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Abstract

Epidemiological models have gained much interest during the COVID-19 pandemic.
As the pandemic is now driven by newly emerging variants of SARS-CoV-2, the
question arises how to model multiple virus variants in a single model.
In this thesis, we have extended an established model for COVID-19 forecasts to mul-
tiple virus variants. We analyzed the model mathematically and showed the global
existence and uniqueness of the solution as well as important invariance properties
for a meaningful model. The implementation into an existing framework which al-
lows us to identify model parameters based on surveillance data is described briefly.
When applying our model to actual transitions between SARS-CoV-2 variants, we
found that forecasts would have been significantly improved by our model exten-
sion. In most cases, we were able to precisely predict peak dates and heights in
case incidences of waves caused by newly emerging variants during early transition
phases. More severe outcomes, like hospitalizations, are found to be harder to pre-
dict because of very limited observational data regarding these outcomes for newly
emerging variants.
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Chapter 1

Introduction

Beginning in late 2019, a significant increase in cases of severe pneumonia caused
by an unknown pathogen happened in Wuhan, China [52]. Soon, scientists discov-
ered a novel coronavirus, later called SARS-CoV-2, as the cause while the virus
began to spread rapidly around the globe. On March 11, 2020, the World Health
Organization declared COVID-19, the name of the disease caused by SARS-CoV-2,
a pandemic [57]. Unprecedented measures affecting social life and economy have
been applied to control the disease spread. At all times, the future trajectory of the
pandemic and the effects of interventions have been urgent questions. To answer
these questions, epidemiological models were applied and developed. Also at Fraun-
hofer ITWM, a model was developed [37] and established in the European Covid-19
Forecast Hub [48] and in advising decision-makers.
Later, beginning with the Alpha variant in late 2020 and cumulating in the Omicron
variants in late 2021, the pandemic was mainly driven by newly emerging variants
of SARS-CoV-2. They became dominant due to higher transmissibility and immune
escape, resulting in only partial protection from previous infections or vaccination.
The mentioned model showed difficulties to predict the trajectory of the pandemic
during early transition phases between two predominant virus variants. The objec-
tive of this thesis is the extension of the current model to cover the effects of multiple
virus variants that possess distinct transmissibilities and induce only partial immu-
nity against each other.
To accomplish the objective, we will describe the newly developed model in Chap-
ter 2. An ansatz to construct model parameters from available data is given at the
end of the chapter, together with proofs that the ansatz fulfills the requirements on
the parameters. The model is then analyzed mathematically in Chapter 3, regard-
ing existence and uniqueness of a solution, invariance properties and equilibrium
points. Chapter 4 briefly explains the numerical methods to solve the system and to
fit model parameters to real data. Finally, the model is applied to actual transitions
between SARS-CoV-2 variants in Chapter 5. Therefore, we create forecasts using
the new model during early stages of such a transition and compare the results to
the actual trajectory of the pandemic in the simulated weeks as well as to the pre-
dictions using the one-variant model.
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Chapter 2

The model

In this chapter, we want to describe the epidemiological model we used. Mathemati-
cal epidemiology deals with the mathematical description of the spread of infectious
diseases. Our model is based on the one described in [37]. This model computes new
infections with an infectious disease (in this case COVID-19, but it could be applied
to others as well) taking into account the effects of a latent period1, vaccination
and testing followed by an isolation of positively tested persons. However, it does
not cover the effects of waning immunity and different virus variants which played a
crucial role in the course of the COVID-19 pandemic [27] [32]. We developed exten-
sions to the model to cover these effects. They will be described in Sections 2.6-2.8.
The development of the existing model is also described briefly in Sections 2.2-2.5
such that the thesis is self-contained.

2.1 Model types

Nowadays, there are two main branches of epidemiological models, namely agent-
based models and compartmental models [25]. An agent-based model is a type of
computer simulation where so-called agents representing individuals can interact
with each other and their environment according to a set of prescribed rules. These
rules typically allow agents some choices of interactions and its behavior is then
determined stochastically among these choices. In such a model, infections with a
transmissible disease are modeled by the interaction of an infectious and a susceptible
agent. One of its advantages is that heterogeneous behavior and social networks can
be represented by the choice of rules agents act upon. However, agent-based models
are computationally expensive and due to its stochastic nature require several runs
for a robust result. Furthermore, numerous parameters in an agent-based model
typically make it impossible to fit them to measured data so they must be set by
other means. As one of the foci is to fit parameters to measurements from the past
and use these parameters in a forward simulation, we will develop a compartmental

1The time interval between infection and infectiousness of a patient. Not to be confused with
the incubation period which is the time interval between infection and the first symptoms of the
disease, typically a bit longer than the latent period.
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4 2.2. The basic model

model. A lower number of parameters makes it possible to fit at least some of them
to surveillance data.
One of the first approaches to epidemiological modeling by Kermack and McKen-
drick [28] was also a compartmental model. As suggested by the name, in a com-
partmental model the population is divided into compartments based on their state
of infection and/or protection. A susceptible and an infectious compartment are
usually the minimal ones for a compartmental model, often augmented by other
compartments representing e.g. exposed (but not yet infectious), vaccinated and re-
covered individuals. These compartments can also be subdivided according to age
or other relevant factors, but this increases the complexity of the model and the
number of its parameters. Infections are then computed by the size of the respec-
tive compartments and an interaction coefficient describing their interactions. An
assumption is that people in a compartment behave in a homogeneous way such that
their interactions can be described by a single interaction coefficient. In its general
form presented in the paper by Kermack and McKendrick, the transitions between
these compartments are modeled by integro-differential equations (IDEs). But most
popular models [10] are using ordinary differential equations (ODEs), mentioned as
a special case in the original paper. We will also start with an IDE, but end up
with delay differential equations (DDEs) under another assumption on the integral
kernel, see Section 2.3. Many models, including ours, also consider the population to
be constant, neglecting births and (non-disease-related) deaths, such that it should
only be used for a restricted time frame.

2.2 The basic model

To start the development of our model in a very general form as described in [37], we
can express the number of new infections as an integral over the number of previous
infections, meaning that

ṅ(t) =

∫ t

−∞
k(t, τ)ṅ(τ)dτ. (2.1)

Here, n(t) denotes the total number of infections until time t relative to the total
population and k(t, τ) is some integral kernel. Note that we will, in general, consider
numbers relative to the total population, denoted by lower-case letters. Absolute
numbers will be denoted by upper-case letters. The obvious relation between those
numbers, in this case the numbers of total infections, is given by

N(t) = n(t) ·G,

where G denotes the total number of individuals in the model population. However,
formulation (2.1) does not gather any insight into the spread of a communicable
disease, despite the fact that the new infections at some time are correlated to
the previous infections. It is crucial to specify the integral kernel k(t, τ) in order
to clarify the relation between new and previous infections and hence be able to
compute the disease spread over time.



Chapter 2. The model 5

We will assume that the integral kernel is a product of three factors which mainly
influence the spread of the disease. These are the number of susceptibles s(t), the
critical contact rate κ(t) and the infectiousness at time after infection ω(τ), hence

k(t, τ) = s(t)κ(t)ω(t− τ). (2.2)

The susceptibles are assumed to be the complement of the infections s(t) = 1−n(t),
meaning that no one is protected against infection due to vaccination or other reasons
and reinfection is not possible. This also emphasizes the need to consider a restricted
time frame because after a long period of time, even if the total population is
constant, births and deaths will lead to a severe difference between the number of
infections and the number of alive people in the population who have been infected.
Thus, an underestimation of the susceptibles would occur.
The critical contact rate κ(t) is the number of contacts a person has per day which
would lead to infection if he were infectious and all contacts were susceptible. Hence,
it depends not only on the number of his contacts, but also on their duration, their
closeness, applied protective measures like wearing masks [7] and other factors. As
behavior can change over time, it is dependent on t.
The choice of the model for the infectiousness at time after infection essentially
influences the model structure. A variety of models can be obtained by choosing
different functions for the infectiousness [9]. One classical assumption (however, in
most cases not explicitly stated) is an exponential decline of the infectiousness as
this leads to the classical SIR or SEIR model based on the publication of Kermack
and McKendrick [28].
Inserting (2.2) into (2.1) the model up to this point is given by

ṅ(t) = (1− n(t))κ(t)

∫ t

−∞
ω(t− τ)ṅ(τ)dτ. (2.3)

2.3 From an IDE model to a DDE model

Studies show that the viral load of a patient infected with COVID-19 inclines rapidly
up to a certain point after infection and will then decline naturally due to the
immune system, but slower [26] [22]. For other transmissible diseases like influenza
data for this is only available after symptom onset because of the lack of mass
testing, i.e. lack of tests before symptom onset. Studies like [33] show at least
similar behavior after symptom onset. We could model the infectiousness in our
model by a function like this. Nevertheless, due to practical considerations like
computability and identifiability of parameters and because infectiousness above
a certain threshold of viral load will basically stay the same, we will consider a
characteristic function for the infectiousness

ω(t) = χ[τs,τe](t) =

{
1, if 0 < τ s ≤ t ≤ τ e

0, else
. (2.4)
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Wlog we can assume the height of this function to be normalized to 1 as any constant
factor can also be included in κ(t). The constants τ s and τ e represent the start and
end of the infectious period, respectively.
With this choice for the infectiousness, our model simplifies to a delay-differential
equation (DDE) as the integral is an evaluation of the infections at the boundary
points of the characteristic function. Inserting (2.4) into (2.3) we obtain the DDE

ṅ(t) = (1− n(t))κ(t)
[
n(t− τ s)− n(t− τ e)

]
.

2.4 Inclusion of vaccination
Beginning in late 2020, COVID-19 vaccinations became available [17]. This had a
major impact on the course of the pandemic [21]. Despite prevention of severe cases
being the primary goal of the vaccinations, they also reduced the risk of infection
significantly. First studies [38] found very high vaccine effectiveness of about 95 %
against symptomatic infection, but as the virus mutated and protection against
(symptomatic) infection waned over time, these numbers are considerably lower
now, see also Section 2.6.2. Still, vaccination has a non-negligible effect on the
COVID-19 pandemic and should be included in our model. For other widespread
viral diseases like influenza vaccines are available as well and play an important role
in the dynamics of disease spread [31].
For our model, we assumed so far that only those with a previous infection are
protected against infection. This assumption has to be dropped in order to include
vaccination. We introduce a new compartment, the people protected due to vaccina-
tion, p(t). As we have seen, vaccines have an effectiveness below 1 which means that
this quantity should be a product of vaccine effectiveness, number of vaccinations
and the probability of vaccinating a person who has no protection yet, e.g. due to
infection. We propose

ṗ(t) = ε
1− n(t)

1− d(t− τ p)
v̇(t− τ p),

s(t) = 1− n(t)− p(t).

Here, ε represents the vaccine effectiveness, v(t) the relative number of vaccinations
at time t and τ p accounts for a time delay between vaccination and protection.
Compared to [37] we drop the time-dependence of the vaccine effectiveness because of
experiences with the one-variant model. It is also a preparation for the multi-variant
case, where vaccine effectiveness will directly depend on the variant. The term for
the probability of vaccinating an unprotected person is based on the assumption
that no one is vaccinated more than once and people with known previous infection
are not vaccinated (as they are assumed to be protected by the infection). The
proportion of detected cases is denoted by d(t) here. In Section 2.5, we will expand
our model to compute this number also for future times.
A multi-dose vaccination schedule, like the primary immunization for COVID-19,
is considered as one vaccination here. Such a multi-dose schedule could be repre-
sented as follows. One could consider all persons with non-complete vaccination
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schedule as unvaccinated and let v(t) represent the last doses of vaccinations. Many
non-completed vaccine schedules could lead to an underestimation of the vaccine-
protected compartment because of partial protection after non-completed schedules.
To avoid this, one could let v(t) represent the first dose and include the percentage
of non-complete vaccinations and their respective effectiveness into ε and the time
until the end of the vaccination schedule (or the "main dose") into τ p.
Note that this formulation also means that no one will lose its protection due to
vaccination once obtained. Especially seasonal vaccinations like those for influenza
cannot be modeled with this approach if the simulation should cover multiple sea-
sons. As we will include waning immunity in Subsection 2.6, we will also generalize
the model to be able to include vaccinating persons more than once. In particular,
booster and seasonal vaccinations can then be modeled.
We have now obtained a system of differential equations instead of a single DDE
which is given by

ṅ(t) = s(t)κ(t)
[
n(t− τ s)− n(t− τ e)

]
, (2.5)

ṗ(t) = ε
1− n(t)

1− d(t− τ p)
v̇(t− τ p), (2.6)

s(t) = 1− n(t)− p(t). (2.7)

Note that one can substitute s(t) in the differential equations by its algebraic ex-
pression based on n(t) and p(t), but we will not do this substitution here because
of readability.

2.5 Inclusion of testing and isolation
Another important characteristic of the COVID-19 pandemic is widespread testing
for the virus. This is not only done because of surveillance but also as a measure
to reduce disease spread in form of isolation after positive testing. Its effect has
been observed in mathematical modeling studies [23] as well as in the analysis of
real data [6]. Therefore, we aim to include testing and subsequent isolation into our
epidemiological model.
We introduce a new compartment into our model, the detected infections at time t.
Clearly, not all infections can be detected, thus we need a detection rate λ(t). The
detection rate is dependent on time because it depends on the testing strategy ap-
plied at that time. Furthermore, infections will not be detected at time of infection,
but with some delay when viral load is high enough and symptoms may have been
developed. This delay, we call it τ d, was also time-dependent in the original model
because of its dependency on the testing strategy, but as a result of the experiences
with the model we neglect the time-dependence here. Wlog we can assume

τ s ≤ τ d ≤ τ e,

because an earlier detection has the same influence on disease spread as a detection
at the start of the infectious period and a later detection has none, just like a
detection at the very end of the infectious period.
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With these parameters we have obtained the following equation for the detected
cases

ḋ(t) = λ(t)ṅ(t− τ d).

As a positive test resulted in mandatory isolation (§ 2 AbsonderungsVO), we can
model this as the end of the infectious period for the positive tested patient.
With this assumption, we can write down the following equation for the infectious
compartment i(t) at time t

i(t) = n(t− τ s)− n(t− τ e)−
[
d(t)− d(t+ τ d − τ e)

]
.

Together with Equations (2.5)-(2.7) we have the model

ṅ(t) = s(t)κ(t)i(t), (2.8)

ṗ(t) = ε
1− n(t)

1− d(t− τ p)
v̇(t− τ p), (2.9)

ḋ(t) = λ(t) ṅ(t− τ d), (2.10)
s(t) = 1− n(t)− p(t), (2.11)
i(t) = n(t− τ s)− n(t− τ e)− d(t) + d(t+ τ d − τ e). (2.12)

Note that the algebraic equations can again be inserted into the differential ones in
order to obtain a system of three differential equations.
In comparison with the complete model in [37], we neglected the external infections
here. These are infections which are brought into a population from outside, e.g.
by travellers. Its inclusion is particularly important if the disease spread is driven
by such infections. Their inclusion is just a prescribed additive term for the new
infections. However, we will not include them here because the focus of the thesis
should be on the extensions added to the model, especially the effect of multiple
virus variants.

2.6 Inclusion of waning immunity
Studies show that immunity against COVID-19 infection wanes over time, regardless
of the way it was obtained, i.e. by infection [14] or vaccination [4] [5]. They also
show that this effect was highly accelerated by the spread of the Omicron variant at
the end of 2021, early 2022. Hence, we want to include the possibility of reinfection
and waning immunity after vaccination into our model. Therefore, we have to drop
the assumption that the number of infections is equal to the number of persons
infected. Instead, we will redefine the compartment p(t) now.

2.6.1 General model

Let p(t) be the compartment of protected persons at time t, due to previous infection
or vaccination. Then, the susceptibles (Equation (2.11)) are given as 1 − p(t) and
hence we can rewrite Equation (2.8) as

ṅ(t) = (1− p(t))κ(t)i(t). (2.13)
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Equations (2.10) and (2.12) will not be influenced by this redefinition and conse-
quently stay the same. The possibility of reinfection leads to the effect that persons
could be counted twice in the infectious compartment, if they are infected twice
in a time period shorter than the infectious period. However, immunity typically
lasts considerably longer than the infectious period, even for the Omicron variants.
Hence, we will neglect this effect here due to its small size. It is our goal now to
reformulate (2.9) such that it really models the immune compartment.
To model the immune proportion of the population we decompose the change of
this proportion into the people who become immune due to infection ṗinf(t), due to
vaccination ṗvac(t) and people who lose their immunity ṗwan(t). Therefore,

ṗ(t) = ṗinf(t) + ṗvac(t) + ṗwan(t). (2.14)

For the infection-induced immunity, we assume that every person is immune right
after infection at least temporarily. Hence, ṗinf(t) equals the number of new infec-
tions:

ṗinf(t) = ṅ(t).

