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Abstract

Processing data streams is a classical and ubiquitous problem. A query is registered

against a potentially endless data stream and continuously delivers results as tuples

stream in. Modern stream processing systems allow users to express queries in di�er-

ent ways. However, when a query involves joins between multiple input streams, the

order of these joins is not transparently optimized. In this thesis, we explore ways to

optimize multi-way theta joins, where the join predicates are not limited to equality

and multiple inputs are referenced. We put forward a novel operator, MultiStream,

which joins multiple input streams using iterative probing and bringing minimal ma-

terialization e�ort in. The order in which tuples are sent inside a MultiStream opera-

tor is optimized using a cost-based model. Further, a query can be answered using an

multi-way tree comprising multiple MultiStream operators where each inner operator

represents a materialized intermediate result. We integrate equi-joins in MultiStream

to reduce communication, such that mixed queries of theta and equality predicates

are supported. Streaming queries are long-standing and thus multiple queries might

be registered at the system at the same time. Hence, we research joint answering of

multiple multi-way join queries and optimize the global ordering using integer linear

programming. All these approaches are implemented in CLASH, a system for gener-

ating Apache Storm topologies including runtime components that enables users to

pose queries in a declarative way and let the system craft the suitable topology.



Zusammenfassung

Datenstromverarbeitung ist ein klassisches und universelles Problem. Datenströme

sind endlos und das Ergebnis einer Datenstromanfrage ist wiederum ein Strom, da-

her ist eine Anfrage potentiell für eine unbegrenzte Zeit aktiv. Moderne datenstrom-

verarbeitende Systeme erlauben es Benutzern, Anfragen auf verschiedene Arten aus-

zudrücken. Allerdings wird die Reihenfolge von mehreren Join-Operationen nicht

transparent optimiert, wenn eine Anfrage mehrere Eingabeströme involviert. In die-

ser Arbeit erforschen wir wie Mehrwege-Theta-Joins – das bedeutet, Prädikate sind

nicht auf Gleichheit beschränkt und mehrere Eingaben werden referenziert – opti-

miert werden können. Wir stellen einen neuartigen Operator vor, MultiStream, wel-

cher mehrere Eingabeströme mittels iterativen Sondierens verbinden kann und der

minimalen Materialisierungsaufwand benötigt. Die Reihenfolge, in der Tupel inner-

halb eines MultiStream-Operators gesendet werden, wird mit Hilfe eines kostenba-

sierten Models optimiert. Weiterhin kann eine Anfrage durch einen Mehrwegebaum

beantwortet werden, welche aus mehreren MultiStream-Operatoren besteht und wo-

bei jeder innere Operator einem materialisierten Zwischenergebnis entspricht. Um

den Kommunikationsaufwand für Anfragen, die zum einen Teil aus beliebigen Prä-

dikaten und zum anderen Teil aus Gleichheiten bestehen, zu verringern, integrie-

ren wir Equijoinberechnung in MultiStream. Datenstromanfragen sind für längere

Zeit aktiv and so können mehrere Anfragen gleichzeitig in einem System registriert

sein. Für solche Fälle untersuchen wir das gemeinsame Beantworten mehrerer solcher

Mehrwege-Join-Anfragen und optimieren die globale Reihenfolge mittels ganzzahli-

ger linerarer Programmierung. Alle diese Ansätze haben wir in CLASH implemen-

tiert, ein System, das Apache-Storm-Topologien und passende Laufzeitkomponenten

erstellt. Dieses System erlaubt Benutzern beliebige Anfragen deklarativ zu stellen und

erstellt darau�in eine passende Topologie.
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Chapter 1

Introduction
Processing data streams is a classical and ubiquitous problem. It ranges from mon-

itoring enterprise-internal system access logs for ad placement or anomaly detec-

tion, to providing real-time analytics over social network streams, from gathering

distributed sensor data in a smart grid to algorithmic trading in electronic stock ex-

changes. Prominent engines like Spark Streaming [10], Flink [17, 8], Apache Storm’s

Trident [1], or Kafka [62, 9] allow users or higher-level applications to express queries

in SQL-style declarative languages, and deploy and execute query plans over poten-

tially very many compute tasks in a data center.

In most cases, such queries do not merely �lter or aggregate tuples from a single

relation but involve joins that connect information pieces from various sources. For

instance, search-engine queries and ad-clicks need to be joined for billing purposes [7]

and in complex event processing, events are commonly expressed by multiple criteria

that do not originate from a single sensor [43].

Status Quo and Motivation

Database systems allow their users to express nearly arbitrarily complex queries in

form of the declarative language SQL. These queries are fed into an optimizer that

produces a plan that dictates the underlying data engine in which order which oper-

ations are to be performed such that a result can be sent back to the user. This way,

the query and the execution plan are decoupled from each other, and the same query

can be answered using di�erent plans depending on, e.g., properties of the underly-

ing data or available resources. In particular, these queries can involve user-de�ned

predicates and an arbitrary number of joins.

Prevailing scale-out stream processing systems, on the other hand, often support

a SQL-like declarative language, but only a narrow band of queries. E.g., Flink and

Kafka only provide equi joins, where the syntactic order of the relations implies the

sequence of the join operators, and Storm’s SQL implementation does not support

joins at all. Thus, if users need the system to compute a (non-equi-)join query, they

must be pro�cient in writing the query in the programmatic interfaces of these sys-

tems.

In a truly declarative interface, there should be no restriction on the predicates or

order of the input relations in a multi-way join query. The underlying system should

understand which relations need to be joined and craft an execution strategy which

yields the correct result with as little e�ort as possible. Flink supports multiple join

7



1. Introduction

Figure 1.1: The space of di�erent types of join plans regarding storage and network
load.

relations in a SQL query, however, the order in which these relations are listed in the

query string prescribes the order of the join operations in the �nal query execution

plan. This blind spot for multi-way theta joins motivates this work of research where

we explore what is necessary to implement theta-join ordering strategies for scale-out

architectures and implement prototypes to answer joins, not limited to two inputs or

equality predicates.

Our Approach

The wide spectrum of join algorithms is illustrated in Figure 1.1, regarding required

storage for materializing the join state and network usage. The amount of memory

available in the compute cluster executing the query gives us the maximum storage

capacity, and the interconnection of nodes induces the maximum network capacity.

Query plans that exceed the available storage or network bandwidth are infeasible.

On the other hand, the query and the data themselves impose minimal requirements,

e.g., each tuple that might still be involved in a future join result needs to be stored,

and each fresh arriving tuple needs to be sent somewhere for probing. The position

of a join plan in this graph depends on many factors like the actual query, data char-

acteristics, con�guration of the involved nodes, or local algorithms used. A query

plan with a �xed structure like a left-deep plan composed of binary operators might

require more storage for intermediate results than available, and a �at plan that relies

on iterative probing through all base relations might over�ow the network’s capac-

ity. However, there are various other possible plans between these two extremes, like

a bushy, binary plan which materializes less intermediate results than the left-deep

8



1.1 Problem Statement

R

S

T

U

r1 r2

s1 s2 s3

t1

u1 u2

time

Figure 1.2: Tuples of multiple input streams arrive.

plan. Further, bushy join plans consisting of multi-way joins often require even less

storage at the cost of higher network utilization.

