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Editor’s Foreword 

The dynamic soil–structure interaction is still one of the most challenging issues 
in soil dynamics. Most of the work published so far concerns foundations excited 
by impinging seismic waves or inertial forces. The response of foundations to 
remote harmonic surface loads has only been sporadically investigated. Even 
rarer are studies on the response of deep foundations to wave fields caused by 
moving loads. Analytical solutions for such boundary value problems are 
primarily based on modelling the dynamic interaction between the piles and the 
soil using discrete spring and damper elements. The solution using numerical 
continuum methods is significantly more difficult due to the large area to be 
considered in the analysis.  

In addition to the dynamic system response, the shielding effect of piled 
foundations is also essential in practice. This influences the reduction of the 
vibration level within the affected structure and behind it. The associated wave 
phenomena are complex and strongly frequency-dependent. Since the vibration 
characteristic in the vicinity of railway traffic routes is mostly high-frequency, a 
fine discretisation of the soil continuum is required. This increases the 
computational effort and imposes limits on the modelling of the continuum. 

The above points are the subject of the present dissertation, which comprises an 
extensive numerical investigation of the dynamic response of single piles, pile 
groups and piled rafts to the wave field emanating from stationary or moving 
loads at variable distances from the foundation. The outcome of the demanding 
and complex simulations provides valuable insight into the behaviour of piled 
foundations in the context of vibration protection. The methodology can be used 
as a starting point for investigating inhomogeneous soils or complex system 
geometries. In addition, solutions in the time domain allow the incorporation of 
non-linear material behaviour for the soil. 
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Abstract 

The present numerical study focuses on the problem of dynamic interaction of 
piled foundations under harmonic excitation at high frequencies relevant for the 
vibration protection practice. The finite-element programs Plaxis (2D & 3D) and 
Abaqus are employed for time- and frequency-domain analyses, respectively.  

As a first step, dynamic impedances of pile groups, piled rafts and embedded 
footings are derived for all oscillation modes in order to gain insight into the 
problem of inertial loading.  

Emphasis is placed on the kinematic response of single piles, pile groups and 
piled rafts to a wave field emanating from a distant stationary or moving 
harmonic vertical point load acting on the surface of the soil. Transfer functions, 
which are ratios relating the response of the foundation to that of the free-field, 
quantify the kinematic interaction. Only the vertical component of the response 
is assessed as mostly critical in the frame of the selected excitation. It is shown 
that a stationary harmonic load is a good approximation for a moving harmonic 
load; this is true for a travelling speed of the load that is relatively low in 
comparison with the Rayleigh wave velocity in the soil, which is quite common 
in engineering practice. Analogously, a static load is a good approximation of a 
moving load of constant magnitude. Moreover, analytical solutions are presented 
for single pile and pile group response under Rayleigh wave excitation, which 
can be also employed in the near-field, as shown herein.  

The extension of piled foundations by additional rows against the wave 
propagation direction is examined under the scope of vibration protection. 
Indeed, for a considerable frequency range, the further addition of pile rows to a 
piled foundation has a favorable effect on the reduction of the vibration level 
calculated at the furthest-back pile row or at the free-field behind the foundation. 
This is, however, not valid, as the excitation frequency increases further, and the 
interplay between the piles becomes more complex. On the other hand, the 
extension of the piled foundation by additional pile columns parallel to the wave 
propagation direction has a positive effect at high frequencies. 

The accuracy of the results is assessed by verification against rigorous solutions. 
The importance of key aspects in finite-element modelling is also highlighted.  
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1 Introduction   

The issue of ground-borne vibrations and noise has been gaining increasing 
attention over the last years. Of particular importance for the engineering practice 
is the assessment and mitigation of vibrations due to their effect on people in 
buildings, and under circumstances on the structure itself.  

One of the most common sources of ground-borne vibrations is railway traffic. 
Due to the train–track–soil interaction, the dynamic vibratory loading generated 
by trains is transmitted to the ground, subsequently affecting foundations and 
superstructures. The vast development of high-speed traffic in conjunction with 
limitations on the train speed enforced by the low stiffness of soft soils has led 
to a plethora of studies on the associated dynamic effects (Sheng et al., 1999; 
Grundmann et al., 1999; Madshus & Kaynia, 2000; Takemiya, 2003; Aubry et 
al., 2005; Auersch, 2005; Karlström & Boström, 2006; Lombaert et al., 2006, 
etc.). Ground-bone vibrations lie within a frequency range crudely between 1 and 
100 Hz (Satis, 2017). According to ISO 14837-1 (“Mechanical vibration – 
Ground-borne noise and vibration arising from rail systems – Part 1, General 
Guidance”) railway noise is generated inside a building by ground-borne 
vibration due to the pass-by of a vehicle on rail. This type of noise has a 
frequency range between 20 and 250 Hz (Satis, 2017).  

The basic aim of engineering design is to limit the induced vibration amplitudes 
to a level that will neither put into stake the satisfactory performance of structures 
nor disturb the people working in the immediate vicinity of rail tracks. 

The problem of kinematic interaction of piles, which are vastly used for the 
foundation of a variety of structures, has been mostly investigated in the case of 
seismic excitation by vertically propagating S-waves (e.g. Kaynia & Kausel, 
1982; Fan et al., 1991; Makris & Gazetas, 1992; Mylonakis & Crispin, 2022). 
Other types of wave have been considered in few studies (e.g. Kaynia & Novak, 
1992; Makris & Badoni, 1995). A pertinent property of piled foundations 
subjected to a harmonic wave field is their shielding efficiency. Studies that focus 
on this aspect in case of a pile row include Kattis et al. (1999a), Lu et al. (2009), 
Auersch (2010), etc.  This ability of piles to diffract surface waves and 
significantly reduce their amplitudes has inspired the concept of pile barriers 
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aimed to serve as a ground-borne vibration mitigation measure that can isolate 
nearby structures (Kattis et al., 1999b; Pu & Zhifei, 2018; Zhao et al., 2022).  

Furthermore, the shielding efficiency of piles has recently found application in 
the field of metamaterials. These are natural or artificial materials, or structures 
in periodic patterns, able to control wave propagation (Brûlé et al., 2014; Palermo 
et al., 2016). Based on this definition, the piles embedded in the soil form a 
composite system with potential in wave shielding. The present study takes into 
account this aspect by employing a particular design concept, which will be 
elaborated in the sequel.  

Regarding the source of excitation, in reality, a moving load has a dynamic as 
well as a static component representing the vehicle weight. The study of 
Takemiya & Bian (2005) has shown that the train weight could generate ground 
vibrations frequencies less than 10 Hz, which attenuate rapidly with increasing 
distance from the rail track. The findings in the work of Auersch (2006) confirm 
that a moving load of constant magnitude is of importance only in the close 
vicinity of the track due to its a quasi-static nature. Consequently, it is the 
dynamic component of the moving load that is of particular interest for the 
vibration protection practice.   

The present work focuses on the kinematic response of piled foundations to a 
harmonic wave field. To analyse the problem, the finite-element method (FEM) 
is employed. The piles, modelled with volume elements, are embedded in a 
linear-elastic continuum with hysteretic damping. Either a half-space or a soil 
stratum resting on a rigid substratum is considered.   

First, to shed light into the problem of inertial interaction, which along with 
kinematic interaction reproduce the complete dynamic problem, dynamic 
impedances of piled foundations and embedded footings are presented in Chapter 
3 in specific examples. The pertinent analyses are conducted in the frequency 
domain with the FEM code Abaqus. The inertial response of pile groups is 
compared to that of corresponding piled rafts for a close and a wider pile spacing.    

In Chapter 4, analyses are performed with the general purpose geotechnical FEM 
code Plaxis in the time domain considering as an excitation source a vertical 
point load of time-harmonic magnitude travelling with constant speed on the soil 
surface at a specific distance from a piled foundation. The kinematic interaction 
is quantified by transfer functions, which are ratios relating the vertical 
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displacement amplitude at characteristic points to that of the free-field. 
Moreover, the case of a stationary harmonic load is also examined as a lower-
bound of a travelling speed equal to zero. It is then shown that is possible to 
employ the stationary solution as an approximation for the moving load for 
numerous cases relevant for the engineering practice.  

Based on the above good agreement, as a next step, an extensive parametric study 
is presented in Chapter 5 on the response of pile groups with different layouts to 
a stationary harmonic point load. In addition, composite foundations comprising 
piles and raft in interaction through the soil, so-called piled rafts, are also 
considered.  In specific, advantage is taken of the frequency-domain analysis tool 
provided by the FEM code Abaqus. Direct-solution steady-state analyses are 
performed in order to gain insight into the potential further vibration attenuation 
due to the periodicity of piled foundations under the scope of metamaterials. In 
specific, it is explored how the number of pile rows against the wave propagation 
direction influences the wave shielding of the pile group. The effect of additional 
pile columns is also examined by accordingly extending the pile group parallel 
to the wave propagation direction. For each case, the response of the pile group 
is contrasted to that of a corresponding piled raft accounting for a perfect contact 
between the underlying soil and the raft. Analyses considering the raft acting 
alone are also performed. Thus, the role of the latter is examined in the overall 
response. Characteristic points in the pile group/piled raft, as well as at the free-
field behind them are chosen for the evaluation of the results.  

Furthermore, a comparison with available analytical solutions on the kinematic 
response of single piles and pile groups to a Rayleigh wave field is presented in 
Chapters 4 and 5. Although these solutions consider far-field conditions, which 
in the cases examined herein are not fulfilled due to the vicinity of the piles to 
the source of excitation, the agreement is overall quite good. It is consequently 
shown, that the methodology can be employed in the frame of a preliminary 
design with an acceptable level of accuracy. In specific, in the case of a single 
pile, a closed-form expression is derived from the corresponding analytical 
solution.   

The aim of this study is first to gain insight into the mechanics of the problem of 
kinematic response of pile foundations to the wave fields emanating from 
stationary or moving harmonic loads. Moreover, the influence of specific 
modelling aspects on the accuracy of the finite-element results is highlighted by 
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verification against rigorous solutions. Finally, it is shown, that the FEM can 
accurately reproduce the complex problem of wave propagation at high 
frequencies. 

  



 

5 
 

2 State of the art   

2.1 Dynamic soil–structure interaction 

Over the years, the topic of dynamic soil–structure interaction has been the 
subject of a plethora of studies. The dynamic loading of a superstructure may 
result either from direct external actions (e.g. traffic, ocean waves, operating 
machines) or from indirectly developing inertial forces (e.g. during seismic or 
any other type of ground shaking). Then, the forces and moments are transmitted 
through the foundation–soil interface into the underlying soil causing 
deformations. The dynamic response of foundations depends on: (a) the 
properties of the supporting soil, (b) the geometry and inertia of the foundation 
and superstructure, as well as on (c) the nature of the dynamic excitation. To 
predict the vibratory response of a foundation, a required input is the complex 
frequency-dependent dynamic impedance or, equivalently, the frequency-
dependent “spring” and “dashpot” coefficients of the foundation (Gazetas, 1991; 
Vrettos, 2017). The estimation of these coefficients is key in dynamic response 
analyses, since the oscillation amplitude can be subsequently calculated. The 
basic aim of design is to limit these amplitudes to sufficiently low levels that do 
not put into stake the proper operation of the machine or the performance of the 
foundation, while at the same time ensure that people in the vicinity are not 
disturbed. 

Typically, these displacement amplitudes are of the order of a hundredth of a 
centimeter, and, consequently, the resulting soil deformations are quasi-elastic, 
with minor non-linearities. Therefore, the analyses for the prediction of vibration 
amplitudes assume elastic soil behavior with hysteretic damping to account for 
the energy losses at these small-strain amplitudes. In specific, the internal energy 
dissipation characteristics of the soil are described through a frequency-
independent hysteretic damping ratio ξ. Key parameter for the analyses is the 
small-strain shear modulus Gmax of the soil.   

Tools to compute dynamic impedances include: (a) analytical solutions based on 
integral transforms, (b) semi-analytical formulations requiring the discretization 
of only the contact area, and (c) the finite-element method (FEM) employing 
special wave absorbing boundaries to minimize reflections. Details on these 
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techniques can be found e.g. in Roesset (1980), Luco (1982), Gazetas (1983, 
1987, 1991), Kausel (2010), Vrettos (2014).  

 

Figure 2.1: Schematic illustration of the dynamic equilibrium of a vertically 
oscillating foundation.  

2.1.1 Definition of dynamic impedances  

This section presents the general methodology to calculate dynamic 
displacements or rotations of foundations subjected to steady-state harmonic 
loading. A typical application involves machine foundations, which are usually 
rigid block foundations supporting machinery that produces this type of dynamic 
loading. Since machine foundations are rigid bodies, their response to the 
dynamic excitation is linked with the deformation of the supporting ground. In 
addition, this method can be used to determine the dynamic soil–foundation–
superstructure interaction under any ground shaking, with the loading stemming 
in this case from inertial forces that develop in the oscillating superstructure.    

The method can be generalized to any degree of freedom; herein the vertical 
mode of oscillation is exemplarily presented. A schematic illustration of the 
problem is given in Figure 2.1(a). Consider a rigid foundation of total mass m 
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being subjected to a vertical harmonic force Q(t). The foundation responds by a 
vertical harmonic displacement w(t) with the same circular frequency ω that rules 
the excitation. Given the external force Q(t), the displacement w(t) needs to be 
determined.  

The motion of each body (foundation block and supporting ground) can be taken 
into account separately. Figure 2.1(b) includes the respective free-body diagrams 
along with the inertial forces. The foundation and the soil are always in contact, 
consequently, their displacements are identical and equal to the rigid body 
displacement w(t). The dynamic equilibrium of the block is written as:  

P(t) + mwሷ ሺtሻ = Q(t)   (2.1) 

 and that of the supporting soil: 

P(t) = ^		V	w(t)                                                                                                     (2.2) 

where ^  V is the dynamic vertical impedance for this system, defined as the 
dynamic force-over-displacement ratio.  

By combining Equations (2.1) and (2.2):  

^		V	w(t) + mwሷ ሺtሻ = Q(t)                                                                 (2.3) 

it is obvious that the solution of the problem requires the determination of ^  V. 
As known from structural dynamics, the steady-state solution w(t) to Equation 
(2.3) for the harmonic excitation Q(t) = Q·eiωt (i being the imaginary unit),  is not 
only harmonic as well, but has also the same frequency ω as the excitation. 
However, due to radiation and material damping in the system, the harmonic 
action Q(t) and the harmonic displacement w(t) are out-of-phase. Consequently, 
the latter can be resolved into one in-phase and one 90º-out-of-phase component, 
w1·eiωt and w2·ei(ωt+π/2), respectively. Thus, the dynamic impedance can be written 
in the form:  

	^		V =	
Q

w1	+ iw2 
=	KV + iωCV    (2.4) 

in which both KV and CV are frequency-dependent (Gazetas, 1991). The real 
component, KV, is called “dynamic stiffness” and reflects the stiffness and inertia 
of the supporting soil; note that the dependence on frequency in this case is linked 
with inertia, since soil properties are frequency-independent. The imaginary 
component ω∙CV involves the “dashpot coefficient” CV, which reflects the two 
types of damping in the system: the radiation damping due to energy carried by 
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waves spreading away from the foundation, and the material or hysteretic 
damping due to energy dissipation in the soil through hysteretic action.    

By substituting Equation (2.4) in Equation (2.1), and through straightforward 
operations, it is derived:  

KVw(t) + CVwሶ (t) + mwሷ ሺtሻ = Q(t)                                                                        (2.5) 

and then 

[(KV	-	mω2) + iωCV] w(t)= Q(t)                                                                         (2.6) 

Consistent with the physical interpretation above, Equation (2.5) describes the 
motion of a simple oscillator with mass m, spring KV and dashpot CV. 
Subsequently, an analogy is suggested by Equation (2.5) between the actual 
foundation–soil system and a system involving the same foundation supported 
on a “spring” and “dashpot” with moduli KV and CV, respectively, as portrayed 
in Figure 2.2. Having determined KV and CV for a frequency of interest, the 
vertical displacement can be calculated from Equation (2.7):  

w(t) =	
Q

(KV	-	mω2)	+	iωCV	
                                                                                         (2.7) 

and accordingly the oscillation amplitude:  

│w│=
Q

ට(KV	-	mω2)
2
+	ω2CV

	2
                                                                                         (2.8) 

 

Figure 2.2: Physical interpretation of the dynamic stiffness KV and the dashpot 
coefficient CV for a vertically oscillating foundation.   
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2.1.2 Dynamic impedances of piles  

The static stiffness of a pile group differs from the sum of stiffnesses of the 
individual piles; the ratio is defined as static group efficiency and remains always 
below unity. As illustrated in Figure 2.3, when a pile is located in the deformation 
field of a statically loaded neighbour pile, it will experience a displacement, 
which is a fraction αV of the movement of the vertically loaded pile. This fraction 
is called interaction factor. The concept of pile-to-pile interaction factors in the 
form used today was introduced by Poulos (1968, 1971), who demonstrated that 
the assessment of pile group effects is possible by superimposing the effects 
between all possible pairs of piles in the group. 

 

Figure 2.3: Definition of vertical pile-to-pile interaction factor αV.   

Under dynamic conditions, however, static interaction factors are proven 
insufficient. Numerical studies by Wolf & Von Arx (1978) and Nogami (1979) 
revealed that the dynamic group efficiency exhibits a strong oscillatory behavior, 
and can even (by far) exceed unity due to out-of-phase vibration of piles. 
Subsequent works including those by Nogami (1980, 1983), Kaynia (1982), 
Kaynia & Kausel (1982), Waas & Hartmann (1981, 1984) and Roesset (1984) 
confirmed this finding.  

The superposition method by Poulos (1968, 1971) can be extended to dynamic 
problems. Kaynia & Kausel (1982, 1991), Sanchez-Salinero (1983), Roesset 
(1984), Padrón (2008) and Padrón et al. (2008) showed that this approximation 
is in good accord with rigorous solutions. Practically, it is assumed that 
intermediate piles do not influence the interplay between a source and a receiver 
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pile. As Dobry & Gazetas (1988) state, this assumption is valid for wavelengths 
greater than six times the diameter of the pile (λ > 6d).    

Employing the above finding, Dobry & Gazetas (1988) developed a simple 
analytical method to compute the dynamic impedance functions of floating pile 
groups. The method is based on the following two assumptions: 

o The simultaneous emanation of cylindrical waves from all points along the 
pile shaft.  

o The pile is replaced by its axis, so the actual pile geometry is neglected.  

In this frame, Dobry & Gazetas (1988) presented an approximate expression for 
the vertical dynamic interaction factor: 

αV = (2s/d)-0.5 exp(-ξωs/cS) exp(-iωs/cS)                                                           (2.9) 

with s being the pile-to-pile distance, ξ the hysteretic damping ratio, and cS the 
S-wave velocity in the soil. 

It is underlined that the simultaneous emanation of waves from the pile shaft is 
deemed realistic in the case of soft soils in relation to the pile stiffness. Moreover, 
the replacement of the pile by its axis can be a problematic assumption for close 
pile spacings as well as high frequencies, where the dimensions of the pile are 
comparable to the corresponding wavelengths. 

2.2 Kinematic interaction 

2.2.1 Dynamic interaction of pile groups  

While for dynamic impedances a plethora of results in the form of diagrams as 
well as simple methods are available in the literature, e.g. Gazetas (1991), the 
kinematic interaction of piles has been considered mostly for the case of seismic 
excitation by vertically propagating shear waves or compressional waves, e.g. 
Waas & Hartmann (1984), Fan et al. (1991), Gazetas & Mylonakis (1998), 
Nikolaou et al. (2001), Crispin & Mylonakis (2022), Mylonakis & Crispin 
(2022).  

During dynamic excitation, the generated waves lead to free-field deformations, 
with the foundation–superstructure system being drifted too. The computation of 
the complete dynamic response of such a system, as exemplarily sketched in 
Figure 2.4 for the case of a single pile excited by vertically propagating S-waves, 
is possible through the superposition of the two following phenomena:  
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o Kinematic interaction (often referred to as ‘wave scattering’ effect) 
involving the response to base excitation of the system of Figure 2.4 with 
the mass of the superstructure being set to zero. 

o Inertial interaction, referring to the response of the complete pile–soil–
superstructure system to excitation by inertial forces from the acceleration 
of the superstructure due to the kinematic interaction. 

The computational convenience constitutes the basic motive in order to decouple 
the complete problem into the above effects, which, in reality, take place 
simultaneously. The separation is exact for linear systems, if the analysis at both 
stages is performed rigorously. Yet, the extension of the superposition to 
moderately non-linear systems is also possible as an approximation under 
conditions. 

The problem of kinematic interaction requires firstly the analysis of the free-field 
response to the considered dynamic excitation (in absence of the foundation), 
and then the analysis of the system consisting of the soil and the single pile or 
the pile group to account for the interplay between them.  

In addition, for the inertial response, a two-step approach can be implemented, 
which is also depicted in Figure 2.4. This two-step analysis, originally suggested 
by Kausel & Roesset (1974), involves the derivation of the dynamic impedances 
at the pile head or the cap of the pile group for the relevant modes of motion, and 
subsequently, the analysis of the dynamic response of the superstructure 
supported on the corresponding springs and dashpots, while it is subjected to the 
pile-head motion calculated through the kinematic interaction problem. The 
latter is known as foundation input motion (FIM). This principle is elucidated, 
among others, by Mylonakis et al. (1997), Gazetas & Mylonakis (1998), 
Mylonakis & Gazetas (1999).   

In the frame of the present study, particular emphasis is accorded to the kinematic 
response of piles to a stationary or moving harmonic load acting on the soil 
surface. The quantification of the kinematic interaction is possible by means of  
kinematic interaction factors also known as transfer functions, which are ratios 
that relate e.g. the amplitude of acceleration, displacement or rotation of the 
embedded foundation to that of the free-field (either at the same or at a different 
location). Due to radiation and material damping in the system, the acceleration, 
displacement or rotation components are generally out-of-phase with the 
excitation. Consequently, the kinematic interaction factors turn out to be 
complex functions of frequency. Herein, it is chosen to present the results mostly 
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in terms of displacement amplitudes (absolute values) with respect to the pile 
head or pile cap, when considering a piled foundation.   