For the vaccine-induced immunity, we assume that it is proportional to the vacci-
nation rate at an earlier time given by t − τ p as previously described in Section
2.4:

ṗvac(t) = ε(1− p(t))v̇(t− τ p). (2.15)

Note that in comparison to Section 2.4 we changed the factor which gives the proba-
bility of vaccinating a susceptible person. It is now given as the size of the susceptible
compartment. This corresponds to a random distribution of the vaccination. We
chose it this way due to the fact that the protection state of a person cannot be
known any longer. This is caused by the possibility of becoming susceptible again
and people receiving multiple vaccinations in order to "booster" their protection.
For the model of waning immunity, we first have to analyze data about the effect.

2.6.2 Data for waning immunity

In order to get a complete model we have to specify ṗwan(t). Therefore, we investigate
data about vaccine effectiveness over time for different vaccines and virus variants as
given in [4]. The data for protection caused by infection, e.g. in [14], was not really
usable for an analysis over time because of many single data points for combinations
of variants instead of time series. Hence, we assume that the effects leading to
(waning) immunity are in principle the same for infection and vaccination. This
leads to the assumption that ṗwan must not be split by the event which caused
protection. We performed a curve fit for the data in [4] with an exponential function
of the form

VE(t; v0, α) = v0e
−αt. (2.16)

As time for the data points we used the center of the given time intervals and
continued the difference between them to the last interval (≥ 25 weeks). This led to
the results displayed in Figure 2.1, where MSE stands for the mean squared error
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Figure 2.1: Exponential fits of vaccine effectiveness for different vaccines and variants

between the data points and the computed values with optimal parameters. One
can see that the fitted curve is not in good accordance with the data points exactly
for those combinations of vaccines and variants where the data is sparse and thus
we observe a large confidence interval. The measurements for the Biontech vaccine,
which has by far the smallest confidence intervals in the data set and is the most
used vaccine in Germany (see e.g. [46]), can be fitted very well to the exponential
decay. Thus, we conclude that Equation (2.16) can be a good approximation of the
vaccine effectiveness over time.
The parameter v0 in the ansatz is the vaccine effectiveness at time t = 0 by definition.
Hence, v0 is incorporated into the model via the factor ε in Equation (2.15).

2.6.3 Model for waning immunity

We now assume that immunity wanes over time independent of its type (infection-
or vaccine-based) exponentially with the same parameter α. This type of decay is
in accordance with our results in subsection 2.6.2. We choose the same parameter
for infection- and vaccination-induced immunity because of lack of according data
and to keep low the number of parameters in the model. In terms of differential
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equations, an exponential decay can be modeled by

ṗwan(t) = −αp(t).

Inserting this into Equation (2.14), we obtain the whole system together with Equa-
tions (2.13), (2.10) and (2.12) modeling vaccination, testing and isolation and waning
immunity

ṅ(t) = (1− p(t))κ(t)i(t), (2.17)
ṗ(t) = ṅ(t) + ε(1− p(t))v̇(t− τ p)− αp(t), (2.18)

ḋ(t) = λ(t) ṅ(t− τ d), (2.19)
i(t) = n(t− τ s)− n(t− τ e)− d(t) + d(t+ τ d − τ e). (2.20)

2.7 Extension to two virus variants
In later stages, the COVID-19 pandemic was highly driven by new virus variants with
increased transmissibility and immune escape [53]. Especially during the transition
phases, it was hard to predict the new infections based on our model described by
Equations (2.17)-(2.20). For this reason, it is our goal to develop a model which
differentiates between the infections of different variants. This can help to simulate
the transition phase between or the co-existence of two predominant virus variants.
One cannot just compute the infections of the different variants according to our
one-variant model separately, mainly because infection with one variant induces
partial immunity against infection with another variant [13] [36]. Additionally, the
contact behavior of the persons stays the same such that the critical contact rates
κ(t) for the different variants are not independent of each other. However, different
transmissibility means that they can be different for the variants but only by a
time-independent factor.

2.7.1 Adaptations

The second point is easy to remedy. We just split the critical contact rate into a
product of some contact rate κ(t), which is the same for each variant, and a variant-
inherent transmissibility factor ωi. The first point, however, will lead to major
changes in our model, especially the immune compartment will be subdivided. We
will develop a model for two virus variants here, it can be generalized to more
variants as described in Section 2.8. The focus on two variants in this subsection
will hopefully help for a better understanding of the approach. In the following, the
first variant will be referred to by index 0, the second one by index 1.
There are two main approaches for protected compartments, namely one where
people in the compartment are fully protected but not all individuals move into the
compartment after a protective event, e.g. vaccination. The other approach lets all
individuals move into the compartment after a protective event, but they are only
partially protected [11] [54]. As for vaccination in Section 2.4 we will follow the first
approach here.



12 2.7. Extension to two virus variants

Modeling two virus variants, there are four different possible protection states. One
could be protected against variant 0 or 1, against both or against neither. Thus,
individuals will be split into four protection compartments corresponding to these
four protection states. We will denote the protection compartments at time t by pj(t)
with the index j indicating the variant(s) members of the compartment are protected
against. As previously, the susceptibles (no protection against either variant) at time
t will be denoted by s(t), being the complement of p0(t), p1(t) and p0,1(t). We will
also count the new infections and related quantities like infectious individuals and
detected cases separately for each variant, indicated by the index 0 or 1. Their
respective parameters for the start and end of the infectious period as well as the
detection time, will be variant-dependent. This results in the representation

ii(t) = ni(t− τ si )− ni(t− τ ei )−
[
di(t)− di(t+ τ di − τ ei )

]
,

ḋi(t) = λi(t)ṅi(t− τ di ).

With the variant-inherent transmissibility factor ωi, the new infections with variant
i are given by

ṅi(t) = κ(t)ωisi(t)ii(t), (2.21)

where si(t) = s(t) + p1−i(t) are the susceptibles against variant i and ii(t) the
infectious with variant i.
However, the key of the newly developed model will now be the transitions between
the protection compartments.

2.7.2 Transitions between the protection compartments

Waning immunity

As described in Section 2.6, we will assume that immunity wanes over time. Still
assuming an exponential decay, we have

ṗj,wan(t) = −αjpj(t).

In particular, this means that waning immunity in protection group p0,1 leads to
the loss of immunity against both variants. This simplification is justified by the
fact that, even for Omicron, immunity typically lasts considerably longer than the
length of the transition phases we want to apply our model to. We also mention this
in Section 5.3.3 when we model the transition between Delta and Omicron variants
where immunity would actually wane faster for one variant than the other. In our
numerical simulations, we even chose the same waning rate for all protection groups
due to lack of differentiating measurements.

Infection-based transitions

We previously assumed that an infection leads to (temporal) immunity against the
virus. This will only be valid for the respective variant in the two variant model. As
mentioned before, infections with one variant lead only to partial immunity against
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the other. Because we model compartments which are fully protected against the
indicated variants, only a part of the newly infected individuals will move into the
compartment with protection against both variants. The others will move into the
compartment with protection against their respective variant only. Hence, we intro-
duce the probability of obtaining cross-immunity πi after infection with variant i.
Using Equation (2.21) and the definition of πi we can model the transitions caused
by infections as follows

ṗi,inf(t) = (1− πi)
[
κ(t)ωis(t)ii(t)

]
− κ(t)ω1−ipi(t)i1−i(t),

ṗ0,1,inf(t) = π0
[
κ(t)ω0s(t)i0(t)

]
+ κ(t)ω0p1(t)i0(t)

+ π1
[
κ(t)ω1s(t)i1(t)

]
+ κ(t)ω1p0(t)i1(t).

Figure 2.2 shows a flowchart representing the possible transitions caused by infec-
tions and their respective rates.

p0,1(t)

p0(t) p1(t)

s(t)

infections with variant 0
infections with variant 1

1− π0 1− π1

π0 π1

1 1

Figure 2.2: Infection-caused transitions between the protection groups with their
respective rates

Vaccination-based transitions

Also, vaccinations have an impact on the protection compartments. The vaccine
effectiveness depends on the variant [4] [5] [29]. Therefore, we introduce the proba-
bility of changing from protection group j to protection group k, εj,k. An ansatz to
construct this transition probabilities from the available data of vaccine effectiveness
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against a certain variant will be presented in Section 2.8.2. The transitions between
the compartments caused by vaccinations can then be written as

ṗi,vac(t) = εs,is(t)v̇(t− τ p)− εi,01pi(t)v̇(t− τ p),

ṗ0,1,vac(t) = εs,01s(t)v̇(t− τ p) + ε0,01p0(t)v̇(t− τ p) + ε1,01p1(t)v̇(t− τ p),

assuming random vaccinations among the protection groups again. The time delay
of vaccinations is caused by immune response to the vaccine and hence not variant-
or protection compartment-specific. Figure 2.3 shows a flowchart representing these
transitions with their respective transition rate.

p0,1(t)

p0(t) p1(t)

s(t)

εs,0 εs,1

εs,01

ε0,01 ε1,01

Figure 2.3: Vaccination-caused transitions between the protection groups with their
respective rates

2.7.3 Complete two-variant model

If we write down all of the above equations and sum up the changes in the protection
groups, we obtain the following system

ṅi(t) = κ(t)
[
ωis0(t)i0(t)

]
,

ṗi(t) = −αipi(t)
+ (1− πi)

[
κ(t)ωis(t)ii(t)

]
− κ(t)ω1−ipi(t)i1−i(t)

+ εs,is(t)v̇(t− τ p)− εi,01pi(t)v̇(t− τ p),

ṗ0,1(t) = −α0,1p0,1(t)

+ π0
[
κ(t)ω0s(t)i0(t)

]
+ κ(t)ω0p1(t)i0(t)

+ π1
[
κ(t)ω1s(t)i1(t)

]
+ κ(t)ω1p0(t)i1(t)

+ εs,01s(t)v̇(t− τ p) + ε0,01p0(t)v̇(t− τ p) + ε1,01p1(t)v̇(t− τ p),
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ii(t) = ni(t− τ si )− ni(t− τ ei )−
[
di(t)− di(t+ τ di − τ ei )

]
,

ḋi(t) = λi(t)ṅi(t− τ di ),

s(t) = 1− p0(t)− p1(t)− p0,1(t),

si(t) = s(t) + p1−i(t),

with i ∈ {0, 1}. Table 2.1 summarizes the interpretation of the variables and pa-
rameters used in the model. Their range with an epidemiologically meaningful
interpretation is also given there.

Symbol Interpretation Range
ni(t) total infections with variant i until time t [0,∞)
κ(t) critical contact rate at time t [0,∞)
ωi transmissibility of variant i (0,∞)
si(t) susceptibles to variant i at time t [0, 1]
ii(t) people infectious with variant i at time t [0, 1]
s(t) people susceptible to both variants at time t [0, 1]
pi(t) people protected against variant i at time t [0, 1]
p0,1(t) people protected against both variants at time t [0, 1]
αi waning rate of protection against variant i [0,∞)
α0,1 waning rate of protection against both variants [0,∞)
πi probability of cross-immunity after infection with variant i [0, 1]
εj,k transition rate from protection group j to k by vaccination [0, 1]
v(t) total vaccinations until time t [0,∞)
τ p time after vaccination when protection starts [0,∞)
τ si start time of infectious period after infection with variant i (0, τ di ]
τ ei end time of infectious period after infection with variant i [τ di ,∞)
τ di detection time after infection with variant i [τ si , τ

e
i ]

di(t) total number of detected infections with variant i at time t [0, ni(t− τ di )]
λi(t) detection rate of variant i at time t [0, 1]

Table 2.1: Model variables, their interpretation and meaningful range

We set ω0 = 1 to avoid ambiguity of κ(t), ω0 and ω1. In our numerical experiments,
we furthermore assume that κ(t) is a piecewise constant function whose constant
intervals have the length of one week and the detection rates λj(t) are piecewise con-
stant with two detection rates per week, corresponding to weekdays and weekends.

2.8 Extension to more virus variants

2.8.1 The model

Now we want to extend the model to an arbitrary number of variants. Therefore,
we introduce the set of all variants V and its power set P(V). To model all possible
combinations of protection states, we introduce a protection group pj(t) for each
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j ∈ P(V). In this notation, people in group pj(t) are protected against all vari-
ants contained in j. Infections and other quantities counted for variants instead of
combinations of them can easily be extended to more than two variants:

ṅi(t) = κ(t)ωisi(t)ii(t), i ∈ V,

ii(t) = ni(t− τ si )− ni(t− τ ei )−
[
di(t)− di(t+ τ di − τ ei )

]
, i ∈ V,

ḋi(t) = λi(t)ṅi(t− τ di ), i ∈ V,

si(t) =
∑

j∈P(V)
i/∈j

pj(t), i ∈ V.

The adaptation of the transitions between the protection groups needs a bit more
explanation. As before, we model waning immunity by an exponential decay from
a protection group to the fully susceptible state:

ṗj,wan(t) = −αjpj(t), j ∈ P(V) \ {∅}.

For the transitions caused by infection or vaccination we note that people can only
change from a protection group pj(t) to another one pk(t) if j ⊂ k because infection
or vaccination does not lead to the loss of protection against a variant. Furthermore,
if infection with variant i leads to a change of the protection state, then at least
protection against i is obtained. Introducing, πi,j,k as the transition rate from pj(t)
to pk(t) due to infection with variant i, we can write the transitions due to infection
as

ṗj,inf(t) =−
∑
i∈V\j

κ(t)ωipj(t)ii(t)

+
∑

k∈P(V)
k⊂j

∑
i∈j\k

πi,k,jκ(t)ωipk(t)ii(t), j ∈ P(V) \ {∅}.

The first sum describes all infections in pj(t) with a variant this compartment is not
protected against. They lead to a transition into a higher protection group2. The
second term sums over all infections of lower protection groups pk(t) and variants
i they are susceptible against. These infections lead to a transition into pj(t) with
probability πi,k,j. For consistency with the assumption that all people who get
infected with a certain variant leave their protection group to a higher one, we have
to require that for all j ∈ P(V) \ {V}, i ∈ V \ j

1
!
=

∑
k∈P(V)
j∪{i}⊆k

πi,j,k. (2.22)

Analogously, we introduce εj,k as the probability of transition from pj(t) to pk(t) by
vaccination. Also for vaccination, transition from pj(t) to pk(t) is only possible if

2We call a protection group k a higher protection group than j if j ⊂ k
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j ⊂ k. Hence, we have for the transitions due to vaccination the analogue description

ṗj,vac(t) =−
∑

k∈P(V)
j⊂k

εj,kpj(t)v̇(t− τ p)

+
∑

k∈P(V)
k⊂j

εk,jpk(t)v̇(t− τ p), j ∈ P(V) \ {∅}.

Here, we have to require that for all j ∈ P(V)

1
!