1.1 Problem Statement

Given streamed relations R1, . . . ,Rm, each representing a continuously arriving se-

quence of tuples, we are interested in the join between R1, . . . ,Rm, such that r1 ○

⋅ ⋅ ⋅ ○ rm (the concatenation of these tuples) with ri ∈ Ri is output i� a predicate

θ(r1, . . . , rm) is satis�ed. This output should be produced as soon as the latest tu-

ple of r1, . . . , rm arrives. The join predicate θ is a conjunction of binary predicates

over two relations, i.e., θ = ⋀1≤i,j≤m,i≠j θi,j . The binary predicates are not further

restricted, e.g., θ1,2 could �lter all tuples where attribute a in relation R1 is similar to

attribute b in relationR2 for a given similarity de�nition, or θ2,3 could be satis�ed if a

combination of attributes of the R2 tuples adds up to the same number as a single at-

tribute inR3. We assume nothing about the predicates but decidability for Chapter 5,

and in Chapter 6 we exploit queries where some θi,j are equality predicates.

For such a join query we want to produce a computation strategy which ensures

correctness and is e�cient for given assumptions about the amount of data arriving

at the system and produced as intermediate join results. This produced strategy is de-

ployed to a distributed and parallel system which consists of stateful components that

can communicate with each other. State is kept in main memory and the processing

and communication strategy needs to make sure that the query is answered correctly

and join results are provided in time. The state of materialized inputs and optional

intermediate results can be distributed over multiple nodes of a compute cluster, how-

ever, each tuple is at exactly one location, i.e., there is no data redundancy. The ideas

we provide are oriented at Apache Storm which serves as least common denominator

for stream processing frameworks and, thus, are applicable to other systems as well.

Further, the query does not provide hints for how to produce the result, but the

user can formulate a query in a purely declarative way, and the system is responsible

for choosing a strategy. While this is the standard for (SQL-)database systems, modern

streaming systems do not normally support this. For example, the Apache Flink doc-

9



1. Introduction

umentation explicitly states, that it does not optimize the join order [2]. This means,

if a user writes a query with the from clause FROM R, S, T, the execution engine

will �rst compute the join between R and S, and then join this result with T.

Examples

Consider the example depicted in Figure 1.2, where relationsR, S, T , andU are joined

with θ = θR,S ∧ θS,T ∧ θT,U . Time is evolving from left to right, so the �rst tuple that

arrives at the system is r1. Two tuples connected by a blue line satisfy the partial

join predicate, e.g., r2 and s2 satisfy θR,S and thus are connected. Such tuples might
belong to the overall join result. However, since s2 does not �nd a join partner in

T (yet), they do not belong to the result (yet). On the other hand, r1, s1, t1, and u1
simultaneously satisfy all partial predicates, thus, should be joined and included in

the result, likewise for r2, s3, t1, and u1. This example underpins that tuples, once

observed, have to be stored (e.g., in main memory) as they might be join partners for

tuples that are arriving later-on. Also, partial joins can be stored (e.g., u1 ○ t1) such

that a later arriving tuple can produce the overall result more quickly. This abstract

processing strategy needs to be executed by a distributed system. This means, when

tuple s3 arrives the system needs to make sure, it meets t1 and r2, as these tuples

satisfy the predicate. Because s3 and r1 do not satisfy the predicate they do not need

to (but can) be at the same distributed processing node.

For a more practical example, consider di�erent streams of social media postings.

A person analyzing patterns in social media might be interested in messages referenc-

ing the same newspaper headline that appears �rst on some network A, then spreads

to networks B and C . So, the query would join the streams of A, B, and C , where

each tuple has an attribute τ indicating the timestamp of the posting and m for the

message, and another stream N of newspaper articles with attribute h for the head-

line. The join predicates are A.τ ≤ B.τ , A.τ ≤ C.τ to make sure that the message

of A comes �rst. For the messages to reference the same headline, N.h needs to be

contained in A.m, B.m, and C.m. Due to the nature of social networks, the match-

ing should be fuzzy to account for spelling errors or corrections, which is done by

predicate θ. Thus, the predicates θ(N.h,A.m), θ(N.h,B.m), and θ(N.h,C.m) are

also added to the overall predicate. The person only needs to formulate this query in

terms of the join predicates, but is not concerned with where in a distributed system

which tuples reside and where they are sent in order to evaluate which predicates.

1.1.1 Notation and Nomenclature

Throughout this thesis we will use the notation displayed in Table 1.1.

We denote the input datasets for join queries as (streamed) relation. These re-

lations contain a sequence of tuples and each tuple consists of a timestamp as well as

10



1.2 Contributions and Publications

Table 1.1: Notation used in this thesis.

Notation Description
R,S,T,Ri Relations
r, s, t Tuples of according relations
NR Number of partitions of relation R,

also number of tasks handling relation R
N Number of partitions/tasks in total
∣R∣ Size of relation R

θR,S (θi,j) Join predicate for R and S (Ri and Rj )
fR,S (fi,j) Selectivity of R and S (Ri and Rj )

attribute values. We assume, that all tuples of a relation have an attribute value if it is

referenced by a join predicate. Further terms will be introduced where appropriate.

A query can be seen as a relation that contains the tuples of the query result. For

example, a query q that joins two relations R and S can be written as q ∶= {r ○ s ∣ r ∈

R,s ∈ S, θ(r, s)}. Most of the time, we are only interested in the involved relations

and the join predicates. Thus a query is a set of relation identi�ers and predicate

expressions, e.g. q1 = (R,S,R.a = S.b) for a binary join, q2 = (R,S,T ) for a ternary

cross product, or q3 = (R,S,T, θR,S , θR,T , θS,T ) for a ternary join with variables

indicating predicates between all pairs of the input relations. Later in the thesis, we

will add window constraints to the relation identi�ers, and write them following the

work on CQL by Arasu et al. [11] in brackets, e.g. q4 = (R[∞], S[1h], θR,S). An

omitted window constraint can be interpreted as [∞]. Sometimes, a tuple centric

view on a join is required, then we write r & S, where r is a single tuple and S is a

relation.

1.2 Contributions and Publications

The contributions of this line of work can be summed up as follows:

• We introduce a novel distributed and scalable operator for computing n-way

joins in a memory e�cient way, the MultiStream operator.

• We explain the composability of n-way operators into n-ary trees as basis for

optimization of multi-way join processing in streaming systems and propose a

cost-based optimization framework for this optimization

• With this, we build the basis for declarative multi-way join querying in data

streams, which to our knowledge is not supported by contemporary stream

processing systems.

11



1. Introduction

• We implement our proposed strategies into a system, CLASH, that can indeed

handle arbitrary input, proving the versatility of our approach.

• We show how to use integer linear programming as vehicle for optimizing

multi-query stream processing plans.

The work in this paper was submitted and accepted by the following peer-reviewed

conferences and workshops.

First, we put forward the initial work for the MultiStream operator that allows

creation of n-ary operator trees in the BeyondMR workshop 2017 [35]. After that,

we presented the full-�edged optimization approach including cost-models and opti-

mization algorithms in BigData 2019 [24].

• Manuel Ho�mann and Sebastian Michel. Scaling Out Continuous Multi-Way

Theta Joins. Workshop on Algorithms and Systems for MapReduce and Beyond

(BeyondMR), Chicago, IL, USA, 2017, co-located with SIGMOD/PODS [35].

