the connec-
tions between the planning and scheduling activities
managed by the Project Plan Management component,
and the execution and measurement activities handled
by the Workflow Engine. It also implements the notifica-
tion mechanism mentioned above.

A more detailed description of these components can be
found in [6].

The Experience Factory
The Experience Factory has a structure as described in

[2]. It stores general models(in the ExperienceBase) as
well as specific project data (in the Project Base), for which
it provides a suitable version and configuration manage-
ment.

The Software Process Agents
The Project Planner, Project Manager, Quality Assurer,

and Measurement Planner, as well as the technical agents,
perform the activities described insection 2.2.

The actions of the above agents as well as the dependen-
cies between these actions and other decisions made during
project planing and execution, are communicated to and
tracked by the Kernel Component.

The measurement tools are triggered automatically by
the Kernel Component to take the measurements defined
by the Measurement Planner. Depending on the kind of
measurement to be taken, a tool will either pop up a ques-
tionnaire for a technical agent to fill in, or if possible, di-
rectly measure the needed value.

The Software Process Agents and the Kernel Component
communicate over a defined protocol which can be imple-
mented via a remote message call interface, socket commu-
nication, and/or the WWW. For an example
implementation of an approach based on socket communi-
cation see [9].

4.1 Consistency of the Proposed Architecture
With the Requirements)

In this section, we summarize the functionality our pro-
posed architecture provides to meet the requirements stated
in section 2.
(1) Process modeling and planning support

The Modeling Component stores the process and prod-
uct models to be used to build up the plan, as well as
resource models for scheduling decisions, and quality
models that the project execution should comply with.

The Project Planner as well as technical agents can use
and/or enhance this model in order to plan the project
or single tasks. The Measurement Planner is also able
to access the model and plan in order to insert attributes
into process, product and resource models, and plan the
measurement activities to be performed during project
execution.

(2) Scheduling support
The Project Plan Management in our architecture
allows the Project Manager (and if necessary, technical
agents) to assign processes to agents, and determine
start and end times for them. The Dependency Manage-
ment tracks the dependencies between these scheduling
decisions and other activities during project planning
and execution, and notifies all concerned agents in case
of occurring changes. The system also provides role
specific views on project information. For example, the
Resource Repository supplies the Project Manager with
information like agent workload and agent skills, and
the Project Plan Management contains critical path
information, in order to facilitate project scheduling.

(3) Monitoring support
In addition to the views provided by the Project Plan
Management and Resource Repository (as mentioned
above), the Workflow Engine provides information
about the project’s current state, i.e. about process and
product states, and about measurement values taken
during process execution.

(4) Project evaluation support
A sub-component of the Dependency Management will
check the compliance of measured values (provided by
measurement tools) with the corresponding desired val-
ues, and notify the Project Manager and/or the Quality
Assurer, as well as other concerned agents, if deviations
occur. If the project trace yields an explanation for the
deviation (e.g. if a process is started late because of a
delay in a preceding process), the Dependency Man-
agement component will deduct this reason and present
it to interested agents.

(5) Support for the selection of corrective actions
The Dependency Management will provide change
impact analysis support. For example, if a process has
to be redone, the responsible agent (i.e. the Project
Planner or a technical agent) can query the system for
an estimation of the overall time and cost necessary to
redo not only this process, but all dependent ones as
well. In addition to this domain independent change
impact analysis, we are currently discussing how to
model domain-specific dependencies, in order to pro-
vide a more detailed change impact analysis [7].

(6) Replanning and rescheduling support
The system (i.e. the Dependency Management compo-



nent) supports plan and schedule changes during
project execution by tracking dependencies between
plan and schedule on the one hand, and execution activ-
ities on the other hand. Changes are automatically
propagated through the plan and schedule, and the con-
cerned agents are notified.

(7) Interleavable planning, management, and enacting
Our Dependency Management component allows plan-
ning, scheduling, and execution activities to be alter-
nated as described in [9]. As mentioned above, it tracks
the dependencies between these activities and provides
agent notification when information becomes available
that is necessary to further plan, schedule, or execute a
process or subproject.