≥
∑

k∈P(V)
j⊂k

εj,k, (2.23)

such that there are no more transitions than vaccinations. The sum could be smaller
than 1 due to vaccination failure.
Altogether, we obtain the complete system for an arbitrary number of variants

ṅi(t) = κ(t)ωisi(t)ii(t), i ∈ V, (2.24)
ṗj(t) = −αjpj(t) (2.25)

−
∑
i∈V\j

κ(t)ωipj(t)ii(t) +
∑

k∈P(V)
k⊂j

∑
i∈j\k

πi,k,jκ(t)ωipk(t)ii(t)

−
∑

k∈P(V)
j⊂k

εj,kpj(t)v̇(t− τ p) +
∑

k∈P(V)
k⊂j

εk,jpk(t)v̇(t− τ p), j ∈ P(V) \ {∅},

ii(t) = ni(t− τ si )− ni(t− τ ei )−
[
di(t)− di(t+ τ di − τ ei )

]
, i ∈ V, (2.26)

ḋi(t) = λi(t)ṅi(t− τ di ), i ∈ V, (2.27)

s(t) = 1−
∑

j∈P(V)\{∅}

pj(t), (2.28)

si(t) =
∑

j∈P(V)
i/∈j

pj(t), i ∈ V. (2.29)

The new variables and parameters compared to Table 2.1 can be found in Table 2.2

Symbol Interpretation Range
pj(t) people protected against all variants i ∈ j at time t [0, 1]
αj waning rate of protection group pj [0,∞)
πi,j,k transition rate from pj to pk after infection with variant i [0, 1]

Table 2.2: Model variables, their interpretation and meaningful range
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2.8.2 Construction of the transition rates

Because data is not available in this form for πi,j,k and εj,k, we introduce πi,l as the
probability of obtaining immunity against variant l by infection with variant i (i ̸= l,
i, l ∈ V) and εi of obtaining immunity against variant i by vaccination. For these
variables, data is available (see e.g. [4] [5] [13] [29]), and we use a product ansatz to
construct the variables for our model. For j ∈ P(V) \ {V}, k ∈ P(V), i ∈ V, i /∈ j,
j ∪ {i} ⊆ k (this corresponds to a possible transition) we assume

πi,j,k =
∏

l∈k\(j∪{i})

πi,l ·
∏
l∈V\k

(1− πi,l). (2.30)

This is the product of the probabilities of obtaining immunity against the variants
contained in k, but not in j ∪ {i} multiplied by the product of probabilities of
not obtaining immunity against the variants which are not in k. Analogously, for
j ∈ P(V) \ {V}, k ∈ P(V), j ⊂ k we assume

εj,k =
∏
i∈k\j

εi ·
∏
i∈V\k

(1− εi), (2.31)

with the same interpretation but for vaccine effectivenesses. This also reduces the
number of independent parameters from

n∑
i=1

∑
j∈P(V)
i/∈j

∑
k∈P(V)
j∪{i}⊆k

1 =
n∑
i=1

∑
j∈P(V)
i/∈j

2n−1−|j| =
n∑
i=1

n−1∑
|j|=0

(
n− 1

|j|

)
2n−1−|j| = n3n−1

to n2 − n for the infection-based immunity and from∑
j∈P(V)

∑
k∈P(V)
j⊂k

1 =
∑

j∈P(V)

(2n−|j| − 1) =
n∑

|j|=0

(
n

|j|

)
(2n−|j| − 1) = 3n − 2n

to n for vaccination-based immunity, where n is the number of variants in the model.
Overall, the number of independent parameters can be reduced from exponential to
quadratic size in n which would be especially beneficial if one wants to model a large
number of variants.
We will now show that our product ansatz satisfies (2.22).

Theorem 1. Let j ∈ P(V) \ {V}, i ∈ V \ j. Choosing πi,j,k according to (2.30) for
all k ∈ P(V), j ∪ {i} ⊆ k, we have

1 =
∑

k∈P(V)
j∪{i}⊆k

πi,j,k.

Proof. We will prove the statement by induction over q := |V| − (|j| + 1) for
0 ≤ q ≤ |V| − 1. The variable q equals the number of variants that are in
V \ (j ∪ {i}), i.e. that appear in one of the products of the ansatz.
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Base case. q = 0 implies that j ∪ {i} = V. Therefore,∑
k∈P(V)
j∪{i}⊆k

πi,j,k = πi,j,V =
∏
l∈V\V

πi,l ·
∏
l∈V\V

(1− πi,l) = 1

as both products are empty.
Induction step. Let the statement be true for q− 1 and m ∈ V \ (j ∪{i}). A variant
m exists because q > 0. Using (2.30), we have that∑

k∈P(V)
j∪{i}⊆k

πi,j,k =
∑

k∈P(V)
j∪{i}⊆k

( ∏
l∈k\(j∪{i})

πi,l ·
∏
l∈V\k

(1− πi,l)

)

= πi,m ·
( ∑

k∈P(V)
j∪{i}∪{m}⊆k

∏
l∈k\(j∪{i}∪{m})

πi,l ·
∏
l∈V\k

(1− πi,l)

)

+ (1− πi,m) ·
( ∑
k∈P(V\{m})
j∪{i}⊆k

∏
l∈k\(j∪{i})

πi,l ·
∏

l∈V\(k∪{m})

(1− πi,l)

)

= πi,m ·
∑

k∈P(V)
j∪{i}∪{m}⊆k

πi,j∪{m},k

︸ ︷︷ ︸
q′=|V|−(|j|+2)=q−1

+(1− πi,m) ·
∑

k∈P(V\{m})
j∪{i}⊆k

πi,j,k

︸ ︷︷ ︸
q′=(|V|−1)−(|j|+1)=q−1

I.H.
= πi,m + (1− πi,m)

= 1.

Similarly, one can prove that (2.23) is fulfilled by the product ansatz.

Theorem 2. Let j ∈ P(V) \ {V}. Choosing εj,k according to (2.31), we have

1 ≥
∑

k∈P(V)
j⊂k

εj,k.

Proof. In order to show the statement of the theorem we will show that

1 =
∑

k∈P(V)
j⊂k

εj,k +
∏
i∈V\j

(1− εi) (2.32)

We will prove this statement by induction over q := |V| − |j| for 1 ≤ q ≤ |V|. Here,
q equals the number of variants that are in V \ j, i.e. that appear in one of the
products in the ansatz.
Base case. q = 1 implies that j ∪ {i} = V for some i ∈ V. Therefore, we have∑

k∈P(V)
j⊂k

εj,k +
∏
i∈V\j

(1− εi) = εj,V + (1− εi) = εi + (1− εi) = 1.
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Induction step. Let (2.32) be true for q − 1 and m ∈ V \ j. Using (2.31), we have∑
k∈P(V)
j⊂k

εj,k +
∏
i∈V\j

(1− εi) =
∑

k∈P(V)
j⊂k

( ∏
i∈k\j

εi ·
∏
i∈V\k

(1− εi)

)
+
∏
i∈V\j

(1− εi)

= εm ·
[ ∑

k∈P(V)
j∪{m}⊂k

( ∏
i∈k\(j∪{m})

εi ·
∏
i∈V\k

(1− εi)

)
+

∏
i∈V\(j∪{m})

(1− εi)

]

+ (1− εm) ·
[ ∑
k∈P(V\{m})

j⊂k

( ∏
i∈k\j

εi ·
∏

i∈V\(k∪{m})

(1− εi)

)

+
∏

i∈V\(j∪{m})

(1− εi)

]

= εm ·
[ ∑

k∈P(V)
j∪{m}⊂k

εj∪{m},k +
∏

i∈V\(j∪{m})

(1− εi)

]
︸ ︷︷ ︸

q′=|V|−(|j|+1)=q−1

+ (1− εm) ·
[ ∑
k∈P(V\{m})

j⊂k

εj,k +
∏

i∈V\(j∪{m})

(1− εi)

]
︸ ︷︷ ︸

q′=(|V |−1)−|j|=q−1

I.H.
= εm + (1− εm)

= 1.

By showing (2.32) we have that∑
k∈P(V)
j⊂k

εj,k = 1−
∏
i∈V\j

(1− εi).

As εi represent probabilities, it holds εi ∈ [0, 1]. Therefore,
∏

i∈V\j(1 − εi) ∈ [0, 1]
and hence the statement of the theorem is shown.

Remark. The term
∏

i∈V\j(1−εi) in Theorem 2 can be interpreted as the probability
of a complete vaccination failure, meaning that the vaccination does not lead to a
better protection.
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Analysis of the model

In this chapter, we will analyze the model given by Equations (2.24)-(2.28).

3.1 Assumptions

First, we will state general assumptions for the time-dependent functions in our
model for the whole chapter.
For the critical contact rate κ(t) and the detection rate λi(t) we choose a piecewise
constant function in our numerical simulations. In this chapter, however, we will
first assume that κ(t) is continuous, bounded and always positive (which especially
includes positive constant functions) and λi(t) = λi is a constant. In Section 3.7, we
will treat the case of piecewise constant functions. For the function modeling the
total number of vaccinations v(t), we assume a continuously differentiable function
with bounded and nonnegative v̇(t).

3.2 Elimination of the algebraic equations

With constant λi, Equation (2.26) can be simplified as

di(t)− di(t+ τ di − τ ei ) =

∫ t

t+τdi −τei
ḋi(t̃) dt̃

= λi

∫ t

t+τdi −τei
ṅi(t̃− τ di )dt̃

= λi
[
ni(t− τ di )− ni(t− τ ei )

]
⇒ ii(t) = ni(t− τ si )− ni(t− τ ei )−

[
di(t)− di(t+ τ di − τ ei )

]
= ni(t− τ si )− ni(t− τ ei )− λi

[
ni(t− τ di )− ni(t− τ ei )

]
.

(3.1)

21
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Additionally, we want to plug in the algebraic equations into the differential ones.
Using Equations (2.28) and (2.29) we find for each i ∈ V

si(t) =
∑

j∈P(V)
i/∈j

pj(t)

= s(t) +
∑

j∈P(V)\{∅}
i/∈j

pj(t)

= 1−
∑

j∈P(V)\{∅}

pj(t) +
∑

j∈P(V)\{∅}
i/∈j

pj(t)

= 1−
∑

j∈P(V)\{∅}
i∈j

pj(t)

= 1−
∑

j∈P(V)
i∈j

pj(t). (3.2)

Plugging Equations (3.1) and (3.2) into (2.24) and (2.25), we obtain the differential
equations

ṅi(t) = κ(t)ωi

(
1−

∑
j∈P(V)
i∈j

pj(t)

)
(3.3)

·
(
ni(t− τ si )− ni(t− τ ei )− λi

[
ni(t− τ di )− ni(t− τ ei )

])
, i ∈ V,

ṗj(t) = −αjpj(t) (3.4)

−
∑
i∈V\j

κ(t)ωipj(t)

(
ni(t− τ si )− ni(t− τ ei )− λi

[
ni(t− τ di )− ni(t− τ ei )

])

+
∑

k∈P(V)\{∅}
k⊂j

∑
i∈j\k

πi,k,jκ(t)ωipk(t)

(
ni(t− τ si )− ni(t− τ ei )− λi

[
ni(t− τ di )− ni(t− τ ei )

])

+
∑
i∈j

πi,∅,jκ(t)ωi

(
1−

∑
k∈P(V)\{∅}

pk(t)

)

·
(
ni(t− τ si )− ni(t− τ ei )− λi

[
ni(t− τ di )− ni(t− τ ei )

])
−
∑

k∈P(V)
j⊂k

εj,kpj(t)v̇(t− τ p) +
∑

k∈P(V)\{∅}
k⊂j

εk,jpk(t)v̇(t− τ p)

+ ε∅,j

(
1−

∑
k∈P(V)\{∅}

pk(t)

)
v̇(t− τ p), j ∈ P(V) \ {∅}.

This is the minimal representation of the system with all algebraic equations elimi-
nated. However, it definitely lacks readability. Hence, we will still use the equivalent
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system with the algebraic equations if it helps for the analysis.

3.3 Classification and notation
Classification

System (3.3)-(3.4) is a system of first order, nonlinear, nonautonomous delay differ-
ential equations with constant and hence bounded delay.

Notation

The theorems used in the following sections are mainly from [16]. Therefore, we will
introduce notation now that will allow us to apply the theorems to our system.
Definition 1 ([16, Ch. 25]). Let t ∈ R, r > 0 and χ be a function defined at least
on [t− r, t] → Rn. We define a new function χt : [−r, 0] → Rn by

χt(σ) = χ(t+ σ), −r ≤ σ ≤ 0.

Remark ([16, Ch. 25]). χt is obtained by restricting χ to [t−r, t] and then translating
it to [−r, 0].
Remark. The constant r is chosen to be the upper bound on the delay when analyzing
delay differential equations.
Notation 1 ([16, Ch. 25]). For A ⊂ Rn, we denote the set of all continuous
functions from [−r, 0] to A, C([−r, 0], A), by CA.
For our model we will define the state vector

x(t) =

((
ni(t)

)
i∈V(

pj(t)
)
j∈P(V)\{∅}

)
. (3.5)

The state vector has dimension m := |V| + (2|V| − 1). We have seen in Section 3.2
that these variables suffice to describe the state of the system.
As the domain of interest, we define

D := (−ε,∞)|V| × (−ε, 1 + ε)2
|V|−1 (3.6)

for some ε > 0. The correction by ε is done to obtain an open set D.
For the right-hand side of our differential equation system, we define F : [0,∞)× CD → Rm

by

F(t, ψ) =



(
κ(t)ωi

(
1−

∑
j∈P(V)
i∈j

ψj(0)
)
·
(
ψi(−τ si )− ψi(−τ ei )− λi[ψi(−τ di )− ψi(−τ ei )]

))
i∈V

−αjψj(0)−
∑

i∈V\j κ(t)ωiψj(0)
(
ψi(−τsi )−ψi(−τei )−λi[ψi(−τdi )−ψi(−τei )]

)
+

∑
k∈P(V)\{∅}

k⊂j

∑
i∈j\k πi,k,jκ(t)ωiψk(0)

(
ψi(−τsi )−ψi(−τei )−λi[ψi(−τdi )−ψi(−τei )]

)
+

∑
i∈j πi,∅,jκ(t)ωi

(
1−

∑
k∈P(V)\{∅} ψk(0)

)(
ψi(−τsi )−ψi(−τei )−λi[ψi(−τdi )−ψi(−τei )]

)
−

∑
k∈P(V)
j⊂k

εj,kψj(0)v̇(t−τp)+
∑
k∈P(V)\{∅}

k⊂j
εk,jψk(0)v̇(t−τp)

+ε∅,j

(
1−

∑
k∈P(V)\{∅} ψk(0)

)
v̇(t−τp)


j∈P(V)\{∅}


(3.7)
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Here, ψi(t) with i ∈ V represents the i-th component of ψ(t) (this component
represents ni(t) in our state vector) and ψj(t) with j ∈ P(V) \ {∅} represents the
component of ψ(t) which corresponds to the component of pj(t) in our state vector.
With this definition together with Definition 1, our system can be represented by

ẋ(t) = F(t, xt).

Initial conditions

Additional to the differential equations, we must specify some initial conditions. In
contrast to ordinary differential equations, delay differential equations do not only
need an initial value, but an initial history. This is because not only the present
value has to be evaluated, but also past ones. In particular, one would need to
specify the history of a component back to the maximal delay which appears for
this component. In our system, the protection groups pj(t) just need an initial
value, while the infections ni(t) need to be specified back to t0 − τ ei . Wlog we set
t0 = 0 because we can shift the time-dependent input functions κ(t) and v̇(t − τ p)
by t0.
In agreement with the usual definition of initial conditions in [16] and other literature
regarding DDEs, we will, however, specify the initial history on the same time
interval for all components. Therefore, we define

τ emax := max
i∈V

τ ei .

This is the upper bound for all delays because for each i ∈ V we have

τ emax ≥ τ ei ≥ τ di ≥ τ si > 0.

We will therefore require

x(t) = θ(t), −τ emax ≤ t ≤ 0,

for some initial history θ : [−τ emax, 0] → D. Comparing with the previous notation,
we also set r := τ emax for our model.
Note that, although we specify longer initial histories than needed for some compo-
nents, this will not influence the solution for t ≥ 0 because these values of the initial
history will never be evaluated in the differential equations.

3.4 Uniqueness and local existence of a solution
In this section, we want to examine the uniqueness and local existence of a solution
to our system given an initial history. First, we have to define what a solution to a
delay differential system is.

Definition 2 ([16, Ch. 23]). A solution of

ẋ(t) = F(t, xt), t0 ≤ t ≤ β, (3.8)
x(t) = θ(t), t0 − r ≤ t ≤ t0, (3.9)
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is a continuous function x : [t0 − r, β1) → D, for some β1 ∈ (t0, β], such that

x(t) = θ(t), t0 − r ≤ t ≤ t0,

ẋ(t) = F(t, xt), t0 ≤ t < β1.

The solution is said to be unique if every two solutions agree with each other as far
as both are defined.

Remark. In our case, F(t, xt) is (assumed to be) defined for each t ≥ 0. Therefore,
we set β := ∞. With t0 = 0 and r = τ emax, we are searching for a solution to the
system

ẋ(t) = F(t, xt), 0 ≤ t <∞, (3.10)
x(t) = θ(t), −τ emax ≤ t ≤ 0, (3.11)

with F given by Equation (3.7).
The theorems in [16] also require a certain continuity condition which is given here.

