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Abstract

The rapid growth in offshore wind brings various challenges to power system research
and industry, such as the development of multi-terminal multi-vendor HVDC grids.
To ensure interoperability in those power converter dominated systems, suitable
models are needed to efficiently perform stability and interaction studies. With
state-space based small-signal methods stability and interaction phenomena can be
assessed globally for a complex system. Yet detailed models are needed. However,
in multi-vendor projects most likely only black-boxed models will be available to
protect the intellectual property, so that identification techniques are necessary to
obtain suitable models. This thesis contributes to the research activities on state-
space model identification of black-boxed power electronic systems.

In the first part of the thesis, a method was developed and tested, where the matrix
elements of linearized state-space models were fitted in dependency of the operating
point, based on input sweeps performed on the model of a grid forming power con-
verter controlled as a virtual synchronous machine. It was discussed how changes in
multiple inputs can be approximated by the superposition of the individual input
dependencies and a fully operating point dependent state-space model approxima-
tion was created. The results were validated in time and frequency domain analyses.
It was found that the method can provide a good approximation, especially for the
operating range around the default operating point.

In the second part, identification of a power electronic system was performed based
on measurement data which was generated experimentally from a low voltage lab-
oratory system. A sequence of input perturbations was applied to the laboratory
system and frequency response data was calculated from the corresponding output
perturbations. The data served as basis for model identification with N4SID and a
soon to be published vector fitting method. The identified models were validated by
a visual inspection of the transfer function and by comparison of the calculated step
responses to the step responses measured in the laboratory. It was found that the
treatment of incomplete data sets, the generation of substitute data and the impact
of time delays on the identification might be worth further investigation.

This work provides a valuable contribution to the research of state-space model
identification of black-boxed power electronic systems. It points out challenges and
presents promising approaches to enable state-space based methods for stability
analysis and interaction studies in future multi-terminal multi-vendor HVDC grids.
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1. Introduction

1.1. Motivation

1.1.1. Development of Offshore Wind

In the global energy transition the renewable energy sources wind and solar power
will play a central role to achieve the transformation into a sustainable energy sys-
tem. The International Renewable Energy Agency (IRENA) predicts the global
share of wind and solar needed in 2050 to limit the rise in global temperature to
between 1.5 and 2 °C to 61%. [1] According to a report from 2019 about 17% of
the globally installed wind capacity will be located offshore, meaning an installed
offshore capacity of 1000GW. [2] This would be an increase in globally installed
offshore capacity by the factor 10 compared to 2018. [2]

In Europe the governments have committed to ambitious offshore wind energy tar-
gets and the North Sea area will make up a significant share of this. At the North Sea
Summit in Esbjerg in May 2022 Germany, Denmark, Belgium and the Netherlands
have signed a declaration on a common development of a offshore energy system.
It proclaims a joined target for installed offshore wind power of at least 60GW by
2030 and at least 150GW by 2050 [3]. The UK has committed to 40GW installed
offshore wind capacity by 2030. [4]

Although in 2021 there were barely two offshore wind turbines installed [5] with a
capacity of only 6 MW [6] in Norway, the Norwegian Government has committed to
a promotion of offshore wind power to achieve 30GW by 2040 for energy supply for
the mainland, the petroleum sector and a significant share for export. [5] There is
an ambition to take a leading role in floating offshore wind. In November 2022 the
floating wind park Hywind Tampen started the energy production to supply to two
oil and gas fields with power [7]. In March 2023 the tender phase for 3GW offshore
wind in the Norwegian North Sea was opened. [8]

WindEurope expects about 28GW of newly installed offshore wind energy in Europe
until 2026, which means that the installed capacity will be doubled compared to
2021 in only 5 years. [6] The integration of this rapidly growing offshore generation
brings various challenges for power system research and industry. The development
of offshore grids is one of them.
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1.1.2. HVDC and Offshore Grids

The most efficient and most economical technology for the purpose of long distance
bulk power transmission as needed for the transport of energy from distant offshore
wind farms to shore is high voltage direct current (HVDC). It is a proven technology
with the first commercial system commissioned in 1954 [9]. High voltage alternating
current (HVAC) is transformed into HVDC and vice versa by a HVDC converter.
The HVDC voltage source converter (VSC) technology that was developed in the
last decades has a higher degree of controllability compared to the conventional line-
commutaded converter (LCC) and makes a simple reversal of power flow possible.
This enables an easier operation in more complex configurations such as multi-
terminal systems or DC grids [10].

So far and especially in Europe, HVDC has usually been built as a point-to-point
connection. The development from point-to-point connections towards offshore grids
will be important for the cost effective integration of the high number of upcoming
offshore wind farms in Europe. This is elaborated in detail in the CIGRE feasibility
study [11]. In February 2023, the German transmission system operators (TSO)
and the Federal Ministry for Economic Affairs and Climate Protection has published
their plans to interconnect 10GW of wind power, including an option for further
connections to the neighbouring countries Denmark and the Netherlands. [12]

Another use case of HVDC and offshore grids, which is particularly interesting for
Norway, is the electrification of offshore oil and gas platforms. The country is one
of the world’s largest oil and gas producers. In 2022 it delivered approximately
10% of the European Union’s (EU) oil imports and became the biggest supplier of
natural gas with up to 30% of the EU’s gas imports coming from Norway in the
third quarter of 2022 [13]. Up to now, the oil and gas platforms are usually powered
by natural gas or diesel generators. De-carbonizing the energy supply for the energy
intensive processes by electrification with low emission power from shore or wind
power could be a significant contribution to the reduction of climate gas emissions
in Europe.

The expansion towards offshore grids will presumably be a step wise process, com-
bining various topologies and technologies, most likely from different vendors. These
offshore grids will characteristically be dominated by power converters, both from
HVDC and the wind turbines. [14]
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1.1.3. Power Converter Dominated Grids: Stability and Interoperability

The predominance of power converters that is observed in offshore systems will
also evolve in the onshore power system. The number of conventional power plants
decreases and the number of power electronic interfaced generation units as onshore
wind and solar power rises. More and more HVDC converters that connect offshore
wind parks to the main land will be erected. Also, the number of onshore HVDC
connections that are needed for the transmission of power throughout the continent
will grow. All this will lead to a power converter dominated system as a whole.

In contrast to grids with many synchronous machines with high inertia, in these
power electronic dominated grids the converter control will be crucial for a stable
operation of the power system. The dynamic behaviour of converters differs signifi-
cantly from the one of classic generation units and high-frequency phenomena gain
relevance in terms of power system stability [15].

Moreover, because of the big variety of power electronic devices a reliable inter-
operation between different types of converters from multiple vendors needs to be
ensured. This applies to all grids where converters operate in close vicinity and
concerns all types of high power electronic devices. Interaction phenomena can
appear for example:

• between the inverters of generation units, e.g. in a wind farm or in a rural
area with a high penetration of solar powered generation,

• between the inverters of generation units and a HVDC converter, e.g. in an
offshore wind park,

• between multiple HVDC converters, for example between parallel HVDC lines
or inside a multi-terminal HVDC grid.

Control interactions are not a theoretical phenomenon but have been observed in the
real world. For example in the project BorWin1, harmonic oscillations in a HVDC
connected wind farm led to an outage of the HVDC system [16]. Sub-synchronous
oscillations were observed in a HVDC project for wind farm integration in China
[17]. More examples of oscillations caused by control interactions are listed in [18]
and the interoperability of multi-terminal multi-vendor HVDC is discussed in detail
in the dedicated ENTSO-E position paper [19].

1.1.4. Significance of Model Identification for Interoperability Studies

Interoperability issues concern all participants in the power system, especially the
system operators, the converter manufacturers and the power plant operators. To
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ensure a stable system operation, tools for analysis, planning and operation of the
system are needed to identify critical operational cases and interaction modes.

For these investigations, suitable models of the converters and their control systems
are needed [20]. At the same time, the technical details as the intellectual property of
the manufacturers has to be protected, which is why all converter controls are so far
and presumably also in future projects provided as black-boxed models [20]. These
models make the analysis in time-domain possible. Yet, for small-signal analyses
with impedance or state-space based methods as they are commonly applied, models
need to be created from the black-boxed system first. The advantage of state-space
based small-signal analyses is that stability and interoperability can be assessed
globally over the whole system. However, a detailed model is necessary. So far,
eigenvalue-based stability analyses with black-boxed models are not possible and can
therefore not be carried out in a multi-vendor setup. This leads to the motivation
of this thesis, which is to explore possibilities to identify state-space models for
small-signal analyses from black-boxed systems.

1.2. State of the Art

1.2.1. Industrial Research and Demonstration Projects

There have been various research activities that deal with the operation of power
converter dominated power systems. This section gives a brief overview of past and
present activities in industrial research and demonstration projects.

The MIGRATE project that was completed in 2019 showed that for the test that was
carried out on the Irish power system model an operation with 100% PE-interfaced
generation is possible if so called grid-forming control schemes were applied to 30%

of the generation. Sub-synchronous controller interactions were observed when con-
verters were in close vicinity to each other. [21]

In the BestPaths project [22] that ended in 2018 the focus was put on interoperability
in multi-vendor HVDC-VSC systems. Interoperability issues between two VSCs of
different vendors were investigated in offline time-domain and real-time Hardware
in the loop (HiL) simulations and a methodology to fix interoperability issues was
developed. One result of the research activities is the statement that interoperability
issues cannot be avoided completely during the design phase but that suitable and
precise specifications can reduce the amount of interoperability problems. Detailed
interaction studies during the planning phase will always be needed to ensure the
function of the system and demanding a plug and play solution that works without
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knowledge on the other parts in the system is not reasonable. The approach that
was applied in this project is the following:

• A third party carries out the interoperability studies to ensure the protection
of the vendors’ intellectual property. The third party coordinates adaptions
that the vendors need to make.

• For offline time-domain simulations the vendors deliver black-boxed models
that show the same behaviour as a generic model that is used to make the
specification on the expected AC and DC behaviour [20].

• Hardware in the loop simulations are carried out with replicas of the system
and real control cubicles.

Although this approach proved most effective during the project, it is connected
to a high effort and does not allow modal stability analyses due to the lack of
detailed models. For a system with more converters, the number of operational
cases that have to be considered grows exponentially and comes with an enormous
computational effort. This approach is therefore not suitable for big DC grids with
a high number of possible configurations to analyze.

One of the European research projects that are currently in progress is the project
HVDC-WISE [23]. It started in October 2022 and includes the development of
planning and analysis tools for European HVDC systems in its project description.
It can be assumed, that this includes the assessment of interoperability, even though
it is (as of December 2022) not explicitly stated in the available project description.
The project READY4DC [24] that runs from April 2022 until October 2023 focuses
on a European multi-vendor DC grid. It addresses interoperability and interaction
studies in its working groups.

The project InterOPERA [25, 26] started in January 2023. There are 20 European
partners involved, amongst others TSOs, wind turbine and HVDC manufacturers
and universities. The aim is to enable multi-terminal multi-vendor offshore HVDC
grids in Europe. So called hybrid wind farms and energy islands that interconnect
multiple countries play a central role in the project description. It is planned to de-
velop technical standards and frameworks for the realization of commercial projects.

1.2.2. Commercial Projects

In commercial HVDC projects, commonly all kinds of stability analyses are car-
ried out (time-domain, impedance based and state-space analyses). State-space and
impedance based methods are typically used to assess the small-signal behaviour.
However, with black-boxed models as they are supposedly provided in multi-vendor
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setups, these methods are not directly applicable. The vendors only have full knowl-
edge about their own system, so that conventional small-signal analysis can only
performed on each converter separately.

Until now there are not many multi-vendor HVDC projects in operation and the
practical experience is limited. The two HVDC multi-vendor multi-terminal connec-
tions Nanao and Zhousan that are in operation in China were built with a different
approach than the one that will be needed for the projects planned in Europe. In
the two named projects the control systems for all converters was delivered by an
independent supplier while the converter manufacturers only provided the converter
hardware. Also, the market situation and the regulations concerning the intellectual
property differ from the European ones. Furthermore, these projects were designed
as multi-terminal connections from the beginning of the design phase, while the
European grids will most likely evolve from a step wise expansion. [27]

The approach that was used to asses interoperability for the projects in the north
of France where multiple HVDC links (both LCC and VSC), as well as a static
VAR compensator (SVC) and a wind farm are located in close vicinity is presented
in [28]. The method is a screening method on empirical basis and also relies on
time domain simulations in combination with the application of the Multi Infeed
Interaction Factor (MIIF) introduced in [29].

In the Norwegian Johan Sverdrup project a MMC HVDC link was added in parallel
to an existing 2-level VSC HVDC link of a different vendor. The connections supply
an offshore oil field with power from the main land. The second connector was com-
missioned in 2022 and the two links are in parallel operation since December 2022.
It is the first multi-vendor HVDC system in grid-forming operation. Comparably to
the approach recommended in the BestPaths project, the interaction studies were
carried out on the black-boxed models by a third party. The necessary modifica-
tions were then implemented by the vendors and an updated black-boxed model was
handed to the independent party. In an iterative process the interoperability issues
were removed. [30]

In [31] work streams to develop multi-vendor multi-terminal HVDC grids are pre-
sented. Next to the demand for standardization, the proposed interoperability stud-
ies consider generic models for time domain simulations as well as Software in the
Loop (SiL) and Hardware in the Loop (HiL) testing. Modal analyses are not men-
tioned in the report, presumably due to the lack of suitable models.

To sum up, usually all kinds of stability analysis methods are applied when a HVDC
connection is planned. In European multi-vendor setups only black-boxed models
have been exchanged and this will supposedly remain the case in the future. This
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means that in multi-vendor setups the classical small-signal methods are only appli-
cable to the converters of each vendor separately. So far the number of interacting
converters in commercial multi-vendor settings has been small. Currently all pub-
lished reports on practically applied methods to assess interactions between the
converters of multiple vendors are based on time-domain simulations, SiL and HiL
investigations. To carry out small-signal analyses based on black-boxed models iden-
tification methods like the ones presented in this thesis would have to be applied
to gain suitable models. To date there is no evidence that this has been tried in a
commercial multi-vendor projects.

1.2.3. Scientific Publications

There are many scientific publications that deal with stability analyses of power
electronics dominated systems. The main approaches to assess small-signal stability
are impedance based and state-space methods. [32] Besides the classical eigenvalue
based-analysis, methods to assess stability in complex power systems based on state-
space models are the calculation of participation factors [33, 34] and parametric
sensitivity [34]. In [34] a modular approach is presented where the state-space model
of a complex system is assembled from the state-space models of the individual
components. On an example system of a multi-terminal HVDC it is discussed how
interactions between converters can be assessed by this method.

If only black-boxed models are available, model identification techniques as applied
in this thesis are necessary to obtain suitable models. Numerous different approaches
and algorithms for model identification exist. One of them is vector fitting, which
is used in this thesis. In [35] a new stability analysis method was introduced where
vector fitting is applied to identify the eigenvalues of a black-boxed system. In [36]
it is for example shown how vector fitting can be used to identify the state-space
model of single-input single-output converter systems.

1.3. Contribution of this Work

The project Ocean Grid, which this work is a part of, deals with the development of
offshore grids to enable a cost efficient integration of offshore wind in Norway. One of
the five sub-projects is a knowledge building-project that investigates among others
the interoperability of converters in a power-electronic dominated offshore system.
[37] The thesis work contributes to the research activities in model identification
of black-boxed power converters. The findings could support the establishment of
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new techniques to obtain state-space models for interoperability studies and enable
analyses based on state-space models also in multi-vendor setups.

The thesis focuses on two topics in particular. In the first part the aim is to create
an input-dependent linearized state-space model of a virtual synchronous machine
by fitting input sweeps. In the second part laboratory experiments are carried out
and two different identification techniques are applied to identify the system based
on the measurements.

In the first part the focus is put on the input dependency. To identify a black-
boxed simulation model it is in practice necessary to create input data by simulation
which is associated with a significant amount of computational effort. Moreover,
the number of relevant operating points might be high. Therefore, it would be
favourable to reduce the number of operating points for which such an identification
is necessary. Hence, it is investigated if the model behaviour can be extrapolated
by suitable fit functions.

To fit the operating point dependent linearized model it is necessary to generate
the state-space model for a certain number of operating points first. Then the
matrix elements of the state space models are fitted with a mathematical function
in dependency of the input. The principle of the fitting done for the operating point
dependent model is displayed in Figure 1.1

Since the number of input combinations grows exponentially with the number of
inputs, a method is developed and tested where at first each input variable is swept
over its input range and input combinations are approximated by linear superposi-
tion of the individual input dependency. Thus, at first a dependency is fitted for
each input separately. Then the combination of all inputs is approximated by a
superposition of the individual functions of each input. The basic principle of the
superposition is pictured in Figure 1.2 for an example with two input variables. The
resulting models are analysed in frequency and time domain and discussed in detail.

The analyses are carried out on the linearized state-space model based on analytical
equations of a virtual synchronous machine documented in [34]. It is also tested
how the application of identification techniques influences the method, by applying
identification methods to the transfer function data calculated from the linearized
analytical model. An overview of the different models used in the thesis can be
found in Figure 1.3. For the fitting in part 1 of the thesis the models marked by
the blue boxes are used. The identification from the transfer function is the ideal
case and not realistic for for black-boxed systems. Still, it is reasonable to test the
new method first with this simpler version. The application of the fitting method to
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models from simulation data or measurement marked in grey and green in Figure 1.3
was not tested during this thesis.

In the second part the identification of a system based on laboratory measurements
is discussed. This process is represented by the rightmost part of Figure 1.3. While
in reality it is more effort and usually more expensive to create a laboratory setup
compared to carrying out simulations, identification from measurements might be
relevant if no simulation model is available. Also, for interaction studies for multi-
vendor HVDC the current recommendation is to include Software- and Hardware-
in the Loop simulations to detect interoperability issues [31], so that the labora-
tory setup might be needed anyways. Since for the generation of the needed input
data for an identification the real-time simulations are from experience faster than
simulations, it might be favourable in those cases to generate the input data for
identification from the real-time setup instead.

In this thesis the input data for the identification was obtained from measurements
on a low voltage setup with a two-level VSC controlled as a virtual synchronous
machine. The process applied to measure transfer function data is presented. The
limitations of laboratory investigations compared to simulation. Due to the physical
constraints of the measurement process in the laboratory, the measurements result in
incomplete data sets. The impact on the identification and the necessity to generate
substitute values for this missing data is discussed. The system is identified using
two different methods and the results are validated by comparing the step response
of the identified models with step responses measured in the lab.

The thesis work explores the basic challenges and limits of the two approaches. It
serves as a foundation for further related research on state-space model identification
for power converters.
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1.4. Outline of the Thesis

In section 2 the fundamentals of power system stability and power converter con-
trol are outlined. The relevant basics of system representation and control theory
methods are presented there as well. In section 5 information is given about the
identification techniques applied in this thesis. In section 4 the approach for the
generation of the operating point dependent model that was developed during this
thesis is explained. The methodology for the laboratory experiments and the cor-
responding identification are explained in section 5. In section 6 and section 7 the
results are presented and discussed. A summary of the results is given in section 8.
In section 9 a critical consideration of the thesis work is done. A final conclusion
is drawn in section 10 and at last an outlook for the use of this work for further
research activities can be found in section 11.
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2. Theoretical fundamentals

2.1. Definition of Power System Stability

2.1.1. Classical Definition

Power system stability phenomena have been discussed and analyzed since more
than 100 years [38, 39]. In [38] the definition of power system stability is formulated
as follows:

"Power system stability may be broadly defined as that property of a power system
that enables it to remain in a state of operating equilibrium under normal operating
conditions and to regain an acceptable state of equilibrium after being subjected to a
disturbance." [38]

In 2004 a formal definition of power system stability was proposed by the dedicated
IEEE/CIGRE Joint Task Force in [40], that was commonly adapted and is still
valid. The definition reads as follows:

"Power system stability is the ability of an electric power system, for a given initial
operating condition, to regain a state of operating equilibrium after being subjected
to a physical disturbance, with most system variables bounded so that practically the
entire system remains intact." [40]

The key element of power system stability is that, even after a given disturbance, the
system state is in or goes back to a steady state, which is viable from an operational
point of view and does not deteriorate. Power system stability is not an absolute
property, but refers to a given initial condition and a given disturbance.

Stability phenomena appear in different forms and can be classified based on their
physical nature. The following three main categories are defined in [40]:

1. Frequency stability: is a phenomenon of active power balancing and refers
to the ability of the system to maintain or regain a steady frequency

2. Rotor angle stability: is a phenomenon of synchronous machines and refers
to the ability of the synchronous machines to stay in or regain synchronism

3. Voltage stability: is a grid phenomenon and refers to the ability of the
system to maintain or regain a steady and acceptable voltage level.

The phenomena can be further differentiated as discussed in [40].
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2.1.2. Adapted Definition

The classical power system stability definition was established in a time when the
power system behaviour was dominated by the synchronous machines, which is why
the definition mainly focuses on phenomena that are significantly slower than the
switching effects and the control of power electronics. Moreover, with the increasing
share of power converters an increase in interactions between converter controls
and a a decrease in system inertia and short circuit current comes in. Therefore, an
extension of the definitions and classification of power system stability was presented
in [15] in 2021. The impact of power electronic systems in the categories of the
classical stability phenomenon classification is discussed there in detail. Also, two
categories were added to the classification:

• Resonance Stability: refers to energy exchange in oscillations that grow due
to the lack of energy dissipation.

• Converter-driven Stability: refers to oscillations that evolve from interac-
tions between converters and machine dynamics, network elements or other
power system components.

Power system stability

Resonance 

stability

Converter-

driven

stability

Rotor angle 

stability

Voltage 

stability

Frequency 

stability

Figure 2.1: Stability phenomena with adapted classification [15]

Figure 2.1 shows the overview of categories of power system stability. The subcate-
gories are not displayed in Figure 2.1 but are discussed in detail in the corresponding
literature [40, 15]. The different system-theoretic approaches to asses power system
stability are presented in [40]. This thesis focuses on small-signal stability and the
corresponding basic theory can be found in subsection 2.5.

2.2. Interactions and Interoperability Issues

There are several different definitions and classifications of interactions and interop-
erability issues between power electronic devices [22, 20, 28, 19]. Generally speaking,
interoperability is the ability of systems to function together. An interaction on the
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other hand is "a reciprocal action exerted by a system on one or several other sys-
tems" [28]. While not every interaction has a negative effect, all interoperability
issues are caused by interactions.

In [20] eight different categories of interoperability issues are given. This thesis could
be relevant for the detection of two of them:

• oscillatory behaviour,
• difference in converter dynamics.

Sub-synchronous oscillations (SSO) and harmonic oscillations are major concerns.
SSO appear in the frequency range smaller than 50 Hz and are electro-mechanical
interactions between the mechanical masses of the generators and passive or active
system elements, including amongst others HVDCs. Harmonic interactions on the
other hand are eletro-magnetic interactions between power electronic devices and
other power electronic devices or passive system elements. They can reach frequency
ranges up to several kilohertz. [41, 18]

For example, in [17] a case is discussed where sub-synchronous oscillations appeared
in a MMC-HVDC connected wind farm in China. There the offshore converter
has a resonance at approximately 21Hz that in combination with a load-dependent
impedance of the wind generation made the system oscillate for operational cases
with high load. In the paper the mathematical model is derived and the simulated
phenomena are compared to the in the real world on-site measured oscillations.