 

Figure 2.4: Decoupling of the problem of dynamic response of a soil–pile–
superstructure system to seismic excitation with vertically propagating S-waves 
into kinematic and inertial interaction problems.    
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The solution of dynamic interaction problems is not a trivial process, since it 
almost exclusively requires sophisticated codes that are not generally accessible. 
Numerical continuum methods such as the finite-element method (FEM) are 
rarely used in engineering practice due to the complex modelling and the often 
prohibitive computation expenses. The latter are due to the fine discretization 
required in order to properly capture the small wavelengths (associated with high 
frequencies) in combination with the large dimensions of the investigated 
systems. Moreover, for practical applications, the size and economics of the 
project play a major role in the selection of an appropriate method.  

For vibration protection tasks in practice, a two-step method is used: firstly, the 
free-field vibrations to be expected at the location of interest are either obtained 
directly by field measurements (on the surface of the site and/or in a borehole) 
or predicted using suitable analytical or numerical methods based on the source 
characteristics (Vrettos, 2009). The output is then applied as a stationary 
excitation on a finite-element model of the construction, with the foundation 
compliance being abstracted by suitable springs and dashpots. Alternatively, the 
foundation is embedded in a soil continuum. Depending on availability, two- or 
three-dimensional (2D or 3D) models are employed. 

The knowledge gained so far from measurements (Appel et al., 2015) on the 
shielding efficiency of individual piles or pile groups does not yet allow a reliable 
quantification of the associated effects, with several questions remaining 
unanswered up to date. Regarding numerical methods, the work of Kaynia & 
Novak (1992) and Makris (1994) on the dynamic response of a single pile to the 
wave field of a Rayleigh wave should be mentioned. In the former, a versatile 
numerical continuum model for stratified soil is used. In the latter, a Winkler 
model with frequency-dependent springs and dashpots is employed for the 
calculation of the soil-pile interaction, and an explicit solution of the free-field – 
pile transfer function is derived. Makris & Badoni (1995) extended this 
methodology to pile groups under excitation by Rayleigh waves as well as 
oblique shear waves. The shielding efficiency of a row of piles has been also 
examined numerically (Avilés & Sánchez-Sesma, 1988; Kattis et al., 1999a,b; 
Lu et al., 2009; Tsai et al., 2008; Auersch, 2010). 
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2.2.2 Moving load  

The type of excitation plays an important role on the kinematic response of 
embedded foundations. In the majority of the studies to date, stationary loads of 
variable frequency are assumed. Loads from railway traffic are, however, 
location-variable. As a result, the speed of a moving load constitutes a further 
parameter that needs to be considered (Auersch, 2008).  

Special attention must be drawn to the nature of a moving load. A load of 
constant magnitude leads to a quasi-static response. By contrast, a time-varying 
magnitude is a governing factor in ground vibration (Katou et al., 2008), since it 
is associated with dynamic response. In railway traffic, both components are 
obviously present: the weight of the train is linked with the first one, while the 
vehicle-track interaction results in dynamic loading, with the sleeper distance 
determining the frequency. With the distance between the sleepers being 
typically equally to 50-60 cm, the observed vibrations lie in the frequency range 
between 5 and 40 Hz, with an offset of 10-20 m from the track (Katou et al., 
2008).   

The problem of waves induced in the soil by a surface time-dependent point load 
was first solved by Lamb (1904). In this work three types of waves were 
identified: P-waves, S-waves and Rayleigh waves, with wave velocities cP, cS 
and cR, respectively. Eason (1965) derived the surface displacements due to a 
traction on a rectangular or circular surface moving at constant speed on the 
surface of an elastic half-space. The solution in terms of integrals had to be 
numerically evaluated. Payton (1964), and Gakenheimer & Miklowitz (1969) 
obtained soil surface and internal displacements, respectively, when a suddenly 
applied point load is travelling at a constant speed on an elastic half-space. Fryba 
(1972) derived the stationary solution for this problem, while De Barros & Luco 
(1994) for a layered half-space. The problem of a point load of constant 
magnitude travelling from infinity at a constant speed on the surface of a half-
space was studied analytically by Barber (1996), who presented closed-form 
expressions for the surface deformations. Galvín & Domínguez (2007) presented 
a 3D time-domain formulation of the boundary element method (BEM) to 
investigate soil deformations induced by moving loads characterized by high 
speed. Using the software Plaxis 3D, Galavi & Bringreve (2014) shed light on 
aspects of finite-element modelling of a point load with constant magnitude 
travelling on the surface of the soil. Similar investigations were carried out by 
Kouroussis et al. (2013) utilizing a different numerical approach. 
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When an embedded foundation is considered in the vicinity of a moving load 
source, alternations in the induced wave field are to be expected as a result of 
kinematic interaction. Specifically, when assuming a moving vibrating source, 
both the excitation frequency, as well as the distance of the foundation from the 
load are significant parameters. Recently, by means of the FEM, Efthymiou & 
Vrettos (2022 a,b,c) presented results on the shielding efficiency of pile groups 
and single piles in the wave field of a moving point load with a magnitude 
varying harmonically with time. Since the focus was on the physics of the 
specific dynamic problem, numerical modelling of the track or the consideration 
of the load–track interaction were neglected. The simplified scenario examined 
in the above studies, where the static component corresponding to the weight of 
the train is ignored, is contrasted to the case of a stationary harmonic load. These 
findings are included in the present dissertation, and are enhanced by additional 
results and conclusions. 
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3 Dynamic impedances of piled foundations 
and embedded footings  

Before proceeding with the computation of the kinematic response of pile groups 
and piled rafts to a harmonic wave field, which constitutes the main objective of 
this work, a parametric study on the impedances of a variety of foundations 
including pile groups and piled rafts, as well as embedded footings is conducted. 
The finite-element software Abaqus (version 2019) is employed in the frequency 
domain to derive dynamic impedances for all modes of oscillation. The accuracy 
is assessed by comparison with available rigorous solutions. To shed light into 
modelling details, the influence of key aspects such as the mesh discretization 
and the distance from the region of interest of the infinite elements used herein 
as absorbing boundaries is examined in certain examples.  

The goal is to demonstrate that the finite-element method (FEM) with proper 
implementation is capable of reproducing the essential features of dynamic soil–
structure interaction phenomena over wide frequency ranges. The methodology 
can be used to solve problems of complex geometry and soil stratigraphy arising 
in engineering practice.  

3.1 Dynamic impedances of piled foundations 

3.1.1 Problem statement and finite-element modelling 

The dynamic impedances (vertical, horizontal and rocking) of a 4x4 pile group 
and a corresponding piled raft in a homogeneous half-space are calculated with 
the finite-element software Abaqus. For this purpose, direct-solution steady-state 
dynamic analyses are conducted in the frequency domain. A relatively close and 
a wider pile spacing are considered, with the ratio of the pile-to-pile distance over 
the pile diameter being equal to s/d = 2 and 5, respectively. Accordingly, 
different models are created, which are portrayed in Figure 3.1 along with aspects 
of mesh discretization. Only half of the problem is modeled, since advantage of 
symmetry is taken. Built-in infinite elements (CIN3D8) serving as absorbing 
boundaries are placed peripherally as well as at the base of each model to 
simulate a half-space. Both piles and soil are modelled with first-order 8-node 
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Figure 3.1: Finite-element models of a 4x4 pile group/piled raft with pile spacing 
s/d = 5 (a) and s/d = 2 (b) embedded in half-space.  
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continuum elements (C3D8). The pile–soil contact is fully bonded, implying an 
infinite tensile capacity, not allowing detachment, siding, or uplifting.  

The corresponding piled rafts are examined by adding a rigid, massless raft atop 
of the piles, which is also in perfect contact with the underlying soil. Quadratic 
rafts with the dimensions [17 m x 17 m] and [8 m x 8 m] are chosen for the 
configurations with s/d = 5 and 2, respectively.  Linear 4-node shell elements 
(S4) are used to model the raft. A fixed connection (no rotation) between the raft 
and the pile heads is considered. 

The soil is linear-elastic with a hysteretic damping ratio ξ = 5%. The Poisson 
ratio is taken as v = 0.4. With the Young’s modulus of the soil being equal to 
E = 30 MPa and the density ρs = 1.7 Mg/m3, the resulting S-wave velocity is 
cS ≈ 80 m/s.  

Assumed to represent concrete, a linear-elastic material with a Young’s modulus 
Ep = 30 GPa and vp = 0.2 is assigned to the piles. Consequently, the flexibility of 
the pile is equal to Ep/E = 1000. The ratio of the pile over soil density is 
ρP/ρS = 0.68. The pile length l = 15 m with the diameter d = 2·R = 1 m yield a 
slenderness l/d = 15.  

For the derivation of the dynamic impedances of the pile group, uniform 
displacement/rotation is directly applied on the pile heads. This boundary 
condition is assumed to be enforced by a rigid, massless cap, which is not 
modeled. On the other hand, for the analyses including the piled rafts, the 
excitation is applied on the complete raft surface. In both cases, the reference 
point is taken at the center-point of the configuration at the soil surface level. The 
dynamic impedance is then calculated as the ratio of the reaction force/moment 
at the reference point over the applied displacement/rotation. For each oscillation 
mode examined, only the corresponding degree of freedom of interest is active, 
while the rest remain constrained.   The harmonic excitation includes frequencies 
up to f = 13 Hz, which corresponds to a dimensionless frequency a0 = ω·d/cS = 1.  

A homogeneous mesh was created with a finite-element size equal to 0.5 m. This 
essentially means that the shortest S-wavelength λS is captured by approximately 
12 finite elements, which is sufficient for this type of problems.  

3.1.2 Results 

The vertical and horizontal static stiffnesses of the single pile, herein denoted as 
KV0_1 and KH0_1, respectively, are used to normalize the dynamic impedances. For 
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this purpose, an additional finite-element model, which is depicted in Figure 3.2, 
was created to perform the required analyses. Apart from the significantly 
reduced computational time due to the coarser mesh allowed by the static 
analyses, the main reason behind the choice of this particular model is the lower 
accuracy  ascertained in the analyses with the initial models comprising infinite 
elements (Figure 3.1) at static conditions. Note that according to the 
documentation of Abaqus (2019), the infinite-element formulation for static 
response is based on the work of Zienkiewicz et al. (1983), consequently 
differing from the one for dynamic response following the theory developed by 
Lysmer & Kuhlemeyer (1969). In the model portrayed in Figure 3.2, infinite 
elements are omitted; instead, conventional boundaries are placed at a sufficient 
distance from the single pile. The base of the model is fixed, thus corresponding 
to a rigid substratum, yet, since it is placed at a distance from the surface being 
equal to 4·l, its influence on the response is expected to be negligible. This aspect 
is particularly important, since the target is to reproduce stiffnesses for piles 
embedded in a half-space.  

 

Figure 3.2: Finite-element model for the static analysis of a single pile.  
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In Table 3.1, the static stiffnesses of a single pile with Ep/E = 1000 and l/d = 15 
from the finite-element analyses are compared to results in DGGT (2019) derived 
from Hartmann with the thin-layer method (TLM). The maximum discrepancy, 
observed in the case of the horizontal stiffness, is approximately equal to 10 %. 
Even though the influence of the rigid substratum is particularly critical for the 
vertical vibration mode, the remarkable agreement with the TLM solution 
confirms that the presence of a fixed base in the finite-element model does not 
affect the response, with the half-space solution being accurately reproduced.  

 

Table 3.1: Comparison of static stiffnesses of a single pile in homogeneous half-
space derived from finite-element analyses (FEA) with results from Hartmann 
with the thin-layer method (TLM); Ep/E = 1000, l/d = 15, v = 0.4. 

 
FEA TLM 

 
KH0_1

E·R
 

 

 
 

9.28 

 
 

8.42 

KV0_1

E·R
 

 

 
18.43 

 
18.4 

 

Figure 3.3 presents the vertical, horizontal and rocking impedances (^V, ^H, 

^R) of the 4x4 pile group/piled raft for s/d = 2 and 5. The vertical and horizontal 

impedances are normalized by the number of piles n and the corresponding static 
stiffness of the single pile. The resulting ratio is also defined as dynamic group 
efficiency. The rocking impedance is divided by the sum of the pile distances (xi) 
normal to the rocking axis times the vertical static stiffness of the single pile.   

First of all, the peaks in the dynamic stiffness curves indicate that a larger force 
is required in order to impose the boundary condition of uniform displacement 
at the pile heads, since the piles are excited in an out-of-phase motion. In the 
simplified scenario of two piles, for example, while the one pile is being pushed 
down, the other is being forced up. Therefore, it is not uncommon for the 
resulting dynamic group efficiency to exceed unity, and in fact by far. In the 
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static case, on the other hand, the group efficiency always attains values below 
1. In a similar manner, the valleys in the dynamic stiffness appear at frequencies 
associated with equiphase motion. The addition of a raft to the system 
significantly limits these peaks in the dynamic stiffnesses, leading to smoother 
curves.  

 

 

Figure 3.3: Dynamic impedances of a 4x4 pile group/piled raft in a homogeneous 
half-space; Ep/E = 1000, l/d = 15, v = 0.4. 
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Interestingly, for s/d = 2, the dynamic impedances of the pile group are almost 
identical to those of the piled raft for all vibration modes. Apparently, when the 
piles are closely spaced, the raft hardly affects the overall response. Instead, the 
inertial response is governed by the piles, the influence zones of which are 
overlapping, as revealed by the horizontal displacement contours due to 
horizontal loading at a0 = 1 in Figure 3.4. 

 

Figure 3.4: Contours of horizontal displacements (real part) due to horizontal 
loading at a0 = 1 of the various systems.  

 

A wider centre-to-centre pile distance (s/d = 5), on the other hand, leads to 
substantial differences between the pile group and the piled raft response at high 
frequencies. However, up to a0 ≈ 0.4, both foundation systems behave quite 
similarly for all cases due to the associated large wavelengths that expand the 
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influence zone of each pile. Certainly, differences at these low frequencies exist; 
however, due to the graph scale these are not visible. As portrayed in Figure 3.4 
for the highest applied dimensionless frequency a0 = 1, the larger distance 
between the piles does not permit an overlap of their influence zones, and 
subsequently, the contribution of the raft in the load distribution increases. This 
is manifested through a considerable shearing action in the supporting soil in the 
case of horizontal loading.  

The results from the finite-element analyses are verified against the rigorous 
solutions from Kaynia & Kausel (1982) and Hartmann (2015) in Figures 3.5 - 
3.7 in the case of the pile group for each vibration mode. The results from 
Hartmann (2015) were calculated in the frequency domain according to the 
approach by Hartmann (1986) which is based on the TLM developed by Waas et 
al. (1985).  

For the calculation of the single pile impedance, the finite-element model 
(dimensions, mesh fineness) in Figure 3.1(b) was used after being appropriately 
modified to account for a single pile located at the center of the plane of 
symmetry. 

The comparison with the rigorous results is overall satisfactory. The peaks in the 
response attain in the case of the finite-element analyses slightly lower values. 
The valleys are smoother as well. Some differences are detected mostly in the 
case of the pile group with s/d = 2; more specifically, for the dashpot coefficient 
in all types of loading at higher frequencies and the rocking dynamic stiffness. 
In addition, deviations can be observed at frequencies close to zero. These are 
attributed to the lower accuracy of the infinite elements used as “quiet” 
boundaries in the models as the static state is being approached. Instead of being 
properly absorbed from the infinite elements, the waves are rather partially 
reflected due to their large wavelengths associated with low frequencies. 
Subsequently, the extension of the finite-element region (and accordingly of the 
infinite-element size) is tested as a potential solution to the above issue, as shown 
next.     
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Figure 3.5: Comparison of the vertical dynamic impedances of a 4x4 pile group 
in a homogeneous half-space with the rigorous results from Kaynia & Kausel 
(1982) and Hartmann (2015); Ep/E = 1000, l/d = 15, v = 0.4. 

 



 

25 
 

 

Figure 3.6: Comparison of the horizontal dynamic impedances of a 4x4 pile 
group in a homogeneous half-space with the rigorous results from Kaynia & 
Kausel (1982) and Hartmann (2015); Ep/E = 1000, l/d = 15, v = 0.4. 
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Figure 3.7: Comparison of the rocking dynamic impedances of a 4x4 pile group 
in a homogeneous half-space with the rigorous results from Kaynia & Kausel 
(1982) and Hartmann (2015); Ep/E = 1000, l/d = 15, v = 0.4. 
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Targeting an improved accuracy at low frequencies, two larger finite-element 
models were created for the closely spaced pile group, which are illustrated in 
Figure 3.8. To differentiate between the various models, the initial model (recall 
Figure 3.1 (b)) will be now referred to as Model I. Model II retains the same 
mesh fineness, with the finite-element region size being the sole parameter that 
differentiates it from the initial model. The size of the model is further extended 
in the case of Model III, but since the focus lies on the calculation of dynamic 
impedances at low frequencies, the initial fine mesh discretization is not deemed 
necessary, thus, a larger finite-element size of 3 m (instead of the previous 0.5 
m) is selected. Only in the vicinity of the pile group a finer discretization is 
applied. The analyses with Model III consider frequencies up to f = 1.77 Hz, 
which corresponds to a0 = 0.07. Subsequently, 15 finite elements reproduce the 
shortest shear wavelength λS.    

 

 

Figure 3.8: Models II and III of the 4x4 pile group with s/d = 2 embedded in half-
space. 
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The comparison between the results from the different models is presented in 
Figure 3.9 along with the rigorous solution from Hartmann (2015). The vertical 
vibration mode is indicatively selected. Since emphasis is placed on the low-
frequency response, only the dynamic stiffness is presented. The analyses with 
Model II involve the initial excitation frequency range up to a0 = 1. At first 
glance, Models I & II yield practically the same results. This is to a great extent 
true, however, due to its larger size, Model II exhibits an improved performance 
as the static case is approached. The agreement with the rigorous results is even 
better in the case of the largest Model III, which due to its coarse mesh is only 
intended for low-frequency analyses. Despite the fact that all three dynamic 
stiffness curves obtained with the finite-element models tend inevitably to zero, 
it is clear that the accuracy at low frequencies can be significantly improved with 
the proper choice of model size. Based on these, when performing analyses over 
an extensive frequency range, employing different models for lower and higher 
frequencies, each accordingly adapted to the requirements of the corresponding 
frequency range,  leads not only to considerable computational savings, but also 
to higher accuracy.  

 

 

Figure 3.9: Influence of the model size on the vertical dynamic stiffness of a 4x4 
pile group; Ep/E = 1000, l/d = 15, v = 0.4. 
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3.2 Dynamic impedances of an embedded footing 

3.2.1 Problem statement and finite-element modelling 

In the present section, an extensive parametric study on the dynamic impedances 
of an embedded footing in a soil stratum is presented in detail. The SUPELM 
code (Kausel, 1999) based on the thin-layer method is employed for verification. 
On this basis, the finite-element model is optimized in order to achieve the 
highest possible accuracy.  

The problem involves a cylindrical footing with a diameter d = 2·R = 1 m, being 
equal to that of the piles in Section 3.1. The massless, rigid footing has an 
embedment depth l = 2·d = 4·R. The foundation is embedded in a soil stratum 
with a thickness H = 2·l, and is in perfect contact with the supporting soil. 

In order to save computational time, the optimization of basic characteristics such 
as the model size and mesh fineness is performed with respect to the vertical 
mode of oscillation, so that an axisymmetric finite-element model can be 
employed. The initial model is portrayed in Figure 3.10. The radius of the finite-
element region of the model, Lf, as well as the finite-element size LFE, are the 
model parameters to be varied.  

 

Figure 3.10: Axisymmetric finite-element model of a cylindrical foundation with 
l/d = 2 embedded in a soil stratum with thickness H = 2·l.  

 

For the modelling of the soil and the embedded footing, 4-node axisymmetric 
elements CAX4 are used. These are expanded into C3D8 in three-dimensional 
models. The base of the model is fixed in all three directions to account for the 
rigid substratum. Infinite elements (CINAX4) are placed peripherally at a 
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distance Lf = 16·R to minimize wave reflections. In accordance with the 
documentation of Abaqus (2019), the length of the infinite elements Linf is taken 
equal to Lf. Since, in a sense, the examined footing is a very short pile, the radius 
of the axisymmetric model was chosen on the basis of Model I (Figure 3.1(b)). 
Appropriate boundary conditions are applied on the axis of symmetry. A unit 
uniform vertical displacement is imposed on all points of the bottom surface of 
the footing, with the load reference point being located at the center-point on the 
symmetry axis.  

The fineness of the mesh is characterized by the finite-element size LFE prevailing 
at the largest part of the model. A refined region in the vicinity of the foundation 
can be distinguished in Figure 3.10, with a two times finer discretization (in the 
horizontal direction) in comparison with the rest of the mesh with LFE. This 
refined region includes the footing as well, and is extended from its edge by a 
distance equal to R. In the initial model, the finite-element size is taken as 
LFE = 0.5 m, while in the refined region this value is half. This 2:1 mesh ratio 
between the main part of the model and the refined region is kept constant for all 
cases considered herein. For example, in analyses with LFE = 0.25 m, the finite-
element size in the refined region is equal to 0.125 m.   

The soil properties are kept the same as in Section 3.1.1. Accordingly, the initial 
highest excitation frequency applied is f = 13 Hz. However, since in the frame of 
the current parametric study, the mesh is varied too, analyses involving finer 
discretized models consider frequencies up to f = 26 Hz, as shown in the sequel.  

 

Figure 3.11: Influence of the model size on the vertical dynamic impedance of a 
footing with l/d = 2 embedded in a soil stratum with thickness H = 2·l; v = 0.4. 
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3.2.2 Results 

Figure 3.11 depicts the vertical dynamic impedance of the embedded footing 
derived from axisymmetric models with varying model size, but with a constant 
mesh discretization (LFE = 0.5 m) corresponding to approximately 12 finite 
elements per S-wavelength λS at the highest excitation frequency f = 13 Hz 
(a0 = 1). The FEA results are compared to the rigorous solution obtained with the 
code SUPELM (Kausel, 1999), which requires discretization only in the vertical 
direction, while accounting for a perfect wave attenuation in the lateral direction. 
All dynamic stiffnesses are normalized by the vertical static stiffness from 
Kausel (1999) denoted as KV0.  

