Fastest Paths, Almost Disjoint Paths, and Beyond

  • This thesis is primarily motivated by a project with Deutsche Bahn about offer preparation in rail freight transport. At its core, a customer should be offered three train paths to choose from in response to a freight train request. As part of this cooperation with DB Netz AG, we investigated how to compute these train paths efficiently. They should be all "good" but also "as different as possible". We solved this practical problem using combinatorial optimization techniques. At the beginning of this thesis, we describe the practical aspects of our research collaboration. The more theoretical problems, which we consider afterwards, are divided into two parts. In Part I, we deal with a dual pair of problems on directed graphs with two designated end-vertices. The Almost Disjoint Paths (ADP) problem asks for a maximum number of paths between the end-vertices any two of which have at most one arc in common. In comparison, for the Separating by Forbidden Pairs (SFP) problem we have to select as few arc pairs as possible such that every path between the end-vertices contains both arcs of a chosen pair. The main results of this more theoretical part are the classifications of ADP as an NP-complete and SFP as a Sigma-2-P-complete problem. In Part II, we address a simplified version of the practical project: the Fastest Path with Time Profiles and Waiting (FPTPW) problem. In a directed acyclic graph with durations on the arcs and time windows at the vertices, we search for a fastest path from a source to a target vertex. We are only allowed to be at a vertex within its time windows, and we are only allowed to wait at specified vertices. After introducing departure-duration functions we develop solution algorithms based on these. We consider special cases that significantly reduce the complexity or are of practical relevance. Furthermore, we show that already this simplified problem is in general NP-hard and investigate the complexity status more closely.

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar
Metadaten
Verfasser*innenangaben:Tim BergnerORCiD
URN:urn:nbn:de:hbz:386-kluedo-72094
DOI:https://doi.org/10.26204/KLUEDO/7209
ISBN:978-3-8439-5217-0
Verlag:Verlag Dr. Hut
Verlagsort:München
Betreuer*in:Sven KrumkeORCiD
Dokumentart:Dissertation
Sprache der Veröffentlichung:Englisch
Datum der Veröffentlichung (online):12.03.2023
Datum der Erstveröffentlichung:01.02.2023
Veröffentlichende Institution:Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
Titel verleihende Institution:Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
Datum der Annahme der Abschlussarbeit:07.10.2022
Datum der Publikation (Server):21.03.2023
Seitenzahl:X, 163
Quelle:https://www.dr.hut-verlag.de/9783843952170.html
Fachbereiche / Organisatorische Einheiten:Kaiserslautern - Fachbereich Mathematik
DDC-Sachgruppen:5 Naturwissenschaften und Mathematik / 510 Mathematik
Lizenz (Deutsch):Zweitveröffentlichung