2.3. Power Converter Control

2.3.1. Classification

The control techniques used for power converter control can be mainly divided into
three categories:

• grid-following (also known as grid-feeding),
• grid-supporting,
• grid-forming. [42]

Grid-following control is the conventional control strategy for power converters of
distributed generation units. The main goal of this type of control is to provide active
and reactive power to the grid. In this case the converter operation is dependant on
an energized grid with at least one synchronous generator or a grid-forming converter
setting the grid voltage and frequency.
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With the increasing share of power electronic converter connected generation the
need for the converters having the ability to provide ancillary services arose. The
grid-supporting control adapts the active and reactive power flow depending on the
grid voltage and frequency making a contribution to the system’s voltage and fre-
quency regulation. The simplest example for the implementation is adding active
power frequency droop and reactive power voltage droop controllers to a conven-
tional control scheme.

The main goal of grid-forming converters on the other hand is to provide the grid
voltage and frequency. Grid-forming converters do not depend on an energized grid
and are able to operate in island mode. [42]

A more detailed discussion of the control techniques used for power converters, their
classification and their operational features can be found for example in [42] and
[43].

2.3.2. Virtual Synchronous Machines

One approach to deal with the decreasing number of synchronous machines and
the reduced inertia in the power system is to control power converters in a way
that imitates the behaviour of a synchronous machine [44]. The key aspects of this
virtual synchronous machine (VSM) approach are the emulation of inertia and the
damping of oscillations. Both are represented in the swing equation of the form of
(2.1), where J is the inertia, ω the rotating speed, Mm the mechanical torque, Mel

the electrical torque, D the damping coefficient and ωg the rotating speed of the
grid.

J
dω

dt
= Mm −Mel −D(ω − ωg) (2.1)

With the time constant Ta defined according to (2.2) and the equations in Ap-
pendix B, the swing equation can be formulated as (2.3), where pm is the virtual
mechanical power, p the electrical power and kd the damping constant. The swing
equation provides rotational frequency and angle for the following control blocks.

Ta =
Jω0

Mr

=
Jω2

0

Sb

(2.2)

dωpu

dt
=

pm
Ta

− p

Ta

− kd(ωpu − ωg,pu)

Ta

(2.3)
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Moreover, the quasi-stationary electrical behaviour can be emulated to make the
VSM less sensitive to small disturbances. A so called virtual impedance can be
introduced. [44].

2.4. System Representation and Modelling

2.4.1. Overview

Power electronic converters behave in general non-linearly. In this thesis linearized
models are used. This means that the behaviour for small deviations around the
equilibrium point is assumed to be linear. A Taylor series representation around the
equilibrium point provides a linear model that is valid for small deviations around
this equilibrium point. This is a common approach in the analysis of power system
stability [40].

To achieve a time-invariant representation of the time-periodic AC quantities the
transformation into a synchronously rotating reference frame is applied resulting in
DC-like quantities, called d- and q-component. It is possible to describe three phase
quantities with two dq-components if the system conditions are balanced. This
means that all three currents or voltages in a three phase quantity have the same
amplitude and are shifted by −120°. [45] The equations for the transformation can
be found in Appendix A.

Due to the linearization, the transformation to the synchronous reference frame
and the fact that all currents and voltages should settle to be constant in steady
state, the model can be treated as a linear time-invariant (LTI)-system for oper-
ating points close to the equilibrium point. Then the methods of linear control
theory can be applied. Due to the linearization, the models used in this thesis are
only suitable for small-signal analysis. [45] The mathematical system representa-
tions that are relevant for this thesis are the state-space model and the frequency
domain representation, which are discussed in the following. As this work deals
with multitple-input multiple-output (MIMO) systems, all following remarks refer
to MIMO-LTI-systems.

2.4.2. State-Space Model

In the state-space model, the system behaviour is described by equations of the form
of (2.4) that relate the derivative of the states and the output vector y to the state
vector x and the input vector u.
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ẋ = f(x,u)

y = g(x,u)
(2.4)

The transition to a linearized state-space model is documented in [45]. The linearized
model has the form of (2.5), where A, B, C and D contain the operating point
dependent coefficients that describe the model behaviour. x0 and u0 are the state
and input vector of the equilibrium point for which the linearization is done and ∆

marks the deviation from the corresponding values in the equilibrium point.

∆ẋ = A(x0,u0) ·∆x+B(x0,u0) ·∆u

∆y = C(x0,u0) ·∆x+D(x0,u0) ·∆u
(2.5)

For a system with ni inputs, no outputs and n states, A is a n× n-matrix, B a
n× ni-matrix, C a no × n-matrix and D a no × ni-matrix.

A state is typically associated with an integrator in the control system or with a
physical quantity in an energy storage element like the voltage of a capacitor or the
current in an inductor. The set of states is not unique so that various equivalent
state space representations exist. These representations are related by so called
similarity transformations, which are discussed in Appendix C. Typically, when
setting up a state space model from a given physical or control system, the states
would be chosen to have a physical interpretation, but this is usually not the case
for other representations such as the diagonal form used in later sections.

A

B

C

D

Δ𝐱  
Δ𝐱 

Δ𝐲 

Δ𝐮 

1

𝑠
 

Figure 2.2: Block diagram for a generic state-space model

The control scheme of a state-space model is displayed in Figure 2.2. The advantage
of a state-space model is that the system behaviour is described by a matrix repre-
sentation so that simulations are usually faster than with a full electrical model. The
state-space model is in general harder to obtain but gives more information about
the overall system behaviour than impedance based analyses that assess stability
only locally for the node that they are applied to. [36] With a state-space model
available, eigenvalue based analyses are directly applicable and participation factor
and sensitivity analyses can be applied which is useful to analyse the possibility of
interaction phenomena. [33, 34, 36]
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The analyses and the nomenclature in this thesis are based on the linearized small-
signal state-space model documented in [45]. To obtain an explicit state-space model
for a specific operating point, it is necessary to solve the nonlinear state equations
to receive the steady-state values. The steady-state values are then inserted into the
linearized model to calculate numerical values for the elements of A, B and C.

2.4.3. Frequency Domain and Transfer Function Matrix

Another possibility for the system representation of LTI-systems is using frequency
domain transfer functions. They relate the Laplace-transformed output and input
signals Y(s) and U(s) according to (2.6), where s is the Laplace variable and H(s)

is the transfer function matrix. [46, 47]

Y(s) = H(s) ·U(s) (2.6)

H(s) consists of one transfer function for each input-output pair. The matrix element
in the kth row and lth column is a transfer function Hk,l relating the kth output
signal with the lth input signal according to (2.7), when all initial conditions and
all input signals except from the lth input are set to zero. [46]

Hk,l =
Yk(s)

Ul(s)
(2.7)

The transfer function matrix can also be obtained from the state space model
through (2.8) [46, 47], where I is the identity matrix.

H(s) = C · (sI−A)−1 ·B+D (2.8)

Unless there is a pair of pole and zero in the transfer function that cancel each other
out, the poles are equivalent to the eigenvalues of the A-matrix. In real systems
an exact cancellation of such a pole-zero pair is rather seldom [48]. Therefore, the
terms poles and eigenvalues are often used as synonyms.

2.5. Small-Signal Analysis

Stability analyses can be divided into transient and small-signal analyses. The term
small-signal analysis refers to investigations that are limited to small deviations from
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the examined operating point. For small-signal analyses it is common to use lin-
earization around an equilibrium operating point to approximate non-linear system
behaviour.

To create a model for power system analyses it is needed to make suitable assump-
tions on unknown variables or external influences. The model needs to be suitable
for the investigated problem in terms of detail and time scale. [40] The equations
used to describe the system behaviour are usually non-linear, so that as mentioned
above it is common to make a linearization for the operating point of interest. [34]
The two most important methods are state-space and impedance-based modelling.
[34, 32].

The poles of the transfer function and eigenvalues of the A-matrix of the state-space
model characterize the dynamic behaviour and the stability of the LTI-system. [34]

The system is:

• stable in the sense of Lyapunov, if all eigenvalues have non-negative real parts
and all imaginary eigenvalues are non-repeated

• asymptotically stable, if all eigenvalues have a positive real part
• bounded-input bounded-output (BIBO)-stable, if all poles have a positive real

part. [48]

While BIBO-stability is concerned with input-output stability assuming zero initial
state, asymtotically stable and Lyapunov stable refer to the behaviour at zero input
to the system. If there is no cancellation of pole-zero pairs in the transfer func-
tion, the poles are identical to the eigenvalues of the A-matrix and the properties
asymptotically stable and BIBO-stable are equivalent. As stated before it is not to
be expected that in real systems there is an exact pole-zero-cancellation, so that
BIBO-stable and asymptotically stable are the same. The formulation of the three
stability definitions Lyapunov, asymptotically and BIBO stable and the criteria for
LTI-systems stated above can be found in [48].

In [34] the relation between the eigenvalues and the system stability is explained
using a more figurative approach. It is shown that each eigenvalue λi of A is asso-
ciated with a decoupled contribution to the time response, which can be written for
each of the n states as (2.9) if the inputs are zero. The factors ki are constants.

∆ẋi =
n∑

l=1

kle
λlt =

n∑
l=1

kl(e
Re(λl)t · ejIm(λl)t) =

n∑
l=1

kl(e
−t
τ ėjωt) (2.9)
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It can be seen that the imaginary part of an eigenvalue gives the frequency of the
oscillation. The real part is the time constant and thus responsible for the damping.
If the real part of an eigenvalue is negative, the corresponding contribution to the
time response will abate. Therefore, if the real parts of all eigenvalues are negative,
the system behavior is considered stable.

If the system is not very large the eigenvalues can be calculated directly from the
A-matrix. In [38] it is shown how the formulation and linearization of a state-space
model for small-signal analysis can be done for a single-machine and multi-machine
systems. In [34] it is described how linearized models can be obtained for DC grids.
For very large systems the eigenvalues cannot be calculated from the state-space
matrix but special algorithms have to be applied. [38]
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3. Model Identification Techniques

3.1. General Remarks

The aim of model identification techniques is to find a mathematical model that
describes the system behaviour. The identification is based on measurements. Nu-
merous different approaches for model identification exist. The methods presented
in the following are examples based on input output measurements and return a LTI
state-space model. All of the methods below are applicable with MIMO-systems.

3.2. Vector Fitting

Vector fitting [49, 50, 51] is a method to identify a state-space model from frequency
response data. It was originally applied to assess transients in transmission lines
and cables [52] and became popular also for other fields of engineering [53]. In [35]
it was applied in a power system stability analysis method. In [36] for example, it
was applied on power electronic converters.

The basic principle of the vector fitting method according to [49] is to approximate
the frequency response data by a rational function which is in the end converted
into a state-space representation. The function to fit the transfer function f(s) has
the form of (3.1) [54].

f(s) ≈
N∑

n=1

cn
s− an

+ d+ sh (3.1)

an are the poles, cn the residues, s the complex frequency and d and h are constants.
This problem is non-linear as the poles in the denominator are unknown. A set of
starting poles is defined and the poles and residues are calculated in a two-step
process.

First, an augmented function is formulated. The starting poles ān are inserted into
(3.1) and A function σ(s) is defined that gives the ratio between the input value f(s)
to the value of (3.1) with the starting poles. The numeric value of σ(s) is unknown,
but (3.2) is a linear problem which can be solved by a least squares approach if
enough data points for f(s) are available.

N∑
n=1

cn
s− ān

+ d+ sh ≈

(
N∑

n=1

c̃n
s− ān

+ d̃

)
︸ ︷︷ ︸

σ(s)

f(s) (3.2)
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It is shown in [49] that the zeros of σ(s) can be calculated and are the poles in the
original problem. The poles are inserted into (3.1) and the process can be repeated
to relocate the poles iteratively. Then the least squares problem is solved again to
obtain the residues. A recommendation for the selection of the initial poles is made
in [49].

Several adaptions of this basic approach exist. In the original version, d̃ is constant
at one. In the relaxed vector fitting [54] it is chosen to be variable. The fast vector
fitting [51] makes use of a QR-decomposition for solving the least squares problem.

In the least squares problem it is possible to weight each data point in the transfer
function individually. In [54] a weighting with the inverse of the absolute value for
each value in the transfer function is recommended. Values with small magnitudes
are treated then equally important as values with high magnitudes and inverse
weighing therefore leads to better accuracy at smaller amplitudes. [54] Depending
on the goal of the identification in might be better to use other weighting methods.

The vector fitting method can easily be applied to multi-output systems by simply
using a vector for the transfer function and the same set of poles for all transfer
functions. [49] For MIMO-systems there are multiple options. In matrix fitting [55]
all columns of the matrix are stacked and passed to the vector fitting as a single
column so that all elements are fitted at once with a common set of poles. A new
approach that is currently developed and soon to be published [56] is to fit each
column separately and find a common set of poles. The new method automatically
determines the relevant system order.

3.3. N4SID

The acronym N4SID is short for "numerical algorithm for state space subspace space
system identification" and is actually an umbrella term for a large number of algo-
rithms. [57] N4SID belongs to the family of subspace algorithms. The model that
has to be identified is formulated as a state-space model that contains a determin-
istic and a stochastic part. The stochastic part is the noise. [58, 59] The algorithms
then start with the calculation of a sub-space and an extended observability matrix
from the input-output measurements. In a second step the state-space matrices are
calculated. [58] A comparison of subspace algorithms is given in [58]. In [59] another
overview of subspace methods and a generalized procedure is given.

When in the following N4SID is mentioned, the term refers to the in MATLAB
function n4sid [60].
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3.4. PEM

Prediction error minimization (PEM) is a method that uses optimization to reduce
the error between the output of the model and the measurement data. For the
algorithm the mathematical structure of the model that has to be known so that
the parameters such as the matrix elements in the state-space model for example, can
be optimized. The problem is defined in the form of a cost function that includes the
error between the model and the predicted output. The theory can be found in [61].
In practice it is common to apply PEM in combination with another identification
technique to first identify a model and then refine it with PEM. When PEM is
mentioned in the following, it refers to the MATLAB function pem [62].

3.5. Application of Identification Methods in this Thesis

The method referred to as vector fitting in this thesis is the new approach that
fits the columns of the transfer function separately and then finds a common set of
poles. It is soon to be published in [56] and discussed there in detail. All functions
applied for the vector fitting in this thesis were provided by SINTEF Energi and are
partially available online [53]. As a weighting scheme inverse square root weighting
was used.

As a second technique the Matlab function n4sid is applied. In the swipes with
identification of the analytical model it was sufficient to apply n4sid only. In the
laboratory context this did especially at first not deliver satisfactory results, why
it was combined with pem. With better quality of input data also the results of
n4sid became more acceptable but the combination with pem was maintained.
Obviously, it would not be a fair comparison between vector fitting and N4SID if
PEM is only applied on N4SID but since the extent of this thesis is too limited to
make a thorough statement on which method is preferable for the application with
laboratory data anyways, it is still decided to do it like that.

The function n4sid needs the system order as an input. In this thesis the number
of states was set to the number of states that have influence on the input output
behaviour in the analytical model, which is 18. In reality it can be expected that
the system order for a black-boxed system is not known. How the system order can
be determined using Hankel singular values and how system order reduction can
be applied is discussed in literature and the Matlab documentation for the function
balred. In this thesis, the focus is not put on system order estimation and it is
assumed that a suitable system order could have been determined by one of the
established methods.
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Unstable poles were allowed for the sweeps to create the input data for the fitting.
For the identification of the laboratory system stability was enforced. More details
of the application of the identification techniques relevant to the identification of
the laboratory system can be found in subsection 5.8.
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4. Fitting of an Operating Point Dependent Model

4.1. Overview

In the first part of the work the focus is put on the operating point dependency of
the linearized state-space model. The general idea of the fitting has been roughly
outlined in subsection 1.3 and is illustrated in Figure 1.1. Input sweeps are performed
and the matrix elements of the linearized state-space model are fitted in dependency
of the input values. Before a fitting of the matrix elements is possible, the state
space model first has to be brought to a consistent form, which is arguably the most
important step and discussed in subsection 4.4. The outcome of the fitting is a linear
small-signal state space model with matrix elements that are functions of the input.

The generalized process to get the input dependent state-space model is the follow-
ing:

1. Define a reasonable set of investigated operating points.
2. Get the state-space model for all investigated operating points.
3. Bring all state-space models in a uniform system representation.
4. Investigate the dependencies of the matrix elements from the operating point

and fit each matrix element with a suitable function of the inputs.
5. Validate the fit qualities in the frequency and/or time domain.

Each part of the process is discussed in detail in later subsections. The process
of formatting and fitting the state-space models is displayed in the flowchart in
Figure 4.3.

At first, only one input is varied at once. Once the fits for the variation of each input
individually are created, the inputs are combined and varied pairwise to discuss inter-
dependencies between the inputs. As it is not reasonable to calculate all possible
permutations of input values and fit them, an attempt is made to approximate the
functions by the superposition of the individual input dependencies gained in the
previous step. The resulting model is validated for different operating points in the
frequency and time domain.

The code for the formatting and fitting process as well as functions for calculating
numerical state-space systems from the fits and for the superposition of fitted models
are provided in Appendix J.

The investigations are carried out on the linearized analytical state-space model
documented in [34]. The state-space matrices are obtained by solving the nonlinear
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steady-state equations and then inserting the steady-state solution into the analyti-
cal equations of the model as described in [63] for each investigated operating point.
To test the use of the method with identification results, the identification meth-
ods are applied to frequency response data calculated from the linearized analytical
model. In future work the method should also be tested with identification results
from simulation or measurements.

4.2. System Definition and Delimitation

The scheme of the system setup can be found in Figure 4.1. It consists of a converter
that is connected to the grid over a filter inductance and capacitance. The control
system receives reference values for active and reactive power, grid voltage amplitude
and grid frequency as well as measurements of converter current, output voltage and
grid frequency. It generates the reference phase voltages for the converter.

The converter is controlled as a VSM. The control scheme used in this thesis is
a current controlled VSM (CCVSM) which is in general similar to the structure
presented in [64]. In the variant used in this thesis the damping in the swing equation
is implemented with a PLL as presented in [44]. The scheme includes active and
reactive power droop controllers and a block that accounts for active damping.

An averaged converter model is used so that modulation and switching effects are
not covered. The converter acts as an ideal controllable voltage source and the
DC side behaviour is neglected. The converter output voltage equals the reference
converter voltage.

The analytical model used in this thesis has the reference values for the control
system, the grid frequency and grid voltage in dq-components as inputs. Its outputs
are the converter current, output current and output voltage in dq-components. A
black boxed version of this system could look like Figure 4.2. In general it depends
on the specific use case which signals and measurements are black-boxed and which
are available to the outside. While in some cases only the electrical measurements
might be available, in other cases a list of shared internal signals could be agreed
with the vendor to deliver additional information.

To summarize, the inputs of the system and respectively the state-space model are:

• the active power reference p∗

• the reactive power reference q∗

• the grid voltage in dq-components vg,d, vg,q

• the voltage reference v∗ for the voltage at the filter capacitor
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• the grid frequency ωg

• the frequency reference ω∗

The outputs of the system are:

• the output current in dq-components io,d, io,q

• the converter current in dq-components icv,d, vcv,q

• the output voltage in dq-components vo,d, vo,q

This results in the input vector u and output vectors y according to (4.1).

u = [p∗, q∗, vg,d, vg,q, v
∗, ωg, ω

∗]T

y = [io,d, io,q, icv,d, icv,q, vo,d, vo,q]
T

(4.1)

4.3. Selection of Operating Points

In the steady-state the operating point is defined by the system input. The states are
a result of the input, so that for the investigation of the output behaviour depending
on different operating points only the inputs will be manipulated. In fact, in real
black-boxed models the states are in general not accessible anyways.

At first, the influence of each input will be investigated separately. For each signal a
range of values will be defined and the vector fitting will be done for k1 equidistant
values inside this range. Table 4.1 gives the minima and maxima of the considered
values for each input. During the swiping, all other inputs are kept constant at the
default value that can be found in Table 4.1 as well.

Table 4.1: Considered input value ranges

input default min max comment

p∗ 0.5 0 1
q∗ 0 -1 1
vg,d 1 0.9 1.1 equals ±10%, see IEC 60038 [65]
vg,q 0 -0.1 0.1
v∗ 1 0.9 1.1
ω∗ 1 0.95 1.04 equals 47.5Hz to 52.0Hz

ωg 1 0.95 1.04 equals 47.5Hz to 52.0Hz, see [66]

As in reality multiple inputs can change at once, the combination of input changes
has to be considered as well. A full enumeration with k set points for each of the
ni inputs would lead to kni combinations and a high computational effort due to
the long simulation times. Moreover the dependencies will be difficult to identify
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with this high number of variables. The variation of many inputs at once is thus
not reasonable for these investigations. Therefore, to identify inter-dependencies
the inputs are varied pairwise. For the pairwise combined fitting and validation k2

values of one input in the pair are combined with all k2 values of the other input.
Only for the validation all inputs are combined. All possible combinations of kall

values per input are examined there. Depending on the use case the selection of the
operating points used for fitting and validation should be adapted.

4.4. System Representation

4.4.1. Selection of System Representation

As described in subsubsection 2.4.2, the state space representation is not unique,
but to fit the matrix elements of the state space model a consistent representation
for all results is needed. This is for sure the most important step in this first part
of the Thesis.

There are various canonical forms known for state space models. Here a diagonal
form, also called modal representation [67], was chosen. This representation has the
benefit that the states are decoupled and the A-matrix has a simple structure with
few elements. Also, the eigenvalues can be directly obtained from the A-matrix.
However, the modal representation is not canonical, as the state order is not fixed
and there is one degree of freedom per state with that the corresponding rows of
B and columns of C are scaled (see also subsection D.3). Therefore additional
conventions have to be introduced which are discussed in the following. As the
examined systems have complex poles, the diagonal form will be complex. For the
fitting a representation with A as a real block diagonal matrix is chosen. Also,
the Simulink state-space model block only accepts real-valued matrices. The steps
needed to obtain a consistent representation throughout a input sweep are discussed
in the following.

4.4.2. Transformation into Complex Diagonal Form

At first, the state space model of every step is transformed into a complex diagonal
form. The transformation into diagonal and block diagonal form as well as the
degrees of freedom are discussed in the appendix.

In this complex diagonal form, the states are in no specific order and the factors
of B and C are not consistent. However, the states are decoupled and can each be
associated with one diagonal element of A, which is the corresponding eigenvalue,
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one row of B and one column of C. This is convenient for the sorting and filtering
done in the following.

4.4.3. Sorting and Clustering of Eigenvalues

To make sure that the diagonal representation becomes consistent, it is crucial to sort
the states. Each state is characterized by the corresponding eigenvalue, therefore
one option to sort the states is to sort them based on their eigenvalues.

Under the use of identification techniques it is not given that the number of correctly
identified poles is consistent throughout a sweep. Depending on the method used it
is not even given that the identified system always has the same order. Also, there
might be outliers that are only part of an identified model in one or few operating
points. Therefore it is necessary to match the identified models of all operating
points to a common set of states. An easy clustering method is introduced, where
in each step of the sweep the eigenvalues are added to clusters of the eigenvalues of
previous sweeps depending on their proximity to the existing clusters. If a eigenvalue
does not fit to any of the existing clusters, it forms a new cluster. This leads to
exactly one eigenvalue per operating point per cluster.

The clustering algorithm most likely needs to be adapted depending on the iden-
tification technique and the quality of the input data. Various different clustering
algorithms can be found in literature. The selection of the method and the tun-
ing of possible parameters should take the properties of the input data such as the
scattering of the data, as well as peculiarities of the identification method such as
the possibility for repeated poles or different system orders per operating point into
account.

Additionally, as the eigenvalues move, their trajectories might cross during the
sweep, so that a simple clustering might not be sufficient but also the direction
of their movement should be considered. As this does not occur for the investigated
model and the sweeps in this thesis, this is not implemented in this work.

Finally the states are given an order. Here, they are sorted by the real part of their
corresponding eigenvalue at the default input value. It is important to do this at
the default operating point as this is an easy way to ensure compatibility between
models from different input sweeps.