The response up to a0 = 0.6 is almost independent from the model radius Lf. The 
small deviation from the rigorous solution detected at quasi-static conditions 
tends to disappear as the excitation frequency increases. As expected, at higher 
frequencies, the model with the smallest radius Lf = 16·R yields the least accurate 
results. By increasing the model size, the agreement with the rigorous solution 
improves. In fact, in the case of Lf = 32·R an almost perfect match is 
accomplished. 

 

Figure 3.12: Influence of the mesh fineness on the vertical dynamic impedance 
of a footing with l/d = 2 embedded in a soil stratum with thickness H = 2·l; 
v = 0.4. 

 

To examine whether the mesh fineness could be the culprit behind the 
discrepancies in the range a0 = 0.75 - 1 in the case of the axisymmetric model 
with Lf = 16·R, a mesh twice as fine as the initial one is implemented. As shown 
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in Figure 3.12, the results at these high frequencies are practically insensitive to 
the mesh fineness. Nevertheless, the finer mesh has a positive influence on the 
accuracy at low frequencies. In specific, the system becomes “softer”, which 
leads to a slightly reduced stiffness at quasi-static conditions.   

 

Figure 3.13: Influence of the mesh fineness on the vertical dynamic impedance 
of a footing with l/d = 2 embedded in a soil stratum with thickness H = 2·l; 
v = 0.4. 

 

Based on the above observations, the optimal model is the one with Lf = 32·R. 
The next step is to explore the influence of the mesh discretization in the specific 
model. Starting from a mesh with LFE = 0.5 m, two additional refinement 
schemes are implemented by respectively halving the initial finite-element size. 
Note that since a finer mesh is applied, the new systems can support higher 
excitation frequencies by reproducing the associated smaller wavelengths. 
Consequently, the highest excitation frequency applied is increased from f = 13 
to 26 Hz, with the latter yielding a0 = ωd/cS = 2. Figure 3.13 compares the results 
for the three discretization degrees. As already shown in the previous case of 
Lf = 16·R in Figure 3.12, with finer mesh, the match with the rigorous solution 
improves further at low frequencies. Up to a0 = 1, which was the initial target, 
all three configurations yield similar results achieving a very good match with 
Kausel (1999). Beyond this point, however, the agreement deteriorates 
considerably with coarser mesh. Indicatively, the deviation of the curve obtained 
with the model with LFE = 0.5 m from the rigorous solution reaches 
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approximately 20 % at a0 = 2. For this specific combination of mesh and 
excitation frequency, an S-wavelength can be captured by about 6 finite 
elements, which is apparently an insufficient number. The other two finer 
discretization schemes yield considerably improved results; yet, in both cases a 
fluctuation is observed in the response, mostly in the dynamic stiffness 
component. 

 

Figure 3.14: Influence of model size/mesh fineness on the vertical dynamic 
impedance of a footing with l/d = 2 embedded in a soil stratum with thickness 
H = 2·l; v = 0.4. 
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Obviously, having considered a very fine mesh with LFE = 0.125 m excludes the 
possibility of the fluctuation in the curves being an outcome of inadequate mesh 
discretization. To examine whether the model size affects in that way the 
response at high frequencies, a further axisymmetric model was created with 
Lf = 64·R, twice as large as the optimal model in the longitudinal direction. The 
two finer discretization schemes (LFE = 0.25 m and 0.125 m) as in the case of the 
optimal model are considered. Indeed, as Figure 3.14 reveals, the largest models 
eliminate the fluctuations, yielding smooth curves in the complete frequency 
range. The model with Lf = 64·R and LFE = 0.125 m exhibits practically no 
differences from Kausel (1999). Note that analyses with a 3D model with these 
characteristics are computationally challenging.  

Moreover, attention is drawn to the valley in the vertical dynamic stiffness 
curves, which can be distinguished at a0 ≈ 0.95. To shed light into the physical 
meaning behind this, the one-dimensional amplification theory is employed for 
the calculation of the eigenfrequencies of a soil stratum with thickness H excited 
by vertically propagating P- or S-waves, which are given by the following 
formula:  

fn	=	(2·n - 1)
௖

4·H , n = 1, 2, 3, …                                                                                       (3.1) 

where the velocity c is equal to cP or cS for P- or S-wave excitation, respectively.    

Note that the above expression refers to systems with zero hysteretic damping. 
Moreover, the soil stratum considered herein involves a massless, rigid footing 
being a local excitation source. Nevertheless, Equation (3.1) can be useful for 
roughly determining the eigenfrequencies of the actual system.    

In the examined configuration, the soil stratum has a thickness H = 2·l = 4 m, 
and a P-wave velocity cP = 194.46 m/s. Subsequently, its first eigenfrequency 
(n = 1) under P-wave excitation is f1 = 12.15 Hz corresponding to a0 = 0.96, 
which almost coincides with the frequency at which the valley appears. 
Practically, this suggests that the inertial loading at this frequency activates the 
first eigenmode of system for P-wave excitation. Due to resonance, the footing 
follows the soil movement. As a result, the force required for the embedded 
footing to resist the imposed displacement drops significantly.  

In the extended frequency range up to a0 = 2 considered herein (Figures 3.13 and 
3.14), solely a single valley manifests itself in the response. Indeed, the second 
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eigenfrequency according to Equation (3.1) is f2 = 36.46 Hz, which lies above 
the upper limit in the present study defined by f = 26 Hz.    

 

 

 

Figure 3.15: (a) 3D Finite-element model with Lf = 16·R and LFE = 0.5 m; (b) 
Details of the 3D FE model with Lf = 32·R and LFE = 0.25 m. 

 

 

Finally, the effect of three-dimensionality on the results is explored. Even though 
the axisymmetric analyses reflect the actual problem of the vertical inertial 
loading considered herein, axisymmetric elements are based on a formulation 
different from the one for typical brick elements in 3D models. For this purpose, 
two 3D finite-element models with Lf = 16·R and Lf = 32·R were created with 
LFE = 0.5 m  and LFE = 0.25 m, respectively. The first model, as well as details of 
the second one are portrayed in Figure 3.15. The vertical impedances derived 
from the corresponding axisymmetric and 3D models are presented in Figures 
3.16 and 3.17. Interestingly, the curves from the 3D models are smooth.  In the 
case of Lf = 32·R, the fluctuation detected in the response calculated with the 
axisymmetric model is eliminated when conducting 3D analyses.       

 



 

36 
 

     

 

Figure 3.16: 3D vs. AX conditions: Vertical dynamic impedance of a footing 
with l/d = 2 embedded in a soil stratum with thickness H = 2·l; v = 0.4. 

 

 

Figure 3.17: 3D vs. AX conditions: Vertical dynamic impedance of a footing 
with l/d = 2 embedded in a soil stratum with thickness H = 2·l; v = 0.4. 

 

It is deduced that the 3D model with a finite-element region size of Lf = 32·R and 
a finite-element size LFE = 0.25 m (12 finite elements per λS for the highest 
excitation frequency f = 26 Hz) is ideal for the calculation of dynamic 
impedances of the deeply embedded footing with respect to both accuracy and 
computational time. With it, further analyses are conducted to derive the 
horizontal as well as the rocking impedance. 
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Figure 3.18 shows the results for the horizontal dynamic impedance of the 
footing compared to those from Kausel (1999). Both the real and imaginary part 
are normalized by the horizontal static stiffness KH0 from Kausel (1999). Overall, 
the FEA results match the rigorous solution quite well. Discrepancies become 
more pronounced as the excitation frequency increases. The dynamic stiffness 
derived from the FEA exhibits a local peak at a0 ≈ 0.55, while the dashpot 
coefficient curve is also locally slightly unstable. 

To elucidate the presence of the valley in the dynamic stiffness, Equation (3.1) 
is once again employed, yet, by introducing the S-wave velocity in the soil cS. 
This is because the horizontal inertial loading of the footing excites the soil 
stratum in a similar manner as vertically propagating S-waves during a seismic 
event. As a first eigenfrequency under S-wave excitation, Equation (3.1) yields 
f1 = 4.96 Hz. The valley in the numerical results for the soil stratum including the 
embedded footing is present at a0 ≈ 0.43, which corresponds to f ≈ 5.49 Hz. The 
deviation from the analytical solution is equal to approximately 10 %, confirming 
that the valley is an outcome of resonance.     

 

 

Figure 3.18: Horizontal dynamic impedance of a footing with l/d = 2 embedded 
in a soil stratum with thickness H = 2·l; v = 0.4. 

 

Similarly, the rocking impedance is shown in Figure 3.19. A slightly unstable 
response can be noticed in the range a0 ≈ 0.4 - 0.7; nevertheless, the finite-
element results match very well the solution from Kausel (1999). Negligible 
differences in the dynamic stiffness are also evident at higher frequencies, with 
the maximum being equal to 6 %.   
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Figure 3.19: Rocking dynamic impedance of a footing with l/d = 2 embedded in 
a soil stratum with thickness H = 2·l; v = 0.4. 

 

Lastly, it is pointed out that the dynamic stiffnesses of the embedded footing 
derived from the FEA are in remarkable agreement with the rigorous results at 
low frequencies. Recall, on the other hand, in Section 3.1.2, the significant 
deviations of the dynamic stiffnesses of the pile groups as static conditions are 
approached. Despite the fact that the two foundation systems are different, a key 
aspect in the modelling is that the footing is embedded in a soil stratum, while 
the piled foundations in a half-space. The assumption of a soil stratum resting on 
a rigid substratum suggests a straightforward boundary condition at the base of 
the model in contrast with the absorbing boundaries (e.g. infinite elements) used 
in the case of a half-space, the actual contribution of which is impossible to 
quantify. Apparently, it is the boundary condition at the base that is of critical 
importance for all modes of oscillation. Even though the models for the 
embedded footing include infinite elements peripherally, these do not seem to 
have an influence on the lateral response at low frequencies.  

3.3 Conclusions  

To gain insight into the mechanics of the problem of inertial loading of piled 
foundations, direct-solution steady-state dynamic analyses were performed in the 
frequency domain using the finite-element code Abaqus. Dynamic impedances 
were calculated for all vibration modes (vertical, horizontal and rocking). 
Furthermore, to elucidate details in modelling, a parametric study on the inertial 
response of a deeply embedded footing was also presented with respect to the 



 

39 
 

optimization of the finite-element model. In both examples, rigorous solutions 
were employed to verify the results.     

The inertial response of a 4x4 pile group is contrasted to that of a corresponding 
piled raft in which the raft is in perfect contact with the underlying soil. A close 
as well as a wider pile spacing is considered. Both pile foundations are embedded 
in a half-space, whereas the deeply embedded footing in a soil stratum. The 
following conclusions are drawn:   

o In the case of closely spaced piles, the dynamic impedances of the pile 
group are practically equal to those of the piled raft for all vibration modes. 
The cause of this similarity lies on the overlap of the influence zones of 
the piles, prohibiting the raft in the case of the latter to participate in the 
load sharing.  

o Even in the case of the wide pile spacing, the inertial response of both 
systems exhibits remarkable similarities up to a0 ≈ 0.4 for all modes of 
oscillation. While at higher frequencies this is not the case, as static 
conditions are approached, the influence zones of the piles expand due to 
the associated large wavelengths, and overlap despite the wider pile-to-
pile distance. 

o When simulating a half-space, the use of infinite elements as absorbing 
boundaries at the base of the model can be problematic in dynamic 
analyses at low frequencies or static analyses. It is possible to overcome 
this issue by increasing the distance of the boundary from the region of 
interest.  

o With respect to the point above, when performing dynamic analyses for a 
half-space over a wide frequency range, it is suggested to employ at least 
two finite-element models, each properly adapted (model size, mesh 
fineness) to the requirements of the corresponding frequency range. 
Hence, not only the accuracy of the results is improved, but also 
computational costs can be significantly reduced.    

o In models for static analyses, it is recommended to completely avoid the 
use of infinite elements to simulate a half-space. Instead, conventional 
boundaries can be used at a sufficient distance from the region of interest 
without compromising accuracy.      

o The analyses considering a soil stratum resting on a rigid substratum, 
yield accurate results even at very low frequencies, in contrast to those 
assuming a half-space as explained above. The key difference between 
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the pertinent models lies on their base, which, in the case of the soil 
stratum, is fixed in all directions – a straightforward boundary condition. 
It is then deduced that the less accurate response at low frequencies 
detected in the case of the half-space is due to the infinite elements used 
at the base of the model, and not due to those placed peripherally, since 
the latter are also present in the soil stratum models. 
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4 Single piles and pile groups in the wave field of 
a moving load   

In this chapter, the focus is placed on the kinematic response of single piles and 
pile groups to a wave field emanating from a distant vertical harmonic point load 
travelling with a constant speed on the surface of the soil. Moreover, the problem 
of a stationary harmonic point load is also considered as a lower-bound scenario 
corresponding to a travelling speed equal to zero. The finite-element analyses are 
carried out in the time domain targeting a range of high frequencies relevant for 
the vibration protection practice. Finally, a comparison is presented with a simple 
analytical solution on the pile response to a Rayleigh wave field. The main idea 
behind these analyses is to answer the following questions:  

o Can a stationary harmonic load be a rational approximation of a 
moving harmonic load?  

o At which distance from a vertical harmonic point load is the 
assumption of far-field conditions valid? 

o For which cases of practical interest can the existing solution for piles 
under Rayleigh wave excitation be implemented?  

Thus, not only useful solutions for the engineering practice are provided, but also 
valuable insight is gained into the problem of indirect harmonic loading of piled 
foundations.   

4.1 Single pile in a Rayleigh wave field – Winkler model  

To date, little attention has been paid to the dynamic response of a single pile in 
a Rayleigh wave field. An exception is the study of Makris (1994), who presented 
a simple analytical method based on a Winkler model with frequency-dependent 
springs (kz) and dashpots (cz) to account for the soil–pile interaction. The key 
points of the method are summarized in the present section. 

A floating pile with length l, diameter d, density ρp and Young’s modulus Ep, 
harmonically excited through a Rayleigh wave field, is assumed. The excitation 
frequency is denoted as f, with the circular frequency being ω = 2·π·f. Only the 
vertical component of the oscillation is presented, since it is of greater 
importance for the practice of vibration protection. The pile is embedded in a 
homogeneous half-space characterized by a density ρ and a shear-wave (S-wave) 
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velocity cS or, alternatively, by a shear modulus G and a Poisson ratio v. The 
Young’s modulus of the soil is E = 2·G·(1 + v).   

According to the wave propagation theory (Achenbach, 1973; Graff, 1975), the 
variation of the vertical displacement w of the free-field due to the passage of 
Rayleigh waves can be expressed as: 

w	(z)	= w1e-a1 z + w2e-a2 z																																																																																												(4.1)	

where 

w1	=	-ට1-	ψP
2  ,										w2	= γ                                                                               (4.2) 

α1	=	
ω
cR
ට1	-	ψP

2  ,           α2	=	
ω
cR
ට1	-	ψS

2                                                           (4.3) 

ψS = 
cR

cS
 ,          ψP = 

cR

cP
 = ψSට

1	-	2ν
2൫1	-	ν൯	                                                              (4.4) 

γ = 
2 - ψS

2

2ට1 – ψS
2
                                                                              (4.5) 

with cR being the Rayleigh  wave velocity, and cp the dilatational wave (P-wave) 
velocity in the soil, respectively. 

The interaction between pile and soil is taken into account by means of a series 
of Winkler springs and dashpots, as portrayed in Figure 4.1. The method from 
Makris (1994) utilizes the following algebraic expressions for the spring and 
dashpot coefficients, which were developed by matching the dynamic head 
displacement from Winkler and finite-element analyses for a Poisson’s ratio of 
v = 0.4 (Gazetas & Makris, 1991): 

kz	=	0.6·E·൫1	+	0.5 a0
0.5൯                                                                                 (4.6) 

cz	=	czradiation+ czhysteresis	=	1.2·π·a0
-0.25·ρ·cs d	+	2·ξ·

kz
ω 

                                        (4.7)              

where a0 is the dimensionless frequency defined as:  

a0	=	
ω·d

cS
                                                                                                         (4.8) 

and ξ is the hysteretic damping ratio in the soil. Note that one of the 
approximations in the derivation of the Equations (4.6) and (4.7) for the spring 
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and dashpot coefficient, respectively, is to neglect the pile slenderness and 
flexibility reflected by the terms l/d and Ep/E, respectively.   

 

 

 

Figure 4.1: Single pile in a Rayleigh wave field.  

 

From the differential equation from Makris (1994) for the vertical displacement 
at the pile head, and with appropriate boundary conditions (no stresses at pile 
head and pile tip), an expression in explicit form for the vertical displacement 
amplitude wp(0) at the pile head is derived: 

wp(0) = 	
εz

δ· sinh (δ·l)  [ሺh1+h2ሻ coshሺδ·lሻ -ሺh1· expሺ-a1·lሻ+ h2· expሺ-a2·lሻሿ						 (4.9) 

																-	εz (
h1

a1
+

h2

a2
)    

where  

h1=
w1·a1

a1
2	-	δ2 , 							 h

2
=

w2·a2

a2
2	-	δ2                                                                                   (4.10) 

εz= 
kz	+	i·ω·cz 

Ep·Ap
                                                                                                   (4.11) 

δ2= 
kz + i·ω·cz - mp·ω2 

Ep·Ap
                                                                                        (4.12) 

with i being the imaginary unit, mp the mass of the pile, and Ap the cross-sectional 
area of the pile (Ap = π·d2/4). 
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Representative results in terms of transfer functions relating herein the vertical 
displacement amplitude at the center of the pile head │wp (0)│ to that of the free-
field │wff (0)│ at the same location, are provided in Figure 4.2. First, one can 
notice the strong dependency of the transfer function on frequency. Apart from 
this, though, the pile slenderness l/d and flexibility Ep/E also play a major role. 
For the vibration protection practice, these conclusions are of particular 
importance. 

 

Figure 4.2: Vertical transfer function dependent on dimensionless frequency 
according to Equation (4.9). 

4.2 Excitation due to a vertical harmonic point load – 
Finite-element method 

4.2.1 Modelling of the near-field 

The resulting wave field due to a dynamic excitation source, e.g. a vertical 
harmonic point load, acting on the surface of a half-space, involves body waves 
(P- and S-waves) as well as Rayleigh waves. As schematically illustrated in 
Figure 4.3 (redrawn from Woods (1968)), body waves travel into the soil along 
a hemispherical wave front, while Rayleigh waves spread out radially outward 
along a cylindrical wave front. At the surface of a half-space, the amplitude of 
body waves is proportional to 1/r2, with r being the distance from the source of 
excitation. The amplitude of Rayleigh waves, on the other hand, is proportional 
to 1/r0.5, which signifies that the attenuation of Rayleigh waves is slower. 
Essentially, this means that at a distance from the excitation source, while body 
waves will have completely dissipated, Rayleigh waves will still be further 
propagating. The area, where only Rayleigh waves are present, is defined as the 
far-field. 
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Figure 4.3: Distribution of waves from a circular footing (Woods, 1968). 

 

Numerical limitations associated with the size of a 3D finite-element model do 
not allow the perfect simulation of far-field conditions with complete wave 
attenuation at large distances. Nevertheless, it is certainly useful for practical 
applications to (even roughly) determine a distance from the excitation source, 
up to which body waves will have dissipated to a significant extent, with 
Rayleigh waves dominating further on. 

For this purpose, a finite-element model accounting for near-field conditions has 
been created with the software Plaxis 3D (2021). With this model, the dynamic 
response of: (a) the free-field, (b) a pile group and (c) a single pile in the wave 
field emanating from a distant vertical harmonic point load is investigated. The 
numerical analyses are conducted in the time domain. Taking advantage of 
symmetry, only half of the problem is simulated. The model including the 3x3 
pile group (in absence of a pile cap), as well as aspects of the finite-element 
discretization are depicted in Figure 4.4. By simply replacing in the model all 
piles with soil, the free-field response is obtained. In a similar manner, to 
calculate the single pile response, only the pile of interest located at the face of 
symmetry remains active, while the rest of the piles are substituted by soil. 

 A top view of the 3x3 pile group geometry is given in Figure 4.5. Furthermore, 
the highlighted in grey front and furthest-back central piles, referred to as P3 and 
P1, respectively, serve as reference piles for which transfer functions are derived. 
The distance between the point load and a reference pile in the group or a single 
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pile is denoted as x0. More specifically, a single pile is considered at a varying 
distance x0 = 4, 8, 12, 16 m from the load.  

An optimized model size is selected, with the vertical harmonic point load placed 
asymmetrically. Since the focus lies on the response of the pile group and free-
field next to the load, only the respective side of the model needed to be 
sufficiently extended  to ensure minimum reflections at the boundary. Boundary 
conditions preventing the out-of-plane movement of the vertical plane of 
symmetry  are implemented. The model has a depth of 20 m. To simulate a half-
space, viscous boundaries have been placed peripherally and at the base. These 
special boundaries, promising to absorb incident waves, are based on the theory 
of Lysmer & Kuhlemeyer (1969). For the simulation of a soil stratum on a rigid 
substratum, the base of the model is “fixed” in all three coordinate directions. 

 

 

Figure 4.4: Three-dimensional finite-element model with a 3x3 pile group (in 
absence of a pile cap). 

The soil is modelled as a linear-elastic continuum with a shear modulus 
G = 30.5 MPa, a density ρ = 1.89 Mg/m3 and a Poisson’s ratio v = 0.4, resulting 
in a shear wave velocity in the soil cS = 127 m/s and a Rayleigh wave velocity 
cR = 120 m/s. Furthermore, a Rayleigh-type damping is introduced in the soil. 
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Since this type of damping is frequency-dependent, it was suitably selected to 
correspond to a hysteretic damping of approximately ξ = 1% for the frequencies 
of interest lying between 15 and 45 Hz. The pertinent Rayleigh damping 
parameters (α and β) inherent to time-domain computation (Kausel, 2017) attain 
the values α = 1.555 and β = 0.05836·10-3. The Poisson’s ratio v = 0.4 is chosen 
to be in accordance with the assumed value in the spring and dashpot coefficients 
(Equations (4.6) and (4.7)) in the method from Makris (1994), with which a 
comparison is presented in the sequel. 