• Manuel Dossinger and Sebastian Michel. Scaling Out Multi-Way Stream Joins

using Optimized, Iterative Probing. IEEE BigData 2019 Conference, Los Ange-

les, CA, USA [24].

We modi�ed the approach to allow joint optimization and execution of multiple

queries, as well as adaptive re-optimization, and presented this in ICDE 2021 [25].

• Manuel Dossinger and Sebastian Michel. Optimizing Multiple Multi-way

Stream Joins. 37th IEEE International Conference on Data Engineering (ICDE)

2021, Chania, Greece [25].

Due to its fundamental nature, CLASH is part of all publications, but most signif-

icantly the system was presented on a Demo at SIGMOD 2019 [26].

• Manuel Dossinger, Constantin Roudsarabi, and Sebastian Michel. CLASH: A

High-Level Abstraction for Optimized, Multi-Way Stream Joins over Apache

Storm. Demo on SIGMOD 2019, Amsterdam, Netherlands [26].

1.3 Outline

Chapter 2 introduces the background of both, distributed join and stream computa-

tion, the ideational predecessor of MultiStream, the BiStream operator [47], as well as

a reference for the notation used in this thesis. Chapter 3 relates this line of work to

the other active and prior research of join computation.
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1.3 Outline

Chapter 4 provides �rst insights into our research-prototype, CLASH. Here, we

give a high-level overview which is necessary to understand the following Chapters.

The MultiStream operator, explained in detail in Chapter 5, is the basis for our

approach of computing multi-way stream joins. We present a detailed model to quan-

tify the storage requirements for materialization of intermediate results and number

of messages sent, respectively. We compose multiple MultiStream operators into op-

erator trees and introduce optimization strategies for �nding trees that yield e�cient

processing strategies.

Chapter 6 contains our extensions to the MultiStream approach to incorporate

windows and equi joins. The former restrict the potential join partners to only those

tuples that are at most a window length apart, thereby enabling eviction of old tuples

and freeing resources. The latter allow more e�cient routing strategies, reducing

overall computation load.

Chapter 7 breaks with the single query view and introduces our approach to multi

join-query optimization using integer linear programming to �nd combined routing

strategies. In this chapter, we propose to allow reacting to changes in the underlying

data characteristics to avoid eventually running an unoptimized strategy.

In Chapter 8, we detail on the implementation of CLASH. It is the underlying

system that provides a full cut from providing users a SQL-style query front-end to

optimizing the query and producing a Storm topology with runtime components that

can actually execute the given query or queries.

Finally, Chapter 9 concludes the thesis and provides an outlook.
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Chapter 2

Background and Preliminaries
This chapter presents background information which can be useful for understand-

ing later aspects of the thesis. We discuss continuous queries in general and focus

on window semantics as well as time. After that, we look at join computation in dis-

tributed environments, which have been extensively studied for bulk operations. We

provide a high-level introduction to Apache Storm as our approach of the later chap-

ters is implemented on top of it. Finally, we give a brief introduction to the join order

optimization problem.

2.1 Continuous Queries

A stream is a never-ending in�ow of tuples. Thus, query semantics like used in re-

lational database systems are not straightforward to apply. Most prominently, this is

due to the strong presence of time. Consider a simple aggregation query that counts

all tuples; the result of this query changes every time a new tuple is seen. To cope

with that problem, continuous queries were proposed.

A continuous query is formulated either in a continuous query language like CQL

or similar SQL derivatives like KSQL [11, 39], or in a programming language like

Java or Python (e.g., in Storm, Flink, or Spark [1, 8, 10]). A stream processing system

is responsible for executing the query. In contrast to static database systems where

queries are instantaneous events, continuous queries have a lifespan: They are regis-

tered, continuously produce results, and eventually they are deregistered again.

Arasu et al. de�ne a stream S as “a bag of elements ⟨s, τ⟩, where s is a tuple

belonging to the schema of S and τ ∈ T is the timestamp of the element.” [11] The

timestamps de�ne an order on the tuples which can be used to interpret ranges be-

tween two timestamps as static relations. Such ranges are commonly used to de�ne

windows of tuples. A window is useful for batching communication with the user’s

client application, but can also be a necessity, e.g., to provide a context for aggregation

queries.

2.1.1 Windows

Consider the example in Figure 2.1 where tuples si are observed at the timestamps

indicated by the timeline. The �rst windowing strategy shown is called tumbling
window: periodically (in the example, every 10 time units) a new window is created

which contains a part of the previously seen tuples (in the example, all tuples from
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Figure 2.1: Tumbling and sliding windows on a stream.

the last 10 time units), wT1 contains tuples s1 to s5, wT2 contains s6 to s10 and so

on. Such tumbling windows are partitions of time. When the period P (also called

range) of the windows is smaller than the length, we get a sliding window. In the

example, the window period is 10 time units, the window length 20 time units, thus

tuples s11 to s14 belong to both windows, wS2 and wS3 . The content of two sliding

windows at times τ and τ ′ only changes, if a new tuple arrives between τ and τ ′, or a

tuple has a timestamp between τ −P and τ ′ −P . In the �gure, window wS
′

1 as of τ11
contains tuples s1 to s6. Window wS

′

2 as of τ12 contains tuples s2 to s6, so compared

to the previous window, s1 was removed. Then, window wS
′

3 as of τ13 contains the

fresh observed tuple s7. These smallest distinguishable windows are the result when

windows slide continuously instead of incrementally by P and in this thesis, we focus

on such continuously sliding windows.

The aforementioned windows are time-based, as they compute their contents

based on the current timestamp and the tuples’ associated timestamps. It can happen,

that such windows are completely empty (if no tuples arrive in the time boundaries)

or that they contain a massive amount of data, too much for downstream operators

to handle. Another way is, to use count-based windows. They contain a set number

of tuples, and can again be overlapping or not. The time between two count-based

windows depends on the input behavior of incoming tuples: if tuples are arriving

at a higher rate, more windows are produced, and if no more tuple arrives, the last

window might never end.

These, time-based and count-based, are the primary window variants supported

by most systems. Further, these variants can be extended, for example, Flink allows

adding timeouts to count-based windows, or o�ers session windows, where tuples

belong to the same window if the gap between them is not too large [8].
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2.2 Distributed Join Computation

time

s1 s2 s3 s4 s5

arrival timestamp window

Figure 2.2: A tuple which logically belongs to a window arrives late.

2.1.2 Time and Delays

So far, we assumed that tuples arrive sequentially and contain monotonically increas-

ing timestamps. In reality, this might not necessarily be the case. The timestamp could

be assigned by a di�erent system, e.g., a sensor network, where some sensors have

connection issues and thus their data arrives late at the processing system. Another

case might be that data is gathered in parallel on di�erent sources and tuples arrive

out-of-order. Here, the delay might be smaller, but can still a�ect the result. A time-

stamp that arrives at the stream processing system as part of the data tuples is also

called event time—in contrast to timestamps assigned by the stream processor (sys-
tem time). The stream processing system might run on multiple physical machines

and due to divergence of the local clocks it is not trivial to interpret timestamps.