Definition 3 ([16, Ch. 25]). Continuity Condition (C) is satisfied if F(t, χt) is
continuous with respect to t in [t0, β) for each given continuous function χ : [t0 −
r, β) → D.

We can show that this condition holds for our problem.

Lemma 1. Continuity Condition (C) is satisfied by our choice of F (see Equation
(3.7)).

Proof. Under the assumptions that κ(t), v̇(t−τ p) and χ are continuous in t, F(t, χt)
is a composition of continuous functions in t and hence also continuous in t. This is
Continuity Condition (C).

We furthermore need the notion of (local) Lipschitz continuity for functionals like
F.

Definition 4 ([16, Ch. 25]). Let J ⊆ R, F : J× CD → Rn and let C be a subset of
J× CD. If for some K ≥ 0,

∥F(t, ψ)− F(t, ψ̃)∥ ≤ K∥ψ − ψ̃∥r

whenever (t, ψ) and (t, ψ̃) ∈ C, we say F satisfies a Lipschitz condition (or F is
Lipschitzian) on C with Lipschitz constant K.

Remark. More precisely, the Lipschitz condition in [16] is a Lipschitz condition in
the function space, not in time.
Here, we used the definition that

∥ψ∥r = sup
−r≤σ≤0

∥ψ(σ)∥,

which defines a norm on CRn [16].
In order to prove that our system fulfills a local Lipschitz condition, we will use the
following lemma about sums and products of Lipschitz functionals.
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Lemma 2. Let J ⊆ R, F, G : J×CD → Rn, C be a subset of J×CD and F, G satisfy
a Lipschitz condition on C. Then, F + G also satisfies a Lipschitz condition on C.
If furthermore n = 1 and F, G are bounded on C, then F · G satisfies a Lipschitz
condition on C as well.

Proof. Let F, G : J × CD → Rn satisfy a Lipschitz condition on C ⊆ J × CD with
Lipschitz constant K, L, respectively. Now, let (t, ψ), (t, ψ̃) ∈ C. Then,

∥(F + G)(t, ψ)− (F + G)(t, ψ̃)∥ = ∥F(t, ψ) + G(t, ψ)− F(t, ψ̃)−G(t, ψ̃)∥
≤ ∥F(t, ψ)− F(t, ψ̃)∥+ ∥G(t, ψ)−G(t, ψ̃)∥
≤ K∥ψ − ψ̃∥r + L∥ψ − ψ̃∥r
= (K + L)∥ψ − ψ̃∥r.

Therefore, F+G satisfies a Lipschitz condition on C with Lipschitz constant K+L.
Now, assume that F, G are bounded on C with upper bounds M, N, respectively.
Let (t, ψ), (t, ψ̃) ∈ C. Then,

∥(F ·G)(t, ψ)− (F ·G)(t, ψ̃)∥
=∥F(t, ψ) ·G(t, ψ)− F(t, ψ̃) ·G(t, ψ̃)∥
=∥F(t, ψ) ·G(t, ψ)− F(t, ψ) ·G(t, ψ̃) + F(t, ψ) ·G(t, ψ̃)− F(t, ψ̃) ·G(t, ψ̃)∥
≤∥F(t, ψ)∥ · ∥G(t, ψ)−G(t, ψ̃)∥+ ∥G(t, ψ̃)∥ · ∥F(t, ψ)− F(t, ψ̃)∥
≤MK∥ψ − ψ̃∥r +NL∥ψ − ψ̃∥r
=(MK+NL)∥ψ − ψ̃∥r.

Therefore, F·G satisfies a Lipschitz condition on C with Lipschitz constant MK+NL.

Definition 5 ([16, Ch. 25]). The functional F : J × CD → Rn is said to be locally
Lipschitzian if for each given (t, ψ) ∈ J × CD there exist numbers a > 0 and b > 0
such that

C = ([t̄− a, t̄+ a] ∩ J)× {ψ ∈ CRn : ∥ψ − ψ∥r ≤ b}

is a subset of J× CD and F is Lipschitzian on C.

We will now show that our F satisfies a local Lipschitz condition.

Lemma 3. F defined by (3.7) satisfies a local Lipschitz condition on [0,∞)× CD.

Proof. Let (t, ψ) ∈ R≥0 × CD. Because [−τ emax, 0] is compact and D is open we can
find b such that {ψ ∈ CRn : ∥ψ − ψ∥τemax

≤ b} ⊆ CD. Choose a > 0 arbitrary and let
C be defined as in Definition 5 with J = R≥0.
Now let (t, ψ), (t, ψ̃) ∈ C. Especially, we have ∥ψ − ψ∥τemax

≤ b which implies that
∥ψ(τ)∥ ≤ ∥ψ(τ)∥ + b ≤ ∥ψ∥τemax

+ b =: M for each τ ∈ [−τ emax, 0]. This also holds
for ψ̃.
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For i ∈ V, we have

F(t, ψ)i = κ(t)ωi
(
1−

∑
j∈P(V)
i∈j

ψj(0)
)
·
(
ψi(−τ si )− ψi(−τ ei )− λi[ψi(−τ di )− ψi(−τ ei )]

)
.

Clearly, f(t, ψ) = ψq(τ) is Lipschitzian with constant 1 for arbitrary τ ∈ [−τ emax, 0]
and q ∈ V ∪ P(V) \ {∅}. κ(t) is bounded by our assumptions stated in Sec-
tion 3.1. On C, ψj is bounded by M and hence also

(
1 −

∑
j∈P(V)
i∈j

ψj(0)
)

and(
ψi(−τ si )− ψi(−τ ei )− λi[ψi(−τ di )− ψi(−τ ei )]

)
are bounded on C. Therefore, F(t, ψ)i

is a sum and product of bounded Lipschitz functionals on C and we can apply
Lemma 2 to show that F(t, ψ)i is also Lipschitzian on C.
For j ∈ P(V) \ {∅}, we have

F(t, ψ)j =− αjψj(0)−
∑
i∈V\j

κ(t)ωiψj(0)
(
ψi(−τ si )− ψi(−τ ei )− λi[ψi(−τ di )− ψi(−τ ei )]

)
+

∑
k∈P(V)\{∅}

k⊂j

∑
i∈j\k

πi,k,jκ(t)ωiψk(0)
(
ψi(−τ si )− ψi(−τ ei )− λi[ψi(−τ di )− ψi(−τ ei )]

)
+
∑
i∈j

πi,∅,jκ(t)ωi
(
1−

∑
k∈P(V)\{∅}

ψk(0)
)(
ψi(−τ si )− ψi(−τ ei )− λi[ψi(−τ di )− ψi(−τ ei )]

)
−
∑

k∈P(V)
j⊂k

εj,kψj(0)v̇(t− τ p) +
∑

k∈P(V)
k⊂j

εk,jψk(0)v̇(t− τ p)

+ ε∅,j
(
1−

∑
k∈P(V)\{∅}

ψk(0)
)
v̇(t− τ p).

We also assumed boundedness of v̇ in our general assumptions in Subsection 3.1. As
for the i components we can apply Lemma 2 to show that F(t, ψ)j is Lipschitzian
on C as a sum and product of Lipschitz functionals on C.
Finally, we can apply the Lipschitz continuity for the single components to get

∥F(t, ψ)− F(t, ψ̃)∥ ≤
∑
i∈V

|F(t, ψ)i − F(t, ψ̃)i|+
∑

j∈P(V)\{∅}

|F(t, ψ)j − F(t, ψ̃)j|

≤ K∥ψ − ψ̃∥τemax

for some K > 0. This shows that F is Lipschitzian on C and, as (t, ψ) ∈ R≥0 × CD
was arbitrary, that F is locally Lipschitzian.

With the continuity condition and the local Lipschitz condition shown, we would
now be able to apply theorems about uniqueness and local existence of a solution.
However, there is also a theorem for the extended existence of a solution which we
can apply to our system. After establishing some properties in Sections 3.5 and 3.6,
we will be able to use this theorem to show global existence of a solution to our
system. The following definitions are needed for the theorem.
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Definition 6 ([16, Ch. 26]). Let x on [t0 − r, β1) and γ on [t0 − r, β2) both be
solutions of Equations (3.8) and (3.9). If they agree with each other on [t0 − r, β1)
and β2 > β1, we say γ is a continuation of x, or x can be continued to [t0− r, β2). A
solution x of Equations (3.8) and (3.9) is noncontinuable if it has no continuation.

Definition 7 ([16, Ch. 26]). The functional F : [t0, β) × CD → Rn is said to be
quasi-bounded if F is bounded on every set of the form [t0, β1]×CA where t0 < β1 < β
and A is a closed bounded subset of D.

Lemma 4. F defined as in (3.7) is quasi-bounded.

Proof. Let β1 > 0 and A be a closed bounded subset of D which is defined by
Equation (3.6). For ψ ∈ CA, in particular ψi and ψj are bounded. Together with
the boundedness of κ and v̇ (see Section 3.1), we see that every component of F is
a composition of bounded functions and hence F is bounded on [t0, β1]× CA. As β1
and A were arbitrary, we conclude that F is quasi-bounded.

We can now state the extended existence theorem and apply it to our system.

Theorem 3 ([16, Thm. 26-C]). Let F : [t0, β) × CD → Rn satisfy Continuity
Condition (C), and let it be locally Lipschitzian and quasi-bounded. Then for each
θ ∈ CD, Equations (3.8) and (3.9) have a unique noncontinuable solution x on
[t0 − r, β1); and if β1 < β, then, for every closed bounded set A ⊂ D,

x(t) /∈ A for some t in (t0, β1).

This theorem can be applied to our system as we have proven all the conditions on
F before.

Theorem 4. For each θ ∈ CD, Equations (3.10) and (3.11) have a unique noncon-
tinuable solution x on [−τ emax, β1); and if β1 <∞, then, for every closed bounded set
A ⊂ D,

x(t) /∈ A for some t in (0, β1).

Proof. We have shown in Lemmas 1, 3 and 4 that F fulfills the assumptions of
Theorem 3 which we can apply to prove this theorem.

3.5 Invariance properties
In order to have a meaningful model, we must also establish some invariance prop-
erties of the solution which will be stated and proven in this section. They will also
be used to show global existence.

Definition 8. Let x(t) be the state vector defined in (3.5). We call xt ∈ CD feasible if
it fulfills ṅi(τ) ≥ 0 for all τ ∈ [t−τ ei , t−τ si ] and i ∈ V, pj(t) ≥ 0 for all j ∈ P(V)\{∅}
and

∑
j∈P(V)\{∅} pj(t) ≤ 1.

We call an initial history θ ∈ CD feasible if it is a feasible function with t = 0 and
additionally ṅi(τ) ≥ 0 for τ ∈ [−τ si , 0] and ni(−τ ei ) ≥ 0.
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Remark. We chose ṅi(τ) ≥ 0 only for τ ∈ [t − τ ei , t − τ si ] and not until t because
this condition already allows us to prove ii(t) ≥ 0, as it will be done in the proof of
Lemma 5.
Hence, feasibility means that the protection groups really form a partition of the
population and the number of infectious individuals is nonnegative.
We will now show three lemmas which will be used to show that provided a feasible
initial history, the solution to Equations (3.10) and (3.11) will be feasible for all
times it exists.

Lemma 5. Let i ∈ V, t ≥ 0 and xt be feasible.Then

ṅi(t) ≥ 0.

Proof. Assume that xt is feasible.Then, we have

ii(t) = ni(t− τ si )− ni(t− τ ei )− λi
[
ni(t− τ di )− ni(t− τ ei )

]
=

∫ t−τsi

t−τei
ṅi(τ)dτ − λi

∫ t−τdi

t−τei
ṅi(τ)dτ

≥ 0

because τ si ≤ τ di ≤ τ ei and λi ∈ [0, 1]. With this we can compute that

ṅi(t) = κ(t)ωi︸ ︷︷ ︸
>0

by general assumption

(
1−

∑
j∈P(V)
i∈j

pj(t)
)

︸ ︷︷ ︸
≥1−

∑
j∈P(V)\{∅} pj(t)≥0

by assumption

ii(t)︸︷︷︸
≥0

as shown previously

≥ 0.

Lemma 6. Let j ∈ P(V) \ {∅}, t ≥ 0 and xt be feasible. If pj(t) = 0, we have

ṗj(t) ≥ 0.

Proof. Let pj(t) = 0. Because of the assumption on ṅi(τ) we have, as in the proof
of Lemma 5, that ii(t) ≥ 0. Also, s(t) = p∅(t) = 1−

∑
j∈P(V)\{∅} pj(t) ≥ 0.

We can then compute that1

ṗj(t) = −αj pj(t)︸︷︷︸
=0

−
∑
i∈V\j

κ(t)ωi pj(t)︸︷︷︸
=0

ii(t) +
∑

k∈P(V)
k⊂j

∑
i∈j\k

πi,k,jκ(t)ωipk(t)ii(t)

−
∑

k∈P(V)
j⊂k

εj,k pj(t)︸︷︷︸
=0

v̇(t− τ p) +
∑

k∈P(V)
k⊂j

εk,jpk(t)v̇(t− τ p)

1We use the formulation with s(t) here.
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=
∑

k∈P(V)
k⊂j

∑
i∈j\k

πi,k,jκ(t)ωipk(t)ii(t) +
∑

k∈P(V)
k⊂j

εk,jpk(t)v̇(t− τ p)

≥ 0,

because all factors are nonnegative.

Lemma 7. Let t ≥ 0 and xt be feasible. If
∑

j∈P(V)\{∅} pj(t) = 1, we have∑
j∈P(V)\{∅}

ṗj(t) ≤ 0.

This is equivalent to the statement that if s(t) = 0, then

ṡ(t) ≥ 0.

Proof. The equivalency of the statements can be seen by the definition of s(t) = p∅(t)
= 1−

∑
j∈P(V)\{∅} pj(t). Hence, ṡ(t) = −

∑
j∈P(V)\{∅} ṗj(t). Therefore, the following

equivalences hold ∑
j∈P(V)\{∅}

pj(t) = 1 ⇔ s(t) = 0,

∑
j∈P(V)\{∅}

ṗj(t) ≤ 0 ⇔ ṡ(t) ≥ 0,

proving the equivalence of the statements.
Now assume xt is feasible and

∑
j∈P(V)\{∅} pj(t) = 1. Because we require (see Equa-

tion (2.22)) that
∑

k∈P(V)
j∪{i}⊆k

πi,j,k = 1 for all j ∈ P(V) \ {V}, i ∈ V \ j we have

that ∑
k∈P(V)
j∪{i}⊆k

πi,j,kκ(t)ωipj(t)ii(t) = κ(t)ωipj(t)ii(t). (3.12)

In order to compute
∑

j∈P(V)\{∅} ṗj(t) we will now compute two terms which appear
in the sum. Using Equation (3.12) (⋆), reordering the sums (#) and swapping indices
(∆) we can compute that2∑

j∈P(V)\{∅}

[
−
∑
i∈V\j

κ(t)ωipj(t)ii(t) +
∑

k∈P(V)
k⊂j

∑
i∈j\k

πi,k,jκ(t)ωipk(t)ii(t)
]

(#)
=
∑
i∈V

[
−

∑
j∈P(V)\{∅}

i/∈j

κ(t)ωipj(t)ii(t) +
∑

j∈P(V)\{∅}
i∈j

∑
k∈P(V)
i/∈k
k⊂j

πi,k,jκ(t)ωipk(t)ii(t)
]

(∆)
=
∑
i∈V

[
−

∑
j∈P(V)\{∅}

i/∈j

κ(t)ωipj(t)ii(t) +
∑

k∈P(V)\{∅}
i∈k

∑
j∈P(V)
i/∈j
j⊂k

πi,j,kκ(t)ωipj(t)ii(t)
]

2Again using the formulation with s(t).
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(#)
=
∑
i∈V

[
−

∑
j∈P(V)\{∅}

i/∈j

κ(t)ωipj(t)ii(t) +
∑

j∈P(V)
i/∈j

∑
k∈P(V)
j∪{i}⊆k

πi,j,kκ(t)ωipj(t)ii(t)
]

(⋆)
=
∑
i∈V

[
−

∑
j∈P(V)\{∅}

i/∈j

κ(t)ωipj(t)ii(t) +
∑

j∈P(V)
i/∈j

κ(t)ωipj(t)ii(t)
]

=
∑
i∈V

κ(t)ωip∅(t)ii(t).