(8) Notification system
As mentioned above, the notification system will be
part of the Dependency Management component. The
Workflow Engine provides to-do-lists for technical and
management oriented agents.

(9) Dependency and change management
This Dependency Management not only supports
dependency tracking between management activities,
but manages the dependencies between technical activi-
ties and between technical and management activities
as well, providing notifications in case of changes. It
also provides support for backtracking to a consistent
project state after a change has occurred.

(10)Legacy Software
Each of the agents on the right side of figure 1 might be
a legacy tool. The technical issues of how to integrate
legacy software are not trivial, but out of the scope of
this paper. Another problem we are currently discuss-
ing is that legacy tools often do not share our view on
the different roles. For example, common project man-
agement tools (like MSProject or AutoPLAN) do not
distinguish between planning and scheduling activities.
In order to integrate such tools with our system, we will
implement wrappers for the tools which “translate” the
tools’ view on the project into terms that our Depend-
ency Management can track. This point needs further
research and has to be discussed individually for each
legacy tool to be integrated in our system.

5 State-of-implementation

Our experienceand ideas are based on differentexisting
systems that we will integrate in order to build the suggest-
ed architecture:

The base component for dependency management is
Redux [14]. Its primarypurpose is to provide a generic ar-
chitecture to represent knowledge about plans and contin-
gencies that occur during planning.The Redux concepts

build on artificial intelligence planning approaches, but can
easily be applied to process planning.

One of the main services the Redux model provides is de-
pendency-directed backtracking. Both CoMo-Kit and
Procura(see below)useRedux for dependency manage-
ment.

CoMo-Kit defines and implements a methodology for
project planning, and incorporates an interpreter for plan
enactment. Its architecture consists of two parts: aModeler
for defining and implementing the ontology and aSchedul-
er for project plan execution. By usingthe Redux model,
CoMo-Kit provides dependency tracking for technical
roles.

Procura[9] is a Project Management model which allows
planning and scheduling of agent-based design projects in
a hierarchical top-down approach. Its main difference to
CoMo-Kit is the issue of scheduling: Procura integrates
Critical Path techniques in the dependency tracking mech-
anism.Also,Procura is an agent-based approach incontrast
to CoMo-Kit’s client-serverarchitecture.

As a result of theresearch project„SFB501: Develop-
ment oflarge systems with generic methods“1, the MILOS
approach[5] was conceived. MILOS is a process-centered
modeling language strictly focussing on software develop-
ment processes. MILOS integrates the benefitsof CoMo-
Kit and MVP-L (Multi-View Process Modeling Lan-
guage). MVP-L [4] was designed to improve the processes
by means of descriptive modeling, analyzing these models
and saving the models in an experience factory. It provides
role specific views on the project plan and guides the dif-
ferent roles in performing their tasks.

We cooperate with the Department of Computer Science
University of Calgary, where an object-oriented databaseis
being integrated in the existing CoMo-Kit architecture, and
the project management tool AutoPLAN is being included
as a legacy tool [6].

The integration of legacy software is a point we are also
discussing. We have implemented an export interface for
CoMo-Kit, which allows us to export project information
from CoMo-Kit into other tools via ODBC. This allows
legacy tools to access the project information stored in
CoMo-Kit.

Another point weare currently working on is the integra-
tion of the measurement planning tool GQM-DIVA [12], a
tool for defining, interpreting and validatingmeasurement
plans.

6 Related Research

Process sensitive Software Engineering Environments
(SEEs) have been a research topicduring the last years.
Several approaches have been published which support the

1. see http://wwwsfb501.informatik.uni-kl.de:8080/



technical software process, e.g. SPADE, MARVEL, MER-
LIN, etc. See[8] for an overview of these earlier approach-
es, and [5] for a comparison between our research and these
ideas.

More recent process sensitive environments are being in-
troduced as part of the Arcadia1 project; for example,[3]
describes an approach focussing on the coordination of
technical roles in the software development process.