For the piles, which consist of volume elements, a length equal to l = 10 m and a 
diameter d = 0.67 m are selected, resulting in a ratio l/d = 15. A linear-elastic 
material is assigned to the piles with a Young’s modulus Ep = 30 GPa, a 
Poisson’s ratio vp = 0.2 and a unit weight γp = 25 kN/m3 corresponding to 
concrete. For the main configuration examined herein, this yields Ep/E = 350 and 
ρp/ρ = 1.35. The piles are in a fully bonded contact with the surrounding soil, 
allowing no slippage or detachment. 

 

Figure 4.5: Top view of the problem of indirect loading of a 3x3 pile group. 

 

Both soil and piles are modelled with 10-node tetrahedral elements providing a 
second-order interpolation of displacements. 

The basic configuration targets an excitation frequency equal to f = 30 Hz. 
Additional frequencies between 20 and 40 Hz are also considered. Dynamic 
analyses require an adequate degree of mesh discretization that depends on the 
applied frequency of excitation. As a rule of thumb, a minimum number of 5 
finite elements is required in order to reproduce a wavelength. Herein, the finest 
possible mesh was created with an approximate element size equal to 0.35 m, 
which at f = 30 Hz corresponds to about 11 finite elements per Rayleigh 
wavelength λR. 
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The total duration of each dynamic analysis was set equal to 0.67 s, which 
involves 20 cycles of dynamic loading at f = 30 Hz. The time-step is equal to 
0.001675 s. Consequently, at f = 30 Hz, approximately 20 data points reproduce 
one dynamic cycle. Since the time-step is kept constant for all dynamic analyses, 
at higher frequencies the number of data points for one dynamic cycle drops (e.g. 
about 15 data points correspond to a dynamic cycle at f = 40 Hz), which slightly 
impairs accuracy. Accordingly, this is reversed at lower frequencies. 

When conducting an analysis in the time domain, the system requires a certain 
number of cycles to reach a steady-state. In our case, for example, at f = 30 Hz 
this is accomplished after approximately 15 cycles of dynamic loading at the 
source. The displacement amplitude is determined as the average of the 
maximum and absolute minimum value of the response after the steady-state 
response has been reached. The deviation is yet negligible. 

 

Figure 4.6: Vertical displacement time-history at a distance of x0 = 16 m from 
the load with an excitation frequency f = 30 Hz. 3D FE model; half-space. 
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Indicatively, Figure 4.6 shows the displacement time-history at a distance of 
x0 = 16 m from the load at a frequency f = 30 Hz, as derived from the 3D model 
for half-space. Although the oscillation of the load starts at the beginning of the 
dynamic analysis, the emanating waves do not instantly reach the observation 
point. Subsequently, there is practically no motion at x0 = 16 m at the first part 
of the time-history, with the number of recorded cycles being understandably 
less than 20, which, as stated earlier, is the applied input for the excitation source. 
Furthermore, the displacement amplitude begins to stabilize after 0.35 s, 
indicating that the particular system requires at least this amount of time in order 
to reach a steady-state. Finally, in the enlarged selected time-window one can 
identify the data points obtained from the analysis. 

Any displacement profiles with depth shown herein are obtained at a time-step 
during the steady-state response, at which the displacement at the surface attains 
its maximum value. 

4.2.2 Modelling of the far-field 

Apart from the 3D finite-element model previously described, an axisymmetric 
model was created in Plaxis 2D (2021) in order to calculate the response of the 
free-field under Rayleigh wave excitation. Due to the symmetry of the problem, 
this type of simulation of the free-field leads to considerable computational 
savings in comparison with a respective 3D analysis. In this axisymmetric model, 
the peripheral viscous boundary is placed at a sufficiently large distance from the 
excitation source, since the goal is to determine the distance from the harmonic 
point load, at which far-field conditions can be assumed as an acceptable 
approximation. For this purpose, a comparison with the analytical solution for 
the far-field is presented.  

The same depth as in the 3D model, namely H = 20 m, is selected. Since the 
analytical solution for Rayleigh wave excitation refers to a half-space, viscous 
boundaries are implemented at the base of the model. Two model radii are tested. 
Apart from the model with a radius of 50 m chosen in order to account for far-
field conditions, a model with a radius of 32 m, which coincides with the distance 
between load and furthest boundary in the previously presented 3D model, was 
also created for comparison in terms of the free-field response at the surface. For 
both cases, the finite-element discretization is kept constant, being almost twice 
as fine as for the case of the 3D model. In specific, for the single applied 
excitation frequency f = 30 Hz, 20 finite elements correspond to a Rayleigh 
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wavelength λR. The finite-element model for the far-field is depicted in Figure 
4.7. 

The duration of the dynamic analysis had to be sufficient for the waves 
emanating from the harmonic point load to reach the far-field, so that steady-
state conditions at these large distances can be established. A total duration of 
2 s is applied, which involves 30 dynamic cycles of excitation. The time-step is 
constant and equal to 0.00125 s; this practically means that one dynamic cycle is 
described by approximately 26 data points. 

 

Figure 4.7: Axisymmetric finite-element model for the far-field.   

 

4.2.3 Identification of the far-field  

The first step is to obtain vertical displacement depth profiles at a varying 
distance r from the point load at the near- and far-field. The goal is to determine 
the distance at which the far-field can be assumed with a good approximation. 
Each displacement depth profile is basically a numerical snapshot after steady-



 

51 
 

state conditions have been reached at a time-step, at which the vertical 
displacement at the surface attains its maximum value. 

With these displacement depth profiles, which are obtained with the larger 
axisymmetric model (20 m x 50 m) and shown in Figure 4.8, it is possible to 
identify the far-field. It is reminded that at the far-field, P- and S-waves have 
dissipated, so the wave field is dominated by Rayleigh waves. The analytical 
solution for the far-field (Equation (4.1)) is also depicted. As can be seen, a 
relatively good agreement with the analytical solution is established at a distance 
from the source between 7.5·λR and 10·λR. It is underlined, that for practical 
applications, the analytical solution for the far-field can be considered for the 
response of the surface even at close distances of 2-3·λR (Rücker, 1989; Vrettos, 
1991; Meek & Wolf, 1993). This is in good accord with the findings herein, and 
as Figure 4.8 reveals, the numerical results match the analytical solution quite 
well even up to a depth of z = λR.  

 

Figure 4.8: Depth profiles of vertical displacements at different distances from 
the harmonic point load; axisymmetric FE model.  

 

At the far-field all points with depth should move in-phase. Certainly, the phase 
difference in the motion of the free-field depth profile in the close vicinity of the 
harmonic load (r/λR = 2.5) is a direct consequence of the interference of P- and 
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S-waves. By moving further away from the excitation source, this effect 
becomes, as expected, weaker and finally vanishes.  

4.2.4 Verification of the free-field response 

To verify the accuracy of the numerical results herein, the theoretical solution for 
the free-field response at the surface of a half-space to a harmonic point load, 
which is usually presented as a function of the dimensionless frequency ω·r/cS 
(see Rücker, 1989; Vrettos, 1991, Meek & Wolf, 1993, etc.) is employed. This 
normalization allows the use of the analytical solution for various combinations 
of frequency and distance from the load. Herein, the analytical solution derived 
from Vrettos (1991) is used. The hysteretic damping of ξ = 1% considered in the 
finite-element analyses is incorporated in the theoretical solution by means of the 
Mintrop approximation (Vrettos, 2009; DGGT, 2019), according to which, the 
linear-elastic response is multiplied with the factor exp(-2·π·ξ·r/λR). 

 

 

Figure 4.9: Normalized vertical displacement amplitudes at the half-space 
surface due to a vertical harmonic point load versus dimensionless frequency; 
v = 0.4 

 

The vertical displacement amplitudes at the surface of a half-space obtained from 
finite-element analyses are presented in Figure 4.9, where they are also compared 
with the analytical solution from Vrettos (1991). By applying a single excitation 
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frequency (f = 30 Hz), the response is monitored at various distances from the 
harmonic point load. Since the solution is normalized, one could alternatively 
vary the excitation frequency and monitor the response at a specific distance. As 
will be shown in Chapter 5, this can be an advantage, when performing 
frequency-domain analyses, but in the time domain this is a time consuming 
approach. 

The numerical results from the axisymmetric models are in excellent accord with 
the analytical solution up to ω·r/cS ≈ 40 (r = 25 m). The results from the model 
with the largest radius of 50 m (FEA AX 20x50) match overall better the solution 
from Vrettos (1991). It is reasonable to compare the results from the 
axisymmetric model with the smaller radius (FEA AX 20x32) with those from 
the 3D FE model, since the distance of the viscous boundary from the excitation 
source is in both cases the same. The mesh of the 3D model is, however, almost 
half as fine as that of the axisymmetric model, which explains the larger 
deviations from the analytical solution beyond ω·r/cS ≈ 30. The following 
conclusions are drawn: 

o The distance of the viscous boundary from the area of interest plays an 
important role in the accuracy of the results. 

o The mesh discretization plays an important in the accuracy. In this case, 
an acceptable agreement with the analytical solution is achieved with 
circa 11 finite elements per Rayleigh wavelength λR. Even with a twice as 
fine mesh though, deviations at distances close to the viscous boundary 
are not eliminated. 

o With increasing distance from the source, the numerical accuracy 
deteriorates.  

4.2.5 Results for single piles 

In the 3D model described in Section 4.2.1, a solitary pile with a length over 
diameter ratio l/d = 15 (l = 10 m, d = 0.67 m) is activated at a distance x0 from 
the point load. The kinematic interaction is expressed by transfer functions, 
which, herein, are ratios of the vertical displacement amplitude at the center-
point of the pile head │wp (0)│ over that of the free-field │wff (0)│ at the same 
location. 

Firstly, the response of a single pile at the distances x0 = 12 m and x0 = 16 m is 
calculated for a range of frequencies f = 20 - 40 Hz. The pile is embedded either 
in a half-space or a soil stratum with a thickness twice its length (H = 2·l = 20 m). 
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The results are presented in Figure 4.10. A comparison with the method from 
Makris (1994) for a single pile in a Rayleigh wave field is also shown. Overall, 
the agreement with the analytical solution is quite satisfactory despite the 
neglection of the slenderness l/d and flexibility Ep/E of the pile in Equations (4.6) 
and (4.7) for the spring and dashpot coefficients that are employed in the method. 
As expected, the match with Makris (1994) improves as the distance from the 
point load increases. Due to the finite size of the model, it is impossible to 
completely avoid the interference of body waves; however, for increasing 
distance from the excitation source, the influence of P- and S-waves diminishes 
significantly, and Rayleigh waves start to dominate. Between half-space and soil 
stratum the differences are not particularly important. Finally, the decreasing 
trend in the curves suggests that the pile becomes more resistant against the free-
field motion as the excitation frequency increases, which is a typical 
phenomenon in the kinematic response of embedded foundations. 

 

 

Figure 4.10: Vertical transfer functions at the pile head for two distances of the 
pile to the load; l/d = 15, Ep/E = 350, v = 0.4.   

 

The values for the free-field response are given in normalized form in Table 4.1. 
They are verified against the analytical solution from Vrettos (1991) for half-
space and the numerical solution from the thin-layer method from Kausel (1995) 
for a soil stratum. For all cases, the results from the finite-element analyses are 
in good accord with the aforementioned solutions. 
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Table 4.1: Normalized free-field response at distance x0 at various frequencies; 
the first row number is the result from FEA, the second row number in cursive is 
from Vrettos (1991) for half-space or Kausel (1995) for a soil stratum.  

 

 
                 │wff (0)│·G ·x0 / │Q│ 

 
      f [Hz]   

 
x0 [m] 20 25 30 35 40 

Half-space 

12 
0.169 0.201 0.185 0.185 0.211 

0.160 0.185 0.174 0.178 0.207 

16 
0.181 0.158 0.200 0.213 0.204 

0.184 0.172 0.207 0.209 0.211 

Soil stratum 
H = 2·l  

12 
0.185 0.201 0.186 0.174 0.207 

0.177 0.186 0.165 0.162 0.207 

16 
0.164 0.156 0.184 0.191 0.182 

 0.154 0.167 0.193 0.196 0.200 

 

 

Next, depth profiles of the vertical dynamic interaction factor at f = 30 Hz have 
been calculated for a single pile at the distances x0 = 4, 8, 12, 16 m corresponding 
to x0/λR = 1, 2, 3, 4. The pile is embedded either in a half-space or a soil stratum 
of thickness H= 2·l = 20 m (= 5·λR at this particular excitation frequency). Each 
depth profile is a numerical snapshot at a time-step, at which the vertical 
displacement at the pile head attains its maximum value. The depth profile is then 
normalized by the vertical displacement amplitude of the free-field at the surface 
(z = 0). In Figure 4.11, one can observe how, with increasing distance from the 
load, the single pile depth profile derived from the FEA tends to that from the 
analytical solution from Makris (1994) for the far-field. The fact that the dynamic 
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interaction factor attains smaller values in the vicinity of the excitation source, is 
a direct consequence of the interference of P- and S-waves, leading to a higher 
resistance of the pile against the induced displacements. 

 

 

Figure 4.11: Depth profiles of the vertical dynamic interaction factor of a single 
pile embedded in a half-space or a soil stratum at a varying distance x0 from the 
harmonic point load with f = 30 Hz; v = 0.4.    

 

The distortion of the free-field motion through the presence of the pile for the 
excitation frequency f = 30 Hz is portrayed in Figure 4.12 for x0 = 16 m (= 4·λR) 
in the case of a half-space. The vertical displacement depth profile of the free-
field matches really well the one derived from Kausel (1995). The profile along 
the pile is reminiscent of that of a thin, deep wall. As explained by Haupt (1986), 
the shielding efficiency of a single pile is based on the re-direction of energy 
from Rayleigh waves that are linked with the surface towards greater depths. 
Apart from this, the wave propagation near the surface is hindered due to this 
stiff inclusion in the soil, and the waves are partially reflected.    
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Figure 4.12: Comparison of the vertical displacement depth profiles of the free-
field and a single pile at a distance of x0 = 16 m (= 4·λR) from the harmonic point 
load with f = 30 Hz; v = 0.4.    

 

 

Figure 4.13: Snapshot of the vertical displacement field induced by a harmonic 
point load at a distance of x0 = 16 m (= 4·λR) from a single pile in half-space.    

 

A snapshot of the model from the analysis for the single pile embedded in half-
space at x0 = 16 m from the harmonic point load with f = 30 Hz  is portrayed in 
Figure 4.13. The wave propagation is visualized through contours of vertical 



 

58 
 

displacements. In the vicinity of the load, body waves can be distinguished by 
their propagation along a hemispherical wave front. The attenuation with 
distance is also visible. In addition, the formation of a localized shadow zone just 
behind the pile indicates that it serves as a barrier against the propagating waves.    

Finally, the influence of the stiffness ratio Ep/E on the response of a single pile 
at x0 = 16 m from the load is examined at f = 30 Hz. The analyses were performed 
by varying the Young’s modulus of the pile, while that of the soil was kept 
constant. The resulting vertical transfer functions are depicted in Figure 4.14. 
Between Ep/E = 350 and 10000 there is practically no difference in the response. 
When the pile becomes less stiff in relation to the surrounding soil (Ep/E = 100), 
the value of the transfer function increases, as expected, indicating that the pile 
follows the free-field motion in a more compliant manner.  

 
 

Figure 4.14: Vertical dynamic interaction factor for a single pile at x0 = 16 m 
from the load with f = 30 Hz versus stiffness ratio Ep/E; v = 0.4.   

 

4.2.6 Results for pile groups 

Next, the shielding efficiency of a 3x3 pile group, as presented in Figure 4.5, is 
investigated in half-space. The pile geometry is identical to that of the single pile 
examined in the previous section. The centre-to-centre pile distance (or pile 
spacing) is taken as s = 3·d, which is common in engineering practice. 
Consequently, for the examined frequency range 20 - 40 Hz at cR = 120 m/s the 
ratio of pile spacing over Rayleigh wavelength s/λR varies between 1/3 and 2/3. 
Three scenarios are examined regarding the connection of the piles in the group: 
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o Free-head: The piles are free-standing; there is namely no connection 
between them, and they are in position to move freely.  

o Fixed-head 1: The piles are connected via a rigid, massless cap. 
o Fixed-head 2: The piles are connected via a rigid, concrete cap (γ = 25 

kN/m3). 

Although the third case is not relevant for kinematic interaction problems, it has 
been considered merely in order to assess the influence of the cap mass on the 
pertinent results.   

The central pile located at the front pile row (P3), as well as the one at the 
furthest-back row (P1) at the distances x0 = 12 m and x0 = 16 m, respectively, are 
chosen as reference piles for evaluation of the results. The response of the 
reference piles is presented in terms of vertical transfer functions in Figure 4.15, 
where it is also contrasted to their response as solitary piles.  

In the frame of the free-head pile group, depending on the excitation frequency, 
the transfer function of pile P3 may attain values greater than those obtained for 
the single pile case. On the contrary, when connecting all piles via the rigid cap, 
the amplitudes experienced by pile P3 remain below the level of those in the 
single pile case, at least in the examined frequency range. 

The attenuation of motion calculated for P1 at the furthest-back pile row in 
comparison with that as a single pile is much more significant, especially at 
higher frequencies. In this case, the vibration level is mainly reduced due to 
diffraction of waves through the two front pile rows, which in this frequency 
range serve protectively for pile P1. This is probably the reason behind the 
reduced amplitudes also in the case of a free-head group, with exception the 
frequency of 40 Hz, where a similar vibration level as in the single pile case is 
monitored.  

In both cases, the effect of the cap mass on the results manifests itself practically 
only beyond f = 35 Hz, resulting in a considerable increase of the transfer 
function, even up to 100 %.  
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Figure 4.15: Vertical transfer functions of piles P3 and P1 as parts of the 3x3 pile 
group with s/d = 3 or as single piles; Ep/E = 350, l/d = 15, v = 0.4.   

 

The shielding efficiency of a pile group is, among others, dependent on the 
relation of the Rayleigh wavelength λR to characteristic sizes in the pile group. It 
is underlined, though, that due to the interplay of the numerous parameters in this 
particular problem, a generalization on the vibration reduction as a function of 
the ratio s/λR was not possible. 

4.3 Excitation due to a moving point load  

4.3.1 Barber’s analytical solution 

The next step is to analyse the response of piles in the wave field induced by a 
moving point load of constant or time-harmonic magnitude. The closed-form 
expression derived from Barber (1996) is presented in the frame of validation. 
This analytical solution gives the vertical displacement at an observation point at 
the soil surface due to a vertical point load of constant magnitude Q, which is 
travelling on the surface of a half-space with a constant speed v0. A schematic 
illustration is given in Figure 4.16, along with basic parameters of the problem.  

For the sub-Rayleigh case with v0 < cR, which is common in the engineering 
practice, the analytical solution from Barber (1996) is:    

wሺr,θሻ = -
Q

2·π·G·r
MS

2
	ට1-MP 

2

൬2-MS
2
൰
2
-	4	ට1-MP 

2
 ට1-MS

2
                                                    (4.13) 
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where  

 MP	=	
v0·sinθ

cP
 , MS	=	

v0·sinθ
cS

                                                                          (4.14) 

with 0 < θ < π being the angle between the travel axis and the line connecting the 
load and the observation point, and r the distance between the load and the 
observation point. The minimum distance of the observation point to the travel 
axis is denoted as x0 = r·sin(θ), so that θ = π/2 at r = x0.   

For the critical case where v0 > cR the solution becomes complicated. This 
situation is, however, quite rare, since it corresponds to the special case of an 
extremely high travelling speed on a soft soil (Madshus & Kaynia, 2000).  

For low travelling speeds (v0 → 0), Equation (4.13) converges to the solution 
from Boussinesq (1885) for a static point load:  

	wstሺrሻ	=	-
Q

2∙π∙G∙r
 

 

 

 

Figure 4.16: Definition of the moving load problem (plan view).   

 

4.3.2 Finite-element modelling 

First, the results for the free-field response to a moving load of constant 
magnitude are verified against the analytical solution from Barber (1996). The 
finite-element model for this purpose is portrayed in Figure 4.17 along with 
aspects of discretization. It is based on the model by Galavi & Bringreve (2014) 
for the computation of the free-field response. In the sequel, this initial model 
presented herein is appropriately modified according to the needs of the present 
study to account for the presence of piles. 
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Due to geometric and load symmetry only half of the system is simulated. The 
length of the model is equal to 104 m, while that of the load path 100 m. The 
latter is slightly shorter so that its starting and end point do not coincide with the 
lateral viscous boundaries. The width and depth of the model are taken equal to 
50 m and 100 m, respectively. Appropriate boundary conditions preventing the 
out-of-plane movement are applied at the symmetry face of the finite-element 
model. To simulate a half-space, viscous boundaries are implemented 
peripherally as well as at the base of the model. 

 

 

Figure 4.17: Finite-element model for the moving load of constant magnitude Q.   

 

The vertical point load has a magnitude Q, which is constant (invariable with 
time). Regarding the speed of the load, v0, two values are selected: 50 m/s and 
100 m/s, which correspond to 180 km/h and 360 km/h. These values are typical 
for high-speed trains. 

The soil is linear-elastic with a shear modulus G = 30.5 MPa, a density ρ = 1.89 
Mg/m3 and a Poisson’s ratio v = 0.3, so that cS = 127 m/s and cR = 118 m/s. A 
very small value of Rayleigh-type damping is introduced in the soil to obtain a 
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smooth response. The free-field response at the surface is monitored at a distance 
x0 = 6 m from the travel axis.     

Under this type of loading, the vertical displacement time-history at the surface 
attains a maximum value as soon as the load arrives at the distance x0 from the 
observation point. Barber (1996) assumes that the point load is travelling from 
infinity. However, the simulation by means of the FEM of a load that is travelling 
even from a very far distance requires an extremely long model, which is 
computationally not feasible.  As a result, the activation of the load at the 
beginning of the analysis unavoidably leads to a transient procedure, the effects 
of which appear in the response as a disturbance that ideally should be 
eliminated. For this purpose, different scenarios for the load application are 
compared:  

o The total magnitude of the load is directly applied by means of a “step-
function”. 

o The magnitude of the load increases linearly from zero up to its 
maximum value for a fraction of the total analysis time by employing 
a “ramp-function” of constant gradient. A total time for the ramp 
function between 20 % and 30 % of the time needed for the load to 
reach the end of the load path was proven optimal.  