Consider a window at time τ . It contains tuples with timestamps ≤ τ . If this

window would be exposed to downstream operators immediately, and another tuple

with timestamp τ ′ < τ arrives after the window is output, the query result would

be erroneous. The previous window could be updated, the window could be output

a second time, the tuple could be dropped, or the tuple could be added to the next

window. This problem is illustrated in Figure 2.2. The arrival time of the tuples is

displayed by the dots, and the timestamp of each tuple by the arrow head. Tuple s1
arrives at a time later than the timestamp, s2 and s3 are even swapped. This might

be interesting for some queries, but if the logic is only evaluated at the end of the

window, this is no problem. However, s5 arrives after the window is �nished (hence,

evaluated and results reported), but logically the tuple belongs to the window. Such

cases need to be handled by the systems. Flink, for example, introduces an allowed

lateness [8], and we introduce a bu�er for delayed tuples in Section 5.4.

2.2 Distributed Join Computation

A (binary) join operation takes two sets of inputs, R and S, and produces an output

from the Cartesian product of the inputs, R & S ⊆ R × S. Each element from the

result has the form r ○ s, r ∈ R,s ∈ S. In order to produce the result, r and s need

to “meet” each other. In very basic nested-loops joins, this is ensured as each loop

iterates over the entire relation, thus it can enumerate the entire Cartesian product.

An algorithm that does not enumerate the entire Cartesian cross product might still
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2. Background and Preliminaries

be able to produce the correct join result, if it understands the join predicate at hand

well enough. For example, a hash join only compares tuples where the hash value of

the join attributes is the same.

For distributed join computation, where tuples are placed on di�erent nodes in a

network, we conclude that a join strategy must make sure, that joinable tuples are

placed in such a way in the network, that all tuples r and s are at the same node if

they belong to the join result.

2.2.1 Parallel Equi-Join Computation

We �rst look at a prominent special case that most of the time does not need to enu-

merate the entire cross product, the equi join. A very basic method of computing

an equi join is the parallel version of the grace hash join as described by DeWitt and

Gerber [22]. Tuples of both relations are horizontally partitioned on a set of com-

pute nodes. The relations are hashed into buckets and these hash buckets are sent to

remote nodes such that all buckets with the same hash value end up at the same node.

Figure 2.3 illustrates this approach for joining two relations R and S. On the

left, there are two storage nodes where tuples of the both relations are stored, node

storage1 stores partitions R1 and S1, the other node stores partitions R2 and S2. If

the hash value for a tuple is i, this tuple is sent to workeri for joining. The workers

themselves are responsible for locally joining the arriving tuples and produce the

result.

This is the basic recipe for equi-join computation in other contexts. For example,

in MapReduce [20], the two relations are handled by the map function that outputs

pairs of (join-key, (relation-tag, tuple)) and the reducers compute

the cross product for each join-key (also reduce-side join or repartition join [16]). This

strategy is also used in Spark’s shu�ed hash join, where �rst, a partitioned dataset is

created and then in these partitions the join is computed.

While there are di�erences in the systems’ underlying data models and APIs avail-

able for implementation, the common part is, that for a tuple of the input relation, we

need to know the address where it will meet with all potential join partners.

In the parallel hash join, every tuple was sent to exactly one worker node. This

was possible, because the equality predicate allows drawing very speci�c conclusions

about potential join partners when examining a single tuple. In particular, for a query

(R,S,R.a = S.a) we know that the join partners of a tuple r = {a ∶ 5, . . .} are of

form s = {a ∶ 5, . . .}.
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Figure 2.3: Illustration of a parallel hash join with two involved relations.

2.2.2 Matrix and Hypercube for Theta Joins

Properties of other predicates can also be exploited, for example in a band join. Here,

both tuples lie within a band of certain width, i.e., the di�erence ∆ between the join

attributes is bound. For a query (R,S, ∣R.b − S.b∣ ≤ 2) we know that join partners of

tuple r = {b ∶ 5, . . .} are of form s = {b ∶ b} with b ∈ [3,7]. When not hashing the

tuples to worker nodes, but assigning value ranges, this knowledge can be exploited

to send tuples to a small set of worker nodes where join partners can be found.

If the predicate θ is arbitrary, for example because it is expressed as user-de�ned

function, we cannot infer properties about the join partner. Hence, a tuple from one

relation must see all tuples of the other relation in order to guarantee a correct result.

One prominent approach to do this, is to arrange the worker nodes in a matrix [52],

and send tuples of one relation to all workers in some column, and the tuples of the

other relation to all workers of some row. This way, each tuple gets replicated several

times and the correct join result can be produced.

Figure 2.4 shows two examples for matrix-based partitioning schemes. The boxes

represent workers and are annotated with indices of the partitions that are assigned

to them. In Figure 2.4a, the join between relations R and S is computed on 6 worker

nodes. R is partitioned into two partitions R = R1 ⊍ R2 and R1 is sent to the left

column of workers, R2 to the right column of workers. S is partitioned into three

partitions S = S1 ⊍ S2 ⊍ S3 and the �rst partition is sent to the �rst row, the second

partition to the middle row, and the third partition to the lower row. If we now inspect

a tuple s ∈ S, it is in exactly one of the partitions of S, and thus it is sent to all workers

in one row. The workers in this row receive each partition of R, and thus entire R.

Analogously r ∈ R sees all tuples ofS and thus the correct join result can be computed.

A join using multiple relations can be conducted using a generalization of this

matrix assignment, a hypercube [15] where each dimension represents the partitions
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Figure 2.4: Matrix assignment for binary join and hypercube assignment for ternary
join.

of a relation. Figure 2.4b extends the previous example to three relations, R, S, and

T . Now there are twelve workers, the partitions of R and S are the same, and T is

partitioned into T1 and T2. T1 is assigned to the left block of workers, T2 to the right

one. Again, a tuple s ∈ S is assigned one row. In this row, it meets all four possible

combinations of the partition indices of R and T . Tuples of R can go on even or odd

rows, and tuples of T to the left or the right block. Still, each tuple of one relation

sees all partitions of the other relations, thus also this hypercube scheme is correct.

2.2.3 Stream Joins in General

In traditional database systems, a theta join between two relations R and S is com-

puted using the nested-loops join: Each pair of r ∈ R and s ∈ S is generated and

r ○ s (i.e., the concatenation of r and s) is added to the result set i� a given predicate

θ(r, s) is satis�ed. In this case, the relations are assumed static for the time of query

evaluation. This means, once a tuple r ∈ R has been probed completely against re-

lation S, it does not have to be considered again. For data streams, however, this is

not true, as the relations are continuously growing: If a tuple r ∈ R is probed against

tuples of another streamed relation S, newly arriving tuples of S cause r to be re-

considered, because only a pre�x of the relation (i.e., tuples of this relation seen so

far) is known. Simply put, a key di�culty is to ensure that all potential join partners

eventually meet—once and only once.

In general, for relationsR1, . . . ,Rn, the join predicate θ has to hold for all possible

n-tuples. Otherwise, the tuple can be discarded as it is not part of the join result. As

mentioned earlier, we assume that θ is the conjunction over binary predicates θi,j
which have to hold on two relations Ri and Rj .
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To illustrate the general problem behind processing joins of streamed relations, let

us walk through an example. Consider a distributed system of compute nodes, each

containing a pre�x of previously seen tuples of some part of the incoming relations.