Furthermore, we can compute that∑
j∈P(V)\{∅}

[
−
∑

k∈P(V)
j⊂k

εj,kpj(t)v̇(t− τ p) +
∑

k∈P(V)
k⊂j

εk,jpk(t)v̇(t− τ p)
]

(#)
= −

∑
j∈P(V)\{∅}

∑
k∈P(V)
j⊂k

εj,kpj(t)v̇(t− τ p) +
∑

k∈P(V)

∑
j∈P(V)\{∅}

k⊂j

εk,jpk(t)v̇(t− τ p)

(∆)
= −

∑
j∈P(V)\{∅}

∑
k∈P(V)
j⊂k

εj,kpj(t)v̇(t− τ p) +
∑

j∈P(V)

∑
k∈P(V)\{∅}

j⊂k

εj,kpj(t)v̇(t− τ p)

=
∑

k∈P(V)\{∅}

ε∅,kp∅(t)v̇(t− τ p).

Using these equations and the assumption that s(t) = 0, we can then compute∑
j∈P(V)\{∅}

ṗj(t) =
∑

j∈P(V)\{∅}

−αjpj(t)

+
∑

j∈P(V)\{∅}

[
−
∑
i∈V\j

κ(t)ωipj(t)ii(t) +
∑

k∈P(V)
k⊂j

∑
i∈j\k

πi,k,jκ(t)ωipk(t)ii(t)
]

+
∑

j∈P(V)\{∅}

[
−
∑

k∈P(V)
j⊂k

εj,kpj(t)v̇(t− τ p) +
∑

k∈P(V)
k⊂j

εk,jpk(t)v̇(t− τ p)
]

=
∑

j∈P(V)\{∅}

−αjpj(t) +
∑
i∈V

κ(t)ωi p∅(t)︸︷︷︸
=s(t)=0

ii(t) +
∑

k∈P(V)\{∅}

ε∅,k p∅(t)︸︷︷︸
=s(t)=0

v̇(t− τ p)

=
∑

j∈P(V)\{∅}

−αjpj(t)

≤ 0,

which is the statement we wanted to show.

Now, we are ready to show that any solution with a feasible initial history remains
feasible as long as it exists.
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Theorem 5. Let x =

((
ni
)
i∈V(

pj
)
j∈P(V)\{∅}

)
be the unique noncontinuable solution to

Equations (3.10) and (3.11) which exists on [−τ emax, β1) for some β1 > 0. If the
initial history is feasible, then the solution is feasible for each t ∈ [0, β1).

Proof. First, note that by definition of a solution (see Definition 2) x is continuous.
Especially, the components of x are continuous. Now, define

βmax := inf{t ∈ [0, β1) : ṅi(t) < 0, pj(t) < 0 or
∑

j∈P(V)\{∅}

pj(t) > 1

for some i ∈ V or j ∈ P(V) \ {∅}}.

βmax is not necessarily the first point in time where the solution is not feasible any-
more because we only required ṅi(τ) ≥ 0 for τ ∈ [t− τ ei , t− τ si ], not until t.
We will show the statement by showing that βmax = ∞. Assume βmax < ∞. By
definition we must have βmax ∈ [0, β1) and ṅi(t) ≥ 0, pj(t) ≥ 0,

∑
j∈P(V)\{∅} pj(t) ≤ 1

for all t ∈ [−τ ei , βmax), i ∈ V and j ∈ P(V) \ {∅}. By continuity of these functions,
we also have pj(βmax) ≥ 0 and

∑
j∈P(V)\{∅} pj(βmax) ≤ 1 for all j ∈ P(V) \ {∅}.

If pj(βmax) = 0 for some j ∈ P(V) \ {∅}, we can apply Lemma 6 to show that
ṗj(βmax) ≥ 0 and hence pj(t) ≥ 0 also in [βmax, βmax + βj] for some βj > 0. Other-
wise such a βj exists by continuity.

If
∑

j∈P(V)\{∅} pj(βmax) = 1, we can apply Lemma 7 to show that
∑

j∈P(V)\{∅} ṗj(βmax) ≤
0 and hence

∑
j∈P(V)\{∅} pj(t) ≤ 1 also in [βmax, βmax + β0] for some β0 > 0. Other-

wise such a β0 exists by continuity.

Let 0 < ε < min{mini∈V{τ si }, minj∈P(V)\{∅}{βj}, β0}. Such ε exists because all ele-
ments, over which the minimum is taken, are positive. We can then apply Lemma
5 for all t ∈ [βmax, βmax + ε] to show that ṅi(t) ≥ 0 also in t ∈ [βmax, βmax + ε].

Therefore, we have shown that ṅi(t) ≥ 0, pj(t) ≥ 0,
∑

j∈P(V)\{∅} pj(t) ≤ 1 for all
i ∈ V and j ∈ P(V) \ {∅} in t ∈ [βmax, βmax + ε], contradicting its definition. Hence,
we conclude that βmax = ∞.

With this theorem, we have established that for all times where a solution exists,
it is feasible given a feasible initial history. This means that the number of new
infections is nonnegative and the protection groups form a feasible partition of the
population if its initial history fulfills these requirements.

3.6 Global existence of a solution
In Section 3.5 we have shown that the solution to Equations (3.10) and (3.11)
remains in a reasonable region for all times it exists. To show that the solution
exists even globally we have to establish an upper bound on the total number of
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new infections depending on the initial history and the time t. We will do this by
using Gronwalls inequality.

Theorem 6 (Generalized Gronwalls inequality [51, Lemma 2.7]). Suppose ψ(t) sat-
isfies

ψ(t) ≤ α(t) +

∫ t

0

β(s)ψ(s)ds, t ∈ [0,T],

with α(t) ∈ R and β(t) ≥ 0 and all these functions are continuous. Then,

ψ(t) ≤ α(t) +

∫ t

0

α(s)β(s) exp

(∫ t

s

β(r)dr

)
ds, t ∈ [0,T].

Moreover, if in addition α(s) ≤ α(t) for s ≤ t, then

ψ(t) ≤ α(t) exp

(∫ t

0

β(s)ds

)
, t ∈ [0,T].

Lemma 8. Let x =

((
ni
)
i∈V(

pj
)
j∈P(V)\{∅}

)
be the unique noncontinuable solution to Equa-

tions (3.10) and (3.11) which exists on [−τ emax, β1) for some β1 > 0. If the initial
history is feasible, then

ni(t) ≤ ni(0) exp

(∫ t

0

κ(s)ωids

)
for all t ∈ [0, β1) and i ∈ V.

Proof. Let i ∈ V. By Theorem 5, we know that the solution is also feasible. Because
0 < τ si ≤ τ di ≤ τ ei , λi ∈ [0, 1] and ni(t), ṅi(t) ≥ 0 for all t ∈ [−tei , β1 − τ si ) we know
that

0 ≤ ii(t) = ni(t− τ si )︸ ︷︷ ︸
≤ni(t)

−ni(t− τ ei )︸ ︷︷ ︸
≥0

−λi
(
ni(t− τ di )− ni(t− τ ei )

)︸ ︷︷ ︸
≥0

≤ ni(t). (3.13)

Furthermore, a feasible solution implies that for all s ∈ [0, β1)

1−
∑

j∈P(V)\{∅}
i∈j

pj(s) ∈ [0, 1]. (3.14)

Now, let T ∈ [0, β1). Using Equation (3.13) and (3.14), we find that for all t ∈ [0,T]

ni(t) = ni(0) +

∫ t

0

ṅi(s)ds

= ni(0) +

∫ t

0

κ(s)ωi
(
1−

∑
j∈P(V)\{∅}

i∈j

pj(s)
)
ii(s)ds

≤ ni(0) +

∫ t

0

κ(s)ωini(s)ds.
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As κ(s)ωi ≥ 0 and κ, ni are continuous, we can apply Gronwalls inequality to get

ni(t) ≤ ni(0) exp

(∫ t

0

κ(s)ωids

)
for all t ∈ [0,T]. As T ∈ [0, β1) was arbitrary, this even holds for all t ∈ [0, β1).

This allows us to prove global existence of a solution to our system.

Theorem 7. For each feasible initial history θ ∈ CD, Equations (3.10) and (3.11)
have a unique solution x on [−τ emax,∞).

Proof. By Theorem 3, we know that such a solution x exists on [−τ emax, β1) for some
β1 > 0 and if β1 <∞ for every closed bounded subset A ⊂ D,

x(t) /∈ A for some t in (0, β1). (3.15)

Assume β1 < ∞. We know by our assumptions in Section 3.1 that κ is bounded.
Let K be such that κ(t) ≤ K for all t ∈ [0,∞). Define ω := maxi∈V{ωi}. For a given
feasible initial history θ ∈ CD, we define n0 := maxi∈V{ni(0)} and

A := [0, n0 exp(Kωβ1)]
|V| × [0, 1]2

|V|−1.

A is a closed bounded subset of D. By Theorem 5, pj(t) ∈ [0, 1] for all j ∈ P(V)\{∅}
and t ∈ [0, β1). By Lemma 8, we also have

ni(t) ≤ ni(0) exp

(∫ t

0

κ(s)ωids

)
≤ n0 exp(Kωβ1)

for all i ∈ V and t ∈ [0, β1). Therefore, x(t) ∈ A for all t ∈ (0, β1), contradicting
Equation 3.15. Hence, we must have β1 = ∞.

3.7 Extension to piecewise constant functions

As mentioned in Section 3.1, we actually use piecewise constant functions for κ and
λi. We will now give the ideas how we can extend the theory to these cases.
Since only the present value of κ(t) appears in the differential equations, we can
just solve the problem until the discontinuity of κ and then use this solution as the
initial history for the problem with the value of κ after the discontinuity. We can use
the previous theory on these sections to show that we still obtain a global solution
which is continuous, but with discontinuities in the derivatives.
For the discontinuities of λi we cannot do this because we have to evaluate λi over
some time interval for the differential equations. Assume λi has a discontinuity at
t ∈ [t + τ di − τ ei , t] for some t > 0 with λi(t) = λ0i for t < t and λi(t) = λ1i for t ≥ t.
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Then, we can compute

di(t)− di(t+ τ di − τ ei ) =

∫ t

t+τdi −τei
ḋi(t̃) dt̃

=

∫ t

t+τdi −τei
λi(t̃)ṅi(t̃− τ di )dt̃

=

∫ t

t+τdi −τei
λ0i ṅi(t̃− τ di )dt̃+

∫ t

t

λ1i ṅi(t̃− τ di )dt̃

= λ0i
[
ni(t− τ di )− ni(t− τ ei )

]
+ λ1i

[
ni(t− τ di )− ni(t− τ di )

]
⇒ ii(t) = ni(t− τ si )− ni(t− τ ei )−

[
di(t)− di(t+ τ di − τ ei )

]
= ni(t− τ si )− ni(t− τ ei )− λ0i

[
ni(t− τ di )− ni(t− τ ei )

]
− λ1i

[
ni(t− τ di )− ni(t− τ di )

]
.

The delay is still bounded because we only need to evaluate t−τ di if t ∈ [t, t+τ ei −τ di ].
By plugging in the boundary cases, we also see that ii(t) still depends continuously
on t if ni is continuous. Therefore, we can also establish all the above theorems for
piecewise constant detection rates λi.

3.8 Equilibrium points

In this section, we want to determine the equilibrium points of the system. The goal
is to understand the long-term behavior of the model. Therefore, we set further
assumptions, namely v̇(t) = 0, κ(t) = κ and λ(t) = 0 for all t ≥ 0. This means that
there is no vaccination nor testing and isolation strategy applied and the contact
behavior is constant. Also assume that immunity actually wanes, i.e. α > 0. We will
start with the one-variant model because the fixed point investigation has also not
been done for this model and we are able to determine all equilibria algebraically.
This is not possible anymore for the two-variant model.
Note that by our assumptions the system has become autonomous, i.e. we can
represent the differential equation by

ẋ = F(xt).

3.8.1 One-variant model

By definition of an equilibrium point [47, Ch. 12], we are searching for constant
x(t) = x for which

0 = F(xt).

As the total number of infections n(t) is one of our state variables, we will only be
able to encounter an equilibrium with no new infections. In classical SEIR models
this equilibrium is called disease-free equilibrium (DFE) [11, Ch. 2]. But, there is
another equilibrium called the endemic equilibrium (EE) with a constant number of
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new infections in classical models. To calculate this, which corresponds to constant
ṅ(t) in our model, we reformulate the equation for n(t) in terms of the infectious
compartment3 i(t). We have4

i(t) = n(t− τ s)− n(t− τ e) (3.16)
⇒ i′(t) = n′(t− τ s)− n′(t− τ e) (3.17)

= κ(1− p(t− τ s))i(t− τ s)− κ(1− p(t− τ e))i(t− τ e). (3.18)

Hence, we are now searching for equilibria of the system

i′(t) = κ(1− p(t− τ s))i(t− τ s)− κ(1− p(t− τ e))i(t− τ e), (3.19)
p′(t) = −αp(t) + κ(1− p(t))i(t), (3.20)

which fulfill

i(t) =

∫ t−τs

t−τe
ṅ(t̃)dt̃ =

∫ t−τs

t−τe
κ
(
1− p(t̃)

)
i(t̃)dt̃. (3.21)

By deriving the expression for i(t) in (3.18) we lose this information for the initial
history.

Disease-free equilibrium (DFE)

One equilibrium of the Equations (3.19)-(3.20) is the DFE with i(t) = 0. Because
of the waning factor α > 0, we can then see that we must have p(t) = 0. Hence, the
DFE is given by

(i(t), p(t)) = (0, 0). (3.22)

Endemic equilibrium (EE)

Now, we are searching for an equilibrium (i(t), p(t)) = (i∗, p∗) with i∗ > 0. As the
right-hand side of i′(t) always equals 0 for such constant solutions, we evaluate

i∗ = i(t) =

∫ t−τs

t−τe
κ(1− p(t̃))i(t̃)dt̃

= (τ e − τ s)κ(1− p∗)i∗ (3.23)
i∗>0⇒ 1− p∗ =

1

(τ e − τ s)κ

⇒ p∗ = 1− 1

(τ e − τ s)κ
.

3Note that (in contrast to classical models) the infectious are not a compartment in our model in
the strict sense because they are not part of a partition of the population and could mathematically
even be slightly greater than 1 because of waning immunity.

4Using x′(t) instead of ẋ(t) for the time-derivative because of readibility for i(t).
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Plugging this into Equation (3.20) with p′(t) = 0 we find that

0 = −α
(
1− 1

(τ e − τ s)κ

)
+ κ

1

(τ e − τ s)κ
i∗

⇒ i∗ = α

(
1− 1

(τ e − τ s)κ

)
· (τ e − τ s).

Based on the terms appearing in the computation, we define the basic reproduction
number in our model as follows:

Definition 9. The basic reproduction number R0 of system (3.19)-(3.20) is given
by

R0 := (τ e − τ s)κ.

Remark. Our definition corresponds to the usual definition of a basic reproduction
number as the number of primary cases an infectious individual causes in a fully
susceptible population. This is the case because our R0 is the product of the length
of the infectious period and the critical contacts a person has per time.

Now, the question arises when the EE is in the feasible region and distinct from the
DFE, i.e. i∗ > 0 and p∗ ∈ [0, 1]. By observation of the computed value for p∗ we see
that this is the case if R0 > 1. Hence, we can state:

Theorem 8. The endemic equilibrium of system (3.19)-(3.20) given by

(
i(t), p(t)

)
=
(
i∗, p∗

)
=

(
αp∗(τ e − τ s), 1− 1

R0

)
is in the feasible region and distinct from the DFE if and only if R0 > 1.

Stability

Now, we want to characterize the stability of the equilibria by linearization. Around
the DFE, the linearization is(

i(t)
p(t)

)′

=

(
0 0
κ −α

)(
i(t)
p(t)

)
+

(
κ 0
0 0

)(
i(t− τ s)
p(t− τ s)

)
+

(
−κ 0
0 0

)(
i(t− τ e)
p(t− τ e)

)
.