For the analytical model, the eigenvalues could already be fitted after this step.
The A-matrix could be formulated from the eigenvalue fits as they are the diagonal
elements of A in diagonal form. For identified models an additional step is necessary
to filter out outliers and bad data as described in the next paragraph.
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4.4.4. Filtering of States

As mentioned before, the system identification techniques can produce not correctly
identified states and outliers. Clusters with less than a minimum number of eigen-
values in them are therefore excluded. The minimum number should be determined
depending on the quality of the identification methods. In this thesis it was cho-
sen to be 80% of the number of operating points. The other states are the ones
represented in the final state space model.

The steps of the sweep, where not all of these states are identified were of low number
and are skipped in the following steps. By doing so, the need to create substitute
values or compare systems of different order is avoided. The result is a consistent set
of states that are correctly identified in every considered step. After this procedure,
the eigenvalues and A can be fitted also for identified models.

This subsection is not relevant for the analytical model, as there is always the same
number of states and the results are exact.

4.4.5. Rearranging the State-Space Model

For every operating point of the sweep the states in the corresponding state-space
model are rearranged according to the order of the related eigenvalue in the clus-
tering. This is done by changing the order of the diagonal elements of A, the rows
of B and the columns of C accordingly. The states that are associated to excluded
clusters are truncated. After this, the systems are transformed into block diagonal
to obtain a real system.

4.4.6. Finding the Correct Factors for the B- and C-matrix

At this point, the state-space models are already in real block diagonal form with the
correct order of states. However there is one degree of freedom per state which shows
up in the corresponding rows of B and columns of C. In Appendix D in subsection D.3
this is thoroughly analysed. The rules to get a consistent representation for the B-
and C-matrix can be chosen arbitrarily, as long as the result is a adequate trajectory
for every matrix element. Here, the following approach was chosen:

• The norm of each column of C is 1 and
• the first non-zero element of each column has a positive sign.
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If ci is the i-th column of the C-matrix and c1i is the first non-zero element in this
column, the mathematical formulation of the rules for the calculation of the factors
ki is according to (4.2)

ki =
1

|ci|
· |c1i|
c1i

(4.2)

It is possible that in the desired output the trajectory of the first element of a column
would cross the zero line in the course of the sweep. As the second rule does not
allow this, discontinuities appear. Therefore, after the application of the rules above
a comparison with the previous C matrix is done in each step. As zero-crossings
were not observed for many elements, the following rule was added:

• If the majority of non-zero elements in column i changes their sign compared
to the previous step, the column is multiplied by -1 and (4.3) applies instead.

ki = − 1

|ci|
· |c1i|
c1i

(4.3)

With this additional rule, the crossing of the first non-zero element is tolerated and
discontinuities in the other elements avoided.

The final state space representation is then obtained by a similarity transformation
with the transformation matrix K in the form of equation (4.4).

K =


k1 0 · · · 0

0 k2
. . . ...

... . . . . . . ...

0 · · · · · · kn

 (4.4)

4.5. Fitting

4.5.1. Fitting of the Individual Input Sweeps

By inspecting plots of the matrix elements over the sweeping range it became ap-
parent thatfor this VSM model a quadratic function might be a suitable fit function.
Therefore a quadratic polynomial function of the form of (4.5) was selected. When
ui is the value of the swept input and ui,def its default value, the independent fit
variable x is chosen according to (4.6), resulting in (4.7). The fitting was done by
the inbuilt MATLAB functions.
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fx(x) = p0 + p1x+ p2x
2 (4.5)

x = ui − ui,def (4.6)

fui
(ui) = p0 + p1(ui − ui,def ) + p2(ui − ui,def )

2 (4.7)

(4.7) has the form of a Taylor series expansion of degree 2. Even though this
function seems suitable for the model analysed in this thesis, other configurations
might need a fit function that also include polynomial terms of higher order, root or
rational terms or a combination of all. The fit function would have to be adjusted
accordingly.

4.5.2. Fitting of Pairwise Combined Input Sweeps

The fit function for pairwise combined input sweeps should include all terms that can
result from a multiplication of two single input sweeps. Therefore the fit function
in (4.8) was chosen for the given model. The independent fit variable y is chosen
analogously to (4.6) with the second swept input instead resulting in (4.9).

fxy(x, y) =
2∑

k=0

2∑
l=0

pklx
kyl = p00 + p01y + p02y

2 + p10x+ p11xy + p12xy
2

+ p20x
2 + p21x

2y + p22x
2y2

(4.8)

fuiuj
(ui, uj) =

2∑
k=0

2∑
l=0

pkl(ui − ui,def )
k(uj − uj,def )

l (4.9)

In comparison to a Taylor series expansion of degree two for functions with two
independent variables, the fit function (4.8) contains the additional mixed terms
xy2, x2y and x2y2.
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4.5.3. Approximation of Pairwise Combination by Superposition

The combination of two varied inputs ui and uj can potentially be approximated
by a superposition of the fit functions resulting from the two corresponding single
input sweeps. If the single sweep of the input variable ui was done at uj = uj,def and
the single sweep of uj was done with ui = ui,def and all other inputs were the same,
then the superposition f̃uiuj

(ui, uj) is calculated by using (4.10).

f̃uiuj
(ui, uj) = fui

(ui) + fuj
(uj)− foffset (4.10)

foffset is the function value at the default input values. In this point the single fits
should intersect with fui

(ui,def) = fuj
(uj,def) = foffset.

The single fit functions are chosen to deliver the absolute value for an element and
not only the deviation from the default value, which is why in a superposition the
default value has to be subtracted from each fit except one to get a meaningful
result. With (4.11), (4.10) can be rewritten as (4.12).

∆fui
(ui) = fui

− foffset (4.11)

f̃uiuj
(ui, uj) = foffset +∆fui

(ui) + ∆fuj
(uj) (4.12)

∆fui contains linear and quadratic terms of ui − ui,def and ∆fuj contains linear
and quadratic terms of uj − uj,def . In comparison to a Taylor series expansion of
degree two for functions with two variables, the mixed term (ui−ui,def )(uj−uj,def ) is
missing. In comparison to the 2D-fit function (4.9) that was applied here to analyse
the behaviour, all mixed terms are missing in the superposition.

4.5.4. Approximation of Generalized Model by Superposition

The superposition of all single input sweeps to a model that is dependent of all
inputs is analogous to the pairwise combination. The formulation is displayed in
(4.13)

f̃(u) = foffset +
n∑

i=1

∆fui
(ui) (4.13)
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4.6. Review of Fit Quality

4.6.1. Overview

In a first step, the goodness of the fit for the matrix elements is analyzed based on
the Normalized root mean square error (NRMSE) between the input data for the fit
and the values resulting from an evaluation of the fit for each matrix element. This
is reasonable as it is the easiest way to check if a fit function is generally suitable to
depict the behaviour.

As the NRMSE errors based on the matrix elements are very generic and hard to
relate to their impact on the system behaviour it is necessary to analyze the fit
quality in the time- and/ or the frequency domain to asses which influence the
approximation errors of the single elements in the state-space model have on the
system behaviour. Potential difficulties are listed below.

• Which operating points should be investigated? Depending on the examined
case the number of relevant operating points might be extremely large. The
number of operating point combinations grows exponentially with the number
of varied inputs.

• Which metric is used to measure the fit quality in the time or frequency do-
main? For the examined model there are 6 · 7 input output combinations
for each operating point. In combination with the high number of operat-
ing points the generated data needs to be assessed automatized. Therefore a
suitable metric has to be found to identify critical cases.

• Which deviations between the approximation and the reference are acceptable
and which not? This question needs distinct consideration as this will highly
depend on the use case. This cannot be answered here.

• Due to the high computational effort the fitted models are only compared
to the analytical model and not to the electrical simulation. However, the
analytical model matches the electrical simulation well for small-signals that
are relevant here.

Time and frequency domain metrics are defined to identify the most critical cases
according to the chosen metric. The selected cases are then discussed individually.

4.6.2. Review of Fit Quality per Matrix Element of the State-Space
Model

There are numerous methods to judge the goodness of a fit function for a given set
of data. In this process, a normalized root mean square error was chosen. While the



4.6. Review of Fit Quality 38

RMSE depends on the absolute value of the fitted data, the normalization makes
it possible to judge a great number of fits in different orders of magnitude at once.
This is needed as there are many matrix elements to fit, which are located in very
different value ranges. During the investigations it proved most convenient to do
the normalization with the width of the value range of the reference values.

NRMSE(f,x,y) =

√∑n
i=1(yi − f(xi))

2

n∥∥∥∥max
i∈(1,n)

(yi)− min
i∈(1,n)

(yi)

∥∥∥∥ (4.14)

During the application the following restriction has turned out to be useful: If the
denominator, respectively the covered value range, is smaller than 10−10, the data
can be declared to be constant. The NRMSE would be very large due to the small
denominator even though the fit as a constant value might be suitable. Therefore
there is no NRMSE calculated or discussed for these values.

4.6.3. Review of Fit Quality Based on the Frequency Response

To assess the fit quality in the frequency domain over a high number of operat-
ing points, the calculation of the metric presented in the following is repeated for
equidistant values over the whole considered input range. Ideally, these operating
points differ from the ones that were used to generate the input data for the fit and
are more fine-meshed.

The frequency response is calculated for each operating point for a set of logarith-
mically spaced frequencies for the analytical and the fitted model. At first, only a
frequency range of 0.1 to 200 Hz with 200 examined frequencies is used. This fre-
quency range covers control loop interactions. In a second step the frequency array
is extended to 400 frequencies in the range of 0.1 to 2000 Hz. The splitting into two
frequency analyses makes it easier to determine, which phenomena appear only in
the lower frequency range and which ones are located in higher frequencies as they
appear only in the extended frequency range.

The metric used is the maximum magnitude error of all input output combinations
for this operating point. The state-of-the-art of other frequency analysis metrics
that could have been applied can be found in [68]. The maximum magnitude errors
was chosen, as they are simple to calculate and interpret. It is arguable though
that other metrics might contain more or other informative value about the general
quality of the frequency response, as the maximum errors only consider the worst
case value.
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The advantage of the comparison in the frequency domain is that frequencies over
the whole frequency range are assessed and equally weighted. The disadvantage
of the chosen metric is that the maximum errors might appear at low magnitudes
and therefore be less severe than smaller errors at higher magnitudes. Thus, more
severe errors might be undetected. As the frequencies are discretized, errors that
occur in between stay undetected as well. The bode plots of the operating points
and input output combinations that cause the maximum errors should be looked at
individually to check the real severity of the inaccuracy.

During the investigations it became apparent that high phase errors are correlated
to high magnitude errors. Therefore the maximum phase errors are not discussed
separately. Moreover, it turned out to be reasonable to consider only magnitudes
and phase errors for values where the magnitude is larger than −60 dB, which equals
a factor of 10−3. At this value a change of 10% in the input, which would already be
extremely large for a small signal disturbance, would cause a change of only 0.1%

or 0.0001 p u at the output. Therefore all magnitudes smaller than the −60 dB are
declared to be negligible.

4.6.4. Review of fit Quality Based on the Step Response

To assess the fit quality in the frequency domain the step response of the fitted
models is evaluated. The amplitudes of the input steps can be found in Table 4.2.

Table 4.2: Step amplitudes for time domain analysis

input step amplitude

p∗ 0.01
q∗ 0.01
vg,d 0.01
v∗ 0.01
ωg 0.0001
ω∗ 0.001

The step response is calculated for 10 s in a resolution of 10 µs leading to N =

1000001 data points per step response. The time domain error TDE that is used as
a metric is calculated for each input output combination and all operating points
according to (4.15), where N is the number of data points in the step response, yref

the step response data from the analytical linearized model and yfit from the fit that
is analyzed.
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TDE =
1

N

N∑
i=1

(|yref,i − yfit,i|) (4.15)

The TDE can be interpreted as the mean deviation between fit and reference. Again,
it is desirable to analyze a high number of operating points to cover the whole
operational range.

4.7. Fit Function Analysis

To discuss the nature of the input dependencies of the state space model, the terms
of the fit function for each matrix element are analyzed. To do so, the absolute
value of each non-constant term is integrated separately over the whole input range.
This value Ii is then normalized by the sum of all separate integrals I as displayed
in (4.16). The result ri is a value between 0 and 1 that gives the contribution of the
term to the function. If the value is zero, the term has no influence at all. If the
value is one, this term is the only one that influences the function value.

ri =
Ii
I

(4.16)

The constant term is neglected as it only represents the offset. If I is smaller than
10−10 the function is labeled constant. In this case, the calculation of ri is omitted.

To illustrate the process, the following example shows how this would look like for
an easy quadratic function of the form of (4.17).

f(x) = x2 + 0.5x+ 1, x ∈ [0, 1] (4.17)

I1 =

∫ 1

0

|0.5x|dx =
1

4
, I2 =

∫ 1

0

|x2|dx =
1

3
, I = I1 + I2 =

7

12
(4.18)

r1 = 0.43, r2 = 0.57 (4.19)

In Figure 4.4 it becomes obvious that the influence of the terms depend on the input
range, which is why the integration over the considered input range is chosen.
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Figure 4.4: Example for fit classification

4.8. Adaptive Model for Simulations

Originally, the basic idea of the approach presented in this section was to create a
state space model from the fits that adapts its matrix values automatically to the
current operating point like the MATLAB varying state space model can. However,
in the linearized state-space model in the form of (2.5) the inputs ∆u, ∆y and
states ∆x are dependent on the equilibrium point. It is therefore not enough to just
dynamically adapt the state-space matrices to the current operating point while
∆u, ∆y and ∆x still refer to the initial operating point. Also the references for
∆u, ∆y and ∆x have to be shifted in the same manner as the operating point the
matrices are calculated for.

Figure 4.5 shows the scheme that was developed to switch between different small
signal models during steady state. It can be used to transfer step wise from one
operating point to another.
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Figure 4.5: Scheme of the adaptive model for a step wise transition between operating points

The trigger activates the transition from one model to another. If it is enabled, u0

is set to the current input u. ∆u′ that refers to the current operating point is then
zero. Moreover, the auxiliary state vector ∆x′ is reset to zero, which equals a shift of
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x0 to the current state vector x. The states that correspond to the initial operating
point can still be found in ∆x. With ∆x′ = 0 follows for the auxiliary output
vector ∆y′ = 0. The auxiliary output vector ∆y′ refers to the current equilibrium
point, so to obtain ∆y that refers to the initial steady state value, the output of the
previous model at the time of transition has to be added. To calculated the output
vector y, the corresponding steady state values for the initial operating point y0

have to be added.

It becomes apparent, why the trigger signal is needed: if the operating point, or
respectively u0 would be updated continuously with u = u0, it would follow that
∆u = 0, ∆x = 0 and ∆y = 0 at all times, which is not useful.

This approach has no real practical use case. However, it is used to show the
improvement of the model behaviour by adapting the state space model for operation
further away from the original operating point.
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5. Laboratory Experiments and Identification

5.1. Overview

In the second part, it is shown how a state-space model can be created by applying
the model identification techniques N4SID and a new, soon to be published vector
fitting method to an estimated transfer function. The transfer function is obtained
from laboratory investigations in the National Smart Grid Laboratory. The exper-
iments are carried out in a Hardware-in-the loop setup. A two-level VSC, a grid
emulator and a real-time system are used. The transfer functions are determined by
applying input perturbations of a set of frequencies and measuring the output per-
turbations. Problems and limitations of identification based on laboratory data are
pointed out. The necessity to generate substitute values to make up for missing data
and complement incomplete data sets from laboratory investigations is discussed.
The obtained model is validated against additional laboratory measurements.

5.2. Frequency Response Estimation

If the frequency response is not known as it is the case for black-boxed systems, it can
be estimated from adequate input output measurements. This can be done with data
obtained from simulation or with measurements from laboratory investigations. In
both cases, the same basic principle is applied which is discussed in this subsection.

A sequence of sine perturbations is applied to each input separately for a set of 100
logarithmically spaced frequencies between 0.1Hz and 5 kHz. Each perturbation is
ramped up for three seconds and then applied at full magnitude for three seconds
before the measurement logging starts. In the simulation the time between the ramp
up and the logging was only one second. The ramp and waiting time should be re-
duced to the necessary minimum for the simulation to decrease the computational
effort. In the laboratory where the investigations are carried out in real time, a
matter of seconds is not very significant and it is better to wait longer since there
might be slower transients present due to the transformer for example. The mea-
surement acquisition lasts three periods or minimum one second with a sampling
time of 100µs. In the lab, before the application of a perturbation to the next out-
put, the measurement is delayed until the system is detected to be back in steady
state before the next output block starts. In the simulation, the system is simply
reset and restarted from steady state.

In the simulation the MATLAB function frestimate is used which provides the
frequency response estimation for Simulink models. The input signals passed to
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the function are configured as described above. For the laboratory measurements
the Fourier transformation of the measurement for input and output during the
perturbation is calculated by using the MATLAB function fft. The frequency
component in the Fourier spectrum with the highest amplitude is selected and com-
pared to the perturbation frequency as a plausibility check. If the frequency from
the Fourier spectrum matches the perturbation frequency with a tolerance of ±20%.
This makes sure that frequency components in the noise are not falsely chosen as
the output perturbation. However, this also means that very small perturbations
with amplitudes smaller than the noise amplitude will not be detected even though
they might be visible in the measurement curves. In further investigations this cal-
culation of the Fourier transform of the output perturbation should be improved.
The frequency response is calculated as ratio of the Fourier transformation of output
and input.

This Thesis focuses on the laboratory tests while other work carried out in the Ocean
Grid project in parallel to the Thesis work deals with data acquisition in simulation.
In the discussion part a comparison of the two approaches is made. The laboratory
test are described in detail in the next subsection.

The code for the frequency estimation from the Simulink model and frequency re-
sponse data for the simulated laboratory setup to accompany the laboratory work
were provided by Andrew Smith from SINTEF Energi. The simulation results are
not discussed in detail in this work.

5.3. Laboratory Setup

With the laboratory validation it is shown how the system identification can be done
based on real measurements. The experiments are carried out in the National Smart
Grid Laboratory at NTNU. Photographs of the lab are included in the appendix.
During the thesis a grid emulator, a 2-level VSC and a real-time system come into
use. The setup is intended for Power-Hardware-in-the-Loop (PHiL) experiments.
The real-time system runs at 10 kHz. In each cycle it runs the control algorithm
and actuates the converter accordingly. It also controls the grid emulator. The grid
emulator has six outputs that can be controlled independently as AC or DC voltage
sources, providing both the DC and the three phase AC voltage for the experiments.
Between the grid emulator and the converter is a delta star transformer. An overview
over the setup can be found in Figure 5.1. A table with all parameters for the
laboratory validation can be found in Appendix G.
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Figure 5.1: Overview laboratory setup

5.4. Data Acquisition for Transfer Function Estimation

The whole measurement procedure for the frequency response estimation as de-
scribed in the previous subsection is fully automatized. It is controlled by a sched-
uler that runs on the real-time system which calculates the perturbations and adapts
the corresponding signals for the converter and grid emulator references.

The amplitudes for the perturbations were determined by adapting the perturbation
according to measurement results. The process was supported by analyses based on
the simulation model. The amplitudes for the final measurements presented later
on can be found in Table 5.1.

Because of the time limit in the end only one operating point could be examined.
The corresponding input values can be found in Table 5.1.

The measurements for perturbation frequencies close to 50Hz, more specifically
between 45Hz and 55Hz were omitted. The reason is that the perturbation of
50Hz in the rotating reference frame creates a DC unbalance between the three
phases in the stationary frame. This causes problems due to the delta-winding of
the transformer.
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Table 5.1: Set points and perturbation amplitudes for laboratory tests

Input Set point Perturbation Amplitude

SI p.u. SI p.u.

p∗ 10 kW 0.2 1 kW 0.02
q∗ 0 kvar 0 6 kvar 0.1
vg,d 310 V 0.9492 10 V 0.0306
vg,q 0 V 0 10 V 0.0306
v∗ 310 V 0.9492 8 V 0.0245
ωg 50 Hz 1 20 mHz 4 · 10−4

ω∗ 50 Hz 1 200 mHz 4 · 10−3

5.5. Adaption of Perturbation Amplitudes

In first tests with constant input perturbation amplitudes for all frequencies it be-
came apparent that the transfer functions for the inputs p∗, ωg, and ω∗ caused ob-
servable perturbation at the outputs only for frequencies lower than approximately
9 to 11Hz. At higher frequencies no change in any of the outputs was visible. The
explanation that can be verified by looking at the analytical transfer functions and
the measurements that could be obtained in these first test is, that the transfer func-
tion magnitude for these inputs decreases continously at frequencies higher than the
mentioned ones. The integrators in the VSM swing equation function as low pass
filters. In the averaged simulation model this was not a problem because also very
small output perturbations could be measured.

In the laboratory and also in a simulation model with a switching converter model
there is noise in the output signal, so that very small signal changes cannot be
captured as they cannot be distinguished from noise. In other words, the signal-to-
noise-ratio is too low. It could be argued that if the output change is too small, the
behaviour is not relevant in this frequency range. However, the transfer function
can also at low magnitudes give information about system states, which is why
it is desirable to gain information over a larger frequency range even at smaller
magnitudes.

In simulations with the switching model it proved useful to simply scale the ampli-
tudes larger than 1Hz depending on the frequency. For ωg the amplitude was scaled
with the perturbation frequency in Hz and for p∗ and ω∗ the amplitude was scaled
with the perturbation frequency in Hz squared. At high frequencies the input per-
turbations will become extremely large but as the output perturbation is still small
it could nevertheless be argued that this can be treated as small-signal behaviour.
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The outputs are usually closer related to the states than the inputs and the states
will most likely also only change little if the output perturbation is small.

In the laboratory the scaling of the amplitudes should be done carefully as the system
is constrained by physical limits and protection mechanisms. From the analytical
model and the simulation it is know that there are no resonance peaks expected in
the respective outputs, therefore the scaling with the frequency could be done in a
similar relatively simple way. However, the scaling as done in the simulation was too
extreme and the measurements had to be stopped as the perturbation amplitude in
the current was too high. The scaling was adapted according to Table 5.2 for the
final tests presented later on.

Table 5.2: Frequency dependent factors for the scaling of the perturbation amplitude

Input factor for scaling limit frequency range

p∗ 0.5 · (f − 5 Hz)2 + 1 1000 f > 5 Hz

vg,q
2 f < 0.7 Hz

0.5 2 Hz < f < 50 Hz
ωg 0.5 · (f − 5 Hz)0.75 + 1 10 f > 7 Hz
ω∗ (f − 5 Hz)1.5 + 1 100 f > 5 Hz

In these investigations it was possible to determine the adapted amplitudes in a
combination of analysis of the simulation from the transfer function and trial and
error in the lab. A more sophisticated approach could have been to make the
scheduler incrementally increase the input perturbation dynamically depending on
the amplitude in the output perturbation. This could be useful in cases where the
transfer function is more complex. If the simulation model is available, the input
perturbation could also be scaled with the inverse of the transfer function obtained
from the simulation to keep a prioritized output constant. Prioritizing different
outputs for different frequency ranges would also be possible. However, with this
approach it still has to be kept in mind that the simulation will differ in some extent
from the real system. The discussed options were not tested since for this test the
simple scaling approach was sufficient.