Now, let us look at one speci�c tuple that arrives in one of the relations. When a new

tuple arrives, some of the bu�ered tuples are potential join partners. Thus, they have

to meet at some node in which the predicate of the query is evaluated. Let us say the

tuple that just arrives is r ∈ R and the query at hand involves two more relations, S

and T . There are nodes that contain the pre�x of S, respectively, T . To determine

all result tuples that contain r, it is su�cient to �rst send r to the nodes storing S,

where the partial join R & S is computed. In case r does not �nd any join partners,

the computation can be stopped and nodes that store tuples of T do not have to be

contacted at all. Further, there could be nodes bu�ering the intermediate results from

the partial join (with respect to the desired three-way join) S&T . Then, it is su�cient

to send r to these nodes in order to �nd join partners.

2.3 Apache Storm

Apache Storm [1, 56] is a popular framework that allows building and deploying ap-

plication logic in form of operator topologies to machines in a compute cluster. The

available tuple routing primitives between individual nodes allow expressing arbi-

trary query plans, while the runtime layer of Storm handles execution and comes

with desired properties like fault tolerance.

2.3.1 Components and Con�guration

Storm consists of the following main components as programming abstractions for

developing distributed real-time applications:

• Spouts, source components where data enters the topology. They implement

a method which is called repeatedly and can emit tuples.

• Bolts, operational components where data tuples arrive and are transformed

and sent along. They implement a method which is called when a tuple is re-

ceived and can emit tuples.

• Streams, connections between spouts and bolts. There are di�erent grouping

types of streams, and depending on the type, the tuples are sent to di�erent

instances of bolts.

• Topology, a con�guration of spouts, bolts, and streams, which can be deployed

to a Storm cluster.
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Figure 2.5 shows a condensed example of how these components are de�ned to

form a program that counts how often a name was greeted with "Hi". First, the spout

is de�ned. In its open method it connects to some http stream, where it receives all

messages. When the nextTuple method is called, the next http item is transformed

into a pair consisting of the salutation and the name. These two elements are then

output using Storm’s emit method. The FilterBolt reads arriving tuples and only if the

�rst entry is “Hi”, an output tuple with the name is emitted. Here we also see in the

declareOutputFields method, that output tuples have �eld names; in this case

the only entry of output tuples is a �eld called "name". The declaration of output

�eld names is mandatory, but we skip this for other classes and other aspects for

conciseness. The CountBolt has a state consisting of the map where the counts of the

observed names are stored. When a tuple is received the count of the contained name

is increased and initialized if it was not observed before. Finally, the main method

shows how a topology is built: spout and bolt instances are registered with a name

and optionally a degree of parallelism, e.g., the FilterBolt is registered as "filter"
with a degree of parallelism of 3. Using the name of the component a stream can be

registered. In this case, a stream with shu�e grouping from Spout to FilterBolt and a

stream with �elds grouping from FilterBolt to the CountBolt.

2.3.2 Stream Groupings and Parallelism

Spouts and bolts are instantiated when a topology is built, then serialized and copied

to the compute nodes of the Storm cluster where they execute. In the previous exam-

ple, the FilterBolt is copied three times and the CountBolt �ve times. Such a copy is

called a task.

When de�ning a topology, we establish streams between spouts and bolts, but the

stream grouping de�nes the concrete tasks that receive tuples. The most important

stream groupings are

• shu�e grouping, where tuples are sent to a task in round-robin fashion,

• all grouping, where tuples are sent to all tasks,

• �elds grouping, where tuples are sent to the same task, if their grouping at-

tribute has the same value.

While shu�e and �elds grouping send a single tuple independently of the degree

of parallelism of the receiving bolt, all grouping emits as many tuples as there are

tasks of the receiver.

Figure 2.6 shows the stream grouping in the previous example in e�ect. The

rounded rectangles represent the spout and bolts, the smaller squares represent tasks.

For the spout there is one task by default. For �lter and counter there are three and
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class Spout : BaseRichSpout() {
lateinit var httpStream;
override fun open() {

// connect to http stream
}

override fun nextTuple() {
val (greeting, name) = transform(httpStream.next())
emit(Values(greeting, name))

}

// produces pairs like ("Hi", "Tom"), or ("Bye", "Mary")
fun transform(String): Pair<String, String>

}

class FilterBolt : BaseRichBolt() {
override fun execute(input: Tuple) {

if (input.getString(0).contains("Hi")) {
emit(Values(input.getString(1)))

}
}

override fun declareOutputFields(declarer: OutputFieldsDeclarer) {
declarer.declare(Fields("name"));

}
}

class CountBolt : BaseRichBolt() {
val count = mutableMapOf<String, Int>()

override fun execute(input: Tuple) {
val name = input.getString(0)
count[name] = count.getOrElse(name, { 0 }) + 1

}
}

fun main {
val builder = TopologyBuilder().apply {

setSpout("spout", Spout())
setBolt("filter", FilterBolt(), 3)

.shuffleGrouping("spout")
setBolt("counter", CountBolt(), 5)

.fieldsGrouping("name")
}

// submit topology to cluster
}

Figure 2.5: Example Storm topology that counts which name was greeted how often.
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Figure 2.6: View of the parallelism of the topology of Figure 2.5.

�ve tasks, as de�ned in the topology. The spout and �lter are connected using shu�e

grouping, thus, the tuples end up at di�erent tasks, especially both ("hi", "Ben") tuples.

It would be equally valid for all tuples to land at the same task of the �lter bolt. The

�lter and counter are connected using �elds grouping, where the �rst and only �eld

of the tuple forces that both ("Ben") tuples end up at the same task. It would be equally

valid for the ("Sue") tuple to arrive at the same task as the other two, but the ("Ben")

tuples can not land on di�erent tasks.

2.4 Join Order Optimization

A (binary) join operation has two relations as input and outputs a new relation con-

taining combinations of the input relations’ tuples. The result size of a join can be

anywhere between no tuples and all combinations, i.e., the product of the sizes of

the input relations. This is an important di�erence to other common operations, like

�ltering or aggregation, where the result size is at most as large as the input.

Multiple join operations executed in sequence are associative and thus the order

in which they are executed can be arbitrarily chosen. Consider a join query over

three relations, (R,S,T, θ) with some conjunction of binary predicates θ. Due to

associativity we can compute the join as (R&S)&T and R& (S &T ). Using schema

information, a join operation is also commutative, thus also (R & T ) & S is a feasible

order of the joins.

Di�erent options are commonly displayed as trees where the leaves represent

input relations, inner nodes represent intermediate or partial join results, and the

root signi�es the query result. The trees for the three aforementioned join orders are

shown in Figure 2.7.
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Figure 2.8: Three di�erent permutations of the base relations under the same tree
structure.

2.4.1 Problem Complexity and Subclasses

Given a list of n + 1 relations, for computing the overall join in a sequence of binary

join operations the number of orders is the nth Catalan number, Cn [55]. For a list

with n+1 = 3 elements like [R,S,T ], there are C2 = 2 such sequences, and these are

shown in Figure 2.7a and 2.7b. If the list is sorted di�erently and then placed under

the same tree, a solution like 2.7c can be crafted.