The above cases are also depicted in Figures 4.18 and 4.19 along with the verified 
free-field response. It is clarified that the total analysis time is the ratio of the 
load path length (100 m) over the travelling speed of the load (v0).   

4.3.3 Verification of the free-field response 

First, the results for the highest load speed v0 = 100 m/s (corresponding to a ratio 
v0/cR = 0.847) are presented in Figure 4.18. The response at the observation point 
at x0 = 6 m is shown in terms of normalized vertical displacements. For the cases 
“Ramp (i)” and “Ramp (ii)” presented herein, the time for the ramp function was 
set as 20 % and 30 %, respectively, of the total analysis time.  Despite the long 
load path, after about 0.4 s, a significant disturbance is monitored in the response, 
which reaches the observation point with the S-wave velocity cS. The disturbance 
becomes less intense when the load is gradually applied by means of the ramp-
function; yet, it does not completely vanish. The system requires a considerable 
time to reach a steady-state condition. Despite the disturbance, though, the 
vertical displacement peak, which appears as soon as the load arrives at the 
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shortest distance from the observation point x0, is reproduced with high accuracy. 
From this point on (and even for a certain amount of time before this) a very 
good agreement with the analytical solution from Barber (1996) is established. 
In fact, by taking into account time-symmetry, one can reproduce the complete 
solution by mirroring the response obtained after the settlement peak (Galvín & 
Domínguez, 2007). The vertical displacement derived from the Boussinesq 
solution, which corresponds to the static case (v0 = 0) is also depicted in Figure 
4.18, being equal to 43 % of the maximum displacement due to the moving load.  

 

Figure 4.18: Vertical displacement time-history at a distance of x0 = 6 m from 
the load path due to a vertical point load moving with v0 = 100 m/s at the surface 
of a half-space; v = 0.3.   

 

The results for v0 = 50 m/s (v0/cR = 0.423) are depicted in Figure 4.19. The ramp-
function is applied up to 20 % of the total analysis time, which was sufficient for 
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this case. First of all, the negligible deviation from the Boussinesq solution 
reveals the static character of this type of loading in the case of a relatively low 
ratio of travelling speed over Rayleigh wave velocity in the soil v0/cR.  

Generally, the absence of an excitation frequency signifies that there is no wave 
propagation in the soil. This conclusion also justifies why the accuracy of the 
results is practically insensitive to mesh fineness, which was also observed in 
additional analyses not shown herein, including the higher travelling speed of v0 
= 100 m/s. Nevertheless, the nature of the problem is certainly dynamic, but, in 
the essence, it is a single “disturbance” that propagates.  

 

 

Figure 4.19: Vertical displacement time-history at a distance of x0 = 6 m from 
the load path due to a vertical point load moving with v0 = 50 m/s at the surface 
of a half-space; v = 0.3.   

 

However, in Figure 4.19 is shown that shortly after the displacement peak is 
reached, significant deviations from the analytical solution from Barber (1996) 
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arise (half-space case). Since this problem does not occur in the case of the higher 
travelling speed, these differences  are attributed to the insufficient accuracy of 
the bottom viscous boundary for the case of low values of the ratio v0/cR; in other 
words, as the static case is approached. The improved accuracy after the 
replacement of the bottom viscous boundary by a rigid base (stratum case) 
confirms the above assumption.  Considering a rigid substratum at this great 
depth of 100 m has a minor effect on the targeted simulation of the half-space 
response. Yet, for cases where a fine mesh discretization is required (i.e. 
oscillating moving load), a large model depth is not computationally feasible, at 
least in the vast majority of the cases of interest for the engineering practice. 
Understandably, the simulation of a half-space in these cases constitutes an 
important limitation of the FEM. Subsequently, for the following investigations 
of a single pile or a pile group under excitation by the wave field from a moving 
load of time-harmonic magnitude, a soil stratum of thickness equal to H = 2·l 
= 20 m was considered, being associated to a straightforward boundary condition 
at the base of the model.  

 

Figure 4.20: Finite-element model for a moving oscillating load on a soil stratum. 
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4.3.4 Soil stratum: FE modelling 

A new finite-element model was created by shortening the width and depth of 
the previous model with the rigid base to 40 m and 20 m, respectively. The idea 
behind this configuration was to simulate a soil stratum of a thickness twice as 
large as the considered pile length l = 10 m; in that way, correspondence to the 
previous examined case of a stationary harmonic load on a soil stratum is 
accomplished. Besides, this shorter model enables the required finer 
discretization in order to perform analyses with a moving harmonic load. 
Regarding the aspect of mesh discretization, two schemes are tested:  

o A non-homogeneous finite-element mesh being fine in the vicinity of the 
load path, while gradually becoming coarser farther away.  

o A uniform fine mesh with approximately 5 finite elements per Rayleigh 
wavelength λR (yet, still finer along the load path) 

The first scheme is used for the analyses with a moving load of constant 
magnitude Q, while the second one for the analyses with an oscillating moving 
load Q(t)=│Q│eiωt. In the last case, the magnitude of the load varies 
harmonically with time at a frequency of f = 30 Hz. The FE model with the 
uniform fine mesh is shown in Figure 4.20. Assuming a common sleeper distance 
of 0.60 m, the above excitation frequency leads to a travelling speed of 
v0 = 18 m/s (= 64.8 km/h), which is representative of medium-speed trains. A 
schematic illustration of the concept is presented in Figure 4.21. This simplified 
concept serves mainly the assessment of the effect of frequency in case of a 
moving excitation source. To realistically examine railway problems additional 
aspects are required, such as the simulation of the railway sleepers, the 
consideration of the weight of the wagons etc. However, it is the dynamic 
component of moving loads that is relevant for the vibration protection practice, 
since this mostly affects the response.   

 

Figure 4.21: Schematic illustration of the variation of the oscillating load 
magnitude.   
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The same soil properties as in the case of the stationary harmonic load are 
considered: G = 30.5 MPa, ρ = 1.89 Mg/m3 and v = 0.4, see Section 4.2.1. A 
Rayleigh-type damping corresponding to a hysteretic damping ratio of ξ = 1% is 
introduced in the soil. 

The moving load is applied by means of a ramp-function, the duration of which 
is equal to 1.1 s (corresponding to 20 % of the total analysis time). After this 
point, the oscillation of the load starts.   

It is underlined that the use of symmetry in the model (see Figure 4.20) implies 
the existence of an identical, mirror pile group/single pile on the other half of the 
stratum that is not modelled. This could have a small influence on the results. An 
analysis with a full model without use of symmetry was at this point of the study 
computationally not possible. Indicatively, the computation on an Intel i9-
10900K, 3.70 GHz processor with 64 GB RAM (which was, however, employed 
at a later point of the study and enabled analyses with a full 3D model without 
use of symmetry, presented in Section 4.3.7) lasted 15 hours. 

4.3.5 Results for single piles 

First, the influence of a moving load of constant magnitude on the free-field 
response is considered. To derive the free-field response, soil properties are 
assigned to all pile parts in the model. Figure 4.22 presents the time-histories of 
the normalized vertical displacements at four observation points located at the 
distances x0 = 4, 8, 12, 16 m from the load path. Note that due to the specific 
normalization of the results, the farther the distance x0, the more scaled up the 
curves appear. Due to the relatively low travelling speed, the long load path and 
the ramp-function, no considerable disturbance appears in the response. 

As already explained, the displacement peaks in the response at the observation 
points lying on the centreline at the surface of the soil stratum model appear as 
soon as the load passes by at a distance x0 from the observation point. This occurs 
at approximately 2.78 s, which is half of the total analysis time.  In the frame of 
verification, these maximum values are compared in Figure 4.23 to those derived 
from the algorithm provided by Kausel (2018) using the thin-layer method. An 
additional comparison is shown with results obtained from an axisymmetric 
model of the respective soil stratum including a static load acting at a distance x0 
from the observation point. The differences are negligible. The applied travelling 
speed v0 = 18 m/s (≈ 65 km/h) in combination with the selected soil parameters 
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leads to a response, which is quite close to the static solution. Greater deviations 
from the static case are expected at higher travelling speeds.   

 

Figure 4.22: Vertical displacement time-histories at the surface of a soil stratum 
of thickness H = 20 m during the passage of a moving constant load at 
v0 = 18 m/s; v = 0.4.  

 

 

Figure 4.23: Maximum vertical displacement time-histories at the surface of a 
soil stratum without/with an embedded pile due to a moving load of constant 
magnitude.  
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Subsequently, a single pile with the properties defined in Section 4.2.1 is 
considered at a varying distance x0 from the load path. Apart from the free-field 
response to the moving load of constant magnitude, Figure 4.23 also shows the 
alternation of the vertical displacement field on the centreline of the model at the 
surface through the presence of the pile. Only in the near-field a considerable 
influence is noticed in the case of the single pile at the distance of x0 = 4 m. In 
particular, its presence reduces the free-field motion by 23 %. The explanation is 
straightforward, and lies on the static character of a moving load with constant 
magnitude. Since there is no influence of excitation frequency on the response, 
and no Rayleigh waves are developed, considerable displacement amplitudes are 
monitored only up to a relatively short distance from the load path. The latter 
was also observed by Auersch (2010). As an additional confirmation, an analysis 
was performed with the refined model, which yielded practically no differences, 
since static analyses are relatively insensitive to mesh discretization.  

 

 

Figure 4.24: Maximum vertical displacement amplitude at the surface of a soil 
stratum due to a moving load of time-harmonic magnitude.  

 

A moving load of time-harmonic magnitude leads to a peak in the free-field 
response as soon as the load reaches the minimum distance x0 from the 
observation point located at the near-field. For farther distances this peak in the 
response appears earlier. In Figure 4.24, a comparison is presented between the 
maximum vertical displacements induced by a moving or a stationary harmonic 
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load acting at a distance x0 from the observation point (the latter results were 
obtained from an axisymmetric model). It is obvious that at a relatively low 
travelling speed in relation to the Rayleigh wave velocity in the soil, the 
stationary harmonic load is a good approximation of the moving load scenario.  

The curves in Figure 4.25 demonstrate how the vertical displacement field along 
the centreline normal to the load path changes due to the presence of a solitary 
pile at a varying distance x0. In the 3D finite-element model portrayed in Figure 
4.20, for each analysis, the corresponding pile of interest is activated. It is 
observed that especially in the vicinity of the load path, the level of attenuation 
of motion through the pile is particularly high. Overall, the effect of the pile on 
the free-field motion is rather localized, since the influence range of the pile is 
equal to approximately 1 - 2 m, mostly developing at the back with respect to the 
wave propagation direction. For the examined configuration the vertical transfer 
function |wp|/|wff| varies between 0.26 at x0 = 4 m and 0.38 at x0 = 16 m. This 
reduction is quite similar to the one for the case of a stationary harmonic load, as 
can be seen in Table 4.2 summarizing the results. The vertical transfer function 
for a single pile located at the far-field, as calculated from the analytical solution 
for Makris (1994), is also depicted. As expected, the agreement with the 
analytical solution for the far-field is improved as the distance from the load path 
increases. But, interestingly, even from at x0 = 12 m, the deviation from the far-
field solution is less than 10 %.  

The above observation suggests that as long as the considered pile is not located 
too close to the excitation source, even if it is not located at the far-field, the 
analytical solution from Makris (1994) can be used as a good approximation. As 
already implied by the corresponding comparison, this is valid not only for a 
stationary harmonic load, but also for a moving harmonic load with a speed v0 
relatively low in comparison with the Rayleigh wave velocity cR in the soil.    
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Figure 4.25: Maximum vertical displacement amplitude at the surface of a soil 
stratum with a single pile due to a moving load of time-harmonic magnitude.  
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Table 4.2: Vertical transfer function of pile over free-field response |wp|/|wff|: 

Comparison between FEA (moving load versus stationary load) and 

analytical solution from Makris (1994). f = 30 Hz, Ep/E = 350, l/d = 15, 

Soil stratum H = 2·l, cS = 127 m/s, v = 0.4. 

  |wp|/|wff| 

 
x0 [m] 4 8 12 16 

FEA 

Moving harmonic load 
(v0/cS = 0.14) 

0.26 0.31 0.37 0.38 

Stationary harmonic load 
(v0/cS = 0)  

0.26 0.35 0.37 0.40 

      

Makris 
(1994) 

Rayleigh wave field 0.41 

       

 

 

Figure 4.26: Influence of cS and v0 (or f) on the maximum vertical displacement 
amplitude at the surface of a soil stratum due to a moving load of time-harmonic 
magnitude.  

 

Furthermore, the influence of the S-wave velocity in the soil cS and the travelling 
speed v0 (the latter linked with the excitation frequency f, due to the assumed 
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railway sleeper distance) is parametrically investigated. The vertical 
displacement amplitudes of the free-field along the centreline of the model are 
presented in Figure 4.26 in dimensionless form, so the curves overlap to a great 
extent. However, this dimensionless representation, which is typically employed 
for the free-field response to a stationary harmonic load (recall Figure 4.9) is not 
expected to be valid at larger values of the ratio v0/cS, since a higher travelling 
speed of the load certainly leads to greater deviations from the stationary 
response.   

Respective analyses were carried out with the model including a single pile at 
x0 = 16 m. The resulting dynamic interaction factors are presented in Table 4.3, 
where they are also compared to the corresponding values derived from the 
analytical solution from Makris (1994). The agreement is quite satisfying, with 
a sole exception at v0 = 27 m/s or, alternatively, at f = 45 Hz, where, a larger 
deviation of 17 % appears. This is unsurprising at this higher travelling speed. It 
is reminded at this point that the solution from Makris (1994) refers to a half-
space, while the finite-element model employed for these analyses includes a 
rigid base. Nevertheless, as the distance from the excitation source increases, 
with surface waves starting to dominate  the wave field, it is expected that the 
presence of a rigid base will not have a significant effect on the response at the 
surface.       

 

Table 4.3: Dynamic interaction factor |wp|/|wff| for a single pile at x0 = 16 m from 

the load path: Comparison between FEA and the analytical solution from 

Makris (1994); l/d = 15, Soil stratum H = 2·l, v = 0.4. 

    |wp|/|wff| 

v0 
[m/s] 

cS [m/s] Ep/E f [Hz] FEA Makris 
(1994) 

15 127 350 25 0.44 0.48 

 
18 
 

127 350  
30 

 

0.38 0.41 

170 200 0.58 0.55 

180 175 0.56 0.58 

27 170 200 45 0.34 0.41 
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Indicatively, a numerical snapshot from the analysis with the pile at x0 = 16 m 
embedded in the soil stratum with cS = 170 m/s and subjected to the wave field 
emanating from a moving harmonic load with speed v0 = 27 m/s and frequency 
f = 45 Hz is shown in Figure 4.27. The wave propagation is visualized with 
contours of vertical displacements. At the particular time-step (t = 1.85 s), the 
load is located at the shortest distance (x0) from the pile. The shielding efficiency 
of the pile can be visualized through the formation of a shadow zone behind the 
pile (in relation to the wave propagation direction), where the displacement 
amplitudes are considerably reduced. In the case of a moving excitation source, 
the location of the shadow zone obviously changes depending on the position of 
the load.      

 

Figure 4.27: Snapshot of the vertical displacement field in the soil stratum 
(cS = 170 m/s) as soon as the moving harmonic load (v0 = 27 m/s and f = 45 Hz) 
reaches the shortest distance from the pile at x0 = 16 m.   

 

4.3.6 Results for pile groups 

The response of the 3x3 pile group with s/d = 3 (recall Figure 4.5) is investigated 
under the excitation due to a moving harmonic point load. The load path axis is 
parallel to the three pile rows, which are located at distances x0 = 12, 14 and 
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16 m. Initially, the pile group is free-standing; there is namely no cap connecting 
the piles. A further system of 2x3 free-head piles is also considered by replacing 
in the finite-element model the front pile row of the 3x3 configuration by soil. 
The recorded vertical displacement time-histories as well as the dynamic 
interaction factors |wp(0)|/|wff(0)| are presented with respect to the central pile P1 
at the furthest-back row, which is chosen as the reference pile. 

Vertical displacement time-histories during the passage of the point load are 
depicted in Figure 4.28 for the free-field, as well as for the reference pile which 
is either a solitary pile or part of a free-head 2x3 or 3x3 pile group. Moreover, 
for the case of the 3x3 group, the influence of the pile connection to a rigid, 
massless cap is additionally investigated. At selected time-steps during the 
passage of the load, corresponding snapshots from the analysis of the 3x3 pile 
group without cap are also shown. 

 

Figure 4.28: Vertical displacements of the free-field and of pile P1 at distance 
x0 = 16 m as single pile or as part of a pile group for an excitation by a moving  
harmonic load of f = 30 Hz and v0 = 18 m/s; soil stratum with H = 20 m and 
v = 0.4. 

 

Apparently, even the presence of a single pile leads to an important reduction of 
the free-field motion. The shielding efficiency of the pile group becomes stronger 
when the load is nearby (see highlighted time-window in Figure 4.28). The 
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corresponding dynamic interaction factor |wp(0)|/|wff(0)| (calculated here between 
2.75 and 2.8 s) attains the following values: 0.46 for the single pile, 0.34 for the 
pile in the 2x3 pile group and 0.27 for the pile in the 3x3 pile group. The addition 
of a rigid cap to the last scheme reduces dramatically the ratio to 0.09. However, 
when the kinematic interaction is calculated by taking into account the complete 
time-history, the following values are obtained: 0.38/0.34/0.34/0.18 for the four 
cases distinguished above. 

Figure 4.29 portrays a snapshot with the load at the minimum distance from the 
3x3 pile group without a cap. It is obvious that the pile group acts as a barrier to 
the propagating waves that are visualised with contours of vertical 
displacements. As already shown by previous examples, the vibration reduction 
due to the pile group manifests itself with the formation of a shadow zone at the 
back of the pile group, where the displacement amplitudes are significantly 
reduced. 

 

Figure 4.29: Snapshot of the vertical displacement field induced by a harmonic 
moving load (f = 30 Hz, v0 = 18 m/s) at the shortest distance from a 3x3 pile 
group without cap; soil stratum with H = 20 m and v = 0.4. 

 

Motivated by a possible application under the scope of metamaterials, a “zig-
zag” pile group layout, depicted in Figure 4.30, was also examined in terms of 
vibration reduction. In specific, a free-head 2x3 and a 3x3 configuration are 
considered. The position of reference pile P1 at x0 = 16 m from the load axis 
remains unchanged. The obtained time-histories of its response are contrasted in 
Figure 4.30 to the free-field motion at the same location. The ratio |wp(0)|/|wff(0)| 
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derived from the entire time-history is equal to 0.32 for the reference pile in both 
groups and thus, approximately identical to the respective values observed in the 
rectangular grid configuration. The additional attenuation offered by the pile 
group appears in the time-history shortly after the load passes by the pile group. 
In the corresponding time-window (2.98 - 3.13 s), the kinematic interaction 
factor attains the values 0.46, 0.38 and 0.31 for the pile as single pile, as part of 
the 2x3, and as part of the 3x3 “zig-zag” pile group, respectively. 

In comparison with the regular pile group layout, the “zig-zag” scheme is proven 
similarly effective in reducing the vibrations from the moving load. For the cases 
investigated herein, the addition of a further pile row, i.e. 2x3 pile group 
becoming a 3x3 one, led to an additional attenuation of the vibration level 
experienced by pile P1. The reduction level depends on the time-window selected 
for the derivation of amplitudes.  

As already shown, the travelling speed of v0 = 18 m/s (64.8 km/h) in combination 
with the selected soil properties leads to a response similar to that under 
stationary conditions. It would be therefore meaningful to consider a higher 
travelling speed. For the sake of computation consistency, and in order to keep 
the same mesh discretization, the stiffness of the soil was increased. The shear 
wave velocity of the soil was set equal to cS = 170 m/s. This allows an analysis 
with a 50 % higher travelling speed, namely v0 = 27 m/s (97.2 km/h) linked with 
a frequency f = 45 Hz. The free-head 2x3 and 3x3 pile groups with a rectangular 
grid layout are examined, and the respective time-histories are presented in 
Figure 4.31. The ratio |wp(0)|/|wff(0)| obtained from the entire time-history is 
equal to 0.34, 0.32, and 0.30 for the reference pile (x0 = 16 m) as single pile, and 
as part of the 2x3 and the 3x3 pile group, respectively. In the time-window from 
1.94 to 1.99 s, in which an additional attenuation offered by the 3x3 pile group 
is manifested, the transfer function for the above cases becomes equal to 0.39, 
0.36 and 0.27. 
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Figure 4.30: “Zig-zag” layout for a 2x3 pile group (solid lines) and a 3x3 pile 
group (solid plus dashed lines). Vertical displacements of the free-field and of 
the reference pile P1 at distance x0 = 16 m as single pile or as part of a pile group 
without cap for an excitation by a harmonic moving load with f = 30 Hz and 
v0 = 18 m/s; soil stratum with H = 20 m and v = 0.4. 

 

 

 

Figure 4.31: Vertical displacements of the free-field and of reference pile P1 at 
distance x0 = 16 m as single pile or as part of a pile group without cap for an 
excitation due to a harmonic moving load with f = 45 Hz and v0 = 27 m/s; soil 
stratum with H = 20 m and v = 0.4. 
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4.3.7 Full 3D FE-model 

As already underlined, the presence of an unwanted mirror pile/pile group in the 
half of the system that is not modelled is implied due to the use of symmetry in 
the respective models for the moving load. In order to overcome this issue,  which 
may admittedly have a rather minor effect on the results, an updated finite-
element model comprising viscous boundaries over its complete periphery was 
created. In that way, the problem of indirect loading of a single pile group/pile is 
properly reproduced. The model is depicted in Figure 4.32 along with details of 
the mesh discretization. It accounts for a 3x3 rigidly capped pile group with 
s/d = 3, as considered previously. However, in this particular section, the 
material properties differ, since a comparison is presented with results from 
analyses in the frequency domain considering a stationary harmonic load (this 
problem is analysed in Chapter 5).  Details are given in Section 5.2 (with the 
most important properties being: E = 172368 kPa, ρ = 1.9 Mg/m3, cS = 180 m/s, 
ν = 0.4 ξ = 2.5 %, Ep/E = 150, l/d = 15).  The mesh discretization with a uniform 
finite-element size equal to approximately 0.7 m (becoming very fine in the 
vicinity of the load path) in combination with the soil parameters and the 
excitation frequency of f = 30 Hz can reproduce one S-wavelength with circa 8 
finite elements.    