We know that the trivial solution of a linear delay differential equation system

x′(t) =
m∑
j=1

Ajx(t− rj)

is asymptotically stable if and only if all roots of the characteristic equation

det(λI−
m∑
j=1

Aj exp(−λrj)) = 0
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have negative real parts [16] [8, Ch. 4]. Computing the characteristic equation of
the linearized system

0 = det

(
λI−

(
0 0
κ −α

)
−
(
κ exp(−λτ s) 0

0 0

)
−
(
−κ exp(−λτ e) 0

0 0

))
⇔ 0 = det

((
λ− κ exp(−λτ s) + κ exp(−λτ e) 0

−κ λ+ α

))
⇔ 0 =

(
λ− κ exp(−λτ s) + κ exp(−λτ e)

)
·
(
λ+ α

)
,

we see that λ = −α < 0 is a root. The other roots are the roots of

f(λ) := λ+ κ
(
exp(−λτ e)− exp(−λτ s)

)
.

Clearly, 0 is a root of f . By examining f in more detail, we can show that all roots
of the characteristic equation except 0 have negative real part if R0 < 1.
First, we investigate the real roots of f . We have

f ′(λ) = 1− κτ e exp(−λτ e) + κτ s exp(−λτ s)
⇒ f ′(0) = 1− κ(τ e − τ s) = 1−R0

f ′′(λ) = κ(τ e)2 exp(−λτ e)− κ(τ s)2 exp(−λτ s).

We see that f ′′ has a zero if and only if

(τ e)2

(τ s)2
= exp(λ(τ e − τ s)),

i.e. by monotonicity of the exponential function it has exactly one zero. Using
Rolle’s theorem [18, Kap. 16, Satz 2], we conclude that f ′ has at most two real
roots (counted with its multiplicity). But as f ′(λ)

λ→−∞−−−−→ −∞ and f ′(λ)
λ→∞−−−→ 1,

we conclude that the number of roots (counted with its multiplicity) of f ′ must be
odd and hence f ′ has exactly one root. Again, we can use Rolle to conclude that f
has at most two roots. Furthermore, we observe that f(λ) λ→−∞−−−−→ ∞, f(λ) λ→∞−−−→ ∞
and 0 is a root of f . Therefore, we can determine the sign of the other real root
by examining f ′(0). We find that the other root of f has negative sign iff R0 < 1
and positive sign iff R0 > 1. In particular, we can already conclude that the DFE
is unstable if R0 > 1.
Now we want to examine the imaginary roots of f . We set λ = µ + iω. As both,
the real and the imaginary part of f , have to be 0, we obtain the system

0 = µ+ κ exp(−µτ e) cos(−ωτ e)− κ exp(−µτ s) cos(−ωτ s), (3.24)
0 = ω + κ exp(−µτ e) sin(−ωτ e)− κ exp(−µτ s) sin(−ωτ s). (3.25)

Clearly, if R0 = 0, i.e. τ e = τ s, only 0 is a solution to the system. Now, we want
to show that no imaginary solution crosses the imaginary axis while R0 < 1. First,
we show that there are no imaginary solutions with µ = 0, ω ̸= 0. Assume such a
solution exists. By setting µ = 0 in (3.24) and (3.25), we obtain

0 = κ cos(−ωτ e)− κ cos(−ωτ s), (3.26)
0 = ω + κ sin(−ωτ e)− κ sin(−ωτ s). (3.27)
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Solutions of (3.26) are given by

−ωτ e = ±ωτ s − 2πn, n ∈ Z (3.28)

⇒ ω± =
2πn

τ e ± τ s
, n ∈ Z. (3.29)

For ω− one can see that

sin
(
− ω−τ

e
)
= sin

(
− ω−(τ

s + (τ e − τ s))
)
= sin

(
− ω−τ

s − 2πn
)
= sin

(
− ω−τ

s
)
.

Plugging this into (3.27) one gets that ω− = 0 is the only possible solution in this
case.
For ω+ one observes that a solution of (3.27) corresponds to an intersection of the
line h(y) = 2πy

τe+τs
and

g(y) := −κ sin
(
− 2πy

τ e + τ s
τ e
)
+ κ sin

(
− 2πy

τ e + τ s
τ s
)

with y ∈ Z. By visualization of the sine function, we know that there exists an
intersection distinct from 0, with y ∈ R, only if g′(0) > h′(0) = 2π

τe+τs
. But we have

g′(y) = κ
2π

τ e + τ s
τ e cos

(
− 2πy

τ e + τ s
τ e
)
− κ

2π

τ e + τ s
τ s cos

(
− 2πy

τ e + τ s
τ s
)

⇒ g′(0) =
2π

τ e + τ s
κ(τ e − τ s) =

2π

τ e + τ s
R0 <

2π

τ e + τ s
,

if R0 < 1. Therefore, no pair of complex conjugate eigenvalues can cross the imagi-
nary axis while R0 < 1, except through the origin.
By expanding (3.25) we find that

0 = ω + κ exp(−µτ e) sin(−ωτ e)− κ exp(−λτ s) sin(−ωτ s)
= ω − κ exp(−µτ e)ωτ e + κ exp(−λτ s)ωτ s +O(ω2)

= ω
(
1− κ exp(−µτ e)τ e + κ exp(−λτ s)τ s +O(ω)

)
= ω

(
1−R0 +O(µ) +O(ω)

)
.

Hence, if R0 < 1, the only solution close to the origin is ω = 0. This corresponds to
a real root of f . However, we ruled out the possibility that a real root crosses the
imaginary axis while R0 < 1. Hence, all roots of the characteristic except 0 have
negative real part if R0 < 1.
Now, we want to determine the eigenspace N corresponding to 0, called center
eigenspace [12]. We can compute it by solving(

0
0

)
=

(
0 0
κ −α

)(
i(t)
p(t)

)
+

(
κ 0
0 0

)(
i(t− τ s)
p(t− τ s)

)
+

(
−κ 0
0 0

)(
i(t− τ e)
p(t− τ e)

)
.

Thus, it is given by
N = {(α

κ
p, p) ∈ CD : p ∈ [0, 1]}.



40 3.8. Equilibrium points

However, the only function in N fulfilling (3.21) is the DFE. If R0 < 1, this also
holds for the corresponding center manifold M [12], which we can explicitly compute
by solving

0 = κ(1− p(t− τ s))i(t− τ s)− κ(1− p(t− τ e))i(t− τ e), (3.30)
0 = −αp(t) + κ(1− p(t))i(t). (3.31)

We find
M = {( αp

κ(1− p)
, p) ∈ CD : p ∈ [0, 1]}.

But the only other solution to (3.30) and (3.31) fulfilling (3.21) is the EE, which is
not in the feasible region for R0 < 1.
Therefore, for R0 < 1, all feasible solutions fulfilling (3.21) apart from the DFE
correspond to eigenvalues of the linearized system with negative real part. We
conclude that the DFE is asymptotically stable for R0 < 1. It is unstable for R0 > 1
as we have a positive real root. Thus, R0 = 1 is a bifurcation point. We expect a
transcritical bifurcation [50] because a real root passes the imaginary axis and the
EE passes through the DFE (and enters the feasible region) for R0 = 1.
The linearization around the EE is(

i(t)
p(t)

)′

=

(
0 0

κ(1− p∗) −α

)(
i(t)− i∗

p(t)− p∗

)
+

(
κ(1− p∗) −κi∗

0 0

)(
i(t− τ s)− i∗

p(t− τ s)− p∗

)
+

(
−κ(1− p∗) κi∗

0 0

)(
i(t− τ e)− i∗

p(t− τ e)− p∗

)
with the characteristic equation

0 =
(
λ− κ(1− p∗) exp(−λτ s) + κ(1− p∗) exp(−λτ e)

)
·
(
λ+ α

)
−
(
κi∗ exp(−λτ s)− κi∗ exp(−λτ e)κ(1− p∗)

)
.

As this is not factorized, an analysis of the roots would be even more involved than
for the DFE. We skip it here and note that we expect asymptotic stability of the
EE if R0 > 1 because of the above mentioned transcritical bifurcation occurring at
R0 = 1.

3.8.2 Two-variant model

By transforming the two-variant model to a system in ii(t) and pj(t) like in (3.18)
we obtain

i′0(t) = κs0(t)i0(t− τ s)− κs0(t)i0(t− τ e),

i′1(t) = κω1s1(t)i1(t− τ s)− κω1s1(t)i1(t− τ e),

p′0(t) = −α0p0(t) + κ(1− π0)s(t)i0(t)− κω1p0(t)i1(t),

p′1(t) = −α1p1(t) + κω1(1− π1)s(t)i1(t)− κp1(t)i0(t),

p′0,1(t) = −α0,1p0,1(t) + κπ0s(t)i0(t) + κω1π1s(t)i1(t) + κp1(t)i0(t) + κω1p0(t)i1(t),
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with s(t) = 1 − p0(t) − p1(t) − p0,1(t) and si(t) = 1 − pi(t) − p0,1(t). Again, we
see that the right-hand side of i′i(t) is 0 for any constant solution. Using the same
computation as in (3.23), we are searching for a solution to the system

i∗0 =(τ e0 − τ s0 )κ(1− p∗0 − p∗0,1)i
∗
0, (3.32)

i∗1 =(τ e1 − τ s1 )κω1(1− p∗1 − p∗0,1)i
∗
1, (3.33)

0 =− α0p
∗
0 + (1− π0)κ(1− p∗0 − p∗1 − p∗0,1)i

∗
0 − κω1p

∗
0i

∗
1, (3.34)

0 =− α1p
∗
1 + (1− π1)κω1(1− p∗0 − p∗1 − p∗0,1)i

∗
1 − κp∗1i

∗
0, (3.35)

0 =− α0,1p
∗
0,1 + π0κ(1− p∗0 − p∗1 − p∗0,1)i

∗
0 + π1κω1(1− p∗0 − p∗1 − p∗0,1)i

∗
1 (3.36)

+ κω1p
∗
0i

∗
1 + κp∗1i

∗
0.

Based on Equations (3.32) and (3.33), we can distinguish four cases.

Disease-free equilibrium

One solution is given by (i0, i1, p0, p1, p0,1) = (0, 0, 0, 0, 0). This is the disease-free
equilibrium.

Endemic equilibria

As for the one-variant model we define the basic reproduction of variant i as follows.

Definition 10. The basic reproduction number R0 of variant i is given by

R0
i := (τ e − τ s)κωi.

As usual, we set ω0 = 1.

Case 1 (i∗0 = 0, i∗1 > 0): Another solution of (3.32) and (3.33) is given by i∗0 =
0, i∗1 > 0. Then, we must have 1− p∗1 − p∗0,1 =

1
R0

1
. Using this, we can compute that

i∗1 =

(
1

α1

(1− π1,s)
1

τ e1 − τ s1
+

1

α0,1

π1,s
1

τ e1 − τ s1

)−1(
1− 1

R0
1

)
,

p∗1 =
1

α1

(1− π1,s)
1

τ e1 − τ s1
i∗1,

p∗0,1 =
1

α0,1

π1,s
1

τ e1 − τ s1
i∗1,

which equals the one-variant case if α0 = α0,1 as stated in Section 3.9. As for one
variant, we see that this endemic equilibrium is in the feasible region and distinct
from the DFE if and only if R0

1 > 1.

Case 2 (i∗0 > 0, i∗1 = 0): Because of symmetry we have the same results as for
Case 1, swapping the indices 0 and 1. Especially this endemic equilibrium is in the
feasible region and distinct from the DFE if and only if R0

0 > 1.
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Case 3 (i∗0 > 0, i∗1 > 0): In this case we have

1− p∗0 − p∗0,1 =
1

R0
0

,

1− p∗1 − p∗0,1 =
1

R0
1

.

We see that R0
0 > 1 and R0

1 > 1 are necessary for this equilibrium to be in the
feasible region and distinct from the DFE. However, an algebraic expression for i∗i
and p∗j could not be found, neither by computations by hand nor using symbolic
math tools like SymPy [35]. For given parameter values, the system (3.32)-(3.36)
can be solved numerically. An example is given in Section 3.8.4.

We omit a stability analysis here. However, we note that we expect the same
behavior as for the one-variant model, meaning that transcritical bifurcations occur
at R0

i = 1.

3.8.3 Multi-variant model

We can extend the procedure to determine the equilibria of the system to an arbi-
trary number of variants n = |V|. In this case, we must distinguish 2n cases, because
for each i ∈ V, i∗i = 0 and i∗i > 0 are possible solutions to the equation for i∗i in
the feasible region. Again, we find that i∗i > 0 can only lead to a feasible solution
distinct from other equilibria if R0

i > 0. Hence, defining V′ := {i ∈ V : R0
i > 1}, we

expect 2|V
′| distinct, feasible equilibria for our model.5

3.8.4 Numerical examples

In this section, we want to give numerical examples for the long-term behavior of the
system. Therefore, we set the parameters to some values such that the value of R0

is below or above 1. We solved the system using a Python package called ddeint [59]
which solves delay differential equations using SciPy [55] methods. The plots show
the numerical solutions and the constant solutions (i∗, p∗) of the endemic equilibria.
Clearly, ṅ(t) is also constant if i(t) and p(t) are constant and the constant can be
computed by the differential equation for ṅ(t), see Equation (2.24). For the obtained
value ṅ∗, we also plotted the function n∗(t) = ṅ∗ · t for the endemic equilibria and
expect the solution for the total number of infections to converge towards a line
parallel to the function n∗.
As the initial history we set a linear function for the total number of infections from
0 at −τ e to n0 at 0. For the protected, only the value of p(t) appears in the differ-
ential equations for p(t) and n(t), so that only p(0) of the initial history affects the
solution. Hence, we just use a constant function with p(0) = p0 as the initial history.
For all depicted cases we set α = 0.02, κ = 0.4, τ si = 3 and p0j = 0. n0

i = 0.001 is set
in all but one case.

5In special cases, like two actually identical variants as discussed in Section 3.9, this number
might be smaller.



Chapter 3. Analysis of the model 43

0 100 200 300 400 500
Time [days]

0.10

0.15

0.20

0.25

0.30

Fr
ac

tio
n 

of
 th

e 
po

pu
la

tio
n

Total relative number of infections

n(t)

0 100 200 300 400 500
Time [days]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Fr
ac

tio
n 

of
 th

e 
po

pu
la

tio
n

Relative number of protected and infectious

p(t)
i(t)

(a) Disease-free equilibrium (R0 = 0.8)
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(b) Endemic equilibrium (R0 = 2)

Figure 3.1: Numerical solutions of the one-variant model

In the one-variant model, we set τ e = 5 and τ e = 8 such that R0 = 0.8 and R0 = 2,
respectively. We expect the solutions to converge towards the DFE and the EE in
the respective cases. To see an initial outbreak of observable size, we set n0 = 0.1
in case of the DFE. The numerical solutions are shown in Figure 3.1 and exhibit
the expected behavior. The first plot depicts the total number of infections for both
cases, while the second one displays the protected and infectious compartment con-
verging towards the respective equilibrium point.
For the two-variant model, we set π0,s = π1,s = 0.7. The DFE is obtained with
τ e0 = τ e1 = 5 and ω1 = 1.125 such that R0

0 = 0.8, R0
1 = 0.9. For the endemic equi-

librium with one endemic variant, we set τ e1 = 8 and ω1 = 1.5 in contrast to the
previous values, such that R0

1 = 3. Setting additionally τ e0 = 8 to obtain R0
0 = 2,

we observe the endemic equilibrium with two endemic variants. Since an expression
for (i∗0, i

∗
1, p

∗
0, p

∗
1, p

∗
0,1) could not be computed algebraically, we solved system (3.32)-

(3.36) numerically. The results for the DFE are shown in Figure 3.2 and those for
the EE in Figure 3.3. Again, the first plot depicts the total number of infections,
the second one depicts only the protection compartments here, while the third one
depicts the infectious compartments. All converge towards the equilibrium solutions
we added to the plot.
It is interesting to see that cross-immunity leads to a slightly lower infectious equilib-
rium for variant 1 compared to the case with one endemic variant. We also observe
an effect on the protection groups, i.e. p∗0,1 is bigger and p∗1 smaller. This is the
result of a second endemic variant whose infections cause partial immunity against
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Figure 3.2: Numerical solutions of the two-variant model with DFE (R0
0 = 0.8,

R0
1 = 0.9)

variant 1.
Another interesting area of research would be to examine the influence of the pa-
rameters on the actual solution, both algebraically and numerically. For example,
it is clear that the period of the visible oscillations varies with α. As α denotes
the waning rate, it determines how fast the protection groups shrink and therefore
the period of the oscillations, but the exact relation and other influences on the
oscillation periods are a possible subject of further investigation. The motivation
of the thesis being the actual application to SARS-CoV-2 transitions, we omit this
investigation here.
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Figure 3.3: Numerical solutions of the two-variant model with endemic equilibria
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3.9 Consistency with the one variant model
As the last part of the analysis, we want to show that our multi-variant model is
consistent with the one-variant model in the following cases:

1. V = {0}.

2. One (of two) variants in the model has no new infections, i.e. ṅ1(t) = 0 for all
t ≥ 0.

3. The two simulated variants in our model are actually the same, especially
cross-immunity is always obtained.

We will now compute briefly that we have consistency for all three cases, focusing
on the differential equations because the algebraic ones carry over naturally. Note
that we required ω0 = 1 in order to avoid ambiguity of ω0 and κ(t).