In principle, there are (n + 1)! di�erent ways of sorting such a list; however, this

is only relevant, if the join operation is not commutative. For example, if nested-

loops joins should be executed for R & S, then R is the outer relation and S is the

inner relation, not the other way round [27]. For this thesis, the join operation is

commutative, so, R & S and S &R are equivalent. Consider relations S1 to S4 with

join trees shown in Figure 2.8. The shape of the three example trees is the same, but

due to commutativity, one tree can be transformed into the other: Tree 2.8a can be

transformed into Tree 2.8b by changing the inputs of the root operator.

Further, in this thesis we are researching multi-way trees. Thus, there are in fact

more valid tree shapes available for answering a certain query, e.g., the one in Fig-

ure 2.8c, where the root node has three inputs. To the best of our knowledge the exact

number of di�erent multi-way trees modulo commutativity is not known. However,

Cn serves as non-strict lower bound which already shows that it is prohibitively ex-

pensive to completely explore this space of trees.

Instead, optimizers can narrow down the search space by only examining a certain

shape of trees (e.g., left-deep trees) which may yield a sub-optimal solution, or exploit
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Figure 2.9: Growing solution space for growing query size.

features of the query (e.g., star-queries can only be executed using left-deep trees).

Consider the graph shown in Figure 2.9 with the number of relations involved in

a query on the x-axis and the number of potential join trees for answering such a

query on the logarithmic y-axis. The entire problem space represented by the line of

Cn grows exponentially.
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Chapter 3

Related Work
This thesis is related to several lines of research which are partially overlapping. First,

in Section 3.1, we discuss literature on general stream processing. In Section 3.2, we

look into prior work on stream processing, including joins, which was done without

distribution in mind. Distributed join computation in a bulk synchronous process-

ing context like MapReduce was studied with di�erent aspects highlighted such as

allowing arbitrary predicates for binary joins, optimizing the number of rounds for

multi-way equi-joins, or dealing with skewed loads for individual workers which we

discuss in Section 3.3. Following that, we discuss in Section 3.4 works which target

both, distributed join computation and stream processing, and in Section 3.5 multi-

way join computation that was explored in non-streaming contexts.

The term “streaming” sometimes refers to the fact that datasets are read in a cer-

tain sequence and the stream of tuples is fed into an operator pipeline. In case of

distributed components also that data is read in a streaming fashion from a remote

data source. The data set that is streamed already exists completely at some place and

the fact that it is accessed in a streaming fashion is a purely technical aspect.

In this thesis, however, we consider streaming data to be new data that was only

recently appended to some dataset. For example, a temperature sensor generates a

new data point every second, and such a sequence of data points is what we call a

stream.

3.1 Stream Processing in General

For streaming data in general, Viglas and Naughton [59] propose the use of rate-based

optimization rather than classical cost-based optimization. The reason for this step

lies in the continuous nature of data streams, where relation sizes are in�nitely large.

With the switch towards rates they also present two new optimization goals: (1) select

the plan that can produce the most tuples upto a given point in time, and (2) select

the plan that produces a given number of results the fastest. We employ rate-based

optimization, too, and extend that view to intra-operator components.

Ayad and Naughton [12] use rate-based optimization techniques and di�erentiate

between feasible and infeasible queries and plans: A feasible plan can handle all tuples

while an infeasible one cannot. Still, an infeasible plan can be executed and an ap-

proximate solution presented to the user. In this case, load-shedding strategies need

to be applied [32, 19]. Such strategies could also be integrated with our approaches,
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however, we will not examine load shedding in this work.

In [49], Meehan et al. discuss ETL workloads in the context of streaming systems

with the goal of reducing latency; and in [50], Meehand et al. integrate these work-

loads with ACID-style transaction processing. For XML-processing, Hong et al. [36]

research joins between documents and between nodes of the same document with

multiple long standing queries. Karimov et al. [42] present AStream, a system for

sharing resources for multiple streaming queries. They share parts of the history of

joins however compared to our approach, only if exactly the same joins are used in

di�erent queries and they ignore partitioning.

3.2 Local Stream Join Processing

Golab and Özsu [30] process n-ary stream joins on a single machine using n nested-

loops joins, where the join order is determined using the arrival rate of the streams

and selectivity of the predicates. They present two major evaluation strategies, eager
evaluation and lazy re-evaluation. For eager evaluation, they determine for each tu-

ple arriving in a sliding window a join order and then compute the join result for that

tuple. For lazy re-evaluation, they only compute joins after a set time period τ , either

in n nested-loops joins or as generalized plan in a single nested-loops join. They also

use hash-based implementations, compared them to their pure nested-loops lookup-

based, and found the hash-based implementation to be more e�cient. The lazy eval-

uation approach is similar to the micro batching concept which is used later in Spark

Streaming [10].

Hammad et al. [33] present two algorithms for processing windowed multi-way

joins, a response-time optimized and a throughput optimized algorithm. The former

computes a join result as soon as a new tuple arrives by recursively joining tuples to

the next relation of a global join order. The latter operates on a working set of tuples

by �rst determining window boundaries and then computing joins, thus saving on

window evaluation. While this second approach o�ers higher throughput, it increases

latency. The two algorithms are described in a centralized setting and there is no

consideration of how such algorithms could potentially be executed in a distributed

fashion. The algorithms are, however, oblivious to the matching predicate, and, thus,

not bound to simple equi joins.

3.3 Distributed Join Processing

Distributed join computation was extensively studied in the context of many-core

systems. Albutiu et al. [6] worked on a parallel join algorithm with the goal of scal-

ing linearly with the number of cores. Barthels et al. [14] analyzed performance on
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joins of datasets on a high-performance computing infrastructure with 4,096 cores and

focus on sort-merge and hash joins. Such approaches can be described by the bulk-

synchronous parallel (BSP) computing model [57] where the algorithms are evaluated

on p components in parallel in a sequence of super steps and with de�ned commu-

nication between the super steps. BSP programs are typically used for computations

on complete datasets, while of our approach operates on individual tuples of contin-

uously arriving datasets.

A popular instance of BSP is MapReduce [20], where a map function D →K × V

is applied to all data items in D (which resides on multiple machines) in parallel. The

output is grouped onto the available machines according to the value of K , where a

reduce function K,V + → D′ computes a result. For MapReduce, Afrati and Ullman

explain in [5] how to optimize multi-way equi-joins by minimizing the communica-

tion cost. In [4], Afrati et al. propose a multi round algorithm for further reducing

communication cost. Zhang et al. [66] also decompose multi-way joins into a se-

quence of map reduce join operations, however, they explicitly include theta joins.

Focusing on binary theta joins in MapReduce, Okcan and Riedewald [52] arrange re-

ducers in a matrix and the mappers’ job is to choose a column or row of the matrix

in a way to guarantee correctness of the result and ideally also e�ciency of the join

computation.

Lang et al. [44] discuss diverse optimizations for cloud-based computation of joins

where the system is con�gurable to use more or less cost or a given budget. This is

similar to our approach of setting hard limits, and also they further discuss lowering

quality of the query result in exchange for better cost.