Viscous boundaries are placed peripherally, while the base of the model is fixed, 
representing thus a soil stratum resting on bedrock. The length of the model is 
equal to 102 m, and that of the load path 100 m. The load path is placed 
asymmetrically at a distance of 16 m from the one viscous boundary parallel to 
it and at 32 m from the other. The pile group under investigation is located 
centrally between the latter boundary and the load path. The philosophy behind 
the dimensions in the present design is the same as in the finite-element model 
for the analyses with the stationary harmonic load (Figure 4.4).   
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Figure 4.32: Full 3D FE-model for a moving oscillating load on a soil stratum. 

 

The point load travels with a constant speed of v0 = 18 m/s (≈ 65 km/h). It is 
applied by means of a ramp-function with a duration equal to 20 % of the total 
time required for the load to pass by the complete load path (=100 m /18 m/s = 
5.56 s). The magnitude of the load is increased linearly from zero up to its 
maximum value (│Q│= 1 kN), and then it starts varying harmonically at f = 30 
Hz. Figure 4.33 shows up to 2 s the load multiplier introduced in Plaxis 3D.   
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Figure 4.33: Load multiplier for a moving load with v0 = 18 m/s and f = 30 Hz. 

 

The comparison with the results from the finite-element analyses with the 
stationary load in the frequency domain with Abaqus is presented in terms of 
absolute values of vertical displacement amplitudes in Table 4.4. An additional 
analysis for pile P1 as a single pile was also performed. The agreement between 
the two cases is quite satisfactory. The small deviations occur to a great extent 
due to the different boundary conditions at the base of the models, since the 
analyses with the moving load consider a soil stratum of thickness H = 2·l, while 
those with the stationary load a half-space. Nevertheless, the analyses with the 
updated model confirm that the stationary solution can be used as a good 
approximation for the moving load problem in many cases of practical interest 
for which the travelling speed of the excitation source is relatively low in 
comparison with the Rayleigh wave velocity in the soil.  
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Table 4.4: Vertical displacement amplitudes |wp| of piles P1, P2, P3 in a 3x3 pile 

group: Comparison with the FEA results from Abaqus in the frequency 

domain. 

 |wp| · 10-8 [m]  
  Moving load Stationary load 

    Time domain Frequency domain 

3x3        
pile group 

P1 3.51 3.94 
P2 2.90 2.33 
P3 7.16 8.26 

single pile P1 7.17 8.05 
 

4.5 Conclusions 

The kinematic response of single piles and pile groups to a wave field from a 
moving oscillating load was investigated by means of the finite-element method 
(FEM) in the time domain with the software Plaxis 3D. A stationary harmonic 
load was also considered as a lower-bound of a travelling speed equal to zero. 
First, the observations on the response to the latter are summarized:  

o A good agreement of the free-field response to the wave field of a 
stationary harmonic load with the analytical solution for Rayleigh wave 
excitation is established at a distance from the load between 7.5·λR and 
10·λR (v = 0.4). It is known that for practical applications, the analytical 
solution for the far-field can be considered for the response of the surface 
at close distances of 2-3·λR; but even up to a depth of z = λR according to 
the findings herein, the numerical results match the analytical solution 
quite well. 

o The distance of the viscous boundary from the area of interest plays an 
important role in the accuracy of the results, and so does the mesh 
discretization. An overall good agreement with the analytical solution can 
be established with circa 10 finite elements per Rayleigh wavelength λR.  

o Even with a twice as fine mesh though, the accuracy of the FEA results at 
farther distances in the vicinity of the lateral viscous boundary 
deteriorates. 

o Dynamic interaction factors (or transfer functions) for a single pile attain 
smaller values as the distance from the excitation source decreases. This 
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is due to the interference of P- and S-waves leading to an enhanced 
resistance of the single pile to the induced motion.  

o Increased transfer functions are obtained for piles less stiff in relation to 
the surrounding soil (e.g. Ep/E = 100), indicating that the pile follows the 
free-field motion in a more compliant manner.  

o A connection of the piles within a group via a rigid cap results in 
significant vibration reduction.  

o For the examined case herein, the effect of the pile cap mass on the 
response of the group manifests itself practically only beyond f = 35 Hz, 
resulting in a considerable increase of the transfer function, even up to 
100 %.  

o Both the single pile and the pile group can reduce the free-field vibrations 
mainly due to the redirection of the energy towards greater depths, but also 
as a result of the wave diffraction through  front pile rows (against the 
wave propagation direction) 

o At higher excitation frequencies the shielding efficiency of piles increases. 
o A good agreement with the analytical solution from Makris (1994) for 

single piles in a Rayleigh wave field is established even at closer distances 
(2-3·λR) to the point load as the ones considered herein.  

The analyses with a moving load of constant magnitude showed that:  

o The gradual application of the load by means of a ramp-function 
increasing linearly its magnitude reduces a distortion in the response, 
which appears due to the finite load path.  

o A ramp-function over a time equal to 20 - 30 % of the total analysis time 
was proven to be optimal.  

o A sufficiently long load path (and thus, model length) in combination with 
a ramp-function for the load application, and a travelling speed v0 
relatively low in comparison with the Rayleigh wave speed in the soil cR 
can significantly reduce the aforementioned distortion in the response.  

o The absence of excitation frequency signifies that there is no wave 
propagation in the soil. The point load yields a vertical displacement, 
which can be perceived as a single “disturbance” that propagates.  

o Due to its quasi-static character, the moving constant load has a rather 
limited influence zone. This confirms the static nature of this loading type.  

o When the travelling speed v0 is relatively low in comparison with the 
Rayleigh wave velocity in the soil cR (indicatively under 50 %), which is 
quite common in engineering practice, the maximum vertical 
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displacement due to the moving load exhibits a negligible deviation from 
the static solution.  

o At low values of the ratio v0/cR, the use of a viscous boundary at the base 
of the model in order to simulate a half-space leads to lower accuracy. 
Replacing it with a rigid base may be a solution in cases where the model 
depth is sufficiently large so that the rigid base does not have practically 
any influence on the response. This is a limitation of the FEM.  

Finally, from the investigations on the moving oscillating load, the following 
conclusions are drawn: 

o The influence zone of the moving load with a time-harmonic magnitude is 
larger in comparison with that of the moving constant load. Consequently, 
the former load type is of critical importance for the vibration protection 
practice.  

o Overall, the effect of a single pile on the induced free-field motion is rather 
localized, since the influence range of the pile is equal to approximately 
1-2 m, mostly developing at the back (with respect to the direction of wave 
propagation). 

o The single pile response to a moving oscillating load matches the 
analytical solution from Makris (1994) for Rayleigh wave excitation very 
well, especially as the distance of the pile from the load path increases.   

o Under the scope of metamaterials, a further pile row to the front of the 2x3 
pile group without cap (turning it into 3x3) resulted in an additional 
attenuation of the vibration level experienced by the central pile at the 
back. This was observed in the cases of both a rectangular and a “zig-zag” 
layout, as well as of the higher travelling speed of 27 m/s (f = 45 Hz). 

o For low values of the ratio v0/cR, the agreement of the free-field response 
to a moving oscillating load with the stationary solution is quite 
satisfactory.  

o Of particular importance for the engineering practice, is that the stationary 
harmonic load can be a good approximation for the moving harmonic load 
for low values of the ratio v0/cR, not only in the case of the free-field, but 
also of solitary piles and pile groups. 
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5 Kinematic response of piles to a stationary 
harmonic load 

5.1 Problem statement 

The need for a detailed study over a wide frequency range was the motive to 
investigate the problem of kinematic interaction of piles in the frequency domain. 
For this purpose, the finite-element software Abaqus (version 2019) was 
employed. Direct-solution steady-state dynamic analyses were performed, with 
which the steady-state dynamic linearized response of a system to harmonic 
excitation is computed.  

 

Figure 5.1: Schematic illustration of a pile group excited by the wave field 
emanating from a stationary harmonic point load.  

 

A stationary vertical harmonic point load acting on the surface of a half-space is 
the source of excitation. The response of various pile group as well as piled raft 
configurations located at a distance from the load is examined. A sketch of the 
problem under investigation is given in Figure 5.1. The emanating waves lead to 
a complex foundation response including vertical, horizontal and rocking 
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components. Herein emphasis is placed on the vertical vibration mode, the output 
of which is given in terms of displacement amplitudes.  

The present study was in part conducted under the scope of metamaterials, which 
are natural or artificial materials, or structures in periodic patterns, able to control 
wave propagation. Based on this definition, the piles embedded in the soil form 
a composite pile–soil system with potential in wave shielding. Consequently, the 
following question is raised: How does the periodicity of the piled foundation 
affect the resulting attenuation of motion?  

In this direction, the pertinent finite-element analyses aim to explore how the 
number of pile rows and columns in a piled foundation influences the vibration 
reduction. Consequently, the following concept is implemented: By keeping the 
location of the furthest back pile row, as well as the center-to-center pile distance 
invariable, the piled foundation is extended to the front – opposite to the wave 
propagation direction – by additional pile rows. Their effect on the attenuation 
of motion is quantified through transfer functions with respect to the mid-pile at 
the furthest back row (referred to as reference pile P1), as well as to the free-field 
behind the pile group/piled raft (point B). In specific, these transfer functions are 
ratios of the vertical displacement amplitude of the reference pile as part of the 
corresponding configuration over the vertical displacement amplitude of the free-
field at the location of the pile head center. Similarly, the transfer function at 
point B is defined as the ratio of vertical displacement amplitudes at this point 
with/without the presence of the piled foundation. The distance of each pile row 
from the point load is denoted as x0.  

The examined configurations are summarized in Figures 5.2 and 5.3. In specific, 
a top view of the problem involving pile groups 2x3, 3x3, 4x3 and 5x3 is shown 
in Figure 5.2. Correspondingly, configurations 2x5, 3x5, 4x5 and 5x5 are 
portrayed in Figure 5.3. The piles P1-P5 located at the center of each row are 
monitored for the derivation of transfer functions. The center-points of these 
reference piles and the point load collinear. Pile rows are defined perpendicularly 
to the wave propagation direction with respect to the piled foundation, while pile 
columns are defined parallel to it. Evidently, the smallest system tested herein is 
a 2x3 pile group/piled raft consisting of 2 rows parallel to the wave propagation 
direction and 3 columns. The number of pile rows is increased up to 5. In a 
similar manner, each configuration is extended by two additional pile columns 



 

88 
 

(e.g. 2x3 to 2x5) to examine the effect from the extension of the piled foundation 
parallel to the wave propagation direction.   

 

Figure 5.2: Top views of pile groups/piled rafts 2x3 - 5x3. d = 0.67 m.   
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Figure 5.3: Top views of pile groups/piled rafts 2x5 - 5x5. d = 0.67 m.  
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Figure 5.3 continued. 

 

Fixed-head conditions (zero top rotation) are considered for the piles, which are 
connected via a rigid, massless cap. In the case of a pile group, the cap is not in 
contact with the soil. To examine the effect of the boundary condition enforced 
through a perfect contact between cap and soil, corresponding piled rafts as well 
as rafts acting alone were also analysed. All the above cases are schematically 
illustrated in Figure 5.4. 

 

Figure 5.4: The different systems under investigation: pile group, piled raft, and 
raft alone. 
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5.2 Finite-element modelling 

The finite-element model developed with Abaqus is depicted in Figure 5.5 along 
with aspects of mesh discretization. Taking advantage of symmetry, only half of 
the problem is simulated.  

In conjunction with the standard finite elements used to model the region of 
interest (Figure 5.6), solid continuum infinite elements serving as absorbing 
boundaries are placed peripherally as well as at the base of the model to simulate 
a half-space. These special elements provided by Abaqus are, in the case of 
dynamic analyses, based on the theory of Lysmer & Kuhlemeyer (1969). Their 
response assumes plane body waves traveling orthogonally to the boundary. In 
this study first-order 8-node continuum infinite elements (CIN3D8) are used.  

As shown in Figure 5.5, the distance of the point load from the peripheral 
absorbing boundaries varies. The interacting system load–piled foundation is 
placed at the center of the model, not the load. Unwanted reflections were not 
noticed in the response. The above distance was also chosen between the furthest 
back pile row and the closest absorbing boundary. A model with the load acting 
at its symmetry axis would have led to an unnecessarily large finite-element 
region, increasing thus the computational time by far. The length of the infinite 
elements is also based the documentation of Abaqus (2019). According to it, the 
second node along each edge of an infinite element in the direction of infinity 
must be positioned twice as far from the so-called “pole” of the far-field solution 
for the element edge as the node at the interface between finite- and infinite-
element region on the same edge. For example, in the case of a point load applied 
on the surface of a half-space, the pole of the solution coincides with the point of 
application of the load. 

The model is designed to account for pile group or piled raft configurations up 
to 5x5; when smaller configurations are examined, the “redundant” piles are 
replaced by soil. This is achieved by simply assigning soil properties to these 
unnecessary pile parts. The same philosophy is behind the pile geometry, which 
can be identified in Figure 5.5 at the location of the vertical point load: by 
activating solely this pile, and by applying a uniform displacement at its head, 
dynamic impedances and interaction factors were obtained in the frame of an 
additional validation. For the main core of the analyses, however, where the 
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focus is placed on the pile group, these particular solitary piles remain inactive 
and simply serve as soil.  

 

Figure 5.5: Finite-element model including the 5x5 pile group. (The part with 
pile geometry underneath the load, as well as the one between the load and the 
pile group, represent soil and not piles in pile group analyses.)  
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Figure 5.6: Finite-element region of the model.   

 

For the core of the analyses investigating the response of various pile group 
configurations, the implemented parameters can be found below. Only for the 
comparison with the results obtained with the program Plaxis, presented next, 
the same parameters of Section 4.2.1 were applied.  

The soil is modelled as a linear-elastic continuum with a Young’s modulus 
E = 172368 kPa and a Poisson’s ratio ν = 0.4. The resulting shear modulus 
G = 61560 kPa in combination with the density ρ = 1.9 Mg/m3 yields a shear 
wave velocity cS = 180 m/s. The Rayleigh wave velocity in the soil is 
cR ≈ 170 m/s. A hysteretic damping ratio of ξ = 2.5 % is introduced. 

A linear-elastic material with a Young’s modulus Ep representing concrete is 
assigned to the piles. The resulting pile flexibility is Ep/E = 150, which is 
common in engineering practice. The Poisson’s ratio is taken as νp = 0.2, whereas 
the unit weight γp = 25 kN/m3. The mass density ratio is ρp/ρ = 1.34. The length 
l = 10 m is kept constant for all analyses, as well as the diameter d = 0.67 m 
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resulting in a pile slenderness l/d = 15. The center-to-center pile distance s 
normalized by the diameter d is equal to s/d = 2.985. For conciseness, s/d = 3 is 
used throughout the text.  

The soil as well as the piles are modelled with first-order 8-node brick elements 
(C3D8). A fully bonded contact between the piles and the soil is assumed, so that 
no slippage or detachment occurs. 

 

Table 5.1: Geometric characteristics of the examined pile group configurations. 

Configuration  
Distance of 

configuration 
center from load 

x0 [m] 

Dimensions of 
cap/raft 

[Pile rows x columns] a [m] b [m] 
 

2 x 3 15 4.66 6.66 
3 x 3 14 6.66 6.66 
4 x 3 13 8.66 6.66 
5 x 3 12 10.66 6.66 

      

2 x 5 15 4.66 10.66 
3 x 5 14 6.66 10.66 
4 x 5 13 8.66 10.66 
5 x 5 12 10.66 10.66 

 

Geometric aspects of the examined systems are presented in Table 5.1, including 
the cap/raft dimensions. These are relevant only in the case of piled rafts, where 
the raft–soil contact is considered, and, consequently, the area of the raft has an 
effect on the results.  The massless, rigid cap/raft is modelled with linear 4-node 
shell elements (S4). The thickness of the raft is taken as dcap = d = 0.67 m, which, 
however, has no influence on the response. The distance between the pile- and 
raft-edge is equal to circa 1.5·dcap.  

In the finite-element models including the pile groups, the piles are extended 
above the soil surface by 0.005 m. The cap is then placed atop them. The pile-
head response of each pile is calculated at its central node at the level of the soil 
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surface. The geometric center of the cap is chosen as a characteristic point for 
the calculation of the pile group response, as indicatively shown in Figure 5.7 for 
the 3x3 pile group. In the depicted system, the response obtained at the head of 
the central pile is practically equal to the response calculated at the center-point 
of the cap. Obviously, when modelling a piled raft there is no gap between the 
raft and the soil, so the response of all elements is calculated at the respective 
nodes at the soil surface level.  

 

Figure 5.7: Modelling details of the 3x3 pile group. The white points highlight 
the nodes at which the response is calculated. 

 

The excitation frequency f of the vertical harmonic point load Q = │Q│·eiωt varies 
from 8 to 64 Hz with a step of 2 Hz.  

The mesh is uniform with a finite-element size equal to approximately 0.333 m. 
For the highest frequency considered herein, this corresponds to approximately 
8 finite elements per Rayleigh wavelength λR. 

5.3 Frequency- vs. time-domain analysis 

5.3.1 Verification of the free-field response 

The efficiency of the analysis in the frequency domain (FD) in the frame of the 
present study was one the main motives for using the finite-element software 
Abaqus. The first step was to verify the free-field response to a stationary 
harmonic point load against the semi-analytical solution from Vrettos (1991). To 
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account for the presence of hysteretic damping in the soil, the linear-elastic 
response derived from Vrettos (1991) is multiplied with the factor 
exp(– 2·π·ξ · r /λR). This is known as Mintrop approximation (Vrettos 2009, 
DGGT 2019). Moreover, a comparison is presented with the results in Chapter 4 
from analyses in the time domain (TD) using the finite-element software Plaxis. 
It is underlined that the finite-element region of the model in Abaqus has not only 
the same dimensions as the model in Plaxis, but also almost the same 
discretization in order to allow a fair enough comparison between the two 
analysis tools. For this comparison, the same soil properties as in Section 4.2.1 
are considered, which correspond to a relatively incompetent soil. 

To calculate the free-field response to a vertical harmonic point load acting on 
the surface of a half-space, all parts in the finite-element model intended for piles 
are substituted by soil. With reference to Figure 5.5, the free-field response is 
monitored to the right of the load. The resulting vertical displacement amplitudes 
on the soil surface are normalized by the shear modulus of the soil G, the distance 
from the excitation source r and the load amplitude │Q│, and are presented in 
Figure 5.8 against the dimensionless frequency ωr/cS. The response in the 
different cases compared in Figure 5.8 is derived as follows: 

 Plaxis [TD – r: variable, f : constant]: A single excitation frequency (f = 30 
Hz) is applied, and the response is obtained at nodes at a varying distance 
r from the source. Note that with a single time-domain analysis, this is the 
only possible way to reproduce the pertinent curve.    

 Abaqus [FD – r: variable, f : constant]: The response to a single excitation 
frequency (f = 30 Hz) is calculated at a varying distance from the load. The 
principle is the same as above, yet the analysis is conducted in the 
frequency domain. 

 Abaqus [FD – r: constant, f : variable]: A range of frequencies (f = 1 - 60 
Hz) is applied, with the response being monitored at a specific distance 
from the point load (r = 16 m, which corresponds to the location of the 
farthest pile from the excitation source). 
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Figure 5.8: Frequency- vs. time-domain analysis: Normalized vertical 
displacement amplitudes at the surface of a homogeneous half-space due to a 
vertical harmonic surface point load versus the dimensionless frequency. 
ξ = 1 %, v = 0.4.  

 

As shown in Figure 5.8, the agreement between time- and frequency-domain 
analysis is satisfactory. In addition, the FEA results match reasonably the 
theoretical solution, with deviations becoming more pronounced as the excitation 
frequency or distance from the load increases. This is unsurprising though, since 
in the vicinity of the absorbing boundary unavoidable minor reflections have an 
effect on the response. In the case of increasing frequency, on the other hand, the 
number of finite elements corresponding to a single wavelength decreases, 
leading thus to an overall less accurate response. One can observe that the 
analyses with varying frequency in Abaqus yield some discrepancies from the 
analytical solution at low frequencies, which, due to the corresponding large 
wavelengths, are attributed to reflections by the infinite elements set as absorbing 
boundaries. A larger finite-element model would have improved these results, 
but for the main analyses further on, the focus lies on frequencies f  ≥ 8 Hz, which 
are not affected by this.      

The frequency-domain analyses yield very similar results regardless of the 
approach employed (varying either the distance from the load or the frequency). 
Since the focus in the present study lies primarily on the effect of frequency on 
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the kinematic response, all results presented from this point on are derived from 
analyses with a varying frequency.    

- Influence of hysteretic damping  

It is reminded that a Rayleigh-type damping corresponding to a hysteretic 
damping ratio ξ = 1% was introduced in the soil for the time-domain analyses 
performed with Plaxis. In Abaqus, the frequency-independent hysteretic 
damping ξ reflecting the internal energy dissipation characteristics of the soil can 
be directly implemented. To investigate whether the above low value could be 
the cause of the irregularities appearing in the free-field response curves (recall 
Figure 5.8), additional analyses were conducted in the frequency domain, with 
the hysteretic damping ratio being varied up to 4%. 

The Mintrop approximation (Vrettos, 2009; DGGT, 2019) is employed in order 
to adjust the semi-analytical solution from Vrettos (1991) used for verification 
to the different hysteretic damping ratios. The resulting free-field response 
curves are presented in Figure 5.9. The graph is enlarged in the low-frequency 
range up to ωr/cS = 16. Indeed, even from a value of ξ = 2.5%, the curve becomes 
significantly smoother, and the deviations from Vrettos (1991) are substantially 
reduced. At high frequencies, the free-field response for ξ = 4% exhibits some 
slightly increased differences from the theoretical curve, which are attributed to 
the approximation for the attenuation of motion with distance from the source.  

Apparently, the hysteretic damping ratio ξ = 1% does not offer adequate energy 
dissipation in the specific system, presumably leading to reflections when the 
waves reach the absorbing boundary. A higher value of material damping ensures 
a sufficient attenuation of vibrations before they arrive at the interface between 
the finite-element region and the infinite elements.  