5.6. Validation by Step Response

To validate the identified models step responses are recorded at the investigated
operating point. The inputs are set and the measurements are started manually.
The step amplitude for each input can be found in Table 5.3



5.7. Treatment of Transformer Phase Shift 48

Table 5.3: Step amplitudes for laboratory test validation

Input Step amplitude

SI p.u.

p∗ 2000 W 0.04
q∗ 10 kvar 0.2
vg,d 5 V 0.0153
vg,q 5 V 0.0153
v∗ 5 V 0.0153
ωg 20 mHz 4 · 10−4

ω∗ 200 mHz 4 · 10−3

5.7. Treatment of Transformer Phase Shift

As the converters in the grid emulator are all connected to the same DC bus, the
transformer is needed for a galvanic separation to avoid undesirable effects due to
possible loops that could be created. Moreover, the transformer is useful to filter
out zero-components. However, it introduces a phase shift of −30° between the grid
emulator side and the converter side. In other words, the voltages and currents at
the converter side lag the ones on the grid emulator side by 30°. This means, that for
comparability with the analytical model, the measurements for the output current
io taken at the grid emulator side as io1 need to be shifted by additional 30° when
transformed into the rotating reference frame of the VSM.

Instead of first shifting the three phase quantities and transforming them to the
VSM-dq-frame after, a dq-transformation that includes the extra phase shift can be
applied directly. Rotating a quantity by an angle, in this case −30° and transforming
it to a reference frame is equivalent to transforming it to the reference frame rotated
with the negative angle, in this case 30°. This is displayed in Figure 5.2, where xg1

represents the quantities on the grid emulator side and xg2 the quantities on the
converter side of the transformer.

The input perturbations on the grid are not affected by the phase shift. In the
analytical model, the perturbations refer to the rotating reference frame that is
aligned with the grid voltage and not to the rotating reference frame of the VSM. In
the laboratory, they are applied in the rotating reference frame of the grid emulator
side that is oriented on the voltage of the grid emulator side. This has the same
effect as applying the same perturbation on a reference frame that is oriented on
the grid voltage on the converter side. Both the voltage and the reference frame
are shifted in the same manner, namely by 30°. Figure 5.3 displays the alignment
of the reference frames. This means that if there is for example a perturbation in
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the q-axis of the grid emulator system it will also appear in only the q-axis of the
converter side reference frame. Applying a perturbation in the dq-system on the grid
emulator side is therefore equivalent to applying a perturbation in the dq-system on
the converter side of the transformer.
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Figure 5.3: Rotating reference frames for the laboratory: grid reference frame on grid emu-
lator and converter side and VSM reference frame

5.8. Identification and Treatment of Missing Data

In subsection 7.2 the data set for the transfer function data measured in the lab-
oratory is discussed in detail. It is pointed out that in real physical systems it is
inevitable that the data set is incomplete. There can be missing measurements for
certain frequency ranges of an input output combination or missing measurements
for a whole input output combination.
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For the identification methods it is generally assumed that the data is obtained for a
consistent set of frequencies for all input output combinations. In the vector fitting
it is possible to simply assign a weight of zero to missing data, either for solitary
frequencies of a single input and output combination or for a whole input output
combination. It is therefore not necessary to generate substitute values.

The Matlab function n4sid provides the option to set a parameter called
weightingFilter to weight the input data. Amongst others, a weight can be
assigned to a certain frequency or a pass band of frequencies. However, as far as
the author of this work could tell, the weight is applied to all input output combi-
nations at this frequency. A weighting for individual elements seems not possible in
the Matlab function. Therefore it is discussed here how the missing data points can
be treated instead.

Setting the missing data to nan causes an error in n4sid as all response data has
to be numeric as far as the author can tell. Setting the missing values to zero might
be a suitable option for input output combinations where the output is zero for all
frequencies, but for input output combinations where there is only some missing
data in between frequencies with sufficient high magnitude, a zero at the missing
frequency would be physically not meaningful and could make the identification
result significantly worse. A simple interpolation of the transfer function of each
input output combination separately with interp1 for example is an option but a
problem is that the interpolated values still have to be meaningful in terms of the
system behaviour.

During the course of the investigations it proved most convenient to apply the Matlab
function tfest to each input output combination where enough data is measured
separately and take the frequency response of the transfer function of the identified
SISO-model at the desired frequencies as an input for the identification of the com-
plete model. The input output combinations, where no output perturbations could
be measured at all are set to zero at all frequencies.
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6. Results and Analysis Operating Point

Dependently Fitted Model

6.1. Individual Input Sweeps

6.1.1. Eigenvalue Trajectories

In the individual input sweeps, one input is varied while all the others were kept
constant at their default value. The trajectories of all individual input sweeps for 31
equidistant values per input are are shown in Figure 6.1. Figure 6.2f shows a zoom
on the slowest modes. The eigenvalue pair with the imaginary part of about ± 2780,
which is identified as the most important according to the Hankel singular values
(see Appendix F) belongs to the eigenvalues that perform the biggest movement
throughout the sweeps. This pair is called eigenvalue 3 and 4 in the following.

If during a sweep of vg,q the grid voltage amplitude v̂g is kept constant by adjusting
vg,d accordingly, no significant change in the matrix elements can be observed for this
model. The maximum absolute change of the matrix elements is smaller than 10−11

for all matrix elements without any regularity. The observed variations are therefore
most likely caused by inaccuracies during the calculation and system transformation
and seem not related to the sweep of vg,q. The impact of vg,q is therefore not further
discussed in the following.

Of all inputs ωg has the biggest influence on the eigenvalues. This can be seen
in the eigenvalue trajectories in Figure 6.2e and Figure 6.3a. Mind the x-scale in
Figure 6.2e. Also, the only sweep where a real part of an eigenvalue is positive and
the system is unstable is the sweep of ωg. There the real parts of eigenvalue 3 and 4
are positive for small values of ωg. The stability limit is located between ωg = 0.9968

and ωg = 0.9977.

In this model p∗ and ω∗ as well as v∗ and q∗ share a trajectory, which is also visible
in Figure 6.3b. The explanation is that p∗ and ω∗ have similar impact on the
power-frequency droop controller and q∗ and v∗ have similar impact on the reactive
power voltage droop controller. Those relations cannot be generalized for all control
schemes and therefore this should not be used beneficially in the further course of
the investigations. However, in practice relations of this kind could possibly be taken
into account.
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Figure 6.1: Trajectories of all eigenvalues for all individual input sweeps
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Figure 6.2: Zoom of trajectories of eigenvalues with small imaginary part for all individual
input sweeps
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6.1.2. Fitting

Figure 6.4 shows the real and imaginary part of eigenvalue 4 as well as the corre-
sponding elements of B and C for a sweep of p∗ as an example. Displayed are the
calculated values in the uniform system representation in red and the fit in blue. It
can be seen that the fits generally match the calculated values. In this depiction it
looks like the elements of C and most elements in B are constant but this is due
to the scale on the y-axis. When zooming in on the y-axis it becomes apparent
that most elements have a quadratic characteristic. This is discussed in detail in
subsubsection 6.1.5.
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Figure 6.4: Calculated values and fits for real and imaginary part of the eigenvalue and the
corresponding elements of B and C associated with state 4 for a sweep of p∗
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Table 6.1 shows the maximum and the mean value over all matrix elements for the
calculated NRMSEs of the fits for 11 calculated runs per sweep for the individual
input sweeps with a quadratic fit function. The results are grouped by matrix.

Table 6.1: Individual input fit accuracy

swiped NRMSE of fit in %

A B C

mean max mean max mean max

p∗ 0.24 1.54 0.21 1.47 0.26 1.35
q∗ 0.01 0.03 0.02 0.23 0.02 0.23
vgd 0.02 0.06 0.10 5.34 0.02 0.16
v∗ 0.04 0.14 0.09 0.81 0.08 0.75
ω∗ 0.38 3.75 0.45 5.06 0.43 4.57
ωg 0.61 3.22 0.58 4.14 0.67 2.99

The values in Table 6.1 show that all elements in all input sweeps can be fitted with
a quadratic function with relatively low errors smaller than 5.34%. The maximum
NRMSE appears for the sweep of vgd. The mean NRMSE errors for all elements
is lower than 0.67%. In general, the maximum values are caused by solitary cases
where only one matrix element has a significantly higher NRMSE than all others or
are a result of the fact that some fits become more inaccurate close to the limits of
the input range. It can be said that the highest NRMSEs usually appear in the B
matrix.

In general the quadratic fit function seems suitable for fitting the majority of ele-
ments of the given model with small deviations. The higher deviations that occur
in solitary cases can possibly be accepted. It has to be checked if the approximation
is accurate enough by performing time and/ or frequency domain simulations.

6.1.3. Validation in Frequency Domain

The frequency domain analysis was carried out for 1001 equidistant input values over
the full input range of each sweep. At first, 200 logarithmically spaced frequencies
in the range from 0.1Hz to 200Hz were assessed. In a second step the frequency
range was extended to 2000Hz with 400 logarithmically spaced frequencies.

In Table 6.2 the maximum and the average over all operating points and input output
combinations for the maximum magnitude errors are displayed for both frequency
ranges. The difference is between the frequency ranges is small. The maximum
errors are all located in the lower frequency range.
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Table 6.2: Individual fit errors in frequency domain

swept max. magnitude error in dB

200 from 0.1 to 200 Hz 400 from 0.1 to 2000 Hz

mean absolute max mean absolute max

p∗ 0.04 -9.55 0.05 10.87
q∗ 0.00 0.00 0.00 0.00
vg,d 0.00 -0.03 0.00 -0.03
v∗ 0.00 0.02 0.00 0.02
ωg 0.31 -31.86 0.33 -32.6
ω∗ 0.26 21.77 0.28 -24.78

The mean values for the fit are are all lower than 0.33 dB, which indicates that the
chosen fit function is suitable for the majority of operating points and input output
combinations. It can be seen, that for the fits for q∗, vgd and v∗ also the maximum
errors are very small. This means that even in the worst case, the fits resemble the
values of the analytical model almost perfectly. In the bode diagram a difference
between the two models is not recognizable. As an example, Figure 6.5 shows the
bode plot for the fit of vg,d for the operating point and the input-output combination
where the maximum errors for the extended frequency range occurred.
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Figure 6.5: Bode plot for vg,d = 1.1

For the other inputs p∗, ωg and ω∗ deviations between the fit and the analytical
model are clearly visible at the operating points where the maximum errors oc-
curred. Figure 6.6 shows the distribution of the errors for all analyzed input values
and all input output combinations for both frequency ranges. The overall picture
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of the maximum magnitude errors has not changed with the extension of the fre-
quency range. Solely some smaller errors appear in the extended range that were
not detected in the smaller frequency range.

The maximum errors in Table 6.1 all appear in the transfer function between vg,d

and io,d or icv,d. In Figure 6.6 it can be seen that for ω∗ high errors occur also in
the transfer function from v∗ to vo,q. In general, the high errors appear only in few
input output combinations and only for few input values, which explains why the
mean of all maximum magnitude errors is still low in spite of the high maximum.

Moreover, in Figure 6.6 it can be seen that whenever a large positive error occurs,
it is followed by a large negative error. This can be explained by examining the
magnitude part of the bode plots at the positive and the negative error peaks.

From Figure 6.7 it becomes apparent that the error comes from the peak at 0.6Hz.
This peak is a local phenomenon that in this shape appears only for a narrow value
range around ωg ≈ 1.016. At the negative error peak the magnitude dip appears
in the fit but not in the reference and vice versa for the positive error peak. This
means that the magnitude dip shows up in the fitted model, just slightly shifted
in terms of ωg. The same explanation can be made for the error peaks in p∗ and
ω∗ where similar magnitude dips appear. The frequency of approximately 0.6Hz

equals 3.8 rad/s and the phenomenon is therefore most likely associated with the
eigenvalue pair 1 and 2.

For the fit of ω∗ the error peaks in the transfer function of v∗ to vo,q are caused
by a comparable local phenomenon. The corresponding plots are shown in Fig-
ure 6.8. The transfer function changes by several dB during a very narrow range
of ω∗. However, it can be seen that the fit in Figure 6.8a matches the reference in
Figure 6.8b. Again, the errors appear at magnitudes lower than −30 dB and are
therefore practically negligible.

Using a polynomial fit function of degree 3 instead of the quadratic fit function
reduces the descibed effects. However, the maximum magnitude error for ωg will
still be at 13.87 dB. For the quadratic fit the large magnitude errors appear all at
magnitudes smaller than −20 dB, frequencies smaller than 1Hz and limited ranges
of input values. If this behaviour is tolerable has to be decided for the specific use
case but at this point the fits seem to approximate the model behaviour well. The
impact on the time domain behaviour is discussed in a later section.

To sum up, the deviations between the fits and the reference are small for the
majority of analysed operating points. The high errors that are observed are limited
to small magnitudes at low frequencies and appear only for solitary input output
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Figure 6.6: Distribution of maximum magnitude errors for the individual sweeps of p∗, ωg
and ω∗ for all input output combinations
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(a) ωg = 1.01579
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(b) ωg = 1.01651

Figure 6.7: Transfer function magnitude for for ωg ≈ 1.016
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(a) ω∗ = 0.95639
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(b) ω∗ = 0.95756

Figure 6.8: Transfer function magnitude for ω∗ ≈ 0.957

combinations in a limited range of input values. The fit results are satisfactory and
the chosen fit function is proclaimed suitable to proceed with. However, one has
to be aware of the weaknesses of the individual input fits, especially that locally
limited phenomena might not be displayed correctly. It has to be kept in mind that
the errors will propagate when the fits are used as a base for further investigations.

6.1.4. Validation in Time Domain

The validation in the time domain was carried out as described in subsubsec-
tion 4.6.4. Because of the higher computational effort, the time domain analysis
was carried out for less operating points than the frequency domain analysis. 101
equidistant values per input distributed over the whole input range were examined
in this analysis. The mean and maximum TDEs were calculated with the help of
(4.15) and are displayed in Table 6.3.

The errors are very small and for p∗, q∗, vg,d and v∗ no deviation between fit and
reference is visible in the step plot. The plot of the step with the highest TDE is
displayed in . This highest error is observed for ω∗ = 0.9509, which is the lower limit
of the evaluated input range. As in the frequency domain, the highest errors appear
in general in icv,d. The input for the highest overall error is for a step in vg,d. In it
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Table 6.3: Individual fit errors in time domain

swept TDE

mean max

p∗ 4.1 · 10−6 3.2 · 10−5

q∗ 5.5 · 10−8 5.4 · 10−7

vg,d 2.1 · 10−7 1.6 · 10−6

v∗ 4.5 · 10−7 4.5 · 10−6

ωg 2.3 · 10−5 1.9 · 10−4

ω∗ 2.5 · 10−5 3.5 · 10−4

can be seen that the curves do not match but that oscillation frequency and damping
are approximated appropriately but that the amplitude is slightly off. The TDE is
3.5 · 10−4 in this worst case and seems negligible. However, if the approximation is
good enough has to be decided depending on the specific use case.
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Figure 6.9: Step response of icv,d for a step in vg,d at ω∗ = 0.9509

The peaks that appear in the frequency domain errors cannot be observed in the
time domain analysis for any of the sweeps, which leads to the conclusion that they
have no negative impact on the step response.

To sum up, the errors that are observed in the time domain are small for all sweeps.
The problematic operating points that were identified in the frequency domain do
not stand out in the step response. The fitted models seem to resemble the system
behaviour well in this test. However, in this analysis only the step response was
analyzed. Other effects that can appear in the time domain are not covered by this
discussion.

6.1.5. Discussion of Fit Functions

To describe the nature of the input dependency, the fit functions for all elements are
analyzed as described in subsection 4.7. The results are displayed in Figure 6.10,
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where there is one data point per term per matrix element. The color is related to
the value on the y-axis. A red dot is associated with a matrix element with high
contribution for the term on the x-axis, while a blue dot implies low contribution of
the term on the x-axis.

It can be seen that for every input there are elements which show quadratic depen-
dencies. The linear term is only for q∗ predominant in all elements and the influence
of the quadratic term is smaller than 10 % for the majority of matrix elements.
Also, for ωg and ω∗ there are many terms with a high contribution of the quadratic
term.

However, the values discussed here are relative to the matrix elements’ change
throughout the input sweep, which means that a matrix element’s behaviour could
follow a quadratic dependency but with small absolute change. It has to be taken
into account that the interpretation of the matrix elements as it is done here is not
related to any physical behaviour, which is why the meaningfulness of this figures is
very limited. Moreover, the characteristics of the B and C matrix elements strongly
depend on the choice of the canonical representation and the k-factors discussed in
subsubsection 4.4.6.
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Figure 6.10: Contribution of terms for each fit function for the individual input sweeps
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6.2. Pairwise Combination of Input Sweeps

6.2.1. Fit of Matrix Elements

For simplification there is no separate discussion for the elements of the A, B and
C matrix in the following but all matrix elements are presented together. Table 6.4
shows the NRMSEs for the pairwise combination of input for the two-dimensional
fit and the superposition of the individual fits.

Table 6.4: Pairwise combined fit accuracy

swiped NRMSE in %

fit superpos. of individual fits

mean max mean max

p∗, q∗ 0.17 1.32 0.55 4.65
p∗, vgd 0.13 1.05 0.52 7.49
p∗, v∗ 0.15 1.15 0.94 9.01
p∗, ωg 0.45 3.11 2.67 44.67
p∗, ω∗ 0.63 6.66 3.60 31.06
q∗, vgd 0.03 0.29 0.21 11.85
q∗, v∗ 0.07 1.12 0.65 21.2
q∗, ωg 0.39 4.50 0.62 8.84
q∗, ω∗ 0.52 3.72 0.70 5.73
vgd, v∗ 0.05 0.44 0.30 16.28
vgd, ωg 0.36 4.35 0.74 11.80
vgd, ω∗ 0.43 2.62 0.71 7.88
v∗, ωg 0.33 3.94 0.89 11.85
v∗, ω∗ 0.43 2.99 0.97 6.34
ω∗, ωg 0.59 7.77 3.46 41.55

For some input combinations the solver of the nonlinear steady-state equations does
not converge. These input values are left out.

6.2.2. Discussion of Fit Functions

To gain information about the pairwise dependencies of inputs, the terms of the
fit functions for the pairwise combined sweeps are analyzed as described in subsec-
tion 4.7. It is expected that combinations where the terms that depend on both
variables only have small contributions to the fit functions can be approximated by
a linear combination of the individual sweep fit functions as displayed in (4.10).
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For the combination of p∗ and q∗ the contribution of all mixed terms is smaller
than 5 % for all fits and it is expected that the linear combination will be a good
approximation for this input pair. For example the combination of ωg and ω∗ on the
contrary, the term x2y2 is dominant, which indicates a strong non-linearity between
these inputs and a high error is expected when the relation is approximated by the
linear combination. These suppositions match with the values in Table 6.4, where
the maximum error for the superposition for p∗ and q∗ is very small at 4.6% and
the one for the combination of ωg and ω∗ is high with 41.6%. The combination
of p∗ and ωg produces the highest error, which matches with the observation that
according to Figure 6.11 this combination has many elements where the xy2 or x2y2

term has noticeable influence. However, it has to be taken into account, that the
mixed terms are less critical for inputs with input rages close to one (i.e. vgd, v∗,
ωg, ω∗) than for inputs with broader input ranges (p∗, q∗).

Figure 6.11 shows that the fit functions for all three pairwise combinations of q∗,
vg,d and v∗ contain some mixed terms but the later discussed frequency domain
analyses show that they can be neglected. This might be the case because the
mixed terms appear in elements that do not have a strong influence on the input
output behaviour, because the absolute change of the affected matrix elements is
small or because they can be well approximated by a linear term as the input ranges
of both vgd and v∗ are close to 1.

Again it has to be emphasized that this evaluation of the matrix elements only gives
limited information about the real system behaviour and the above considerations
have to be seen critically. However, the representation they form a base for an
attempt to explain the nature of the input dependencies.
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Figure 6.11: Contribution of terms to each fit function for pairwise combined sweeps
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6.2.3. Validation in Frequency Domain

Table 6.5: Pairwise combined sweep errors in frequency domain

swept max. magnitude errors in dB

200 from 0.1 to 200 Hz 400 from 0.1 to 2000 Hz

fit superpos. fit superpos.

mean max mean max mean max mean max

p∗, q∗ 0.1 -5.6 0.3 -28.7 0.0 -5.6 0.3 -28.6
p∗, vg,d 0.1 12.4 0.5 27.2 0.1 13.5 0.6 28.2
p∗, v∗ 0.1 14.6 0.5 -33.7 0.1 17.23 0.6 35.6
p∗, ωg 0.3 33.1 1.2 31.5 0.4 -24.2 1.3 -33.1
p∗, ω∗ 0.2 -27.1 1.0 28.2 0.2 -22.6 1.2 -29.1
q∗, vg,d 0.0 -0.0 0.0 -1.0 0.0 -0.0 0.0 -0.9
q∗, v∗ 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.8
q∗, ωg 0.3 -25.7 0.6 38.1 0.3 -25.2 0.6 36.6
q∗, ω∗ 0.2 -20.6 0.6 -27.1 0.3 -21.2 0.7 -27.1
vg,d, v∗ 0.0 -0.1 0.0 -2.1 0.0 -0.1 0.0 -2.1
vg,d, ωg 0.3 -24.3 0.9 43.9 0.3 -36.6 1.0 53.0
vg,d, ω∗ 0.3 23.1 0.8 -36.4 0.3 24.0 0.9 -36.6
v∗, ωg 0.3 -31.5 0.9 -48.7 0.3 -31.3 1.0 -46.9
v∗, ω∗ 0.2 -18.4 0.9 32.8 0.2 -19.7 1.1 32.8
ω∗, ωg 0.4 -28.9 1.7 -36.7 0.4 -28.1 2.0 -31.1

The frequency domain analysis was carried out on 961 operating points (31 values
per input combined with all 31 values of the second input). This leads to the
fact that not every operating point examined in the previous frequency analysis is
included in this analysis and explains possible inconsistencies regarding the exact
numbers. However, the 961 operating points should be sufficient to judge the model
behaviour.

Table 6.5 shows the mean and maximum for the maximum magnitude errors for the
pairwise combined input sweeps for the fit as well as for the superposition of the
two corresponding one-dimensional fits. The mean values for the fit are are all lower
than 0.41 dB, which is an indicator that the chosen fit function is suitable for the
majority of input output combinations. The maxima of the magnitude errors for
the fits are in the same range as for the one-dimensional fits.

For the superposition, the errors are in general higher than for the fit, which was
expected. It was also expected that the combinations that contain input variables
that had high errors in the individual sweep setup have high errors in the combined
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setup as well. The mean absolute errors for the superposition are all lower than
2 dB, which means that the superposition is in general a good approximation for the
majority of operating points and input output combinations.

What can be seen Table 6.5 is that the mutual combinations of q∗, vgd and v∗

show very low errors of maximum 2.11 dB for the worst case for the superposition.
This is a pleasant result as it means that the system behaviour’s dependency of those
inputs in the frequency domain can be approximated by the superposition for all the
operating points that were investigated so far. The operating point that causes the
maximum TDE for the pairwise combinations of q∗, vgd and v∗ appears at vgd = 0.9

and v∗ = 1.1. Both voltages are at their input range limits. The corresponding
frequency response is shown in Figure 6.12. The error appears only at low frequencies
and is as aforementioned very small. The superposition approximates the frequency
response well even in the worst case for this combination.
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Figure 6.12: Bode plot for vgd = 0.9 and v∗ = 1.1

For all the other combinations the superposition produces maximum magnitude
errors with absolute values higher than 27 dB. For some combinations also the 2D-
fit has high maximum errors, especially when ωg or ω∗ are part of the combination.
This was expected, as they showed these high errors also in the one dimensional fit.

On the other hand, the combination of p∗ and q∗ for example has a maximum error
of only −5.6 dB for the 2D fit but −28.7 dB for the superposition. This indicates
that the high error is probably caused by the omission of the mixed terms.