3.4 Distributed Stream Join Processing

This join matrix approach can also be used for computing stream joins [28], where a

relationR gets replicated across nmachines, and each tuple of relation S is forwarded

to one of the n machines, and vice versa. Generalizing this scheme to multiple rela-

tions resembles a hyper cube where relations get replicated to machines for multiple

dimensions [15]. A system that implements join matrix and hypercube is Squall by

Vitorovic et al. [60]. Squall leverages di�erent variations of the join-matrix model

where each matrix cell produces a fraction of the join result. By choosing the matrix

cell sizes such that their perimeter is minimal, Squall achieves low latency while get-

ting better resource utilization. For matrix-based approaches, there is further work

on adjusting dimension splits for handling skew [29, 64].

Lin et al. [47] on the other hand, propose a tuple-routing scheme that avoids repli-

cation of data stream tuples. This BiStream approach is explained in more detail below.

Zhou et al. [67] propose PMJoin, an approach for minimizing the communication

cost between computing nodes when evaluating a multi-way join query with a focus
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on equi joins. They introduce a heuristic-based algorithm for deciding the join order

and explicit placement of operators in a computer network. This algorithm computes

for n distributed data stream sources and a given query plan in O(n2) a linear join

tree.

Oguz et al. [51] propose changing the implementation during query answering

from symmetric hash join to bind join and back, depending on arrival rates and result

size. Madsen et al. [48] describe the scaling of operators in distributed streaming

engines. For extremely skewed input, Rödiger et al. [53] and Li et al. [46] split the

handling of heavy hitters, i.e. single tuples with a very high selectivity, from the rest

of the tuples.

Yang et al. [65] propose cost-based optimization where operators are shared be-

tween plans for multiple queries if they produce the same or implied output streams.

Also for multiple queries, Jonathan et al. [41] show multi-query optimization where

multiple data centers are involved and slower inter-dc-communication is respected.

They introduce operator sharing strategies for saving both, computation and commu-

nication.

3.4.1 BiStream

The BiStream [47] operator can be interpreted as a special case of the MultiStream op-

erator which we present in the later chapters of this thesis, since they work identically

on a binary join.

For computing a join between streamed relations R and S, for both relations,

distributed tasksR1, . . . ,Rm =∶R and S1, . . . , Sn =∶ S are registered. Arriving tuples

ofR (S) are randomly sent to one of these tasksRi (Si) where they are stored for later

arriving probe tuples. These probe tuples are sent from one arriving relation to the

other relation’s tasks, so tuples from R are sent to all tasks Si and vice versa. To be

more speci�c, a tuple r ∈ R arriving at time τ is sent to all tasks S where the result

r & S with all tuples from S that arrived before t is computed. The same tuple r is

sent to one of the randomly chosen tasks ofR where it is stored and thus r & S with

all tuples of S that arrive later than τ can be computed.

BiStream’s correctness is guaranteed using timestamps. Stored tuples are only

joined with probe tuples that have a higher timestamp. This makes it necessary to

cope with delayed tuples: these are store tuples that arrive after a probe tuple with a

higher timestamp was already processed. Probe tuples are kept at each task for some

period of time to allow them to be probed against late arriving store tuples.

The BiStream approach was presented for two inputs and it was hinted that multi-

ple BiStream operators can be combined to operator trees, but details were not given.

For the experimental evaluation, queries with multiple inputs were preprocessed such

that only a single binary join over materialized intermediate results can compute the

�nal result.
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3.5 Multi-way Join Processing

The use of multi-way joins in conventional database systems is discussed by Hender-

son and Lawrence [34]. They compare di�erent multi-way join algorithms for equi-

joins and conduct experiments using PostgreSQL, with the conclusion that multi-way

join operators can be in particular useful for star queries.

Joglekar and Ré [40] propose using information on the multiplicity of values to

optimize multi-way joins, also limited to equi-joins, and not considering distributed

computation (although some results are of generic nature).

Gomes et al. [31] propose changing roles of relations in a binary join tree. Simi-

larly, in DBMSs adaptive processing techniques are employed, e.g., for long running

queries where the initially selected plan turns out to be suboptimal. Li et al. [45] are

also changing the roles of relations in the join tree. Kolchinsky and Schuster [43] ap-

ply join optimization techniques for complex event processing systems where many

patterns are registered simultaneously.
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Chapter 4

The Architecture of CLASH
In this chapter, we describe the architecture of CLASH and build the basis for under-

standing the join approaches of the subsequent chapters. We explain the high-level

concepts and the relation to Storm as underlying stream processor. In Chapter 8,

we will further detail on the implementation as well as discuss applicability to other

stream processing systems.

CLASH’s architecture is tailored to join computation between data streams in a lo-

cal compute cluster and intentionally ignores other aspects like connecting to persis-

tent databases, high-availability, or wide-area operator location—all tackled by other

research [21, 37, 41].

CLASH spans a topology which is a directed multi graph of stores as well as source

and sink nodes interconnected by edges. Input arrives tuple by tuple at some source

and is sent along edges to stores. Upon receiving a tuple, a store can add this tuple to

its local storage, produce a new tuple to send it to another store, or do both. When

a query is registered, CLASH’s optimizer is responsible for creating the topology and

con�guring all nodes.

Example

Figure 4.1 depicts an exemplary topology for computing the join between three re-

lations, R, S, and T . It contains four stores, the R-, S-, and T -store, as well as the

RS-store. We name the stores according to the relations they contain. The �rst three

stores represent exactly the input relations while the RS-store contains tuples of the

intermediate relation (R,S, θR,S). Input and output are secondary to the actual rep-

resentation, we only rely on a tuplewise interface to read tuples and emit join results

as soon as possible.

The join result is produced as follows. All arriving tuples of R are sent to the

R-store where they are locally stored. A copy of each R-tuple is sent to the S-store

where it probes the previously arrived S-tuples to �nd join partners. All intermediate

result tuples are sent to theRS-store for storing and to the T -store again for probing,

this time to compute �nal results. All �nal results are then sent to the output which

represents downstream consumers of the join result. This works analogously for tu-

ples of S, tuples of T can take a shortcut and leverage theRS-store: input tuples from

T are sent to the RS-store for probing and can produce �nal results in a single hop.
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R-store

S-store

RS-store

T-store

In
pu

t

O
ut

pu
t

Topology

R

S

T

Figure 4.1: Data enters the topology over the input on the left and is spread over the
stores where tuples are processed and sent to other stores and eventually to the output
on the right.

This example highlights two important aspects of a CLASH topology:

1. there may be multiple edges between two nodes and

2. a topology may contain cycles.

Consider the R-store which has two incoming edges from the input. This is neces-

sary to di�erentiate between tuples of relation R which should be placed in the local

storing data structures, and tuples of relation S which should be probed against the

stored tuples and potentially produce a join result. Typically, topologies are described

as acyclic [1] graphs, or cycles are reserved for �x point iterations [8]. In our case the

cycles are only visible in the static view on a topology. However, we construct the

topology such that the trace (i.e., the sequence of stores that are visited as reaction

to a tuple arriving at the topology) of a tuple does not contain a cycle. Consider the

cycle between the S- and the T -store in Figure 4.1; either a trace contains the edge

from S-store to T -store, or from T -store to S-store, or none of them.

4.1 Stores and Edges

A store contains a relation that can be interpreted as the result of a query. For the

example above, these are the three identical queries over R, S, and T , and the join

query (R,S, θR,S). If we inspect the contents of a store at some point in time τ , we

can expect it to consist of all tuples that belong to that relation up to τ . This way, we

can use the RS-store for probing with an arriving tuple of T .