1. If V = {0} we have s0(t) = s(t) and hence

ṅ0(t) = κ(t)s(t)i0(t),

ṗ0(t) = −α0p0(t) + κ(t)s(t)i0(t) + εs,0s(t)v̇(t− τ p),

which equals the one-variant model with waning immunity.

2. Now let V = {0, 1} and i1(t) = 0 for all t ≥ 0. By the consistency requirement
in Equation (2.22) we have π0,s,0 + π0,s,01 = 1 and π0,1,01 = 1. Using the
product ansatz in Equation (2.31) we also have εs,0+εs,01 = ε0 = ε1,01. Hence,
we obtain

ṅ0(t) =κ(t)s0(t)i0(t),

ṗ0(t) + ṗ01(t) =− α0p0(t)− α01p01(t)

+ π0,s,0κ(t)s(t)i0(t) + π0,s,01κ(t)s(t)i0(t) + π0,1,01κ(t)p1(t)i0(t)

+ εs,0s(t)v̇(t− τ p) + εs,01s(t)v̇(t− τ p) + ε1,01p1(t)v̇(t− τ p)

=− α0p0(t)− α01p01(t) + κ(t)s0(t)i0(t) + ε0s0(t)v̇(t− τ p),

which equals the one-variant model for n(t) := n0(t) and p(t) := p0(t) + p01(t)
under the condition that α0 = α01.

3. Let V = {0, 1}. If the two variants are actually the same we must have τ s0 = τ s1 ,
τ e0 = τ e1 , λ0(t) = λ1(t), ω0 = ω1, π0,s,01 = π1,s,01 = 1, εs,01 = ε0 = ε1

6 and
p0(0) = p1(0) = 0. We can then see that ṗ0(t) = ṗ1(t) = 0 for all t ≥ 0. Thus,
s0(t) = s1(t) = s(t) and we find that

ṅ0(t) + ṅ1(t) = κ(t)s(t)i0(t) + κ(t)s(t)i1(t),

ṗ01(t) = −α01p01(t) + κ(t)s(t)i0(t) + κ(t)s(t)i1(t) + εs,01s(t)v̇(t− τ p),

which equals the one-variant model for d(t) := d0(t)+d1(t), i(t) := i0(t)+i1(t),
n(t) := n0(t) + n1(t) and p(t) := p01(t).

6Note that this condition violates the product ansatz (2.31) in case ε0 < 1. This is clear because
the product ansatz uses the assumption that immunity against the different variants is obtained
independently of each other.



Chapter 4

Numerical implementation

As mentioned in the Introduction, we want to apply our model to transitions between
dominant virus variants during the COVID-19 pandemic. Therefore, we will have to
solve the model numerically and estimate the parameters used in the model based
on available data. In this chapter, we will describe the methods applied for solving
and fitting as well as the databases used.

4.1 Numerical solution method of the DDE system

In this section, we want to describe how we solved the delay differential equation
system with given parameters numerically. We actually extended the existing pro-
gram, which was developed at Fraunhofer ITWM and used e.g. in [37] and for the
European Covid-19 Forecast Hub [48], to the multi-variant case. The computations
are performed in a C++ program, and the interface for loading and preparing data is
written in Python. The main part of our work was the preparation of the C++ pro-
gram for multiple variants and the implementation of a numerical solution method
to the differential equation system for the protection groups (instead of a single
equation) which we will focus on in this chapter. The following definitions are from
[37] with adapted notation:

∆t > 0 (constant timestep),
tl = l∆t,

σi(t) = κ(t)ωiii(t).

If we assume that our time discretization is small enough, in particular we require
2∆t < mini∈V τ

s
i , we can compute the infectious compartments just by past values.

This allows us to formulate the differential equation for p = (pj)j∈P(V)\{∅} as

ṗ(t) = A(t)p(t) + b(t)

with A(t) = (aj,k(t))j,k∈P(V)\{∅} and b(t) = (bj(t))j∈P(V)\{∅}. The components are

47
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given by

aj,j(t) = −αj −
∑
i∈V\j

σi(t)−
∑

k∈P(V)
j⊂k

εj,kv̇(t− τ p)−
∑
i∈j

πi,∅,jσi(t)− ε∅,j v̇(t− τ p),

aj,k(t) =
∑
i∈j\k

πi,k,jσi(t)−
∑
i∈j

πi,∅,jσi(t) + εk,j v̇(t− τ p)− ε∅,j v̇(t− τ p), k ⊂ j,

aj,k(t) = −
∑
i∈j

πi,∅,jσi(t)− ε∅,j v̇(t− τ p), k ̸⊆ j,

bj(t) =
∑
i∈j

πi,∅,jσi(t) + ε∅,j v̇(t− τ p).

As the discretization, we then use

p(tl+1)− p(tl)

∆t
= A(tl+ 1

2
)
p(tl+1) + p(tl)

2
+ b(tl+ 1

2
) (4.1)

⇒ (I− ∆t

2
A(tl+ 1

2
))p(tl+1) = (I +

∆t

2
A(tl+ 1

2
))p(tl) + ∆tb(tl+ 1

2
) (4.2)

⇒ p(tl+1) = (I− ∆t

2
A(tl+ 1

2
))−1

[
(I +

∆t

2
A(tl+ 1

2
))p(tl) + ∆tb(tl+ 1

2
)
]
.

(4.3)

By Neumann series [56, Satz II.1.12], we know that I− ∆t
2
A(tl+ 1

2
) is invertible if ∆t

is small enough.
For the new infections we use the discretization

ni(tl+1)− ni(tl)

∆t
=
si(tl+1) + si(tl)

2
σi(tl+ 1

2
)

⇒ ni(tl+1) = ni(tl) + ∆t
si(tl+1) + si(tl)

2
σi(tl+ 1

2
).

si(t) is obtained from p(t) as stated in the model (2.29). Past values of ni(t) for t
between the discrete timepoints tl are obtained by quadratic interpolation.
For V we set V = {0, . . . , n − 1} and for P(V) we use the canonical binary repre-
sentation and the order of p is done in this way in our implementation. With this
representation we can also easily check if variant i is in j or some set j is a proper
subset of another set k by bitwise operations. If ϕ(j) is the binary representation of
j interpreted as an integer and & is the bitwise AND-operator, we have

j ⊂ k ⇔
(
(ϕ(j)&ϕ(k)) = ϕ(j)

)
∧
(
ϕ(j) ̸= ϕ(k)

)
,

i ∈ j ⇔ ϕ(j)

2i
= 1 mod 2.

We implemented these checks, which are heavily used in the multi-variant model, in
this way.
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4.2 Databases and distribution of accumulated data
to variants

Despite the undoubted topicality of the COVID-19 pandemic, there is another reason
to use this pandemic as the real world application of our epidemiological model:
Surveillance has never been so good as for this pandemic and many of the data
are publicly available. In our simulations, we will focus on Rhineland-Palatinate as
the state of residence of both, university and institute. The main German research
institute for public health is the Robert-Koch-Institut (RKI). Most importantly for
us, RKI gathers surveillance data regarding COVID-19, e.g. all positive PCR tests in
Germany have to be reported to RKI via the corresponding local health departments
(§ 6 and § 11 IfSG). Parts of the data are available via a RKI Github, including
case [44], hospitalization [41], intensive-care units [43], death [42], vaccination [46]
and sequencing data [45]. In this thesis, we focus on case and hospitalization data.
The computation of hospitalized patients, which uses the infections computed by
our model, is explained in Chapter 5.
For the cases we will use the data provided on the RKI Github, hospitalization
data is also provided to us by the Landesuntersuchungsamt Rheinland-Pfalz in a
more user-friendly way, hence we use this data. As these are not split by the virus
variant, we have to assign the cases to the respective variants ourselves. Therefore,
we use the distribution of virus variants among a representative sample of positive
cases in Germany. We assume that this also represents the distribution in Rhineland-
Palatinate. This data is available on the RKI web page [40], the Github only provides
all individual sequencing data regardless of the cause of sequencing. Because only
the weekly distribution is specified, we have to specify how to split daily data.
Therefore, we assume a logistic behavior during the transition period between two
variants. If vf1(t) is the fraction of variant 1 among the cases, then the proposed
formula is given by

vf 1(t) =
1

1 + a exp(λt)

for some a > 0, λ ∈ R. This was indicated by Figure 4.1 which displays the
variant fractions of some variants of concern (VOC) over time in Germany. The
only exception of this visual observation is the re-rise of the Omicron BA.2 variant
in late 2022 due to the rise of a new sublineage of this variant. This sublineage
is also a part of the recombinant XBB variant [58] whose rise occurs at a similar
time. In our model, the sublineage should probably be seen as another variant than
previous Omicron BA.2 sublineages, but the transitions we are actually investigating
are earlier ones because of better surveillance at that time.
It has also been shown that such a logistic growth can be used to model the early
growth of COVID-19 [39]. Plots of the fits for the actual transitions we are modeling
can be found in Chapter 5.
If parameters used in our model are based on measured values by retrospective case-
studies, these will be mentioned in Section 5 when their findings are used for our
computations.
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Figure 4.1: Fractions of selected VOC in a representative sample of COVID-19 cases
in Germany

4.3 Parameter fitting
In order to determine parameters like the critical contact rate for a certain week, we
want to fit them to measured data. Therefore, the procedure already implemented
and described in [37] is used. For completeness, we will briefly sketch it here.
We are looking for a maximum-likelihood estimate for our parameters. Let y ∈ Rp

be the parameter vector, m̂ the vector of measured values for days 1, . . . , q and
m(y) the related quantity in our model. Assuming that the measurement errors are
independent and identically distributed with a normal distribution and standard
deviation σm, the maximum-likelihood estimate is given by solving

min
y∈Rp

q∑
i=1

(
mi(y)− m̂i

σm

)2

.

If additional measurements are taken into account, we add them up in the function
to be minimized. We estimate the standard deviation by

σm =

√√√√1

q

q∑
i=1

(mi(y)− m̂i)2.

This is done in an outer loop of the parameter fitting until the value converges. To
solve the least-squares problem we use a gradient-based method. Hence, we need
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Dqm in our computation. Therefore, automatic differentiation (AD) [20] is used.
As an addition to the existing procedure, we had to implement a solver for a linear
system with AD variables as such appears in the update step (4.2) of the protection
groups. To describe this, let a linear system be given by

A(q)x = b(q) (4.4)

with A(q) invertible. By implicit function theorem [19, Kap. 8, Satz 2] we can
compute

Dqx = −(A(q))−1
(
DqA(x)−Dqb

)
(4.5)

for a solution to the system. As DqA and Dqb are known by automatic differentia-
tion, we can first solve the system (4.4) and with the obtained x compute (4.5). As
both times the inverse of A(q) appears, we can even use the same decomposition of
A(q) for both steps, in our implementation a LU decomposition.
As in [37], we also use automatic differentiation to get an estimate on the standard
deviation of the parameters, because

C = cov(q) = σ2
m

(
(Dqm)t(Dqm)

)−1
.

The estimates for the standard deviation allow us to give confidence intervals. These
are also shown in the plots of Section 5.





Chapter 5

Application to SARS-CoV-2 variant
transitions

This chapter is dedicated to present the application of our model to actual transi-
tions between predominant SARS-CoV-2 variants. Therefore, we determined three
dates at which a new variant began to spread. At these dates, we performed a
simulation with the one-variant and the two-variant model. A simulation consists of
fitting the parameters to previous data and a forward simulation with the obtained
parameters. This is the usual procedure to compute forecasts. Our implementation
fits the parameters and computes the solution automatically as briefly described in
Chapter 4. To validate our model, we compare the data of our simulated forecast
at the transition dates with the actual measured data afterwards.
The transitions we modeled are those between Omicron BA.2 and Omicron BA.5,
Omicron BA.1 and Omicron BA.2 and Delta and Omicron (BA.1). Corresponding
dates during the transition phase are May 30, 2022, February 28, 2022 and January
10, 2022.
For the simulations, we used detected cases and hospitalized patients as given data
up to the simulation start date. Then, we ran the program with the one-variant
model once. Afterwards, we split the input data to the variants according to our
ansatz in Section 4.2 which form the input data for the two-variant model. A run
of the two-variant program is done with initial values from the one-variant run.
As we were not able to fit detection rates for two variants separately, we used the
detection rates from the one-variant simulation as fixed ones for both variants. The
reason for this is that the detection rates can be determined because underreporting
for severe outcomes like hospitalizations is negligible compared to detected cases.
But for the newly emerging variant, there are barely any severe outcomes yet (for
some times in the fit period even reported cases) because these numbers just start
to rise at our simulation start.
Contact rates are changed weekly, while detection rates are changed twice a week,
corresponding to one detection rate during weekdays and another one on the week-
ends. For the prediction, the last fitted values around one week before simulation
start are continued to the simulation.
New hospitalizations (and other quantities not discussed here like deaths) are com-
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puted from our model as a fraction, called hospitalization rate β, of new infections
at an earlier time. Patients leave the hospital also after a fixed time, like the in-
fectious compartment. These delays are fitted in the one-variant runs and assumed
to be fixed for the two-variant case. The hospitalization rate will be fitted for the
variants. When splitting the hospitalization data to the variants, the time delays
and rates have to be taken into account.
All figures show total quantities in blue and variant-specific quantities in orange and
green. Lines depict simulated values with a 99 % confidence interval around them,
computed according to Section 4.3, and dots measured data. Transparent dots have
not been provided to the simulation, they are depicted for comparison.
In this chapter we always assume that 0 denotes the other variants (especially
the previously predominant variant) and 1 the newly emerging variant. Also, in
accordance with the regular forecasts created with the one-variant model, we set
τ s0 = τ s1 = 4.67 and τ e0 = τ e1 = 9.67.

5.1 Omicron BA.2/BA.5 transition

The transition from Omicron BA.2 to Omicron BA.5 as the dominant variant in
Germany occurred in May/June 2022. We used May 30, 2022 as the starting date
of our forecast.

5.1.1 Results with the one-variant model

Using the one-variant model, we see that we could not predict the BA.5 wave on May
30, 2022 yet. Figure 5.1 shows the forecast of the case incidence on this day. We note
the severe difference between the prediction and the actual values after simulation
start. For the hospitalized patients (Figure 5.2 1) we see the same underestimation
using this model.
Looking at Figure 5.3 depicting the contact rates using the one-variant model, we
also see that a strong increase of the critical contact rate is used to explain the
values prior to the simulation start. While some increase can be expected by the
easing of COVID restrictions at that time, such a big increase looks unreasonable. It
should, however, not be overinterpreted, because the confidence interval also grows
significantly, showing that the values are very uncertain.
Overall, we can say that the one-variant model does not provide satisfactory results
at May 30, 2022 which would lead to wrong conclusions about the future course of
the pandemic.