Figure 6.13 shows the maximum magnitude errors for the superposition for all in-
vestigated operating points for the combination of p∗ and q∗. It can be seen that
significant errors appear for operating points with small values of p∗ and around
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Figure 6.13: Maximum magnitude errors for the superposition for q∗ and p∗ for all analyzed
operating points

p∗ = 0.8. Errors with absolute values higher than 10 dB are limited to few input
output combinations and solitary operating points. The same pattern shows up for
the combination of p∗ with vgd and v∗. This means that the superposition of all four
input dependencies p∗, q∗, vgd and v∗ is supposedly a very good approximation of the
model behaviour for all input combinations as long as p∗ is between approximately
0.4 and 0.7 and above 0.9. The other operating points need a more detailed analysis.

Figure 6.14 shows the bode plot for the operating point combination for p∗ and q∗

with the highest maximum magnitude error at p∗ = 0.1667 and q∗ = −0.9333. It
can be seen that the problem appears mainly in the lower frequency range. The
superposition underestimates the static gain and produces a negative peak that
cannot be found in the reference. Frequencies larger than 1 Hz are approximated
well. Furthermore, the plot shows that the 2D-fit that includes the mixed terms
approximates the behaviour well in this operating point. This confirms the suspicion
that the deviation comes most likely from the omission of the mixed terms.

The errors around p∗ ≈ 0.8 are located in the upper frequency range. Figure 6.15
shows the bode plot for the operating point p∗ = 0.7667 and q∗ = −0.8 that causes
the largest error of 10.7 dB in this area. The error appears in the negative peak at
510Hz and can almost not be seen in the graphic. The magnitude is with −50 dB

to −60 dB low enough to say with high confidence that this kind of errors are not
relevant. For further investigations it might be worth thinking about some kind of
weighting to assign errors at low magnitudes less importance. With the assumption
that the errors at p∗ = 0.8 are not relevant due to the small magnitude, the range
in which the superposition for the four inputs is a good approximation increases to
all operating points with p∗ larger than approximately 0.4. However, it is possible
that similar errors appear also in the positive peak which would have a more severe
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Figure 6.14: Bode plot for p∗ = 0.1667 and q∗ = −0.9333

impact in time domain simulations.On the other hand does the approximation locate
the pole pair at the right frequency which might be more relevant in modal analyses
than the exact amplitude of the transfer function at that point.
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Figure 6.15: Bode plot for p∗ = 0.7667 and q∗ = −0.8

The combination of ωg and ω∗ produces the highest mean error, which was expected
due to their high errors when analyzed individually. Figure 6.16 shows the distri-
bution of the maximum errors over the input range. It can be seen that there is
a contiguous area where the frequency response can be approximated by the su-
perposition with low errors for all input output combinations. Outside that area
higher errors appear. The errors are distributed in fronts along diagonal lines in the
ωg-ω∗-area.
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Figure 6.16: Maximum magnitude errors for the superposition for ωg and ω∗ for all analyzed
operating points

As in the individual fits, high positive errors are followed by high negative errors.
The frequency responses that belong to the highest maximum error of the fit and the
superposition are displayed in Figure 6.17a and Figure 6.17b. Again, the problem
seems to be the dip around 0.6Hz that was already discussed in the individual fit
analysis.
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Figure 6.17: Transfer functions that cause the maximum magnitude errors for (a) the fit and
(b) the superposition for the combination of ωg and ω∗

The highest overall error can be found in the combination of v∗ and ωg. The corre-
sponding transfer function shows high similarity to the one with the highest error
in p∗ and q∗ in Figure 6.14. For this combination there is also an area around the
default operating point where the superposition is a good approximation with low
maximum errors for all input output combinations. This can be seen in Figure 6.18.

For all input combinations, such a coherent area with low maximum magnitude
errors for the superposition can be found. In this areas the superposition is with
high likelihood a good approximation of the frequency behaviour. However, there
might be phenomena that appear between the analysed operating points that are
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Figure 6.18: Maximum magnitude errors for the superposition for v∗ and ωg for all analyzed
operating points

not covered here. Moreover, there might be phenomena that are not covered by this
discussion since they were not detected by simply looking at the selected maximum
magnitude errors.

Outside of these areas with the low magnitude errors, the cause and impact of the
errors need to be assessed in detail, depending on the use case. However, the general
impression that evolves from this investigation is that especially in close proximity of
the default operating point the superposition is a good approximation for all input
combinations. For the combination of p∗, q∗, vgd and v∗ the superposition seems to
be a good approximation over the whole input range with p∗ > 0.4. Below that the
approximation could be applied depending on the use case.

The two-dimensional fit functions that also include the mixed terms show in most
cases significantly lower errors than the superposition. In case the behaviour of the
model obtained by superposition is not sufficient, including the mixed terms of the
2D fit could be a possibility. This is not further discussed in this thesis. In the case
that for the discussed errors in the individual input sweeps the fit quality has to be
improved, modifications of the used fit functions might be necessary as there are
likely terms of different order that could improve the fit quality.

To sum up, the frequency domain behaviour for the variation of two inputs can be
extrapolated by using a superposition. For the majority of operating points and
input output combinations the errors are low. The mean magnitude error is lower
than 2 dB. For q∗, vgd and v∗ the approximation produces small errors over the
whole operating range. In combination with p∗ the superposition has only small
errors for p∗ > 0.4. For the other combinations small maximum errors can be found
in proximity to the default operating point. Outside of this areas high magnitude
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errors can appear in some input output combinations. The impact of the phenomena
that occur has to be evaluated depending on the use case. One option to limit errors
could be to do sweeps for multiple default operating points instead of covering the
whole operating range with fits from one default operating point.

6.2.4. Validation in Time Domain

The time domain analysis was carried out on 21 values per input that were combined
with each of the 21 values of the second input for all 15 input combinations. The
results are displayed in Table 6.6.

Table 6.6: Pairwise combined fit errors in time domain

swept TDE

fit superposition

mean max mean max

p∗, q∗ 4.4 · 10−6 4.2 · 10−5 2.3 · 10−5 4.8 · 10−4

p∗, vg,d 4.6 · 10−6 5.4 · 10−5 3.6 · 10−5 9.8 · 10−4

p∗, v∗ 4.6 · 10−6 6.4 · 10−5 4.7 · 10−5 1.4 · 10−3

p∗, ωg 3.3 · 10−5 5.3 · 10−5 9.6 · 10−5 1.9 · 10−3

p∗, ω∗ 2.6 · 10−5 3.5 · 10−3 1.6 · 10−4 1.2 · 10−2

q∗, vg,d 2.4 · 10−7 2.2 · 10−6 3.1 · 10−6 4.7 · 10−5

q∗, v∗ 4.8 · 10−7 6.8 · 10−6 9.1 · 10−6 1.8 · 10−4

q∗, ωg 2.4 · 10−5 2.4 · 10−4 3.1 · 10−5 8.6 · 10−4

q∗, ω∗ 2.5 · 10−5 4.3 · 10−4 5.5 · 10−5 5.4 · 10−3

vg,d, v∗ 5.4 · 10−7 8.9 · 10−6 6.2 · 10−6 1.0 · 10−4

vg,d, ωg 2.5 · 10−5 3.1 · 10−4 4.3 · 10−5 8.5 · 10−4

vg,d, ω∗ 2.6 · 10−5 1.9 · 10−3 7.4 · 10−5 6.0 · 10−3

v∗, ωg 2.1 · 10−5 1.9 · 10−4 5.2 · 10−5 1.6 · 10−3

v∗, ω∗ 2.3 · 10−5 1.8 · 10−3 1.4 · 10−4 8.5 · 10−2

ω∗, ωg 3.7 · 10−5 9.2 · 10−4 1.5 · 10−4 2.7 · 10−3

Again, it can be seen that the errors are smallest for the mutual combination of
q∗, vg,d and v∗. The step response with the highest TDE error observed for these
pairwise combinations is 1.8 · 10−4 and appears for the combination of q∗ and v∗

for q∗ = −1 and v∗ − 0.9. It is displayed in Figure 6.19. The deviation between
reference, fit and superposition is barely visible.

When p∗ is combined with the three previously mentioned inputs the maximum TDE
grows about a factor 8 to the maximum TDE of 1.4 · 10−3 in the combination of p∗
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Figure 6.19: Step response of icv,d for a step in v∗ at q∗ = −1 and v∗ − 0.9

and v∗. It appears at the upper input range limits p∗ = 1 and v∗ = 1.1 in vo,q for a
step in v∗. This step response is displayed in Figure 6.20. The main problem there
is the damping of the oscillation which is too small in the superposition. The error
is no exception. As displayed in Figure 6.21, the errors grow with the distance to
the sweep axes. This and the fact that the errors for the 2D fit for this combination
are significantly lower underlines that the error evolves from the omission of the
mixed terms. This behaviour can be observed in all input output combinations even
though for some it is more distinct than for others.
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Figure 6.20: Step response of vo,q for a step in v∗ at p∗ = 1 and v∗ = 1.1

The combinations of p∗, v∗ and ωg with ω∗ have the highest average errors for the
superposition with 1.4 · 10−4 to 1.6 · 10−4. The combination of v∗ and ω∗ produces
the highest overall TDE. The reason is that for operating points close to the stability
limit the reference model is still stable while the superposition becomes unstable a
bit earlier. The maximum TDE occurs at v∗ = 1.08 and ω∗ = 1.04. This case
is displayed in Figure 6.22. The amplitude of the model from the superposition
increases, while the reference decreases, leading to the high TDE.

Figure 6.23 shows that the high TDEs for the combination of v∗ and ω∗ only appear
locally as outliers and only in singular input output combinations. The majority of
errors is significantly smaller. Similar outliers can be observed for the combination
of p∗ and ω∗. In that case the damping is significantly higher in the superposition
than in the reference. In both cases the oscillation frequency is met well by the
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Figure 6.21: TDEs for the superposition for p∗ and v∗ for all analyzed operating points
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Figure 6.22: Step response of icv,q for a step in v∗ at v∗ = 1.08 and ω∗ = 1.04

superposition. It can be said that in the two discussed cases the deviation of the
damping cases the errors.

For the combination of ωg with ω∗ on the contrary, the high errors are no outliers,
as displayed in Figure 6.24. The errors are clearly associated to the difference to the
default operating point. The approximation causes the highest errors when both
ωg and ω∗ are at the upper limits of their input range. The lower half of the input
range of ωg is not displayed because of instability in this area.

Figure 6.25 displays the step response that causes the maximum error for the com-
bination of ωg and ω∗. It can be seen that the main cause of the error is the steady
state deviation. The fit on the other hand approximates the step response well.
This indicates that the mixed terms that are omitted by the superposition have in
this case a strong influence on the static gain. This matches the observations in
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Figure 6.23: TDEs for the superposition for v∗ and ω∗ for all analyzed operating points

Figure 6.24: TDEs for the superposition for ωg and ω∗ for all analyzed operating points

the frequency domain analyses, that deviations appear mainly in the low frequency
range.

In contrast to the frequency domain analysis there are no jumps in the errors but
the errors grow monotonously with the distance to the sweep axes. Therefore it is
likely that the statements previously made in this time domain analysis are also true
for the other operating points between the ones chosen for the analysis that were
not explicitly calculated.
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Figure 6.25: Step response of icv,q for a step in vg,d at ωg = 1.04 and ω∗ = 1.04

6.3. Combination of all Inputs by Superposition

The maximum magnitude error of the transfer function and the TDE were calculated
for 15625 operating points. They are the result of a combination of 5 values for
each input. As the frequency domain analysis and the application of the maximum
magnitude error needs additional careful interpretation of the bode plots when large
magnitude errors are detected, this is not feasible for the validation of a combination
of all inputs due to the high number of operating points. Therefore it was decided
to discuss the frequency domain analysis only for the combination of q∗, v∗ and vg,d.
The time domain analysis is discussed in detail for all combinations.

The frequency domain analysis for the combination for q∗, v∗ and vg,d confirmed the
hypothesis that the superposition is a good approximation for all input combinations
of q∗, v∗ and vg,d. The maximum magnitude error in the worst case that was detected
in this analysis for this combination is 2.3 dB for q∗ = 0.5, v∗ = 1.1 and vg,d = 0.9.
The corresponding bode plot for v∗ to vo,q is shown in Figure 6.26. The error is so
small that it is not visible in the plot but it is located in the positive at 442Hz.

Moving on to the time domain evaluation, to display the dependency of the errors
on the input value combinations a parallel coordinate plot was chosen. There is
one line for every operating point. It crosses the axis that represents an input at
the value that this input has for the corresponding operating point and ends on the
most right axis at the respective TDE. The color helps to follow the course of the
lines. Higher errors are red, the lowest errors dark blue.

At first, only the combination of q∗, vg,d and v∗ is discussed based on Figure 6.27.
The majority of TDEs is smaller than 10−4. The smallest errors appear when only
q∗ is varied and vg,d and v∗ kept at their default values, which is expected behaviour.

Also the highest TDE occurs for q∗ = 0.5, vg,d = 0.9 and v∗ = 1.1. This is essentially
the worst case with all inputs at their limits, since the same voltage values with
q∗ = 1 lead to an unstable operating point and is thus not evaluated with a TDE.
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Figure 6.26: Bode plot for q∗ = 0.5, v∗ = 1.1 and vg,d = 0.9
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Figure 6.27: Parallel coordinates plot of TDEs for a combination of q∗, vg,d and v∗

The error is only 1.5 · 10−3 p.u. even in this worst case for this combination. The
respective step response to the step in v∗ is displayed in Figure 6.28.

The output oscillates with approximately 440 Hz. The oscillation frequency of the
approximated system is slightly smaller which only becomes even noticeable after
some seconds and should therefore be negligible. The second highest TDE occurs for
q∗ = 1, vg,d = 0.95 and v∗ = 1.1 and is associated with similar oscillatory behaviour.
The third highest TDE occurs for the opposite case, namely that q∗ and vg,d are
low while v∗ is high. In that case there is no high frequency oscillation but a small
steady state error. To sum up, based on the comparison of the step responses there
were no severe problems identified in the combination of q∗, vg,d and v∗ and an
approximation by superposition seems highly viable.
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Figure 6.28: Step response of vo,q for a step in v∗ for q∗ = 0.5, v∗ = 1.1 and vg,d = 0.9

Next, the combination of q∗, vg,d, v∗ and p∗ is discussed Figure 6.29. The maximum
error is now about factor 10 larger than without the variation of p∗. High errors
appear predominantly for high values of p∗.

q$ v$ vg;d p$ max. TDE

-1  

-0.5

0   

0.5 

1   

0.9 

0.95

1   

1.05

1.1 

0.9 

0.95

1   

1.05

1.1 

0   

0.2 

0.4 

0.6 

0.8 

1   

0.01

0.02

0.03

0.04

Figure 6.29: Parallel coordinate plot of TDEs for a combination of p∗, q∗, vg,d and v∗

The maximum TDE is detected for p∗ = 1, q∗ = 1, vg,d = 1 and v∗ = 1.1. In that
operating point, the reference is stable, while the amplitude of the approximated
model increases, leading to the high TDE. The corresponding step response is shown
in Figure 6.30.

For the 5 highest TDEs it is the case that the errors arise from the fact that the
damping of such a high 430 to 440Hz oscillation is underestimated by the approxi-
mation while the frequency is about right. The eigenvalue pair that corresponds to
frequency 440Hz=2756 rad/s is eigenvalue 3 and 4.

There are only few investigated operating points where the errors are this severe and
the result with the sixth highest TDE looks already quite acceptable for this simple
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Figure 6.30: Step responses in vo,q for a step in v∗ for p∗ = 1, q∗ = 1, v∗ = 1.1 and vg,d = 1

approximation. The damping is slightly overestimated there. The corresponding
step response is shown in Figure 6.31.
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Figure 6.31: Step response of vo,q for a step in v∗ for p∗ = 1, q∗ = 1, v∗ = 1.1 and vg,d = 1

As all other operating points produce smaller errors, this means that only 5 out
of 610 valid investigated operating points show severe approximation errors for the
combination of q∗, vg,d, v∗ and p∗. The conclusion is that based on the examined
operating conditions the step response can probably be approximated by the super-
position with negligible errors for a majority of operating points. To decrease the
probability of approximation errors the input range could be limited to values close
to the default operating point.

The combination of all inputs including ωg and ω∗ is displayed in Figure 6.32. The
highest errors are extremely large up to over 200 p.u. of average deviation. The
axes in the following parallel coordinates plots had to be changed to a logarithmic
axis. Figure 6.32 shows that the highest errors are again associated to operating
points where multiple inputs are at their limits. The large errors are caused by the
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fact that the fitted model is unstable and the amplitude grows extremely fast while
the reference is stable and the amplitude is decreasing.

Figure 6.32: Parallel coordinates plot of TDEs for the combination of all inputs

Restricting the considered operating ranges for the evaluation reduces the observed
errors significantly. When p∗ is limited to 0.2 to 0.8, ω∗ to 0.98 to 1.02 and the
voltages to 0.95 to 1.05, the maximum error is only 0.004. The corresponding step
is shown in Figure 6.33.
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Figure 6.33: step

The analyses here cover 5 values per input and uses only the step response. Therefore
the discussion might miss out on some phenomena. It is hard to tackle the expo-
nential number of operating points, so this analysis provides only a rough screening
of the input range. The time domain analysis for the combined sweeps showed that
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the errors behave most likely continuous throughout the input range so that this is
probably also true for the full combination of all inputs. The rough screening of all
combinations confirmed that the highest errors in the time domain appear in general
at the input or stability limits. Those cases are not the most relevant in practice
as they are relatively unlikely and not desirable for steady-state in normal opera-
tion, but for a complete mapping of the system behaviour for all allowable operating
points they need to be included into the considerations. The analysis also confirmed
that for q∗, v∗ and vg,d the superposition seems to be a reliable approximation for
the whole input range. The most effective way to reduce the risk of high errors to
limit the input range in which the model is applied to operating points in proximity
to the default operating point. Which errors are still acceptable has to be decided
depending on the specific use case and the range in which the model can be applied
should be determined accordingly.

6.4. Summary Fitted Model and Approximation by

Superposition

In the previous subsections the fitting was discussed in detail. A quadratic function
was applied to fit each input dependency individually. Then the inputs were com-
bined and the approximation by superposing the individual input fits were discussed.
Even though the specific use case decides if the approximation is good enough, the
results can be summed up as follows:

• The individual inputs can be fitted with a quadratic function. The errors
between the analytical model and the fitted model in time and frequency
domain seem negligible.

• vg,q does not have any effect on the system at all. It is not necessary to create
a fit there.

• The combination of q∗, vg,d and v∗ can be approximated well by the superpo-
sition. The errors in time and frequency domain are insignificant.

• The pairwise combinations of p∗, q∗, vg,d and v∗ produce errors which could
still be tolerable depending on the use case. The closer the input values to
the default operating point the smaller the approximation errors in the time
domain. Areas around the default operating point can be found where the
errors in the frequency domain are small.

• The combination of p∗, q∗, vg,d and v∗ produces significant errors for input
values close to the input range limits. However, the step response can be
approximated well at the majority of operating points.
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• The combinations with ωg and ω∗ are most critical. Even smaller deviations
can cause high errors when ωg and ω∗ are changed at the same time.

• The main issues for the approximation are the damping of the 440Hz oscilla-
tion caused by the underdamped pole pair 3 and 4 or the static gain.

• When the input range in which the approximation is applied is limited to
operating points in close proximity to the default operating point, the risk of
significant errors is low.

The results of the investigations is an input dependent model that inter- and ex-
trapolates the behaviour of the analysed VSM based on individual input sweeps.
It approximates the system behaviour relatively reliable in close proximity to the
default operating point.

6.5. Adaptive Simulation Model

A test with the adaptive model was run for a step wise transition from p∗ = 0.5 to
p∗ = 0.65. The transition was taken in 15 steps with a height of 0.1 as shown in
Figure 6.34. The time between two steps was 20 seconds which allowed the system
to go back to steady state between two steps. The trigger for the switch to the next
model was enabled 1 second before the next step. Figure 6.35a and Figure 6.35b
show the resulting output curves for icv,d and icv,q as an example for the output
behaviour.
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Figure 6.34: Step wise increase in p∗ for the test of the adaptive model

While the output curves of the d-components of the currents and the q-component of
the voltage stay close together for all models, it can be seen that the q-components
of the currents and the d-component of the voltage of the analytical model without
adaption to the operating point drift apart from the reference. The adaptive model
matches the reference significantly better. However, there is also a deviation in the
adaptive model in the form of an offset that grows with every step. This can be
explained by the fact that the linearized state space model has a steady state error
that adds up with every step.
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Figure 6.35: Converter current for the step wise increase in p∗ for the test of the adaptive
model
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Figure 6.36: Zoomed view of icv,d for the last step in p∗ for the test of the adaptive model

When zooming in on the last step as done in figure Figure 6.36 for icv,d, it can be
seen that even for the inputs where the curves match well, there is indeed an offset
and a deviation in the oscillatory frequency for the analytical model. This becomes
apparent when comparing the locations of the later peaks of the oscillation, even
though the difference is very small. The shift of the fifth maximum of the static
analytical model compared to the one of the full model is approximately 0.1 seconds.
The maxima are marked in Figure 6.36 by the dotted lines. The adaptive model
shows a small offset as well but significantly less than the static model and it matches
the oscillation frequency better. For vo,q the static analytical model performs best.
The offset is nearly zero for all steps but the difference in the oscillation frequency
can still be observed at the end of the step wise transition.

To sum up, the application of the adaptive model was successful and the errors
between the state-space model and the electrical simulation could be decreased by
adapting it to the new operating points.
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6.6. Fits from Model Identification

In this section the results are shown for the fitting when the state-space models
used as input for the fitting come from the results of N4SID and VF instead of the
analytical equations. The input used for the identification is the transfer function
of the analytical model.

Table 6.7 shows the mean and maximum NRMSEs for the matrix element for the
fit from the analytical model and the fit from the N4SID and VF results for a sweep
over 11 operating points per input. The numbers are only displayed for completeness
and the interpretation of the fit quality needs a more detailed analysis.

Table 6.7: Individual fit accuracy with identification

swiped NRMSE of fit in %

fit from analytical tf fit from n4sid fit from vf

mean max mean max mean max

p∗ 0.28 2.63 2.75 311.44 9.12 1007.44
q∗ 0.03 0.65 159.43 20619.30 4.58 580.77
vgd 0.08 5.95 26.83 6647.54 0.08 5.95
v∗ 0.11 2.00 45.53 5879.74 0.11 2.00
ωg 0.47 5.54 0.85 47.96 920.74 11732.25
ω∗ 0.69 8.07 2.76 264.08 486.29 62125.30

The numbers in Table 6.7 indicate that the fit quality is significantly worse when
applying an identification method. Figure 6.37a and Figure 6.37b on the other hand
show that the extremely high mean and maximum NRMSEs are caused by outliers
and that in reality the majority of elements has very small NRMSEs. The outlying
elements in the boxplot belong to elements that cannot be identified exactly in
every step but produce some noise around the actual value or have solitary values
that significantly deviate from the actual value. These elements are all associated
with the state with the eigenvalue -475, which is relatively unimportant for the
input-output behaviour according to the HSV. From experiences gained during the
investigations it can be said that if an element is not identified reliably, it has very
low impact on the input output behaviour of the system. This makes sense, as if it
would have a strong impact, it would most likely be identified more reliably by the
algorithm.

The algorithms reliably detect all 18 states for all analyzed operating points and the
majority of elements is identified very accurately. Therefore the quality of the fitted
model as a whole is not as bad as Table 6.7 implies.
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(b) Boxplot of NRMSEs for the sweeps with VF

This is confirmed when examining the frequency domain analysis. There it can be
observed, that there is no noticeable difference between the fits from the analytical
model and the results from the identification. In the frequency domain analysis
performed on the individual sweeps, it turned out that the difference between the
maximum magnitude errors of the fit from the analytical equations and the ones
from the identification methods is smaller than 3 · 10−3 dB. Due to the extremely
high resemblance of the models in the frequency domain, a time domain analysis
was omitted.