Therefore, a hysteretic damping ratio ξ = 2.5%, which is also relevant for the 
vibration protection practice, was selected for the analyses further on.  

A final point to highlight is that the deviation from the analytical solution at low 
excitation frequencies due to wave reflection by the infinite elements is, as 
expected, independent from hysteretic damping, which is present in dynamic 
systems.   
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Figure 5.9: Influence of the hysteretic damping ratio ξ:  Normalized vertical 
displacement amplitudes at the surface of a homogeneous half-space due to 
excitation with a vertical harmonic surface point load versus the dimensionless 
frequency. v = 0.4.  

 

5.3.2 Results for a single pile and pile group 

After the verification of the free-field response, as a next step, the kinematic 
response of the 3x3 pile group analysed in the time domain with Plaxis in Chapter 
4, was recalculated with Abaqus in the frequency domain within a broader 
frequency range (10 - 60 Hz). Results are presented in terms of transfer functions, 
relating the vertical displacement amplitude at the pile head │wp│ to that of the 

free-field at the same location │wff│. Piles P3 and P1 (see Figure 5.2) being the 
front and furthest-back central piles at the distances x0 = 12 m and x0 = 16 m, 
respectively, are monitored. First, the response of each one as a solitary pile is 
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presented in Figure 5.10 along with a comparison with the analytical solution 
from Makris (1994), which is thoroughly presented in Section 4.1. Interestingly, 
the results are in good accord with the analytical solution for the whole frequency 
range, despite the fact that the latter assumes excitation exclusively by Rayleigh 
waves. In our case, however, due to the vicinity to the excitation source, P- and 
S-waves interfere in the response, especially at low frequencies. Accordingly, 
one would expect the agreement to improve with increasing frequency, since the 
distance from the excitation source at which the far-field begins becomes shorter. 
Note also that the solution from Makris (1994) employs a Winkler model, while 
herein the piles modelled with volume elements are embedded in a continuum.  

Figures 5.11 and 5.12 depict the response of piles P1 and P3 in the 3x3 group, 
which is either free-standing or rigidly capped, respectively.  

In all cases, the match between the two analysis tools (frequency- and time-
domain analysis) is excellent. Based on the needs of the present study, the 
analyses in the frequency domain are undoubtedly superior in terms of efficiency, 
since, compared to the time-domain analyses that require a large number of 
dynamic cycles to reach a steady-state response in order to derive displacement 
amplitudes with higher accuracy, they yield in a significantly reduced running 
time a plethora of data points. This is essential for a realistic representation of 
response characteristics. For example, notice Figure 5.12 for pile P1 in the rigidly 
capped group: With the frequency-domain analysis, a valley in the response is 
captured between the dimensionless frequencies 1.16 and 1.32 (corresponding to 
f = 35 and 40 Hz). On the other hand, the fewer available data points from the 
time-domain analyses create the (false) impression of a smoother response. To 
avoid misunderstanding: The issue addressed is the lower competence of time-
domain analysis in the derivation of results for the type of problems examined 
herein, not the accuracy of the method.       
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Figure 5.10: Comparison between time- and frequency- domain using Plaxis and 
Abaqus, respectively: Response of a single pile embedded in half-space at a 
distance x0 from the vertical point load. The solution from Makris (1994) for 
Rayleigh wave excitation is also depicted for comparison.  

 



 

102 
 

 

Figure 5.11: Comparison between time- and frequency- domain using Plaxis and 
Abaqus, respectively: Response of a reference pile at a distance x0 from the 
vertical point load. The pile is part of a 3x3 free-standing pile group (without 
cap) with s/d = 3 embedded in half-space.  
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Figure 5.12: Comparison between time- and frequency- domain using Plaxis and 
Abaqus, respectively: Response of a reference pile at a distance x0 from the 
vertical point load. The pile is part of a 3x3 rigidly capped pile group with s/d = 3 
embedded in half-space. 
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5.4 Additional validation: inertial loading of a single pile 

By solely activating the pile located at the point where the load is acting (see 
Figure 5.5), dynamic impedances, as well as interaction factors were derived and 
compared to existing solutions in the frame of an additional validation of the 
finite-element model. Figure 5.13 shows a snapshot of the deformed mesh at 
f = 30 Hz (a0 = 0.99) along with contours of vertical displacements. Highlighted 
are the loaded pile as well as the nodes on the soil surface at a distance s/d from 
the center of the former; these nodes correspond to the receiver pile locations 
when deriving interaction factors.  

The case of a stiff pile relatively to the supporting soil is examined (Ep/E = 1000), 
with the same soil properties as in Section 4.2.1.     

 

 

 

Figure 5.13: Deformed mesh with contours of vertical displacements (real part) 
due to inertial loading (f = 30 Hz; a0 = 0.99) of a single pile with l/d = 15 and 
Ep/E = 1000 in half-space with ξ = 5 %. The nodes highlighted at distances 
s/d = 2, 5 and 10 from the center of the loaded pile are monitored for the 
derivation of interaction factors.  
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Figure 5.14: Vertical dynamic stiffness and damping coefficient of a single pile 
with l/d = 15 and Ep/E = 1000 in half-space for various values of hysteretic 
damping ratio ξ. The FEA results are compared to the results from Hartmann for 
ξ = 1 % with the thin-layer method.   
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First, the vertical dynamic impedance of a single pile in half-space (l/d = 15, 
Ep/E = 1000) is compared with the rigorous solution from Hartmann (2015) with 
the thin-layer method (TLM), which is also published in DGGT (2019).  

Figure 5.14 depicts the dynamic stiffness KV and the dashpot coefficient ω·CV, 
normalized by the vertical static stiffness KV0. Due to the low value of hysteretic 
damping ratio ξ = 1 % chosen to match the one assumed in the solution from 
Hartmann (2015), a fluctuation is evident in the FEA results. By increasing the 
hysteretic damping ratio up to 5 % a smoother response is obtained; though, 
unsurprisingly, this leads to a greater deviation from the rigorous solution.  

Note also that the value of the dynamic stiffness for f = 1 Hz with ξ = 1% is taken 
as static stiffness KV0 to normalize the FEA results.  The ratio KV0/ER = 18.2 
exhibits a deviation of less than 1 % from the static solution from the TLM 
(DGGT, 2019).  

Subsequently, interaction factors have been derived and compared to the 
analytical approximation from Dobry & Gazetas (1988) given by Equation (2.9). 
For consistency, the numerical analyses assume ξ = 5 %. The interaction factor 
av is defined in this case as the dynamic displacement of the free-field at a 
normalized distance s/d from the loaded pile, which corresponds to the location 
of a potential receiver pile, divided by the dynamic displacement of the loaded 
pile. The real and imaginary part of the interaction factors, Re(av) and Im(av), 
respectively, are depicted in Figure 5.15 versus the dimensionless frequency 
a0 = ω·d/cS for three values of s/d = 2, 5 and 10. Up to a0 = 1, which is the upper 
limit of the frequency range considered by Dobry & Gazetas (1988), the FEA 
results are in overall good agreement with the approximation, especially as s/d 
increases.  

One of the assumptions by Dobry & Gazetas (1988) is that cylindrical waves 
emanate simultaneously from all points along the pile periphery, then spreading 
radially outward. As can be observed in Figure 5.16, which shows three 
snapshots of the analyses at f = 16, 32 and 48 Hz corresponding to a0 = 0.53, 1.06 
and 1.59, this assumption becomes invalid with increasing excitation frequency, 
which could clarify the above differences in the interaction factors. In addition, 
Equation (2.9) does not take into account neither the pile flexibility Ep/E or the 
pile slenderness l/d. However, for soft soils, as in the example presented herein, 
this is not expected to affect the results.        
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Figure 5.15: Comparison of the interaction factors derived from the FEA for 
l/d = 15 and Ep/E = 1000 with the analytical approximation from 
Dobry & Gazetas (1988) given by Equation (2.9).  
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Figure 5.16: Contours of vertical displacements (real part) showing the wave 
propagation due to the inertial loading of a single pile in half-space.  

 

Finally, the same results are compared to the rigorous solution from Kaynia & 
Kausel (1982), who presented interaction factors defined as ratios of the dynamic 
displacement of the receiver pile over the static displacement of the source pile 
under unit load. In our case, the static solution is assumed to appear at the lowest 
examined frequency of f = 1 Hz (a0 = 0.03), and the results are presented in 
Figure 5.17 following the normalization by Kaynia & Kausel (1982).  

The rigorous results are available up to a0 = 1. Overall, the agreement is 
significantly improved compared to the approximation by Dobry & Gazetas 
(1988). The actual presence of a second pile (receiver pile) at the distance s/d 
from the harmonically loaded pile (source pile) is considered by Kaynia & 
Kausel (1982). It is reminded that in the FEA herein only the source pile is active. 
So, herein, to derive the interaction factor, the response of the free-field at the 
corresponding location is assessed. Obviously, this has an influence on the 
results.  

This issue has been addressed in the recent study of Kanellopoulos & Gazetas 
(2020), where interaction factors derived by means of the FEM with and without 
the presence of a neighbouring pile are presented. In the first case, the rigidity of 
the receiver pile in axial deformation leads to smaller amplitudes of interaction 
factors, especially at higher frequencies and higher relative stiffness of the soil. 
This is described as a “reinforcing” effect of the neighbouring pile, a term 
originally introduced by Randolph (2003). This is, however, beyond the scope of 
the present study. 
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Figure 5.17: Comparison of the interaction factors derived from the FEA for 
l/d = 15 and Ep/E = 1000 with the rigorous solution from Kaynia & 
Kausel (1982).  
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The successful comparison confirms that the finite-element model is able to 
successfully reproduce wave propagation problems. Even though the inertial 
loading of the pile is not taking place at the center of the finite-element model, 
the good agreement with existing solutions confirms that the choice of 
asymmetry with respect to the application of the load might only have a minor 
effect on the results.    

5.5 Pile group vs. piled raft – Frequency-domain analysis  

5.5.1 Pile array 2x3  

The vertical point load considered as an excitation source leads to a vertical, 
rocking and horizontal motion of the distant pile foundation. Due to the 
symmetry of the problem and to the rigid cap connection, all the piles at the same 
row move in an identical way.  

Starting with the 2x3 pile group/piled raft (Figure 5.2), which is the smallest one 
examined, the response of the central piles at each row, P1 and P2, is presented 
in terms of vertical transfer functions in Figure 5.18, where it is also compared 
to their response as solitary piles. To derive the transfer functions, the vertical 
displacement amplitudes of the pile heads are normalized by those of the free-
field at the exact location. In that way, it is revealed how the presence of each 
pile affects the free-field motion at a local level.  

The first pile in the 2x3 system being struck by the waves, P2, as part of the pile 
group exhibits a behavior similar to that as if it were a solitary pile, especially 
for dimensionless frequencies higher than a0 = 0.5. Being part of the piled raft, it 
experiences overall slightly reduced vibration amplitudes.  

A quite different trend is observed for the reference pile P1 being located at the 
back of the system. As part of the 2x3 pile group, this pile is subjected to a 
significantly reduced vibration level in comparison with the single pile case. 
Apparently, the front pile row serves ‘protectively’ in the examined frequency 
range. The attenuation of motion is even more pronounced when P1 becomes a 
piled-raft component. In this case, as the dimensionless frequency increases, the 
vertical transfer function of the pile tends to zero.  



 

111 
 

 

Figure 5.18: Vertical transfer functions of reference piles in the 2x3 configuration 
as single piles or parts of a pile group/piled raft.  
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Figure 5.19: Vertical transfer functions of reference piles normalized by the free-
field amplitude at the center-point of the 2x3 configuration. 
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Most importantly, at a0 = 0.5 already, which herein corresponds to f ≈ 22 Hz, 
both reference piles as components of the 2x3 configuration manage to reduce 
the free-field motion down to 60 %. In fact, with increasing frequency, the 
attenuation becomes even stronger.      

In order to properly quantify the variation of the vibration level inside the same 
configuration, a common normalization is implemented in Figure 5.19, where 
the vertical displacement amplitudes of the reference piles P1 and P2 are divided 
by those of the free-field corresponding to the geometric center of the 
configuration denoted as │wff,C│. For both pile group and piled raft it can be seen, 
that up to approximately a0 = 0.5, the two piles lying successively in the direction 
of wave propagation exhibit almost the same response. Furthermore, the nature 
of loading is quasi-static at these low frequencies, due to the corresponding large 
wavelengths in comparison with the dimensions of the examined configuration, 
so the piles move in-phase. By further increasing the frequency though, the 
vibration level of the furthest back pile P1 begins to deviate from that of the front 
pile P2. In fact, in the case of the piled raft, it drops dramatically. As previously 
mentioned, the applied excitation leads to a rocking motion of the pile 
group/piled raft; consequently, it is deduced that the furthest back pile serves 
practically as the center of oscillation at these high frequencies, since its vertical 
displacement amplitude tends to zero. 

 

Figure 5.20: Vertical transfer function at the center-point of the 2x3 
configuration. 
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Figure 5.20 shows the transfer function being the ratio of the vertical 
displacement at the geometric center of each configuration │wC│ over that of the 

free-field │wff,C│  corresponding to the same location. In specific, for the pile 

group, the amplitude │wC│ is calculated at the geometric center of the cap 
connecting the piles, and, accordingly, for the piled raft and the raft alone, this 
value is obtained at the geometric center of the raft. 

Overall, the least reduction of the free-field motion is accomplished by the raft 
acting alone; an exception is noticed though within the frequency range a0 = 0.3 
- 0.38 as well as within a0 = 1.4 - 1.5, where the transfer function of the pile 
group attains the highest values. On the other hand, the maximum drop of the 
vibration level is observed in the case of the piled raft; within the range a0 = 1.08 
- 1.31, however, it is the pile group, which leads to the maximum attenuation, 
with respect to the geometric center of the system.  

 

 

Figure 5.21: Vertical transfer function at point B behind the 2x3 configuration.  

 

Finally, Figure 5.21 compares how the three investigated schemes influence the 
free-field response behind them – with respect to the wave propagation direction. 
The response is calculated at the observation point B located at x0 = 18 m on the 
soil surface. The transfer function is defined as the ratio of the vertical 
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displacement amplitude of point B │wB│ in presence of the pile group, the piled 
raft or the raft alone over the vertical displacement amplitude of point B 
considering merely the free-field │wff,B│. Up to a0 ≈ 0.9, the pile group has the 
most beneficial influence on point B by significantly reducing the original free-
field motion. However, beyond this point, a reversal of the trend can be noticed, 
with the piled raft and the raft alone acting favorably in terms of vibration 
reduction. The piled raft and the raft alone lead to an overall similar response, 
and, surprisingly, from a0 = 0.85 up to a0 = 1.3, they have practically the same 
effect on point B. This agreement though was not observed inside the 
configuration.    

5.5.2 Pile array 3x3  

The extension of the previous 2x3 configuration by an additional pile row against 
the direction of wave propagation leads to a 3x3 pile array, as already explained 
in Section 5.1.   

In Figure 5.22 the response of each central reference pile in the 3x3 system is 
portrayed as part of a pile group or piled raft, or as a solitary pile. Firstly, the 
response of pile P3, which is the first one to be struck by the propagating waves 
is discussed. Recall that in the respective case of the 2x3 configuration, pile P2, 
being the first-row central pile, exhibits essentially the behavior of a single pile. 
In the current case, however, this is valid for P3 only when being part of the pile 
group for low frequencies up to a0 ≈ 0.6. Beyond this point, the attenuation of 
motion is generally significantly stronger compared to the single pile case. This 
indicates that group effects dominate in larger configurations. Only at the highest 
examined frequencies, the transfer function of the pile in the group exceeds 
slightly that of the single pile. The greatest deviation from the corresponding 
single pile case can be observed for pile P2 at the mid-row of the 3x3 system. In 
addition, whether the piles are connected via a cap or a raft that is also in contact 
with the soil, does not have an influence on the response of the central row in the 
3x3 pile array. Finally, the furthest-back pile P1 also shows a considerable 
deviation from the single pile case, with the type of the pile array (pile group or 
piled raft) having an effect only at higher frequencies.  
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Figure 5.22: Vertical transfer functions of reference piles in the 3x3 configuration 
as single piles or parts of a pile group/piled raft. 
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Figure 5.23: Vertical transfer functions of reference piles normalized by the 
free-field amplitude at the center-point of the 3x3 configuration. 

 

The direct comparison in Figure 5.23 between the reference piles after a common 
normalization by the vertical displacement amplitude of the free-field at the 
center of the 3x3 configuration, shows that pile P2 at the mid-row experiences 
generally a lower vibration level. The motion of the pile group is quite complex. 
On the other hand, the curves for the piled raft reveal that between a0 = 0.8 and 
a0 = 1.5, the mid- and furthest back central pile are subjected to almost identical 
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displacement amplitudes. This could be an indication that the center of oscillation 
for the rocking motion is located about the mid-point between them. 

 

 

Figure 5.24: Vertical transfer function at the center-point of the 3x3 
configuration. 

 

The transfer functions with respect to the geometric center of the 3x3 
configuration are presented in Figure 5.24. The transfer function of the raft acting 
alone exceeds those of the pile group and the piled raft in the dimensionless 
frequency range 0.5 - 1, but apart from that the results are similar for the three 
schemes. Especially the response at the center-point of the pile group matches 
quite well that of the piled raft. This last point was already revealed in Figure 
5.22 for P2 though, since the location of the geometric center of the 3x3 system 
coincides with that of the central reference pile P2. 

The response of point B at the free-field behind each scheme is portrayed in 
Figure 5.25. Except from the frequency range 0.9 - 1.3, the vibrations are reduced 
the most in the presence of the pile group. The response due to the piled raft is 
similar to that of the raft acting alone. The contact of the raft with the supporting 
soil in this case affects in a rather unfavorable manner the response at point B 
behind the foundation.       
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Figure 5.25: Vertical transfer function at point B behind the 3x3 configuration.  

 

5.5.3 Pile array 4x3  

In Figure 5.26, the response of the reference piles P4 - P1 being part of the 4x3 
configuration, is contrasted to their response as single piles.  

First, results are presented for pile P4 at the first row being hit by the waves 
generated by the point load. Compared to the other reference piles in the 4x3 pile 
array, the least deviation from the single pile case is documented throughout the 
total frequency range. Yet, the response of pile P4 differs by far from that of a 
solitary pile at the same location, with an exception at very low frequencies. As 
suggested previously in the case of the 3x3 system, this deviation is attributed to 
group effects prevailing in larger systems. By becoming part of a piled raft, the 
transfer function of pile P4, with the exception of the frequency range a0 ≈ 0.85 
- 1.25, attains the lowest values. This last observation applies also to the 
following pile P3.  
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Figure 5.26: Vertical transfer functions of reference piles in the 4x3 configuration 
as single piles or parts of a pile group/piled raft. 
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Figure 5.26 continued.  

 

For the next pile, P2, the largest deviation from the corresponding single pile 
response can be noticed. Furthermore, there are practically no differences 
between pile group and piled raft. In fact, beyond the dimensionless frequency 
a0 = 0.6, the transfer function is almost equal to zero, which indicates that for the 
largest part of the examined frequencies, there is nearly no motion of pile P2 in 
the vertical direction.  

Finally, pile P1 at the furthest-back row reduces also significantly the free-field 
motion in comparison with the single pile scenario. Even though it mostly 
reduces the vibration level as part of the piled raft, in the range a0 = 0.80 - 1.03, 
the agreement between the pile group and the piled raft is striking.       
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Figure 5.27: Vertical transfer functions of reference piles normalized by the 
free-field amplitude at the center-point of the 4x3 configuration. 

 

A direct comparison of the piles in the pile group or the piled raft is portrayed in 
Figure 5.27. For both foundation types, pile P4 experiences the largest vertical 
displacement amplitudes. On the other side, the vibration level of pile P2 is the 
lowest, with the corresponding transfer function attaining in some cases values 
that are practically equal to zero. Indicatively, in the case of the pile group at 
a0 = 1.22 (corresponding to f = 52 Hz), the vertical transfer function of P2 is 
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equal to zero. For P1 and P3, being the neighbour piles on either side of P2, the 
transfer function is equal to 0.09 and 0.08, respectively, while P4 experiences 
almost the double vibration level. Consequently, at this frequency, the location 
of pile P2 coincides with the center of oscillation for the rocking mode. Note 
however, that the system also has a horizontal component, which leads to a 
complicated motion. This practically means that multiple centers of oscillation 
may exist depending on the excitation frequency. 

The results with respect to the geometric center of the three examined foundation 
types are shown in Figure 5.28, with the raft alone demonstrating the largest 
transfer functions up to approximately a0 = 1.3. Overall, the pile group and the 
piled raft lead to a similar attenuation of motion as calculated at their center-
point.  

 

 

Figure 5.28: Vertical transfer function at the center-point of the 4x3 
configuration. 
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Figure 5.29: Vertical transfer function at point B behind the 4x3 configuration. 

 

Regarding the free-field point B behind each investigated foundation type, an 
abrupt drop of the transfer function is observed up to a0 ≈ 0.45 for all cases in 
Figure 5.29. Beyond this point, the attenuation of motion is relatively similar; 
from a0 ≈ 1.3, however, the presence of the pile group results in the largest 
vertical displacement ratios, in fact exhibiting an increasing trend at high 
frequencies. 

5.5.4 Pile array 5x3  

The response of each reference pile in the 5x3 pile group as well as in the 
corresponding piled raft is contrasted to its response as a solitary pile in Figure 
5.30. For low frequencies up to a0 ≈ 0.3, pile P5 at the first row to be struck by 
the propagating waves, exhibits roughly the same behavior regardless of scheme. 
After this point, an increasing deviation from the single pile response can be 
noticed, being, however, the smallest in comparison with the other reference 
piles. In addition, the differences between the pile group and the piled raft case 
are not particularly appreciable. At most frequencies, pile P5 as part of the piled 
raft exhibits the lowest vibration level; exception is the range a0 = 0.95 - 1.30. 
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Figure 5.30: Vertical transfer functions of reference piles in the 5x3 configuration 
as single piles or parts of a pile group/piled raft. 
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Figure 5.30 continued.   