5.1.2 Results with the two-variant model

For the two-variant model, we split the cases according to our logistic ansatz. The
results of the fit for this transition can be seen in Figure 5.4. It seems to be a

1Values of 0 mean that data has not been provided for this day and hence these values are
neglected in the fit.
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Figure 5.1: Forecast of the case incidence using the one-variant model

Figure 5.2: Forecast of the hospitalized patients using the one-variant model
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Figure 5.3: Critical contact rate using the one-variant model

Parameter Initial value Optimal value standard deviation
ω1 1 0.97 0.020
β0 0.0023 0.0023 5.2e-06
β1 0.0023 0.00070 0.00040
π0 0.8 [2] - -
π1 0.8 - -
ε0 0.7 [29] - -
ε1 0.7 [30] - -

Table 5.1: Initial and optimal values of two-variant model parameters

reasonable ansatz to split the cases according to this function. Note that we also
did not use the last datapoint before the simulation starts because the data is always
published with a time delay. As an estimation, the weekly distribution has been set
to the Thursday of the corresponding week.
Initial values for the parameters and the optimal ones rounded to two significant
digits as well as their standard deviations are shown in Table 5.1. The protection
groups are initialized in accordance with the initialization of the one-variant model.
Therefore, if p(0) = p0 in the one-variant case, we set p0,1(0) = 0.8 · p0 and p0(0) =
0.2 ·p0 in accordance with the choice of π0. Furthermore, we assume p1(0) = 0.1 ·p0.
People can be in this compartment e.g. by vaccination failure against Omicron BA.2,
but not BA.5. That now slightly more people are protected against at least one
variant is justified by the fact that a part of them is only partially protected.
For the figures presenting the results of our simulation, special attention should be
given to the blue quantities as these represent the total numbers which are actually
measured. For the variant data, we have to assign them ourselves given limited
information. Hence, their values are also dependent on the ansatz for distribution
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Figure 5.4: Fit of variant fraction among cases

we used. Figure 5.5 shows that we are now able to predict the peak date and height
of the BA.5 wave very precisely, while providing good estimates for the total number
of infections in general. This is especially remarkable because this peak occurs four
weeks after the simulation starts. For many forecasts, e.g. the European Covid-19
Forecast Hub [48], this is the maximal forecast time. The variant incidences are,
however, not well represented by the model. But, as explained, the dots do not
represent real data here, the data was assigned to the variants by us. Therefore,
they are also error-prone. An example that the variant data points could be slightly
wrong is the re-rise of other variant cases in the second week of June which (special
effects like holidays can be excluded) does not look like a natural epidemic curve.
Figure 5.6 shows the hospitalized patients in Rhineland-Palatinate. While the total
values are in the range of the confidence interval, they are far off from the actual
prediction and the confidence interval is quite big. This can be explained by the
fact that at the start of a new variant rising, only individual, if not none, patients
are hospitalized with the new variant yet. Hence, the hospitalization rate is not well
known (see Table 5.1) and thus a prediction of the hospitalized patients is hardly
possible at this point in time.
Looking at the critical contact rates in Figure 5.7, we also see that they are in a more
reasonable range than for the one-variant model while still increasing, possibly by
loosened restrictions. Examining Table 5.1, we furthermore recognize that Omicron
BA.5 became the dominant variant in our model not by higher transmissibility itself,
but only by immune escape. Another observation is that β0 is close to its initial
value obtained from the one-variant model because nearly all hospitalizations are
still caused by other variants than BA.5.
All in all, using the two-variant model would have improved the forecast on May 30,
2022 significantly, in particular for the case incidence.
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Figure 5.5: Forecast of the case incidence using the two-variant model

Figure 5.6: Forecast of the hospitalized patients using the two-variant model
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Figure 5.7: Critical contact rate using the two-variant model

5.2 Omicron BA.1/BA.2 transition

The transition from Omicron BA.1 to Omicron BA.2 occurred in February/March
2022 in Germany, just after Omicron BA.1 became the dominant variant. As the
forecast start for this transition we selected February 28, 2022.

5.2.1 Results with the one-variant model

The results for this transition are similar to those found in Section 5.1.1. Figure
5.8 shows that we have an underestimation of the detected cases again, this time
the difference is even higher. Contact rates (see Figure 5.9) also increase without
sufficient explanation.

5.2.2 Results with the two-variant model

Using the same procedure and splitting of the initially protected, we find that the
logistic approach (see Figure 5.10) delivers good results and the forecast for the
case incidences (Figure 5.11) is very good for the next week. Afterwards, there is
a significant difference, but the general trend is still in good accordance with the
actual course of disease spread. Examining the week before the forecast starts in
more detail, we observe a quite unnatural epidemic curve for the Omicron BA.2
cases. Namely, it drops notably between two growth phases, to be able to reproduce
the assigned data. This is caused by a huge decline of the critical contact rate the
week before. Both lack the explanation of implemented measures. Therefore, we
questioned the assumption that the variant fraction of BA.2 in Germany represents
the one in Rhineland-Palatinate accordingly. If BA.2 spread later in Rhineland-
Palatinate than in Germany, we could shift the German data to obtain the right
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Figure 5.8: Forecast of the case incidence using the one-variant model

Figure 5.9: Critical contact rate using the one-variant model
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Figure 5.10: Fit of variant fraction among cases

data for Rhineland-Palatinate.
Using such a time shift of 10 days, we were able to eliminate the non-explicable
behavior of the model. The parameter values for this case are presented in Table
5.2, while the case incidences, hospitalized patients and contact rates are portrayed
in Figures 5.13, 5.14 and 5.15, respectively.
We notice that the fit and forecast of the case incidences now describe a much more
natural epidemic curve for the variants and the contact rate does not have a hard
decline. As in Section 5.1.2, we see that our model improves the forecast quality
massively. We are able to precisely predict the peak height and up to a few days
the peak date of the BA.2 wave, compared to predicting a strong decline in cases
with the one-variant model. For the total number of cases as the main focus (see the
discussion in Section 5.1.2), we even see very good accordance with the actual data
for all six forecast weeks. Hospitalized patients are, however, still hard to predict
because of the reasons discussed in the same section.
The optimal values show that BA.2 did not only become the predominant SARS-
CoV-2 variant because of immune escape, but also because of a inherent higher
transmissibility. This finding is even quantitatively in accordance with a case study
in Denmark [34] for unvaccinated household contacts.

2The difference to the model parameter in case of BA.2/BA.5 transition can be explained by a
much longer hospital period (fitted in the one-variant model) here.
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Figure 5.11: Forecast of the case incidence using the two-variant model without time
shift

Figure 5.12: Critical contact rate using the two-variant model without time shift

Parameter Initial value Optimal value standard deviation
ω1 1 1.92 0.0030
β0 0.000722 0.00073 4.4e-06
β1 0.00072 0.00032 8.6e-05
π0 0.8 [13] - -
π1 0.94 [13] - -
ε0 0.7 [4] - -
ε1 0.7 [29] - -

Table 5.2: Initial and optimal values of two-variant model parameters
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Figure 5.13: Forecast of the case incidence using the two-variant model with time
shift

Figure 5.14: Forecast of the hospitalized patients using the two-variant model with
time shift
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Figure 5.15: Critical contact rate using the two-variant model with time shift

5.3 Delta/Omicron BA.1 transition

The transition between Delta and Omicron (BA.1) occurred in December 2021/Jan-
uary 2022 in Germany. It was maybe the most serious transition because virus char-
acteristics changed massively [49]. We used January 10, 2022 as the starting point
for our forecasts. This section will also show some aspects which have to be handled
with caution when computing forecasts with the two-variant model.

5.3.1 Results with the one-variant model

In this case, the one-variant model gives reasonable predictions for the case inci-
dences, seen in Figure 5.16. This is because we chose a date for the forecast, where
we already see the total number of cases rising. It leads to a jump in the critical
contact rate, illustrated in Figure 5.18, caused by the higher transmissibility of the
Omicron variant compared to the Delta variant. However, as just one hospitalization
rate is used and is fitted to data of the Delta wave, we see a severe overestimation
of the hospitalized patients in Figure 5.17.

5.3.2 Results with the two-variant model

We use the usual procedure with the values of the one-variant model as initial
values for the two-variant model, but splitting the initially protected more evenly
across p0,1(0) and p0(0) because of lower protection and faster waning immunity from
previous infections against Omicron [3]. Keep in mind that we used the detection
rates of the one-variant model as fixed detection rates for both variants in this
procedure. In contrast to our previous results, we would have been able to locate
the peak of the case incidence four weeks in advance, but we would have completely



Chapter 5. Application to SARS-CoV-2 variant transitions 65

Figure 5.16: Forecast of the case incidence using the one-variant model

Figure 5.17: Forecast of the hospitalized patients using the one-variant model
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Figure 5.18: Critical contact rate using the one-variant model

overestimated both case incidences (Figure 5.20) and hospitalizations (Figure 5.21).
Figure 5.19 shows that this is not the result of a wrong model to split the data.
Soon, it became clear that the Omicron variant causes less severe infections than
the Delta variant [49]. In particular, it is shown there that less severe infections
cause a higher underreporting for the Omicron variant, i.e. the detection rates of
the Omicron variant are lower than we assume because we fitted the detection rates
to the Delta wave.

5.3.3 Results with the two-variant model with adapted pa-
rameters

If we would have known that Omicron causes less severe infections, we could have
adapted the assumption that the detection rates of the one-variant model (displayed
in Figure 5.22) can be set for both variants. As these are mainly fitted to cases
caused by Delta, we will now set the detection rate for the Omicron variant to half
the detection rate of the Delta variant, in the range of the findings in [49]. We also
set the hospitalization rate of Omicron to one fifth of the Delta hospitalization rate
as the initial value in our optimization, see Table 5.3.
Using this additional information, we are able to give a much better estimate for
the case incidences, displayed in Figure 5.23. Still, predictions for the hospitalized
(Figure 5.24) are very unsecure and significantly too high. The reasons for this have
been discussed in Section 5.1.2. We also see in Figure 5.25 that in contrast to the
one-variant case (Figure 5.18) there is not a huge jump in the critical contact rate
at the end of the fit. Instead, the rise of cases at the end of the fit is now explained
by the new Omicron variant with inherent higher transmissibility (see Table 5.3)
and only a slight change in the contact behavior. The optimal value of the increased
transmissibility is very close to the value 2.14 for non-household transmission found
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Figure 5.19: Fit of variant fraction among cases

Figure 5.20: Forecast of the case incidence using the unadapted two-variant model
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Figure 5.21: Forecast of the hospitalized patients using the unadapted two-variant
model

in a case-study in England [1].
In comparison to the two previously discussed transitions, our forecast of the case
incidence is still worse. Apart from the transition itself, it should be noted that it
happened during a holiday period, which always makes predictions harder because
of special effects, like increased travel or different testing [37] during this period.
For the forecasts, one has to note that if severity and/or detectability are very
different for the new variant compared to the old one, care has to be taken about
the assumption that the same detection rate can be set for both variants. We got
much better results when taking this into account. However, it was not possible
to detect this by unnatural behavior of the epidemic curves in the forecast. This
strengthens the need of some early estimates on possible changes in underreporting,
e.g. by experiences in other countries with an earlier transition to the new variant.
For the model itself, one could question the assumption that immunity against
both variants is lost at the same time, i.e. that the waning immunity transition
is from p0,1(t) to s(t). Data shows that immunity against Omicron wanes much
faster than against Delta [4] [14]. In our forecast and the assigned data, we can,
however, see that Omicron cases supersede Delta cases in a few weeks. Immunity
even against Omicron typically lasts significantly longer than this transition period,
i.e. the assumption can be justified in our experiment.
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Figure 5.22: Detection rate using the one-variant model

Parameter Initial value Optimal value standard deviation
ω1 1 2.11 0.046
β0 0.0030 0.0031 1.1e-05
β1 0.00061 0.00099 6.0e-05
π0 0.65 [14] - -
π1 0.9 [14] - -
ε0 0.7 [4] - -
ε1 0.9 [4] - -

Table 5.3: Adapted initial and optimal values of two-variant model parameters

Figure 5.23: Forecast of the case incidence using the adapted two-variant model
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Figure 5.24: Forecast of the hospitalized patients using the adapted two-variant
model

Figure 5.25: Critical contact rate using the adapted two-variant model



Chapter 6

Outlook

In this chapter, we want to discuss further work that could be done subsequent to
this thesis.
Chapter 2 dealt with the modeling itself. While the model seems complete with
respect to modeling multiple virus variants, there are some further aspects which
might be considered. First, the partial loss of immunity, i.e. only against some of
the variants one is protected against, might be considered. For typical forecasts
simulating a few weeks forward in time and transitions from one dominant variant
to another, this effect can be neglected. If one wants to consider long-term scenar-
ios with multiple endemic variants, however, this effect could play a crucial role if
waning immunity against different variants occurs on different timescales. A more
sophisticated model could also be developed regarding vaccination and its influence
on the infection-related quantities like deaths and hospitalized patients. It is e.g.
known that vaccinations have higher effectiveness averting severe cases than averting
infection. This is only implicitly reflected in our model by adapting the respective
hospitalization and dying rates. The necessity is again mostly given for long-term
scenarios.
Other interesting adaptions of the model could be if the disease spread is not well
described by deterministic approaches because of low incidences. Then, stochastic
effects should be taken into account, possibly leading to stochastic delay differential
equations. If the spatial spread of the disease should be modeled, a system of de-
lay partial differential equations can be developed. The model can also be applied
to an agent-based model. Each agent could be in a protection state equivalent to
the groups of our model and changes occur according to the transition rates. This
would be another way of dealing with stochasticity in case of low incidences. One
should note that increasing model complexity and hence the number of paramters
while not increasing data sources will make it harder or even impossible to fit model
parameters.
In Chapter 3, we analyzed the model theoretically. An open question is to char-
acterize the stability of the equilibrium points of the multi-variant model. It fur-
thermore remains open if one can find algebraic expressions for all equilibria of the
multi-variant model. Another interesting area of reasearch would be to quantify
the effects of the parameters on the solution, e.g. by a sensitivity and uncertainty
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analysis.
The results of the application of our model to real data were shown in Chapter 5.
We mentioned that the contact rate is not adapted in the forward simulation. Be-
havioral changes, either mandatory by NPIs or voluntary, are hence not reflected
in the prediction. To quantify these behavioral changes, especially voluntary ones,
and use them in epidemiological models will be the main focus of BMBF-funded
project SEMSAI [15], in which this model will be used. Another important topic
is the handling of limited surveillance data. The model will then rely on coarser
data like wastewater samples [24] where additional effects have to be taken into
account. A first model using wastewater samples in Rhineland-Palatinate as a data
source has already been coupled with our model in ongoing work. Handling of lim-
ited surveillance will also be crucial for the interesting aspect of applying the model
to other infectious diseases, e.g. different virus strains of influenza, with much less
surveillance data available than for COVID-19.
Overall, we can say that there are many open research and modeling questions
regarding epidemiology and we hope that also in non-pandemic times reasonable
attention will be given to this topic.



Chapter 7

Conclusion

In this thesis, we have developed an epidemiological model that covers the effects
of multiple virus variants causing partial immunity against each other. The appli-
cation of this model to SARS-CoV-2 transitions in Chapter 5 showed that we could
improve the existing model significantly. It was shown that case incidences can be
predicted with good accuracy during early transition phases. Having good data
splitting detected cases and other measured quantities to the respective variants as
well as some early estimates on model parameters, is essential for a good predic-
tion. Related quantities that occur later in the course of infection, in this thesis
we focused on hospitalizations, are harder to predict at early stages because of the
additional delay in the quantities.
From a mathematical perspective, it was shown in Chapter 3 that the model pos-
sesses a solution for all future times if the initial history is feasible. This solution
also stays feasible, i.e. the variables can be interpreted in a meaningful way, for all
times. The equilibria of the system have in general been determined, together with
a condition for being in the feasible region. An algebraic expression for all of them
and a theoretical result on their stability remain open questions for the multi-variant
model. It was shown for the one-variant model that a bifurcation occurs if the basic
reproduction number R0 = 1, which is the expected behavior for epidemiological
models.
The development of the model and its implementation into ongoing simulations
allow us to improve the predictions of future variant transitions, provided proper
surveillance is maintained. Furthermore, it can be used for retrospective modeling
studies, e.g. to examine the effects of non-pharmaceutical interventions and volun-
tary contact reductions. The model is valuable for this because it disentangles the
effects of multiple variants from the specific effects to be analyzed. It can also be ap-
plied to future (local or global) pandemics and epidemics, possibly caused by other
pathogens, as well as modeling endemic diseases.
In conclusion, this thesis has successfully achieved the goal of developing a model
that improves the accuracy of forecasts during early transition periods between pre-
dominant virus variants.
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