Moreover, some of the large NRMSEs could potentially be avoided by adding meth-
ods that detect outlying values throughout the sweep before fitting a function. Such
an additional preprocessing of the sweep results was not implemented in this thesis
but is most likely beneficial for further use cases with identified data.
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Figure 6.37a and Figure 6.37b display that VF and N4SID produce comparable
results and the major difference in the NRMSEs are the outliers. In general, the
NRMSEs are not a good basis to judge the quality of the identification and therefore
a comparison of VF and N4SID is not done at this point.

It has to be underlined again that the averaged and maximum NRMSEs alone are
not adequate to judge the quality of the model as their informational value regarding
the actual system behaviour is very limited.

Even though in the discussed case the identification method delivered basically per-
fect results, one has to be aware that here the input for the identification was the
transfer function from the analytical averaged model, which is the ideal case. For
identification based on simulation results or laboratory investigations the results are
with high probability more distorted. Even in the perfect case some states with low
contribution to the input output behaviour have not a smooth trajectory for the
elements in the B and C matrix. If the identification is applied to simulation data
it is likely that the input data for the fits gets more noisy and additional methods
need to be included to improve the fit quality.

To sum up, no noticeable deviation between the behaviour of the fits resulting from
the identification methods and the fits from analytical model can be observed, even
though the NRMSEs based on the matrix elements seem extremely high. The appli-
cation of identification techniques on the theoretical transfer function data instead
of directly using the theoretical values has no negative impact on the performance
of the fitted models. If the approach still works if the identification is carried out on
simulation data instead of the transfer function of the analytical model could not
be investigated during the time of this thesis.
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7. Results and Analysis Laboratory Experiments

and Identification

7.1. General Remarks

In the previous subsections the state-space models came either directly from the an-
alytical model or from identification applied to the transfer function calculated from
the analytical model with a known number of poles. The identification methods
delivered in general very good results and the transfer functions and step responses
did not show significant errors. However, this is the ideal case and only applicable
if the analytical model is known. In this section it is discussed how the identifica-
tion can be applied on data from laboratory measurements. The transfer functions
are obtained by the procedure described in section 5. The measurement results,
limitations and possible solutions are discussed in the following subsections. The
identified models are verified by a comparison of the step responses with measured
data.

7.2. Measurement Results

The input perturbations were applied for all seven inputs with 100 different per-
turbation frequencies leading to 700 test sequences. One of them is shown as an
example in Figure 7.1 for a perturbation of p∗ at 0.1Hz.
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Figure 7.1: Output measurements for a perturbation on p∗ with 0.1 Hz

It can be seen that the measurements contain noise and some measurement errors.
For this input the output perturbation is clearly visible in icv,d and io,d. A pertur-
bation can also be observed in vo,q. For the other inputs the perturbation is barely
visible or not visible at all. In those cases the perturbation could not be detected
by the algorithm used in this thesis to select the correct frequency component from
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the Fourier spectrum. A different algorithm with a more differentiated plausibility
check will possibly enable to also capture smaller perturbations but also this will
only work until a certain extent which is limited by the precision of the sensors.
In the analytical model it can be seen that the output perturbation in the other
three outputs is 30 to 50 dB smaller than in the three visible ones. 30 dB equal a
factor of 32. This leads to a main difference of the laboratory tests compared to the
simulation. To evoke a clear perturbation also in the remaining outputs, the input
perturbation would have to be increased significantly. Then the perturbation in the
current would unavoidably get extremely large and the converter would eventually
trip. Therefore, it has to be accepted that for some input output combinations no
transfer function data can be calculated.

Figure 7.2 shows another example of a test sequence. A perturbation in vg,d at 10Hz
is displayed. The vg,d is the only input which causes a perturbation in vo,d. It can
be seen that this time all outputs are visibly affected by the perturbation except
from vo,q. Furthermore, it can be seen that a major share of the noise is caused by
oscillations. In the Fourier transform they show up at 300Hz in the dq-frame which
equals a fifth or seventh order harmonics in the stationary reference frame.
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Figure 7.2: Output measurements for a perturbation on vg,d with 10 Hz

Figure 7.3 shows a perturbation in v∗ at 210Hz and Figure 7.4 shows a perturbation
in v∗ at 1.3 kHz. It can be seen that the perturbations in the current become more
irregular at higher frequencies and the sampling at 10 kHz makes them look more
edged. Still, it is possible to calculate the Fourier transform and determine the
amplitude of the fundamental wave. Since the input perturbation is logged with
the same frequency, the signal is distorted in the same way as the output and the
ratio should in theory still be accurate. Moreover, in the figures only three periods
are displayed while a whole second is logged and processed so that the distortions
should average out across the measurement period. What can be nicely seen in
Figure 7.4 Figure 7.4 is the effect of the filter on icv. While the 1.3 kHz perturbation
is visible in io, it is filtered out in icv. In this case there is actually a very small
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perturbation also in vtexto, d but as the amplitude is smaller than the one of the
noise the selection of the frequency component in the Fourier spectrum that was
applied in this thesis does not capture it.
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Figure 7.3: Output measurements for a perturbation on v∗ with 210 Hz
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Figure 7.4: Output measurements for a perturbation on v∗ with 1.3 kHz

For p∗ data could be acquired down to −70 dB at 120Hz with the frequency depen-
dent adaption of the perturbation amplitudes described in section 5. For ωg data
is available up to 400Hz and and for ω∗ up to 57Hz. For q∗ and v∗ even without
an adaption of the amplitude, perturbations could be measured up to 2.9 kHz. For
vg,d and vg,d data could be acquired up to 1.5 kHz. Three examples of calculated
frequency response data in comparison to the analytical model can be found in
Figure 7.5. The full data set is presented in Figure I.1 and Figure I.2.

It can be seen that in the three examples in Figure 7.5 the measured values match
the data from the analytical model very well for small frequencies, both in phase
in amplitude. For higher frequencies there is a mismatch. The characteristics in
the magnitudes like the filtering effect in the converter current are recognisable, but
the phase deviates significantly at higher frequencies. Decreasing phase at constant
magnitude is typical for a delay. In the analytical model no delays are modeled,
which is why it was expected that it is not a good approximation at high frequencies.
In the lab, the origin of the delay is most the communication between the real time
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system and the converter and vice versa. An attempt was made to include delays in
the simulation model but the try to match the laboratory system was not successful.
Since the matching of the model to the laboratory setup did not have priority no
further attempts were made to include the delays. For future work the algorithm to
select the frequency component from the Fourier spectrum should be improved.

In Figure 7.5 the mismatch can be explained by the missing delays in the analytical
model. However, there are input output combinations where there is a strong mis-
match between the measurements and the analytical model also at low frequencies.
Possible reasons are that not all laboratory parameters are exactly known such as the
exact impedance of the connections between the components, the exact parameters
of filter and transformer or the parameters of the inner control loop in the converter.
The errors appear on the one hand in the combination of vg,d and the d-components
of the current while the q-component of the current matches well. This is displayed
in Figure 7.6. It can be seen that the mismatch appears in the magnitude only.
On the other hand there is a mismatch of the relation of vg,q and the q-component
while the d-component matches well. The data looks similar to the one displayed
in Figure 7.6. This indicates that there might be some resistance included that is
not modeled in the analytical model even though the suspicion could not be veri-
fied. The attempts to identify the unknown parameters based on the measurements
and adapting the analytical model accordingly as well as swiping certain parameters
to get a better match with the measurements were not successful. A comparison
between the analytical model or simulations in the following is therefore only to a
certain extent meaningful.

7.3. Identification Results

In this section the identification for four different methods or variants are discussed:
vector fitting with and without substitute values, N4SID and N4SID in combination
with PEM. The identification results are discussed on the examples displayed in
Figure 7.7. The bode plots of all input output combinations can be found in the
appendix.

It can be seen that none of the identified models matches the measurements or the
substitute values in all discussed input output combinations optimally. However,
in many cases the identification methods approximate the measurements well. In
Figure 7.7a it can be seen that in the frequency range up to 10Hz all models except
the one from N4SID without PEM fit the measurements comparably well. The
variant with vector fitting and substitute values seems to fit the measurements best.
Above 20Hz the amplitudes get very small, but it can be seen that the VF with
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(a) Transfer function data calculated from measurement and analytical model for p∗ to icv,d
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(b) Transfer function data calculated from measurement and analytical model for q∗ to icv,q
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(c) Transfer function data calculated from measurement and analytical model for v∗ to io,q

Figure 7.5: Transfer function data calculated from measurement and analytical model for
three example transfer functions
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Figure 7.6: Transfer function data calculated from measurement and analytical model for vg,d
to icv,d

substitute values has a higher relative accuracy than the other methods between
10Hz and 100Hz. It seems that the use of the extrapolated data is beneficial for
the VF. Even though N4SID and PEM have the same extrapolated data as input,
the accuracy at these small magnitudes is lower. After 100Hz where no data is
measured N4SID and PEM displays the characteristics of magnitude and phase
of the extrapolated better than the VF with substitute values, even though the
magnitude is not correct. The VF without substitute values did not get any input
data there so it is not meaningful to compare it in that range.

For Figure 7.7c both N4SID and N4SID with PEM fit the behaviour best. VF both
with and without substitute values does not match the system behaviour for this
input output combination for frequencies higher than 300Hz.

For Figure 7.7b N4SID has a significant error at low frequencies. However, the peak
at 2 kHz is visible, even if it is at the wrong magnitude. The characteristics of the
filter are modelled best by the variant with PEM even though the phase does not
match which is most likely because of the absence of the delay. Up to 1 kHz the both
VF variants match the measurements best, but the peak at 2 kHz is not detected. It
seems favourable to apply N4SID in combination with PEM, since in this case the
results could be improved significantly.

In Figure 7.8 N4SID and N4SID with PEM do not fit the transfer function data well.
The VF results on the other hand fit the measurements almost perfectly between 2
and 400 Hz and the VF with substitute values matches the substitute values very
well up to 400 Hz. The fit of the vector fitting to the measurements between 1.1Hz

and 3Hz could is improved compared to the version without substitute values.
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The deviations in the VF variants appear mostly at higher frequencies and most often
when measurements at high frequencies are available. This could be an indicator
that the VF does not handle the phase shift due to the delay well. It is necessary
to explore this further to make a statement about it though. Depending on the
quality of the substitute values the use of substitute data from input output wise
identification can increase the quality of VF. In the final results presented here,
the substitute values only have a small impact but during the course of the work
it became apparent that their application can cause a much better fit. The final
substitute values were chosen to make N4SID work in the best way and due to the
time limitation of the thesis work the impact of the substitute values on VF could
not be analysed more in depth. However, this seems promising and should in the
opinion of the author be explored in further work.

An interesting point that can be seen in the plot of all input output combinations
is that N4SID produces transfer functions also for the input output combinations
where the input data was set to zero. Vector fitting on the other hand sets the cor-
responding elements in the C-matrix to zero. The N4SID variants produce changes
in the outputs, where this should not be the case. In the step responses it becomes
visible that the amplitude of these outputs can be relatively high. This could be an
disadvantage of N4SID. On the other hand it could also become an advantage. This
missing input output combination is missing because of the missing measurement
due to the low gain. However, it is not decoupled from the rest of the system, so
it is physically meaningful that it is not exactly zero. This could not be further
examined in this thesis but seems interesting for subsequent considerations.

7.4. Validation by Step Response

All step responses were measured and visually inspected in comparison to the iden-
tified models. Figure Figure 7.9 shows the measurement and the identified models
for a step in p∗ of 2000W as an example. The identification models created with
VF match the measurement well. There is only a small difference between the VF
methods and the N4SID in most cases, however in some cases the deviation be-
tween the measurement and the N4SID is very large such as in Figure 7.10. There
itextcv, d is displayed for a step of 5V in vg,d. This is the input output combination
as in Figure 7.8. In this case there is also a difference visible between the VF and
the VF with substitute values. It seems like in this case the version without substi-
tute data is actually better. In the corresponding bode plot the VF matched some
measurement points better when substitute values provided. Also, the VF matched
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Figure 7.7: Bode plots of three example transfer functions for the measurement and the
identification results with VF, VF on substitute values, N4SID and N4SID with
PEM
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Figure 7.8: Bode plot of an example transfer function v∗ to il,d for the measurement and the
identification results with VF, VF on substitute values, N4SID and N4SID with
PEM

the provided substitute values in the low frequency range well, but it is always pos-
sible that the substitute values do not match the real behaviour on points where no
data was measured. Obviously, in case substitute values are used, the quality of the
substitute values is crucial for a good identification result.

7.5. Summary

To sum up, it was possible to identify models based on the laboratory measurements
using two different identification techniques. In the frequency domain N4SID with
PEM seems to perform better at high frequencies than VF. However, there are input
output combinations where N4SID even in combination with PEM performs poorly.
An explanation for this behaviour cannot be given at this point. VF seems more
reliable for frequencies up to 300Hz and the in the step response VF matches the
measurements always equally well or significantly better than N4SID with PEM.
Even though a complete data set it is not strictly necessary for the algorithm to
work, the VF could potentially be improved by using substitute values. However,
the choice of substitute values has to be done carefully since an extrapolation of
measurement data to points where no data could be measured might inject mistakes
into the input data. The generation of substitute values might be an interesting
point for further work. A topic that should be explored further is the effect of time
delays on the identification.

It has to be underlined, that the statements comparing VF and N4SID are not
generalized since only one model and one operating point was considered. A tuning
of parameters such as the pole tolerance in the VF, another weighting scheme for VF,
other substitute data or a weighting filter in the N4SID could lead to significantly
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Figure 7.9: Step response to a step of 2000W in p∗ measured, calculated and from identified
model
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model
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different conclusion. Also, the system order provided to the N4SID will most likely
have an important impact. Different variants of input data, such as up-sampled
substitute values also affects the quality of the identification. All these options could
not be explored in this thesis, which is why the author does not want to make a
statement on which method is most favourable for the application with measurement
data. However, the general impression gained from the examined example is that
the VF method is more beneficial than N4SID.
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8. Summary of Results

The thesis work explored two different aspects in particular. In the first part a
method was developed to create an input dependent state-space model from input
swipes on a linearized analytical state-space model. The process of fitting a model
from input sweeps was discussed in detail. The method to create a uniform system
representation, which is a fundamental precondition to make a fitting possible, was
presented. The code to generate fits from a set of state-space models for different
operating points is provided for further use. First, the swipes were carried out for
each input separately. Dependencies of pairwise combined input variations were
discussed and the possibility to approximate them by a superposition of the fits for
each individual input was analysed. The fits and the approximation were evaluated
in time and frequency domain analyses and discussed in detail. Finally, by com-
bining all individual input dependencies by superposition an approximation for a
dependency on all input variations was created. The model was evaluated in the
time domain by assessing the step responses.

The conclusion that was drawn for the examined VSM was that all individual input
dependencies can be fitted by a quadratic function for each matrix element. For
some inputs the fitting created errors in the frequency domain that seemed of minor
importance but the impact has to be assessed in regard to the specific use case. For
some combination of input variables, the model behaviour can be approximated well
by superposition of the individual input dependencies. For other combinations the
quality of the approximation decreases significantly with the difference to the default
operating point for the swipes. To increase the reliability of the approximation it is
recommended to perform the input swipes for multiple default operating points and
limit the operating range in which the model is used. The range should be chosen
depending on the use case and the necessary accuracy of the approximation.

In the second part laboratory experiments were carried out to obtain data for an
identification of the laboratory system. It was presented how the measurements
were carried out. An important difference between simulation and laboratory ex-
periments was pointed out, namely that due to physical constraints in the lab certain
input output measurements or frequency ranges can possibly not be measured. It
was discussed in detail which impact an incomplete data set has on two different
identification methods. It was possible to identify models and validate them by
comparison of the step response with the step response measured in the lab.

In the frequency domain at frequencies lower than 300Hz and in the step response
the vector fitting approach delivered very satisfying results. At higher frequencies
the fit in the bode plot seemed improvable and a possible correlation with time delays
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that become most effective at high frequencies was pointed out. The approach with
N4SID and PEM was in general less accurate and more dependent on the quality
of substitute values than the VF but seemed to be able to match high frequency
behaviour better in some case. Moreover, the N4SID and PEM method predicted
outputs where there should not have been one since transfer function data of zero
was passed to the algorithm for that combination at all frequencies.

Due to the fact that only one operating point for one sample model was consid-
ered and a thorough analysis of the impact of different parameter settings on the
identification methods could not be provided, the author does not want to make
a generalized statement on which identification method is better for this use case.
However, the impression that came up during the work was that the vector fitting
approach was more beneficial in regards to accuracy, sensitivity to the input data
quality and the need of substitute values for missing data. Two aspects that seemed
worth of further investigation were the possibility to improve the fitting by the ap-
plication of substitute values or up-sampled data and the impact of time delays on
the identification result.
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9. Discussion and critical consideration

9.1. Importance of efficient state-space identification

methods

Eigenvalue based modal analysis is the small-signal analysis method that delivers
the most informational value on stability and harmonic oscillations. In contrast to
impedance-based methods, the system behaviour is assessed globally for the whole
system. A big disadvantage on the other hand is that detailed models are necessary.
For large systems and black-boxed models, state-space models are hard to derive
due to the lack of detailed information [41, 16, 18]. Therefore, it might seem ques-
tionable if the application in multi-vendor systems is feasible at all. The methods
that are currently applied for interaction studies between the systems of different
manufacturers rely widely on time domain analysis seem sufficient for the projects
that have been realized so far. However, the number of involved converters has
been small. The number of operational cases that need to be considered grows ex-
ponentially with the number of converters in close proximity to each other, which
can be high taking the plans to build complex HVDC grids into account. Hence,
the consideration of state-space methods seems unavoidable. Another advantage of
the state-space representation is that complex systems can be assembled relatively
easily from the state-space models of the single components.

Numerous methods for the identification of linear state-space model exist, but the
generation of input data from simulations is computationally expensive as it re-
quires extensive time domain simulations. Moreover, they are only valid for small
deviations around the specific operating point they were created for. The identifi-
cation needs to be carried out for each operating point. Therefore, the benefit of
the identified models for the stability analyses does not outweigh the effort to create
them. Methods are needed to make the model identification process more efficient
and state-space analyses more feasible.

9.2. Operating point dependently fitted model

In small-signal analyses of AC systems, a linearization is done for each considered
operating point, so that the question arises why this is not done for power electronic
systems as well. For systems with mainly large synchronous generators the analyt-
ical equations to describe the relevant system behaviour are widely known, why a
linearization is comparably easy. To carry out an identification for each operating
point is as mentioned before associated to a high computational effort, mainly due to
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the simulations necessary to generate the input data for the identification methods.
Therefore, the possibility to inter- and extrapolate system behaviour from few op-
erating points to a wider operating range would be highly valuable. An approach to
do this by fitting a state-space model from input sweeps was developed and explored
in this thesis for the example of a VSM.

It was possible to fit the dependency of the state-space model on each individual
input by a quadratic function. It was also possible to fit the model by superposition
with very good approximation for some input output combinations over the full
area of their input ranges and for others in proximity to the default operating point.
However, the results have to be considered critically, as discussed in the following.

The operating range for the full input dependent model could be only roughly
scanned because of high number of possible input combinations. Moreover, it is
possible, that the frequency domain ananlyses and discussions in the form they were
done did not uncover all relevant phenomena. Another metric that weights the
magnitude errors and does not evaluate punctual but maybe also with a NRMSE
would probably have been better for a more elaborate discussion and detection of
deviations and problems in the fits.

Moreover, the investigations were carried out on an analytical averaged model, so
that the input data was highly ideal. Likewise, the version with models from identifi-
cation was based on transfer function data from the analytical, so that also there the
input data still had very good quality. In the used models, no switching phenomena
and no time delays are included. Moreover, the investigations limited to AC side
behaviour. MMC specific problems are not considered at all. It is therefore highly
likely that the results would in reality be a lot more defective. If the approach is
still viable if the named points are included is questionable.

Furthermore, the validation of the fitted system is a major problem. In this thesis a
lot of additional operating points were assessed it the frequency and time domain. In
reality the frequency domain analysis is not feasible as the model is still black-boxed
and a identification of additional operating points just for validation would erase the
added value of the fitting. Validation of the fits is only possible based on the goodness
of fit for each individual fitted element, by comparison of frequency responses with
the input data for the fits or in additional time domain simulations. When validating
the fit quality only based on the input data, phenomena between the input operating
points might get undetected. If additional time domain simulations are carried out
for validation the added value of the fitted model decreases.

One drawback in the approach to fit each matrix element separately was that the
fit quality was hard to assess by looking at the goodness of fit for each element.
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The goodness of fits of the matrix elements is not easy to interpret in regards to
the system behaviour. Even small deviations in the fit can cause large deviations in
frequency and time domain. Especially when the fitting is done based on identified
models, it would be useful to develop a metric that evaluates the fit quality in a
better way that takes the importance of a certain element and it’s effect on the
system behaviour into account. One idea would be to weight the NRMSE with the
HSV of the corresponding state. An alternative to fitting all matrix elements in the
state-space model could be to calculate the transfer function and fit the poles and
residues. The fitting of poles is similar to the fitting of the fitting of the eigenvalues
but the fit results for the residues could possibly be easier to interpret than the
combination of elements in the B and C matrix. Also there it should be considered
to use a metric that weights the goodness of fits.

Another weakness of the approach is that in complex systems, phenomena might
appear between two operating points that are used for the fitting and might remain
undetected. Moreover, depending on the needed accuracy swipes a high density
of input values in the swipes and fitting for many default operating points might
be necessary to obtain the desired results. It is questionable if the effort is then
still worth it since the added value of the approach decreases with the number of
identifications that need to be carried out.

Despite of the discussed obstacles, a starting point for further research activities
into this direction was laid out and especially the explanations for the generation
of a uniform system representation which is crucial for an interpolation of any kind
seem valuable.

9.3. Laboratory Experiments and Identification

In practice it is usually effortful and costly to carry out real-world measurements
compared to simulations. It is therefore often favourable to carry out most investi-
gations in simulation. Still, there might be some cases where either no simulation
model is available or a test environment with a real time system is set up either way.
Currently the recommendation for interoperability studies is to perform SiL and HiL
investigations, so that the necessary setup for the measurements performed in this
thesis is there anyways. In those cases it might be an favourable option to perform
the identification on the real-time measurements instead of simulation data, since
the simulations are computationally expensive and time intensive, especially for
the measurements at low frequencies. Identification from laboratory measurements
could thus bring a time saving compared to simulations since the measurements are
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carried out in real-time. Therefore, the identification of real-world measurement
data could be relevant.

It was discussed that in the lab, measurement of frequency response data is lim-
ited by the physical constraints. Some more data than the measurements used in
this thesis could be made available by improving the calculation of the perturbation
amplitudes from the measurements. In this thesis the selection of the frequency com-
ponent in the Fourier spectrum with the highest amplitude compared with the check
on right frequency excluded small output perturbations that theoretically could have
been used. Moreover, a more careful adaption depending of the input perturbation
amplitude on the output perturbation will also increase the range of measured data.
Still, there will likely be input output combinations with a transfer function with low
gain and output perturbation amplitudes smaller than the tolerance of the sensors.

During the course of this thesis the parameters of the used identification methods
could not be tuned and a thorough explanation for the observed errors could not
be given. Furthermore, a fixed model order obtained from the analytical model was
provided to N4SID, when it would have been methodically more appropriate to per-
form a system order estimation from the measurements and use the result instead. A
generalized statement about the comparison of the two applied algorithms could not
provided due to the limited extend of the investigations. Therefore, it has to be un-
derlined that all analyses only refer to the examined model and operating point and
the results could change significantly with the adaption of setup, parameterization
or even operating point.