The OzWeb2 project is another example for current re-
search on project coordination in Software Engineering.
[10] describes a WWW based SEE with tool support for
technical roles.

An example for a web-based approach on coordination is
the METEOR3 project at University of Georgia[13]. This
work distributes a workflow management system over the
internet, using CORBA as a means of communication as
well as for transaction management.

Our research builds on the measurement based approach
on software process support as described in[11]

Literatur e
[1] V. R. Basili, G. Caldiera, and H. D. Rombach:Measure-

ment, in Encyclopedia of Software Engineering (John J.
Marciniak, ed.), vol. 1, pp. 646--661, John Wiley Sons,
1994.

[2] V. R. Basili, G. Caldiera, and H. D. Rombach:Experience
Factory, in Encyclopedia of Software Engineering (John J.
Marciniak, ed.), vol. 1, pp. 469--476,John Wiley Sons,
1994.John Wiley Sons, 1994..

[3] G. A. Bolcer and R. N. Taylor: Endeavors: A Process Sys-
tem Integration Infrastructure in Proceedings of the Fourth
International Confernce on the Software Process, Brighton,
England, December 1996.

[4] A. Bröckers, Ch. Differding, and G. Threin:The role of
software process modeling in planning industrial measure-
ment programs. In Proceedings of the Third International
Software Metrics Symposium, Berlin, March 1996. IEEE
Computer Society Press.

[5] B. Dellen, F. Maurer, J. Münch, M. Verlage:Enriching
Software Process Support by Knowledge-based Tech-
niques, International Journal of Software Engineering and
Knowledge Engineering, 1997.

[6] B. Dellen, F. Maurer:A Concept for an Internet-based Pro-
cess-Oriented Knowledge Management Environment, to
appear int he Proceedings of the KAW’98, Banff, Canada ,
1998.

[7] B. Dellen, F. Maurer: Change impact analysis support for
software development processes, To appear in the Journal
of Applied Software Technology, International Academic
Publishing, 1998

[8] .P. Garg and M. Yazayeri: Process-Centered Software
Engineering Environments: A Grand Tour, in Software
Process, (Fugetta and Wolf, ed.), 1996.

1. see http://www.ics.uci.edu/~arcadia/
2. see http://www.psl.cs.columbia.edu/edcs/brochure.html
3. see http://lsdis.cs.uga.edu/workflow/

[9] S. Goldmann:Procura: A Project Management Model of
Concurrent Planning and Design, Proceedings of WET-
ICE ‘96, IEEE press, Stanford, USA, 1996.

[10] G. E. Kaiser, St. E. Dossick, W. Jiang, J. Jingshuang Yang
and S. X. Ye,: WWW-based Collaboration Environments
with Distributed Tool Services, to appear in World Wide
Web, Baltzer Science Publishers.

[11] C. M. Lott, B. Hoisl, and H. D. Rombach:The use of roles
and measurement to enact project plans in MVP-S, in Pro-
ceedings of the Fourth European Workshop on Software
Process Technology (W. Schäfer, ed.), (Noordwijkerhout,
The Netherlands), pp. 30--48, Lecture Notes in Computer
Science Nr. 913, Springer--Verlag, Apr. 1995.

[12] M. v. Maris: GQM-DIVA, a tool for defining interpreting
and validating GQM plans. Master‘s thesis. Department of
computer science, University of Kaiserslautern, 67653 Kai-
serslautern, Germany, 1995.

[13] J. Miller, A. Sheth, K. Kochut, and D. Palaniswami: The
Future of Web-Based Workflows, Proc. of the International
Workshop on Research Directions in Process Technology,
Nancy, France, July 1997.

[14] Ch. Petrie:Planning and Replanning with Reason Mainte-
nance. PhDthesis, University of Texas at Austin, CS Dept.,
1991. (MCCTR EID-385-91).

[15] I. Sommerville:Software Engineering, 3. Auflage, Adison
Wesley, 1989.