 

This trend is observed at the rest piles P4, P3 and P1 too. Pile P2 exhibits the 
greatest deviation from the single pile case, with its displacement amplitudes 
beyond a0 ≈ 0.5 being close to zero. Furthermore, the pile group and the piled 
raft case yield quite similar results.  
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Figure 5.31: Vertical transfer functions of reference piles normalized by the 
free-field amplitude at the center-point of the 5x3 configuration. 

 

The common normalization by the free-field motion corresponding to the 
geometric center of the 5x3 configuration in Figure 5.31 reveals that the front-
row pile P5 demonstrates the greatest displacement amplitudes as part of the pile 
group; in the piled raft, its response is very close to that of pile P4. This indicates 
the complexity in the motion of the system. Similar to the 4x3 configuration, the 
transfer function of pile P2 attains overall the lowest values.  
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With respect to the geometric center of each investigated scheme, Figure 5.32 
shows that the raft alone offers practically the least attenuation of the free-field 
motion, while the pile group and the piled raft are overall in good agreement.  

 

Figure 5.32: Vertical transfer function at the center-point of the 5x3 
configuration. 

 

Finally, the response at the observation point B behind each scheme is presented 
in Figure 5.33. Once again, it is shown that the piled raft and the raft alone modify 
the free-field behind them in a similar way. At a0 ≈ 1.1 the piled raft leads to a 
practically zero moition, but apart from this, the agreement is good, which 
implies that the boundary condition at the soil surface enforced by the raft mainly 
influences the free-field at the back. The effect of the pile group, on the other 
hand, in the frequency range a0 = 0.72 - 1.25 is obviously unfavorable in 
comparison to that of the other schemes.   
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Figure 5.33: Vertical transfer function at point B behind the 5x3 configuration. 

 

5.5.5 Comparison between 5x3 and 5x5 pile arrays 

As a next step, a series of analyses including the configurations 2x5 - 5x5 
presented in Figure 5.3 were performed. The motivation was to explore whether 
the addition of two columns (one column on either side) to each of the previous 
systems has a beneficial effect on vibration reduction.    

In Figure 5.34, the response of each reference pile in the 5x3 pile group/piled raft 
is contrasted to its response as part of the corresponding 5x5 layout. It can be 
observed that the extension of the foundation system parallel to the wave 
propagation direction by additional piles does not significantly affect the 
response up to a0 ≈ 1. However, beyond this point, considerable differences 
appear, with the configuration including the additional columns reducing the 
vibration amplitudes the most in any case. In fact, with increasing excitation 
frequency, the attenuation of the free-field motion achieved by the largest 
configuration increases. These observations are similar for the rest 
configurations.     

Detailed results for the rest pile arrays can be found in the Appendix.  

 



 

130 
 

 

Figure 5.34: Vertical transfer functions of reference piles in the 5x3 or 5x5 piled 
foundation. 
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Figure 5.34 continued.  

 

5.5.6 Comparison with a Winkler model solution 

The results on the response of each pile group at the center-point are compared 
to the analytical solution from Makris & Badoni (1995) for pile groups under 
Rayleigh wave excitation. Being an extension of the work of Makris (1994) for 
the kinematic response of single piles to a Rayleigh wave field, the method is 
based on a dynamic Winkler model with frequency-dependent springs and 
dashpots to account for the pile–soil–pile interaction.  
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A Matlab code was written for the implementation of the method from Makris & 
Badoni (1995). From the review of the original paper, some minor typos were 
identified in the equations and corrected. 

The vertical transfer functions for pile groups 2x3 - 5x3 are presented in Figure 
5.35, and similarly, for 2x5 - 5x5 in Figure 5.36. First of all, two key differences 
between the analyses herein and the solution from Makris & Badoni (1995) need 
to be highlighted. It has been already mentioned that in finite-element analyses, 
the isolation of Rayleigh waves is practically impossible. With the harmonic 
point load being the source of excitation, in combination with the finite distance 
from the corresponding pile group, the presence of P- and S-waves in the vicinity 
of the pile group is inevitable. Furthermore, the analytical solution from Makris 
& Badoni (1995) utilizes a Winkler model, while in the present study the piles, 
which are modelled with volume elements, are embedded in a continuum.  

Despite the above points, the FEA results are generally in very good accord with 
the analytical solution. Surprisingly, this is true even at low frequencies as well 
as for the largest configurations. Low frequencies are linked with large 
wavelengths, while in the present study, the size of the configuration increases 
towards the source of excitation, so the distance between the load and the pile 
group decreases. Both cases imply an enhanced influence of body waves. 

The solution from Makris & Badoni (1995) can also be applied by neglecting the 
pile–soil–pile interaction. The corresponding curves reveal that this assumption 
is valid at rather lower frequencies. In addition, while the number of pile rows in 
the direction of wave propagation is a key point, the number of columns is 
irrelevant in the analytical solution when the interaction between the piles is 
ignored. As discussed in Section 5.5.6, although this is true at low frequencies, 
the interplay between the piles is more pronounced when the excitation 
frequency increases, and consequently, the number of columns plays an 
important role in the response in this case.         
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Figure 5.35: Vertical transfer functions at the center-point of configurations 2x3 
- 5x3, compared to the analytical solution developed by Makris & Badoni (1995) 
for Rayleigh wave excitation. 
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Figure 5.35 continued.   
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Figure 5.36: Vertical transfer functions at the center-point of configurations 2x5 
- 5x5, compared to the analytical solution developed by Makris & Badoni (1995) 
for Rayleigh wave excitation. 
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Figure 5.36 continued.  

 

Finally, in Figure 5.37, the response of piles P1-P5 as solitary piles is compared 
to the solution from Makris (1994) for a single pile in a Rayleigh wave field. 
Overall, the agreement improves with increasing distance from the harmonic 
load, with the best match accomplished in the case of the most distant pile P1. 
The analytical solution could be employed in the frame of a preliminary design 
even for the near-field. Although it assumes Rayleigh wave excitation, the 
deviation of the FEA results for even the closest piles to the load is not dramatic. 
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Figure 5.37: Vertical transfer functions for piles P1-P5 as solitary piles, 
compared to results from the analytical solution developed by Makris (1994) for 
Rayleigh wave excitation. 

 

5.5.7 Influence of pile row number on vibration reduction 

The influence of pile rows on the vibratory response of the furthest-back pile P1 
as part of each configuration is summarized in Figure 5.38. Corresponding results 
for point B are given in Figure 5.39. 

It is underlined that the distance of the pile array from the point load is an 
additional parameter that obviously affects the response. The overall good 
agreement with the analytical solution from Makris & Badoni (1995) implies that 
the finite distant of the examined pile arrays to the excitation source should not 
play a major role in the response. 

Figure 5.38 shows that in the range a0 ≈ 0.2 - 0.7 additional pile rows reduce 
further the vibration level at the back of the pile array calculated at pile P1. This 
is also true for point B. Beyond a0 ≈ 0.7, due to the complexity of the dynamic 
problem, it is obvious that no clear pattern can be distinguished, and that the 
addition of pile rows against the wave propagation direction does not necessarily 
have a beneficial effect. This suggests that each problem needs to be analysed 
individually to obtain an optimal solution.   
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Figure 5.38: Vertical transfer functions of pile P1 as part of the various 
configurations or as solitary pile. 
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Figure 5.39: Vertical transfer functions at point B behind the various 
configurations. 
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Indicatively, Figure 5.40 provides a visualization of the wave propagation with 
contours of the induced vertical displacement field in presence of a 2x5 and a 
5x5 pile group. At the selected excitation frequency of a0 = 0.5 (f = 22 Hz), the 
addition of further pile rows has a favourable effect on the reduction of the 
vibration level, as revealed by the extended shadow zone forming at the back of 
the 5x5 pile group. Indeed, the transfer function of pile P1 │wp│/│wff│ = 0.53 in 

the 2x5 pile group drops at │wp│/│wff│ = 0.26, when the system is extended by 
three additional front pile rows.  

 

 

Figure 5.40: Vertical displacement contours at a0 = 0.5 (f = 22 Hz) in the 
presence of a 2x5 (left) and a 5x5 pile group (right). 

 

Finally, an interesting observation in Figure 5.39, is that for a large frequency 
range, the extended pile groups parallel to the wave propagation direction (2x5 - 
5x5) reduce the vibration level at observation point B less compared to pile 
groups 2x3 - 5x3. This phenomenon could be attributed to increased reflections 
caused by the presence of additional piles that in combination with the ability of 
the soil about the piles to move freely, lead to higher displacement amplitudes at 
the free-field behind the pile group.  

To enlighten this issue, Figure 5.41 portrays in top view contours of vertical 
displacement amplitudes in presence of the 5x3 and 5x5 pile group for an 
excitation frequency of a0 = 0.47 corresponding to f = 20 Hz (load amplitude 
│Q│ = 1 kN) . The piles are highlighted in red. First of all, it can be seen that the 
each pile row exhibits the same vibration level, due to the symmetry of the 
problem and the connection of the pile heads via the rigid cap, which is not 
distinguished in the snapshots. Of particular interest is, however, that an extended 
influence zone as defined by the amplitude contours can be noticed about the 
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furthest back pile row, in which essentially the vibration level of the pile row 
dominates. Due to the additional pile columns in the case of the 5x5 pile group, 
the respective influence zone is larger. As a result, point B located at the soil 
surface behind the configuration, lies inside the influence zone in presence of the 
5x5 pile group, demonstrating a higher vibration level as in the case of the 5x3 
pile group.     

 

 

 

Figure 5.41: Top view of the models with contours of vertical displacement 
amplitudes in presence of pile groups 5x3 and 5x5 at the excitation frequency 
a0 = 0.47. 
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5.6 Conclusions  

The problem of kinematic response of pile foundations to a distant vertical 
surface harmonic point load was analyzed in the frequency domain with the 
finite-element software Abaqus. The examined foundations include pile groups 
and corresponding piled rafts for which a perfect contact is assumed between the 
raft and the underlying soil. In addition, to explore the contribution of the raft in 
the overall response, analyses with the raft acting alone were also performed. A 
wide frequency range was considered. The kinematic interaction is quantified 
through transfer functions being ratios of the vertical displacement amplitude at 
a characteristic location at the foundation (e.g. pile head) over that of the free-
field corresponding to same location. Before proceeding to the main analyses, 
the model was validated by comparing the free-field response to that derived 
from a theoretical solution. A comparison between frequency-domain and time-
domain analysis was also presented. The following conclusions are drawn:  

o The accuracy of finite-element models for a half-space is lower as the 
excitation frequency decreases. This is attributed to reflections by the 
infinite elements set as absorbing boundaries, due to the large wavelengths 
associated with low frequencies.     

o A low value of hysteretic damping (ξ = 1%) in the soil may cause 
fluctuation in the response. The propagating waves are not sufficiently 
attenuated before reaching the absorbing boundaries, and, consequently 
reflections occur.    

o The results from frequency-domain analyses are in excellent agreement 
with those from time-domain analyses. With respect to the requirements 
of the present study, frequency-domain analysis is a superior tool reducing 
significantly the computational time.  

o In the 2x3 and 2x5 pile groups/piled rafts, both pile rows in the direction 
of wave propagation exhibit almost the same vibration level up to a0 ≈ 0.5. 
The piles move in-phase due to the large wavelengths at low frequencies 
in comparison with the dimensions of the examined configuration.  

o In the above small configurations, the response of the front pile row to be 
struck by the waves is comparable to the single pile response at this 
location. As more rows are added in the wave propagation direction, this 
is valid only at low frequencies, since group effects start to dominate in 
the dynamic response of larger pile arrays as the excitation frequency 
increases.   
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o The extension of the foundation system parallel to the wave propagation 
direction by additional piles columns does not significantly affect the 
response up to a0 ≈ 1. Beyond this point, an enhanced attenuation of the 
vibrations inside the pile array is accomplished by these larger systems.  

o In the case of pile groups, this extension by additional pile columns 
increases the vibration level over a relatively wide frequency range as 
calculated at the free-field in the vicinity of the furthest-back pile row.  

o The piled raft and the raft acting alone influence the response at the free-
field behind them in a similar manner. This indicates that in this case the 
boundary condition enforced at the soil surface by the raft prevails against 
the piles. Beyond a0 ≈ 0.9, in comparison with a pile group, the presence 
of a piled raft or a raft alone results in a lower vibration level of the free-
field at the back for all configurations. In fact, for the larger configurations 
(4x3, 5x3, 4x5 and 5x5), this is valid even from a0 ≈ 0.7.   

o The results herein are compared with the methods from Makris (1994) as 
well as from Makris & Badoni (1995) for single piles and pile groups 
under Rayleigh wave excitation, respectively. The aforementioned 
solutions consider far-field conditions, which in the present study are not 
fulfilled due to the relatively close distance of the piles to the excitation 
source. Nevertheless, the agreement is generally good over the total 
frequency range. Consequently, these analytical solutions can be useful in 
the frame of a preliminary design of pile foundations located in the near-
field of the excitation source.  

o The extension of a pile array by additional pile rows against the direction 
of wave propagation has in the range a0 ≈ 0.2 - 0.7 a beneficial effect on 
the reduction of the vibration level calculated at the furthest-back pile row 
or at the free-field behind the foundation. This is, however, not true, as the 
excitation frequency increases further, and the interplay between the piles 
becomes more complex. 

o The response of the pile group is similar to that of the piled raft for 
configurations including more than two pile rows against the wave 
propagation direction for a0 ≤ 1. 
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6 Summary & outlook   

The problem of dynamic interaction of piled foundations was studied by means 
of the finite-element method with respect to vibration protection. The focus was 
placed on the kinematic response single piles, pile groups and piled rafts to a 
wave field emanating from a distant stationary or moving harmonic point load 
acting on the surface of the soil. In addition, dynamic impedances were derived 
for pile groups and piled rafts, as well as for an embedded footing. The finite-
element programs Abaqus and Plaxis were employed for analyses in the 
frequency and time domain, respectively. Each of these tools was used with 
respect to the needs of the corresponding examined cases and to the optimization 
of the analyses. The results were verified against rigorous solutions. The 
importance of key aspects in finite-element modelling was also highlighted. The 
most significant conclusions are summarized as follows:  

o For closely spaced piles, the dynamic impedances of a pile group are 
practically equal to those of a respective piled raft for all vibration modes 
(vertical, horizontal, rocking). This is due to the overlapping of the 
influence zones of the piles, while the raft remains practically inactive 
without participating in the load sharing. 

o Even in the case of the wide pile spacing, the inertial response of both 
systems exhibits remarkable similarities up to a0 ≈ 0.4 for all modes of 
oscillation. At lower frequencies, the influence zones of the piles expand 
due to the associated large wavelengths, and overlap despite the wider 
pile-to-pile distance. 

o The inertial response at low frequencies in the case of the half-space is less 
accurate due to the infinite elements used at the base of the model, and not 
due to those placed peripherally, since the latter are also present in the soil 
stratum models, which yield results in very good accord with rigorous 
solutions.     

o In models for static analyses targeting a half-space response, it is 
recommended to use conventional boundaries at a sufficient distance from 
the region of interest, instead of infinite elements.       

o In dynamic analyses for a half-space over a wide frequency range, it is 
suggested to employ at least two finite-element models, each accordingly 
adapted in terms of size and mesh fineness to the requirements of the 
corresponding frequency range. Hence, not only the accuracy of the results 
is improved, but also computational costs are significantly reduced.   



 

145 
 

o The free-field response with depth to a vertical harmonic point load acting 
on the soil surface is, from a distance between 7.5·λR - 10·λR from the load, 
in good agreement with the analytical solution for Rayleigh wave 
excitation. Even at closer distances, such as 2-3·λR, the comparison is quite 
good up to a depth z = λR from the soil surface.  

o The fineness of the mesh is of critical importance in dynamic problems 
considering high frequencies. To reproduce the pertinent wave 
propagation phenomena with acceptable accuracy, the finite-element 
model needs to be uniformly discretized with a minimum number of finite 
elements corresponding to a Rayleigh wavelength. Ideally, this number 
needs to be determined with respect to the specific problem on the basis 
of a verification against rigorous results. As shown herein, circa 7 finite 
elements per Rayleigh wavelength can yield accurate results in many 
problems of practical interest. 

o The distance of the infinite elements/viscous boundaries from the region 
of interest has an influence on the response.  In the vicinity of these special 
boundaries, which are used to minimize wave reflections, the response is 
less accurate. 

o A hysteretic damping ratio ξ = 1% leads to fluctuation in the response 
especially at farther distances close to the absorbing boundaries. 
Apparently, this low value does not offer adequate energy dissipation in 
the specific systems. The accuracy improves by increasing the hysteretic 
damping, which indicates that the waves are sufficiently attenuated before 
reaching the boundary, and consequently, wave reflections diminish.  

o For a moving load speed v0, which is significantly smaller than the 
Rayleigh wave velocity in the soil cR – a scenario quite common in the 
engineering practice – a static point load can be a good approximation for 
a moving load of constant magnitude. Analogously, this is true for a 
stationary harmonic point load and a moving oscillating load.  

o At low values of the ratio v0/cR, the use of a viscous boundary at the base 
of the model in order to simulate a half-space results in lower accuracy. 
Applying a rigid base instead, may be a solution for models with a large 
depth, since the rigid base does not practically exert any influence on the 
response due to its large distance from the surface. When the need to 
shorten the model depth arises, e.g. in cases where a fine mesh 
discretization is required due to a moving harmonic load, a selection of a 
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rigid base will have a more pronounced effect on the response. This is a 
limitation of the FEM.  

o The results herein are compared with the analytical solution from Makris 
(1994) as well as from Makris & Badoni (1995) for single piles and pile 
groups under Rayleigh wave excitation, respectively. The aforementioned 
solutions consider far-field conditions, which in the present study are not 
fulfilled due to the relatively close distance of the piles to the excitation 
source. Nevertheless, the agreement is generally good over the total 
frequency range examined, and even for piles located in the close vicinity 
of the excitation source (the accuracy improves obviously for piles at 
larger distances). Consequently, these analytical solutions can be useful in 
the frame of a preliminary design of piled foundations located at the near-
field of the excitation source, whether it is a stationary or a moving 
harmonic load.   

o An extensive parametric study on the kinematic response of 2x3 up to 5x5 
piled foundations (pile rows x columns) to a stationary harmonic load was 
performed in the frequency domain. Results were in excellent agreement 
with those from time-domain analyses. With respect to the requirements 
of the present work, frequency-domain analysis is a superior tool reducing 
significantly the computational time. Yet, it is underlined that the time-
domain analysis can be advantageous, since it can account for non-
linearity.  

o The extension of a pile group or piled raft by additional pile columns 
parallel to the wave propagation direction does not significantly affect the 
response up to a0 ≈ 1. Beyond this point, a further vibration reduction is 
monitored at characteristic points of these larger systems.  

o The piled raft as well as its raft acting alone influence the response at the 
free-field behind them (with respect to the wave propagation direction) in 
a similar manner. This signifies that the boundary condition enforced at 
the soil surface by the raft prevails against the piles. In fact, beyond 
a0 ≈ 0.9, in comparison with a pile group, the presence of a piled raft or a 
raft alone results in a lower vibration level of the free-field at the back for 
all configurations. For the larger configurations 4x3, 5x3, 4x5 and 5x5, as 
the surface of the raft increases, this is valid even from a lower excitation 
frequency a0 ≈ 0.7.   

o The extension of a pile array by additional pile rows against the direction 
of wave propagation has in the range a0 ≈ 0.2 - 0.7 a favourable effect on 
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the reduction of the vibration level calculated at the furthest-back pile row 
or at the free-field behind the foundation. This is, however, not true, as the 
excitation frequency increases further, with the interplay between the piles 
becoming more complicated. 

o In terms of kinematic interaction, the pile group behaves in a similar 
manner as a corresponding piled raft in the cases of configurations 
including more than two pile rows in the wave propagation direction and 
up to a a dimensionless frequency a0 = ω·d/cS ≈ 1. 

The main goal of this study was to gain valuable insight into the mechanics 
of the problem of kinematic interaction in the case of piled foundations. 
Additionally, the influence of key parameters of finite-element modelling on 
the accuracy of the results was investigated in detail. Simple solutions were 
suggested as good approximations for more complicated scenarios.  

Further research needs to be conducted on the problem of kinematic 
interaction of piled foundations to stationary or moving harmonic loads. Key 
aspects that can be addressed in future studies include non-homogeneity as 
well as non-linearity of the soil, variation of the length in the frame of the pile 
group/piled raft and a varying speed of the moving load. Finally, the 
consideration of other structures in the vicinity of the examined foundation 
could also be of interest for the engineering practice.   
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Appendix 

 

 

Figure A.1: Vertical transfer functions of reference piles in the 2x5 configuration 
as single piles or parts of a pile group/piled raft.  
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Figure A.2: Vertical transfer functions of reference piles normalized by the free-
field amplitude at the center-point of the 2x5 configuration. 
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Figure A.3: Vertical transfer function at the center-point of the 2x5 configuration. 

 

 

Figure A.4: Vertical transfer function at point B behind the 2x5 configuration. 
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Figure A.5: Vertical transfer functions of reference piles in the 3x5 configuration 
as single piles or parts of a pile group/piled raft. 
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Figure A.6: Vertical transfer functions of reference piles normalized by the free-
field amplitude at the center-point of the 3x5 configuration. 
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Figure A.7: Vertical transfer function at the center-point of the 3x5 configuration. 

 

 

 

 

Figure A.8: Vertical transfer function at point B behind the 3x5 configuration. 
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Figure A.9: Vertical transfer functions of reference piles in the 4x5 configuration 
as single piles or parts of a pile group/piled raft. 



 

164 
 

 

Figure A.9 continued. 
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Figure A.10: Vertical transfer functions of reference piles normalized by the free-
field amplitude at the center-point of the 4x5 configuration. 
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Figure A.11: Vertical transfer function at the center-point of the 4x5 
configuration. 

 

 

 

Figure A.12: Vertical transfer function at point B behind the 4x5 configuration. 
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Figure A.13 Vertical transfer functions of reference piles in the 5x5 configuration 
as single piles or parts of a pile group/piled raft. 
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Figure A.13 continued. 
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Figure A.14: Vertical transfer functions of reference piles normalized by the free-
field amplitude at the center-point of the 5x5 configuration.  
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Figure A.15: Vertical transfer function at the center-point of the 5x5 
configuration.  

 

 

Figure A.16: Vertical transfer function at point B behind the 5x5 configuration. 
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