Nevertheless, the experiments gave useful insights on the peculiarities of the fre-
quency response estimation and identification from laboratory data. Especially the
model identified by vector fitting performed very satisfactory in the validation by
time domain analyses, which can be seen as a success.
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10. Final Conclusion

To sum up, the thesis provides many new insights relevant for the establishment of
methods that enable feasible state-space analyses for black-boxed power electronic
systems. A new approach of fitting a state-space model from input sweeps and
creating a full model by superposition of the individual dependencies was developed,
tested and discussed in detail. Also, laboratory measurements were carried out and
state-space model identification based on experimental data was presented. The
model identified by a new vector fitting method delivered overall satisfactory results
with potential for improvement. New findings about constraints when performing
identification on disturbed and incomplete data sets were pointed out.

All in all, methods were presented that can be useful for further research activities
in model identification of power electronic systems, even though they have to be
elaborated more before they are applicable in practice. The work is part of research
of international importance and helps to enable the successful realization of power
converter dominated systems and multi-terminal multi-vendor grids.

11. Outlook

Further research can be built on the findings of this thesis. The developed methods
and the code for the fitting were made available and can be used and adapted. Steps
that could follow up on the fitting related thesis work are further validation of the
fitted non-linear models. The fitting method should be tested with identification
from simulation data and in a next step used with more complex models where for
example DC side control, switching phenomena, delays or MMC related phenomena
are taken into account. Moreover, the fitted models could be used in a sample
interaction study to test if the quality of the approximation is sufficient to detect
interaction phenomena. Furthermore, it should be explored how the method can be
adapted, for example by performing sweeps for multiple default operating points for
example.

Research that could follow up on the laboratory tests could deal with methods to
improve the input data of the identification, investigate the use of substitute values
and finally test if a combination with the fitting method is possible.

Altogether, state-space small-signal analyses of black-boxed models could become
more feasible in the future and could pave the way for interoperable converter dom-
inated systems and multi-terminal multi-vendor HVDC grids.
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Nomenclature

A, B, C, D matrices of the linearized state space model

D damping coefficient

H transfer function matrix

I sum of integrals of non-constant terms of the fit function over the
input value range

I identity matrix

Ii integral of term i of the fit function over the input value range

J inertia

K diagonal transformation matrix for scaling of B and C

Mel electrical torque

Mm mechanical torque

Mr nominal torque

NRMSE normalized root mean square error

T transformation matrix

Ta start-up time constant

Tdq dq-transformation matrix

Tdq operator for dq-transformation

U Laplace-transformed input signal vector

T matrix of eigenvectors

WC controllability gramian

WO observability gramian

Y Laplace-transformed output signal vector

fx fit function with dependency on input x

fxy fit function with dependency on input x and y

foffset function value for the default input values

f̃ approximated function value

H transfer function

icv output current in p.u.

io output current in p.u.

kd damping constant

m modulation index
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n system order/ number of states

ni number of inputs

no number of outputs

p active power in p.u.

pi, pkl fit function coefficients

pm virtual mechanical power in p.u.

q reactive power in p.u.

ri contribution of term i to the fit function

u vector of input signals

ui,def default value for input i

vo output voltage in p.u.

x vector of state variables

x, y independent variables in fit functions

y output vector

ω rotating speed

ωg rotating speed of the grid

ωg,pu rotating speed of the grid in p.u.

ωpu rotating speed in p.u.

ω0 nominal rotational speed

D as index marks modal representation of state-space model

d as index marks d-component in the synchronous reference frame

i as index counter variable

j as index counter variable

k as index counter variable

l as index counter variable

q as index marks q-component in the synchronous reference frame

∆ marks small deviations from the equilibrium point

∗ marks a reference value
′ marks auxiliary values in the adaptive state-space model

˜ marks values in state-space model after linear transformation
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A. dq-Transformation

Symmetric three-phase quantities can be expressed using dq-components. One pos-
sible transformation into the dq-system is (A.1) [69, p.1039].

 xd

xq


︸ ︷︷ ︸

=xdq

=
2

3

 cos(θ) cos(θ − 2π

3
) cos(θ − 4π

3
)

− sin(θ) − sin(θ − 2π

3
) − sin(θ − 4π

3
)


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=Tdq

·


xa

xb

xc


︸ ︷︷ ︸
=xabc

(A.1)

The corresponding inverse Transformation is (A.2).
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cos(θ − 2π

3
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3
)

cos(θ − 4π

3
) − sin(θ − 4π

3
)

 ·

 xd

xq

 (A.2)

It can be shown that with θ = ωt a differentiation of three phase quantities is
transformed with (A.3), where the operator Tdq(xabc) marks the transformation of
a vector xabc into the dq-space. [70, 63].

Tdq

(
d

dt
xabc

)
= jωxdq +

d

dt
xdq (A.3)

B. Additional Equations VSM

The relation between power and torque is (B.1).

P = Mω (B.1)

As the rotational speed is usually approximately the nominal speed, torque and
power are identical in p.u. values. (B.2) and (B.3) apply.

ω = ω0 (B.2)

p = m (B.3)
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C. Similarity Transformations

The state-space model and the choice of states is not unique. The system repre-
sentations are related via so called similarity transformations. If x is a state vector
and T a non-singular constant matrix, an equivalent system representation with the
states x̃ can be obtained according to (C.1) (C.2). [48]

x̃ = Tx (C.1)

˙̃x = Ã · x̃+ B̃ · u

y = C̃ · x̃+D · u
(C.2)

The matrices Ã, B̃, C̃, are calculated from the original matrices A, B, C according
to (C.3). The D-matrix remains the same. [48]

Ã = TAT−1

B̃ = TB

C̃ = CT−1

(C.3)

D. Conversion to Diagonal Form

D.1. Complex Diagonal Form

A transformation, where the transformation matrix is the inverse of the eigenvector
matrix V, results in a diagonal A-matrix. The eigenvector matrix V contains the
eigenvectors vi of A as displayed in (D.1). It equals T−1 in (C.3). The transforma-
tion is written in (D.2). The diagonal elements of AD are the eigenvalues λi in the
order of the corresponding eigenvectors vi in the transformation matrix as presented
in (D.3). In case A has complex eigenvalues, AD is a complex matrix.

V =
[
v1 v2 · · · vn

]
(D.1)

xD = V−1x (D.2)
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AD = V−1AV =


λ1 0 · · · 0

0 λ2
. . . ...

... . . . . . . ...

0 · · · · · · λn

 (D.3)

D.2. Real Block Diagonal Form

To obtain a real block diagonal form instead of a complex diagonal form, the columns
in the transformation matrix that contain a complex conjugated pair of eigenvectors
[vi vi+1] = [vi v∗

i ] are replaced with [Re(vi) Im(vi)]. The corresponding block in
the block diagonal matrix will then have the form of (D.4). aii ai,i+1

ai+1,i ai+1,i+1

 =

 Re(λi) Im(λi)

−Im(λi) Re(λi)

 (D.4)

D.3. Degrees of Freedom

The diagonal and the block diagonal representation are not canonical. Each of
the eigenvectors vi can be scaled by a factor ki as shown in (D.5), where V is
the eigenvector matrix and Ṽ the alternative eigenvector matrix with the scaled
eigenvectors.

Ṽ =
[
k1v1 k2v2 · · · knvn

]

=
[
v1 v2 · · · vn

]
︸ ︷︷ ︸

=V


k1 0 · · · 0

0 k2
. . . ...

... . . . . . . ...

0 · · · · · · kn


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=K

(D.5)

If the factors are written as a diagonal matrix K like in (D.5), then K−1 is the
transformation matrix for the conversion between the different diagonal forms. With
(D.6), (D.7) shows that each factor scales exactly one state.

Ṽ−1 = (VK)−1 = K−1V−1 (D.6)
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x̃D =Ṽ−1x = K−1V−1x = K−1xD
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A multiplication with a diagonal matrix from right scales the columns, a multipli-
cation from left scales the rows. So, while in the diagonalized system the A-matrix
is not affected, the factor ki belonging to the i-th eigenvector scales column i of C
and it’s reciprocal scales the i-th row in B. (D.8), (D.9) and (D.10) apply.
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B̃D = K−1BD =
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E. Parameters Analytical CCVSM model

Table E.1: Parameterization of the analytical VSM model

parameter value

Filter inductance lf 0.08 p.u.
Filter resistance rf 0.00285 p.u.
Filter capacitance cf 0.074 p.u.
Grid inductance lg 0.2 p.u.
Grid resistance rg 0.005 p.u.
Current controller integral gain 14.24
Current controller proportional gain 1.2732
Enable voltage feed-forward kffv 1
PLL integral gain kp,PLL 0.084
PLL integral gain ki,PLL 4.69
PLL filter ωLP,PLL 500 rad/s
Active damping filter ωad 20 rad/s
Active damping gain kad 1
Virtual resistance rv 0.04 p.u.
Virtual inductance lv 0.25 p.u.
Voltage controller filter ωvo 500 rad/s
VSM inertia time constant Ta 50 s
VSM damping coefficient kd 40
Frequency droop gain kω 20
Reactive power droop gain kq 0.05
Reactive power filter ωq 100 rad/s
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F. Eigenvalues and HSVs of the Analytical Model

Table F.1 contains the eigenvalues and the corresponding Hankel singular values
(HSVs) for the analytical model sorted in by their real part in descending order.

The HSVs are the square root of the eigenvalues of the product of the controllability
gramian WC and observability gramian WO. The HSVs quantify the contribution
of a state to the input-output behaviour and can therefore serve as a metric for the
importance of a state. [71] The higher the HSV, the higher the contribution of a
state to the input output behaviour of the system. The HSVs can be useful when
doing a model reduction.

To assign the HSVs to the eigenvalues, each eigenvalue is analyzed separately. The
system is reduced so that it contains only the considered eigenvalue or complex
conjugated eigenvalue pair. The HSVs are calculated for the reduced system. Those
HSVs match approximately with the HSVs of the full system.

From the values in Table F.1 it can be said that the input output behaviour is
dominated by the eigenvalue pairs 1, 2 and 3, 4 as their HSVs are significantly
higher than the others. Eigenvalue 15 has no contribution and state 14 is also of
relatively low importance.

Table F.1: Eigenvalues and corresponding HSVs for the analytical model at default input

No. Eigenvalues Hankel singular values

1, 2 -0.4119 ±j3.6340 668.77 651.8
3, 4 -3.0269 ±j2778.54 1064.98 1065.09
5, 6 -10.0151 ±j1.1469 5.91 0.32
7, 8 -12.5167 ±j37.3335 5.09 5.18
9, 10 -19.9469 ±j3.6794 7.24 0.77
11 -110.18 1.56 -

12, 13 280.43 ±j3.8528 3.85 3.67
14 -475.32 0.02 -
15 -500 0 -

16, 17 -1488.59±j5.0762 2.86 2.15
18, 19 -3731.06±j2.0513 2.52 0.66
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G. Parameters Laboratory Investigations

Table G.1: Parameterization for the laboratory investigations

Parameter Value

Rated AC voltage converter 400 V
Rated DC voltage converter 650 V
Rated power Converter 60 kVA
Voltage base value 326 V
Power base value 50 kVA
Current base value 102.0 A
Impedance base value 3.2 Ohm
Inductance base value 10.2 mH
Capacitance base value 0.995 mF

Filter inductance converter side Lf1 0.5 mH
Filter capacitance Cf 50 uF
Filter inductance grid side Lf2 0.2 mH
Transformer rated power Sr,T 70 kVA
Transformer short-circuit resistance er 2.16 %
Transformer short-circuit impedance ez 4.34 %
Transformer impedance ZT 0.0992 Ohm
Transformer inductance LT 0.2738 mH
Transformer resistance RT 0.0494 Ohm
Equivalent grid resistance rg 0.0494 Ohm
Equivalent grid inductance lg 0.4738 mH
PLL integral gain kp,PLL 26.53
PLL integral gain ki,PLL 1474
PLL filter time constant τPLL 0.002 s
Virtual resistance rv 0.02 p.u.
Virtual inductance lv 0.25 p.u.
Voltage controller filter time constantτvo 0.005 s
VSM inertia time constant ta 2 s
VSM damping coefficient 40
Frequency droop gain kω 5
Reactive power droop gain kq 0.05
Sample time Ts 100 µs
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H. Pictures Laboratory Setup

Figure H.1: VSC converters

Figure H.2: Grid emulator
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Figure H.3: Reat-time simulator

Figure H.4: Workspace

I. Figures Laboratory Measurements and

Identification

The bode plots of the frequency response measurements in comparison to the an-
alytical model as well as the comparison of the measurements and the identified
models for all input combinations are displayed on the following pages.
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J. Code for Fitting of Input Sweeps

Listing 1: Function for formatting and fitting of state-space models
1 function [sys_fitted,struct_array_of_all_ops]=format_and_fit_ss_models(

struct_array_of_all_ops, inputs_default, fit_function)

2 % This function formats all state-space models in a uniform way and creates fits for

3 % each matrix element in the state-space matrices. The start point is a struct array

4 % called struct_array_of_all_ops containing the input values and the unformatted

5 % state-space models for each operating point in the sweep. The struct array

6 % has one field per input and one for the state-space model.

7

8 %% Cluster the eigenvalues of all operating points to identify states

9 struct_array_of_all_ops=cluster_EVs(struct_array_of_all_ops,inputs_default);

10

11 %% Format the state-space models

12 struct_array_of_all_ops=format_ss_models(struct_array_of_all_ops);

13

14 %% Fit the state-space models

15 [sys_fitted, struct_array_of_all_ops]=fit_ss_models(struct_array_of_all_ops,

inputs_default, fit_function);

16

17 end

Listing 2: Subfunction for clusetring of eigenvalues
1 function struct_array_of_all_ss_models_unformatted=cluster_EVs(

struct_array_of_all_ss_models_unformatted,inputs_default)

2 % This function calculates the eigenvalues for each operating point in

3 % the sweep and puts them into clusters.

4 % Clusters with few elements are removed.

5 % The output is a struct array with the input values, the

6 % corresponding, still unformatted state-space models and an array of

7 % filtered and sorted eigenvalues for each operating point.

8

9 number_of_operating_points=size(struct_array_of_all_ss_models_unformatted,1);

10

11 % initialize the array to save the clustered eigenvalues in.

12 % There is one column per operating point, and one row per cluster

13 % of eigenvalues

14 matrix_of_clustered_EVs=nan(1,number_of_operating_points);

15

16 % loop through the operating points

17 for n=1:number_of_operating_points

18

19 % get the EVs

20 vector_of_EVs_raw=eig(struct_array_of_all_ss_models_unformatted(n).sys.A);

21

22 % cluster the EVs

23 if all(isnan(matrix_of_clustered_EVs))

24

25 % no reference data available, so just take the sorted EVs as

26 % initialization for the clusters

27 matrix_of_clustered_EVs(1:numel(vector_of_EVs_raw),n)=vector_of_EVs_raw;

28

29 % for the added columns in the matrix reset the value to nan

30 matrix_of_clustered_EVs(:,1:end~=n)=nan;

31

32 else

33 for i=1:numel(vector_of_EVs_raw)



J. Code for Fitting of Input Sweeps XXXII

34

35 % now check for each EV seperately which cluster fits best

36 this_EV=vector_of_EVs_raw(i);

37 matrix_of_clustered_EVs=find_cluster(this_EV, matrix_of_clustered_EVs, n

);

38

39 end

40 end

41

42 end

43

44 number_of_clusters=size(matrix_of_clustered_EVs,1);

45

46 % a state must be identified in minimum 80 % of runs

47 min_number_of_values_per_cluster=round(0.8*number_of_operating_points);

48

49 remove_cluster=zeros(number_of_clusters,1);

50 % find the clusters with only few elements and set a marker

51 for i=1:number_of_clusters

52 if sum(~isnan(matrix_of_clustered_EVs(i,:)))<min_number_of_values_per_cluster

53 remove_cluster(i)=1;

54 end

55 end

56

57 % remove the marked clusters

58 matrix_of_clustered_EVs=matrix_of_clustered_EVs(~remove_cluster,:);

59 number_of_clusters=size(matrix_of_clustered_EVs,1);

60

61 % sort the clusters by their value in the default point to get a

62 % consistent representation throughout all swipes

63 index_of_default=(arrayfun(@(x)isequal(struct_array_of_all_ss_models_unformatted(x).

inputs,inputs_default),1:size(struct_array_of_all_ss_models_unformatted,1)));

64 if ~sum(index_of_default)

65 index_of_default=ceil(size(struct_array_of_all_ss_models_unformatted,1)/2);

66 end

67 [~,pos]=sortrows([real(matrix_of_clustered_EVs(:,index_of_default)),imag(

matrix_of_clustered_EVs(:,index_of_default))],’descend’);

68 matrix_of_clustered_EVs=matrix_of_clustered_EVs(pos,:);

69

70 % save the clustered eigenvalues to the struct array

71 temp=mat2cell(matrix_of_clustered_EVs,number_of_clusters,ones(

number_of_operating_points,1))’;

72 [struct_array_of_all_ss_models_unformatted.eigenvalues_filtered_and_sorted]=temp{:};

73 end

Listing 3: Subfunction for cluster selection
1 function matrix_of_clustered_EVs=find_cluster(this_EV, matrix_of_clustered_EVs,

index_of_this_op)

2 % This function takes one eigenvalue and puts it into a cluster. If no

3 % suitable cluster is found, a new cluster is created. The function

4 % returns the updated matrix of clustered eigenvalues.

5

6 matrix_of_previous_EVs=matrix_of_clustered_EVs(:,1:index_of_this_op-1);

7

8 % calculated the distance to all the previous EVs

9 matrix_of_dist_to_previous_EVs=abs(matrix_of_previous_EVs-this_EV);

10

11 % normalize this distance
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12 matrix_of_rel_dist_to_previous_EVs=matrix_of_dist_to_previous_EVs./abs(

matrix_of_previous_EVs);

13

14 % check which distances are bigger than the max distance

15 % NOTE: this value might is a parameter that might need tuning

16 % depending on the input data

17 max_rel_dist=0.5;

18

19 index_suitable_clusters=find(any(matrix_of_rel_dist_to_previous_EVs<max_rel_dist,2))

;

20 [~,col_index_shortest_rel_dist_per_cluster]=min(matrix_of_rel_dist_to_previous_EVs

,[],2);

21

22 % sort the suitable clusters by their relative distance

23 [~,pos]=sort(matrix_of_rel_dist_to_previous_EVs(index_suitable_clusters,

col_index_shortest_rel_dist_per_cluster(index_suitable_clusters)),’ascend’);

24 index_suitable_clusters=index_suitable_clusters(pos);

25

26 % index suitable_clusters gives now the row numbers in the

27 % clustered_EVs matrix in that the EV would fit, sorted from the

28 % shortest distance to the highest

29

30 if numel(index_suitable_clusters)==0

31 % data does not fit in any of the existing clusters

32 % open a new cluster

33 matrix_of_clustered_EVs(end+1,index_of_this_op)=this_EV;

34 % nan the other added cells

35 matrix_of_clustered_EVs(end,1:end~=index_of_this_op)=nan;

36

37 else

38 % get the nearest suitable cluster

39 pos=index_suitable_clusters(1);

40

41 if isnan(matrix_of_clustered_EVs(pos,index_of_this_op))

42 % if the position is not occupied yet, the EV can be

43 % inserted directly

44 matrix_of_clustered_EVs(pos,index_of_this_op)=this_EV;

45 else

46

47 % if the position is occupied, compare which value fits

48 % better into the cluster

49

50 if min(abs(matrix_of_clustered_EVs(pos,index_of_this_op)-

matrix_of_previous_EVs(pos,:)))>min(abs(this_EV-matrix_of_previous_EVs(pos,:)))

51 % this one fits better --> replace the old one and

52 % move to new cluster

53 to_new_cluster=matrix_of_clustered_EVs(pos,index_of_this_op);

54 matrix_of_clustered_EVs(pos,index_of_this_op)=this_EV;

55 else

56 to_new_cluster=this_EV;

57 end

58

59 % insert the value that does not fit better to a new cluster

60 % NOTE: it would be better to check here if the value fits into

61 % another cluster instead

62

63 matrix_of_clustered_EVs(end+1,index_of_this_op)=to_new_cluster;

64

65 % nan the added cells

66 matrix_of_clustered_EVs(end,1:end~=index_of_this_op)=nan;
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67 end

68 end

69 end

Listing 4: Subfunction for formatting of state-space models
1 function struct_array_of_all_ops=format_ss_models(struct_array_of_all_ops)

2 % This function takes the struct array that includes the unformatted

3 % state-space models and the filtered and sorted eigenvalues for each

4 % operating point of the sweep and formats the state-space models

5 % accordingly. It returns the same struct enhanced with the state-space

6 % model in the uniform system representation for each operating point.

7

8 number_of_operating_points=size(struct_array_of_all_ops,1);

9 table_of_inputs=struct2table(cell2mat(extractfield(struct_array_of_all_ops,’inputs’)

));

10 cell_array_of_new_sys=cell(number_of_operating_points,1);

11

12 % loop over the operating points

13 for n=1:number_of_operating_points

14

15 EVs_filtered_and_sorted=struct_array_of_all_ops(n).

eigenvalues_filtered_and_sorted;

16

17 % skip operating points where not all states were identified or

18 % the operating points flagged as not valid. For the others do the

19 % transformations to get the uniform system representation.

20

21 if ~any(isnan(struct_array_of_all_ops(n).eigenvalues_filtered_and_sorted))||~

struct_array_of_all_ops(n).operating_point_valid

22 sys=struct_array_of_all_ops(n).sys;

23

24 % get the eigenvectors and diagonalize the state space system

25 [EVecs,~]=eig(sys.A);

26 new_sys=ss2ss(sys,inv(EVecs));

27

28 % get the eigenvalues

29 EVs=diag(new_sys.A);

30

31 % caution:

32 % the non-diagonal elements of A are not zero but very small!

33

34 % compare the eigenvalues to the values in the vector with the

35 % filtered and sorted eigenvalues

36

37 ind=zeros(size(EVs_filtered_and_sorted,1),1);

38 for i=1:size(EVs_filtered_and_sorted)

39 % get the index of the sorted eigenvalues in the vf results

40 this_EV=EVs_filtered_and_sorted(i);

41 ind(i)=find(abs(this_EV-EVs)==min(abs(this_EV-EVs)));

42 end

43

44 % get the number of states to exclude

45 num_del=numel(EVs)-numel(EVs_filtered_and_sorted);

46

47 % decide which states to exclude

48 cut_off=zeros(size(ind));

49 if num_del>0

50 cut_off=~ismember(round(EVs,7,’significant’),round(

EVs_filtered_and_sorted,7,’significant’));
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51 % move states that are not needed to the end

52 ind(end+1:end+num_del)=find(cut_off);

53 end

54

55 % rearrange the system according to the results of the clustering

56 new_sys=xperm(new_sys,ind);

57 EVs=EVs(ind);

58

59 % cut the not wanted states off if needed

60 if num_del>0

61 remove=numel(EVs_filtered_and_sorted)+(1:num_del);

62 new_sys=modred(new_sys,remove,’Truncate’);

63 end

64

65 % eliminate very small elements to make the next steps

66 % easier

67 new_sys.A(abs(new_sys.A)<10^-10)=0;

68 new_sys.B(abs(new_sys.B)<10^-10)=0;

69 new_sys.C(abs(new_sys.C)<10^-10)=0;

70

71 % make sure that B and C are in the right form (=mind the

72 % factor of the EVecs during the diagonalization). Do this in

73 % the complex diagonal system as this is simpler.

74

75 C_prev=[];

76

77 % find the closest operating point that this operating point

78 % can be compared with

79 % NOTE: the chosen metric is not optimal, because of different

80 % value ranges for every input

81

82 if n>1

83 [~,ind_of_closest_operating_points]=sort(vecnorm(table_of_inputs{n,:}-

table_of_inputs{1:n-1,:},2,2),’ascend’);

84 for i=1:numel(ind_of_closest_operating_points)

85 ind=ind_of_closest_operating_points(i);

86 if ~isempty(cell_array_of_new_sys{ind})

87 C_prev=cell_array_of_new_sys{ind}.C;

88 break;

89 end

90 end

91 end

92

93 % compare the values of C in this step with the values of C in

94 % the previous step of the sweep

95 T=getCorrectFactors(new_sys.C,C_prev);

96

97 % transform the system to apply the correct factors

98 new_sys=ss2ss(new_sys,inv(T));

99

100 % add the new system to a cell array

101 cell_array_of_new_sys{n}=new_sys;

102 else

103 % set a flag that this operating point should be excluded

104 struct_array_of_all_ops(n).operating_point_valid=false;

105 end

106 end

107

108 % add the cell array of formatted systems to the struct array

109 [struct_array_of_all_ops.new_sys]=cell_array_of_new_sys{:};
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110 end

Listing 5: Calculation of factors for B and C matrix
1 function T=getCorrectFactors(thisC,C_prev)

2 % This functions compares the matrix thisC with the matrix C_prev and

3 % calculates the transformation matrix T, which includes the factors

4 % that scale the columns of thisC to get it into a similar

5 % representation as C_prev.

6 % This is necessary as the diagonalization of the state space system

7 % has one degree of freedom per state.

8

9 T=zeros(size(thisC,2));

10

11 % loop over the columns

12 for n=1:size(thisC,2)

13

14 thisColumnofC=thisC(:,n);

15

16 % check if there are any non-zero elements in the columns

17 if sum(abs(thisColumnofC))>0

18

19 % check if the reference C_prev exists

20 if ~isempty(C_prev)

21 thisColumnofC_prev=C_prev(:,n);

22 else

23 thisColumnofC_prev=[];

24 end

25

26

27 % find the first non-zero element in a column

28 first_nonzero=min(find(abs(thisColumnofC)>10^-10,1,"first"));

29

30 % sometimes elements have very small imaginary parts that

31 % change sign and lead to a complex conjugated column. The very

32 % small imaginary parts are therefore simply cut off.

33 if abs(imag(thisColumnofC(first_nonzero)))<10^-10

34 thisColumnofC(first_nonzero)=real(thisColumnofC(first_nonzero));

35 end

36

37 % norm all columns so that the first nonzero element in each

38 % column is positive real with the same absolute value as before

39 factor=1/(thisColumnofC(first_nonzero))*abs(thisColumnofC(first_nonzero));

40

41 % normalization with absolute value because otherwise the

42 % transformation matrix be badly scaled

43 factor=factor/(norm(abs(thisColumnofC)));

44

45 thisColumnofC_new=thisColumnofC*factor;

46

47 % check for the right sign (it might be that the first non-zero

48 % has a zero crossing but the other elements do not)

49 if ~isempty(thisColumnofC_prev)

50 if sum(sign(real(thisColumnofC_new(abs(thisColumnofC_new)>10^-10)))~=

sign(real(thisColumnofC_prev(abs(thisColumnofC_new)>10^-10))))>0.5*numel(

thisColumnofC)

51 % more than 50 % of the values that are not noise have

52 % changed their sign --> probably wrong sign

53 factor=-factor;

54 end
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55 end

56 else

57 factor=1;

58 end

59

60 % write the factor for this column to the corresponding element in

61 % the T-matrix

62 T(n,n)=factor;

63 end

64 end

Listing 6: Subfunction for fitting of state-space models
1 function [sys_fitted, struct_array_of_all_ops]=fit_ss_models(struct_array_of_all_ops,

inputs_default, fittype)

2 % This function creates the fit functions with the type fittype from

3 % the uniformly formatted state space-models in the struct array

4 % struct_array_of_all_ops in dependency of the sweeped input. The

5 % variable inputs_default contrains the input values at the default

6 % operating point of the fit. The output is the structure sys_fitted

7 % containing the fit functions for each matrix

8 % element and some additional information needed to evaluate the fit.

9

10 % initialize some variables

11 table_of_inputs=struct2table(cell2mat(extractfield(struct_array_of_all_ops,’inputs’)

));

12

13 is_valid_op=cell2mat(extractfield(struct_array_of_all_ops,’operating_point_valid’));

14 first_valid_op=struct_array_of_all_ops(find(is_valid_op, 1,’first’));

15

16 number_of_operating_points=numel(struct_array_of_all_ops);

17 number_of_states=sqrt(numel(first_valid_op.new_sys.A));

18 number_of_inputs=numel(first_valid_op.new_sys.B)/number_of_states;

19 number_of_outputs=numel(first_valid_op.new_sys.C)/number_of_states;

20

21 A_all=nan(numel(first_valid_op.new_sys.A),number_of_operating_points);

22 B_all=nan(numel(first_valid_op.new_sys.B),number_of_operating_points);

23 C_all=nan(numel(first_valid_op.new_sys.C),number_of_operating_points);

24

25 % loop over the operating points

26 for n=1:number_of_operating_points

27

28 if struct_array_of_all_ops(n).operating_point_valid

29

30 sys=struct_array_of_all_ops(n).new_sys;

31

32 % for fitting transform into a real block-diagonal form

33 sys=c2rss(sys);

34

35 % write all state-space elements into a matrix

36 % there is one column per step in the sweep and one row per

37 % matrix element

38 A_all(:,n)=sys.A(:);

39 B_all(:,n)=sys.B(:);

40 C_all(:,n)=sys.C(:);

41

42 end

43 end

44

45 % reduce the independent variables to the inputs that are varied
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46 table_of_inputs_reduced=table_of_inputs(:,~all(table_of_inputs{:,:}==table_of_inputs

{1,:},1));

47 names_of_varied_inputs=table_of_inputs_reduced.Properties.VariableNames;

48

49 % get the offset for independent variables

50 for i=1:numel(names_of_varied_inputs)

51 u_offset(i)=inputs_default.(names_of_varied_inputs{i});

52 end

53

54 % get the indepentend variables for all valid operating points

55 u=table_of_inputs_reduced{is_valid_op,:};

56

57 % provide start values for fit if it is a custom fit function

58 if isa(fittype,’fittype’)

59 startPoints=zeros(numel(coeffnames(fittype)),1);

60 custom_fit=1;

61 else

62 startPoints=[];

63 custom_fit=0;

64 end

65

66 % fit elements of A

67 A_fitted=cell(size(A_all,1),1);

68 for n=(1:size(A_all,1))

69 array_of_a_ij=A_all(n,is_valid_op)’;

70 x=u-u_offset;

71 y=array_of_a_ij;

72

73 if max(y)-min(y)~=0

74 if custom_fit

75 A_fitted{n}=fit(x, y,fittype,’Start’,startPoints);

76 else

77 A_fitted{n}=fit(x, y, fittype);

78 end

79 else

80 A_fitted{n}=mean(y);

81 end

82 end

83

84 A_fitted=reshape(A_fitted,number_of_states,[]);

85

86 % fit elements of B

87 B_fitted=cell(size(B_all,1),1);

88 for n=(1:size(B_all,1))

89 array_of_b_ij=B_all(n,is_valid_op)’;

90 x=u-u_offset;

91 y=array_of_b_ij;

92 if max(y)-min(y)~=0

93 if custom_fit

94 B_fitted{n}=fit(x, y,fittype,’Start’,startPoints);

95 else

96 B_fitted{n}=fit(x, y, fittype);

97 end

98 else

99 B_fitted{n}=mean(y);

100 end

101 end

102

103 B_fitted=reshape(B_fitted,number_of_states,[]);

104
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105 % fit elements of C

106 C_fitted=cell(size(C_all,1),1);

107 for n=(1:size(C_all,1))

108 array_of_c_ij=C_all(n,is_valid_op)’;

109 x=u-u_offset;

110 y=array_of_c_ij;

111 if max(y)-min(y)~=0

112 if custom_fit

113 C_fitted{n}=fit(x, y,fittype,’Start’,startPoints);

114 else

115 C_fitted{n}=fit(x, y, fittype);

116 end

117 else

118 C_fitted{n}=mean(y);

119 end

120 end

121

122 C_fitted=reshape(C_fitted,[],number_of_states);

123

124 % copy the structures of fits to a common structure and add further

125 % information

126 sys_fitted.A=A_fitted;

127 sys_fitted.B=B_fitted;

128 sys_fitted.C=C_fitted;

129 sys_fitted.D=sys.D;

130

131 % also save the default of this swipe as it is needed as offset when

132 % evaluating the function

133 sys_fitted.inputs_default=inputs_default;

134

135 % also save which one is the independent variable of the fit

136 sys_fitted.names_of_variables_swiped=names_of_varied_inputs;

137

138 % copy the input and output names

139 sys_fitted.InputName=sys.InputName;

140 sys_fitted.OutputName=sys.OutputName;

141

142 % for later use store also the matrix of elements from the swipe that

143 % served as input for the fit

144 temp=num2cell(A_all,1);

145 [struct_array_of_all_ops.A_all]=temp{:};

146 temp=num2cell(B_all,1);

147 [struct_array_of_all_ops.B_all]=temp{:};

148 temp=num2cell(C_all,1);

149 [struct_array_of_all_ops.C_all]=temp{:};

150 end

Listing 7: Function for superposition of fitted state-space models
1 function sys_new = combine_fitted_ss(varargin)

2 % This function combines a variable number of uniformly formatted,

3 % fitted-state space models to a single fitted state-space model.

4

5 % initialize with the first input

6 sys_new=varargin{1};

7

8 % loop over other systems and add them to the new fitted system

9 for i=2:numel(varargin)

10 for j=1:numel(sys_new.A)

11 if ~isnumeric(sys_new.A{j})||~isnumeric(varargin{i}.A{j})
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12 sys_new.A{j}=combine_fit(sys_new.A{j},varargin{i}.A{j},i);

13 end

14 end

15

16 for j=1:numel(sys_new.B)

17 if ~isnumeric(sys_new.B{j})||~isnumeric(varargin{i}.B{j})

18 sys_new.B{j}=combine_fit(sys_new.B{j},varargin{i}.B{j},i);

19 end

20 end

21

22 for j=1:numel(sys_new.C)

23 if ~isnumeric(sys_new.C{j})||~isnumeric(varargin{i}.C{j})

24 sys_new.C{j}=combine_fit(sys_new.C{j},varargin{i}.C{j},i);

25 end

26 end

27 sys_new.names_of_variables_swiped=[sys_new.names_of_variables_swiped,varargin{i

}.names_of_variables_swiped];

28 end

29 end

Listing 8: Function for combination superposition of fitted state-space models
1 function new_fit=combine_fit(fit1,fit2,index)

2 % This function combines two fit functions by adding the non-constant

3 % terms of fit2 to fit1. The new fit function, coefficient names and

4 % values and variable names are stored in a struct named new_fit.

5 % fit1 and fit2 can either be of the type of the Matlab fit classes

6 % cfit and sfit or a struct with the same fields as new_fit. This is

7 % necessary in case this function is used repeatedly.

8 % The coefficient and variable names in new_fit are the same as in the

9 % original fits but enhanced with _1 if the term originates from fit1

10 % or _2 if the term originates from fit2.

11

12 if ~isnumeric(fit1)

13 % get the formula, the variable names, coefficient names and

14 % coefficient values of the first fit function

15 if contains(class(fit1),{’cfit’,’sfit’})

16 formula1=formula(fit1);

17 varnames1=indepnames(fit1)’;

18 coeffnames1=coeffnames(fit1)’;

19 coeffvalues1=coeffvalues(fit1);

20 else

21 formula1=fit1.formula;

22 varnames1=fit1.varnames;

23 coeffnames1=fit1.coeffnames;

24 coeffvalues1=fit1.coeffvalues;

25 end

26

27 % enhance the variable and coefficient names of fit1 with _1 and

28 % put them into formula1

29 for i=1:numel(varnames1)

30 temp=varnames1{i};

31 varnames1_new{i}=strcat(temp,’_1’);

32 formula1=strrep(formula1,varnames1{i},varnames1_new{i});

33 end

34 for i=1:numel(coeffnames1)

35 temp=coeffnames1{i};

36 coeffnames1_new{i}=strcat(temp,’_1’);

37 formula1=strrep(formula1,coeffnames1{i},coeffnames1_new{i});

38 end
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39 else

40 % if fit1 is a constant numeric value, the numeric value is

41 % converted to a string used as formula1.

42 formula1=num2str(fit1);

43 varnames1_new=[];

44 coeffnames1_new=[];

45 coeffvalues1=[];

46 end

47

48 if ~isnumeric(fit2)

49 % get the formula, the variable names, coefficient names and

50 % coefficient values of the second fit function

51 if contains(class(fit2),{’cfit’,’sfit’})

52 formula2=formula(fit2);

53 varnames2=indepnames(fit2);

54 coeffnames2=coeffnames(fit2);

55 coeffvalues2=coeffvalues(fit2);

56 else

57 formula2=fit2.formula;

58 varnames2=fit2.varnames;

59 coeffnames2=fit2.coeffnames;

60 coeffvalues2=fit2.coeffvalues;

61 end

62

63 % enhance the variable and coefficient names of fit1 with _1 and

64 % put them into formula2

65 for i=1:numel(varnames2)

66 temp=varnames2{i};

67 varnames2_new{i}=strcat(temp,’_’,num2str(index));

68 formula2=strrep(formula2,varnames2{i},varnames2_new{i});

69 end

70 for i=1:numel(coeffnames2)

71 temp=coeffnames2{i};

72 coeffnames2_new{i}=strcat(temp,’_’,num2str(index));

73 formula2=strrep(formula2,coeffnames2{i},coeffnames2_new{i});

74 end

75

76 % remove the offset from formula 2

77 terms=split(formula2,’+’);

78 ind=contains(terms,varnames2_new);

79 formula2=join(terms(ind),’+’);

80 coeffnames2_new=coeffnames2_new(ind);

81 coeffvalues2_new=coeffvalues2(ind);

82 else

83 % if fit2 is a constant it is removed

84 formula2=’0’;

85 varnames2_new=[];

86 coeffnames2_new=[];

87 coeffvalues2_new=[];

88 end

89

90 % finally, combine the functions into one

91 new_fit.formula=strcat(formula1,’+’,formula2);

92 new_fit.varnames=[varnames1_new,varnames2_new];

93 new_fit.coeffnames=[coeffnames1_new,coeffnames2_new];

94 new_fit.coeffvalues=[coeffvalues1,coeffvalues2_new];

95 end

Listing 9: Function that calculates the numerical state space-models from fits
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1 function sys=calc_numerical_values_for_fitted_sys(inputs,sys_fitted)

2 % This function takes the structure sys_fitted and calculates a numeric

3 % state-space model for the values in the struct inputs.

4 % The output sys has the Matlab type ss.

5

6 % Get the independent values of the fitted system

7 names_of_varied_inputs=sys_fitted.names_of_variables_swiped;

8 x=nan(1,numel(names_of_varied_inputs));

9 for i=1:numel(names_of_varied_inputs)

10 x(i)=inputs.(names_of_varied_inputs{i})-sys_fitted.inputs_default.(

names_of_varied_inputs{i});

11 end

12

13 % initialize the state space matrices

14 A=zeros(size(sys_fitted.A));

15 B=zeros(size(sys_fitted.B));

16 C=zeros(size(sys_fitted.C));

17 D=sys_fitted.D;

18

19 % loop over the elements of A and calculate the numeric values

20 for i=1:numel(A)

21 if ~isnumeric(sys_fitted.A{i})

22 % for fits of type cfit or sfit

23 if contains(class(sys_fitted.A{i}),{’cfit’,’sfit’})

24 A(i)=sys_fitted.A{i}(x);

25 % for fits of the custom struct type

26 else

27 formula=sys_fitted.A{i}.formula;

28 coeff_names=sys_fitted.A{i}.coeffnames;

29 coeff_values=sys_fitted.A{i}.coeffvalues;

30 for k=1:numel(coeff_names)

31 formula=strrep(formula,coeff_names(k),[’(’,num2str(coeff_values(k)),

’)’]);

32 end

33 var_names=sys_fitted.A{i}.varnames;

34 for k=1:numel(var_names)

35 formula=strrep(formula,var_names(k),[’(’,num2str(x(k)),’)’]);

36 end

37 A(i)=eval(formula{1});

38 end

39 end

40 end

41

42 % loop over the elements of B and calculate the numeric values

43 for i=1:numel(B)

44 if ~isnumeric(sys_fitted.B{i})

45 if contains(class(sys_fitted.B{i}),{’cfit’,’sfit’})

46 B(i)=sys_fitted.B{i}(x);

47 else

48 formula=sys_fitted.B{i}.formula;

49 coeff_names=sys_fitted.B{i}.coeffnames;

50 coeff_values=sys_fitted.B{i}.coeffvalues;

51 for k=1:numel(coeff_names)

52 formula=strrep(formula,coeff_names(k),[’(’,num2str(coeff_values(k)),

’)’]);

53 end

54 var_names=sys_fitted.B{i}.varnames;

55 for k=1:numel(var_names)

56 formula=strrep(formula,var_names(k),[’(’,num2str(x(k)),’)’]);

57 end
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58 B(i)=eval(formula{1});

59 end

60 end

61 end

62

63 % loop over the elements of C and calculate the numeric values

64 for i=1:numel(C)

65 if ~isnumeric(sys_fitted.C{i})

66 if contains(class(sys_fitted.C{i}),{’cfit’,’sfit’})

67 C(i)=sys_fitted.C{i}(x);

68 else

69 formula=sys_fitted.C{i}.formula;

70 coeff_names=sys_fitted.C{i}.coeffnames;

71 coeff_values=sys_fitted.C{i}.coeffvalues;

72 for k=1:numel(coeff_names)

73 formula=strrep(formula,coeff_names(k),[’(’,num2str(coeff_values(k)),

’)’]);

74 end

75 var_names=sys_fitted.C{i}.varnames;

76 for k=1:numel(var_names)

77 formula=strrep(formula,var_names(k),[’(’,num2str(x(k)),’)’]);

78 end

79 C(i)=eval(formula{1});

80 end

81 end

82 end

83

84 % create the state-space system

85 sys=ss(A,B,C,D);

86 sys.OutputName=sys_fitted.OutputName;

87 sys.InputName=sys_fitted.InputName;

88

89 end

Listing 10: Function to bring the fits into a form that can be used with the adaptive Simulink
model

1 function [coeffs_A,coeffs_B,coeffs_C,input_index_selector]=

reshape_fits_for_use_with_varying_ss_block_simulink(sys_fitted)

2 % This function is needed for the use of the fitted systems with the

3 % dynamic ss model.

4 %

5 % It takes the coefficients of the fit functions and puts them into matrices

6 % so they can be passed on to the Simulink block that calculates the

7 % dynamic values of the adaptive ss model.

8 %

9 % Additionally, the output in the command window has to be copied BY HAND to

10 % the respective eval_fitted_sys_for_varying_ss_block function in

11 % Simulink.

12

13 % get the coefficient names

14 cell_of_coefficient_names=coeffnames(sys_fitted.A{1});

15 cell_of_ind_vars_names=indepnames(sys_fitted.A{1});

16

17 % initialize the coefficient matrices

18 coeffs_A=zeros(numel(sys_fitted.A),numel(cell_of_coefficient_names)); % one column

per coeff, one line per element

19 coeffs_B=zeros(numel(sys_fitted.B),numel(cell_of_coefficient_names)); % one column

per coeff, one line per element

20 coeffs_C=zeros(numel(sys_fitted.C),numel(cell_of_coefficient_names)); % one column

per coeff, one line per element
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21

22 % for each matrix of the ss model write the coefficients to the

23 % coefficient matrix.

24 for n=1:numel(sys_fitted.A)

25 if ~isnumeric(sys_fitted.A{n})

26 for k=1:numel(cell_of_coefficient_names)

27 coeffs_A(n,k)=sys_fitted.A{n}.(cell_of_coefficient_names{k});

28 end

29 else

30 coeffs_A(n,1:numel(cell_of_coefficient_names))=sys_fitted.A{n};

31 end

32 end

33

34 for n=1:numel(sys_fitted.B)

35 if ~isnumeric(sys_fitted.B{n})

36 for k=1:numel(cell_of_coefficient_names)

37 coeffs_B(n,k)=sys_fitted.B{n}.(cell_of_coefficient_names{k});

38 end

39 else

40 coeffs_B(n,1:numel(cell_of_coefficient_names))=sys_fitted.B{n};

41 end

42 end

43

44 for n=1:numel(sys_fitted.C)

45 if ~isnumeric(sys_fitted.C{n})

46 for k=1:numel(cell_of_coefficient_names)

47 coeffs_C(n,k)=sys_fitted.C{n}.(cell_of_coefficient_names{k});

48 end

49 else

50 coeffs_C(n,1:numel(cell_of_coefficient_names))=sys_fitted.C{n};

51 end

52 end

53

54 % check which inputs to select

55 input_index_selector=[];

56 for i=1:numel(sys_fitted.names_of_variables_swiped)

57 input_name=sys_fitted.names_of_variables_swiped{i};

58 input_index_selector=[input_index_selector,find(contains({’pref’,’qref’,’vnd’,’

vnq’,’vref’,’Omegag’,’Omegaref’},input_name))];

59 end

60

61 fit_function_formula=formula(sys_fitted.A{1});

62

63 for i=1:numel(cell_of_coefficient_names)

64 fit_function_formula=strrep(fit_function_formula,cell_of_coefficient_names{i},[’

coeffs(’,num2str(i),’)’]);

65 end

66 for i=1:numel(cell_of_ind_vars_names)

67 fit_function_formula=strrep(fit_function_formula,cell_of_ind_vars_names{i},[’x(’

,num2str(i),’)’]);

68 end

69

70 disp(’*** Copy this to the MATLAB function block

eval_fitted_sys_for_varying_ss_block in Simulink ***’)

71 disp([’element = ’,fit_function_formula,’;’]);

72 end



J. Code for Fitting of Input Sweeps XLV

Listing 11: Code for Simulink block that calculates numerical values of state-space model
1 function [A,B,C,D]=eval_fitted_sys_for_varying_ss_block(u, u_default, coeffs_A, coeffs_B

, coeffs_C)

2

3 x=u-u_default;

4

5 number_of_states=sqrt(size(coeffs_A,1));

6 number_of_inputs=size(coeffs_B,1)/number_of_states;

7 number_of_outputs=size(coeffs_C,1)/number_of_states;

8

9 A=zeros(number_of_states);

10 B=zeros(number_of_states,number_of_inputs);

11 C=zeros(number_of_outputs,number_of_states);

12 D=zeros(number_of_outputs,number_of_inputs);

13

14 element=0;

15 coeffs=0;

16 for n=1:(numel(A)+numel(B)+numel(C))

17 switch true

18 case n<=numel(A)

19 coeffs=coeffs_A(n,:);

20 case n>numel(A) && n<=numel(A)+numel(B)

21 coeffs=coeffs_B(n-numel(A),:);

22 case n>numel(A)+numel(B)

23 coeffs=coeffs_C(n-numel(A)-numel(B),:);

24 end

25

26 % insert the command window output from the MATLAB function

27 % reshape_fits_for_use_with_varying_ss_block_simulink.m here!

28 %------------------------------------------------------------

29 element = coeffs(1)*x(1)^2 + coeffs(2)*x(1) + coeffs(3);

30 %------------------------------------------------------------

31

32 switch true

33 case n<=numel(A)

34 A(n)=element;

35 case n>numel(A) && n<=numel(A)+numel(B)

36 B(n-numel(A))=element;

37 case n>numel(A)+numel(B)

38 C(n-numel(A)-numel(B))=element;

39 end

40 end

41 end
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