A store is a distributed component, implemented as stateful bolt in terms of Storm.

This means, multiple so-called tasks can run instances of the same store on di�erent

machines in a compute cluster. The state, containing the tuples of the store’s relation,
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(a) A shu�e edge, the target is chosen randomly.
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(b) An all edge, all S-tasks are targets.
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(c) A group-by edge, the target is chosen based on the value of x.

Figure 4.2: Illustration of communication patterns of the three edge types if installed
between R- and S-store. Topology-view on the left, task-level deployment if both
stores are distributed on three tasks on the right.

is partitioned over these tasks, i.e., each tuple of a relation resides on exactly one task.

This partitioning can be done randomly or based on some attribute value of the stored

tuples.

An edge connects two stores and indicates that tuples are sent along this edge. The

type of edge used di�ers depending on the operation and the partitioning strategy of

the receiving store. CLASH edges correspond to named streams in Storm.

In Figure 4.2 we see three possibilities for edges, where the left part shows how

we depict such edges in a topology with stores for relations R and S, and the right

part shows a trace of tuples with both stores distributed on three tasks each. In the

example, data items di arrive at the R-store and as a result, derived data items d′i
are sent to the S-store. The shu�e edge in Figure 4.2a is depicted with a green solid

arrow. After d1 is processed by R1, d′1 is sent to S2, and after d2 is processed by R3,

d′2 is sent to S3. However, the targets could be di�erent, e.g., they could be swapped,

or both data items could have ended up at the same task. The all edge in Figure 4.2b

is depicted with a blue dotted arrow. When d3 arrives at R2 it generates as result

data item d′3 and a copy of this item is sent to every S-task. The group-by edge in
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Figure 4.3: A simpli�ed physical graph for computing the join between two relations,
R and S.

Figure 4.2c is depicted with a purple dashed arrow and an indication of the attribute

used for grouping. We see d4 and d5 arriving at di�erent R-tasks, but with the same

x-value. In this example, we assume that in d′i the x value is copied from di, thus d′4
and d′5 have the same x value and hence, they are both sent to S2.

4.2 The Physical Graph

Creating such a topology by hand is error-prone and thus CLASH relieves users from

this task. The input is a declarative query as well as a con�guration for the opti-

mizer. The optimizer is then responsible for creating a physical graph. This graph is

a representation of the stores, edges, and their con�guration which is used as tem-

plate for creating a Storm topology. Since it is more abstract than latter, it can also

be used to deploy the computation to other platforms like Kafka or create a custom

Akka application for answering the query.

Figure 4.3 shows a simple example for a physical graph for computing a join be-

tween two relations R and S. For both relations, an input stub is created and con-

nected to both stores. Input from a relation travels along a shu�e-edge to its relation’s

store, and along an all-edge to the other store. Join results are sent along a shu�e-edge

to the output stub. For each outgoing and each incoming edge, a rule indicates which

actions are done when sending or receiving a tuple. In the �gure, the input stubs just

send all incoming tuples over the edges to the stores. At each store, the type of an

incoming rule indicates whether a tuple should be stored in the local pre�x, or probed

against the pre�x and potentially produce a join result. Due to the outgoing shu�e

rule of the stores, join results are forwarded to the output stub where a receive rule

handles incoming tuples.

When CLASH translates a physical graph into a Storm topology, input stubs are
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replaced with spouts, and the output stub with another bolt. However, this optimiza-

tion result is also generic enough that it can easily be plugged into a bigger topology

where stubs are replaced by other components.
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Chapter 5

Streaming Full History Joins
We start explaining our approach to join computation by examining joins over the

full history of seen tuples where an arriving tuple r ∈ R can join with any previously

seen tuple s ∈ S. In reality, such an approach quickly becomes infeasible, because an

ever-growing amount of tuples would have to be stored. This is commonly avoided

by imposing a temporal restriction to the joinable tuples, such that only the recent

portion of tuples needs to be accessed. However, in experimental research, looking at

full-history computations frees from the need of discussing tuple eviction strategies

and enables focussing on the online computation of joins. A full history join can also

be seen as landmark join [13, 18]. That is, a join over a window with a �xed start (the

time of query installation) and an open end.

In this chapter, we introduce the novel MultiStream operator which enables n-

way join computation over data streams. With this operator in place, we look at

constructing n-ary join trees from MultiStream operators and optimization of such

trees. After that we discuss properties and limitations of the approach, and we present

results of an experimental evaluation.

5.1 The MultiStream Operator

We start the explanation of the MultiStream operator with an example join query over

three relations, (R,S,T, θR,S , θS,T ). Tuples of each relation are placed in stores for

each relation, labelled R-store, S-store, and T -store. When a new tuple arrives, it is

sent to the store for its relation, and at the same time, it is sent to the other stores

to produce a join result. A tuple r ∈ R is sent to the R-store where it is placed in

the pre�x and awaits future probe tuples and at the same time it it sent to the S-store

where the stored pre�x is probed and the partial result r&S = {r○s ∣ s ∈ S∧θR,S(r, s)}

is computed. Unless r&S is empty, it is sent to the T -store where T ’s pre�x is probed

and the �nal result for this tuple r & S & T is produced.

It is unlikely to be bene�cial to send tuples of R directly to T , as there is no pred-

icate de�ned between R and T (analogous to the avoidance of computing Cartesian

products in query execution for database systems). Thus, the mentioned order, send-

ing R to S to T is the only considered way for tuples of R. For tuples of S, however,

there are two options: First, sending s ∈ S to R for computing s &R using predicate

θR,S and then to T for computing s &R & T . Or second, computing s & T with help

of θS,T and then s & T &R. Both cases can be used to produce a correct join result.
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In general, given a query q = (R1, . . .Rn, θ), a MultiStream operator consists of

the stores for R1 to Rn and probe orders σR1 to σRn that compute q.

The probe orders de�ne the strategy of routing tuples through stores to incremen-

tally compute the join result. More formally, for tuples of relation Ri, we write the

probe order as

σRi ∶= ⟨Rσi(1),Rσi(2), . . . ,Rσi(n)⟩. (5.1)

It is a permutation of the input relations of the query withRσi(1) = Ri. A tuple ri ∈ Ri
is sent to the Rσi(2)-store for computing ri &Rσi(2), this intermediate result is sent

toRσi(3) for computing (ri&Rσi(2))&Rσi(3), and so on. In fact, this so-called probe
order is exploited to optimize network tra�c. In the example above, we have probe

orders σR = ⟨R,S,T ⟩ and σT = ⟨T,S,R⟩ and either σS = ⟨S,R,T ⟩ or σS = ⟨S,T,R⟩.

5.1.1 Scaling out

So far, the MultiStream operator was distributed to di�erent stores, which is solely

depending on the set of input relations of the query. Since stores are distributed com-

ponents, instead of running on a single node it can be scaled out to multiple tasks on

di�erent compute nodes. For this, the stored pre�x is partitioned to all these tasks

and tuples are placed randomly.

To guarantee correctness, tuples are sent along probe edges and thus are broadcast
to each task of a partitioned store, so all potential join partners eventually met. On

one hand, a higher number of bytes is transferred through the network due to these

broadcast copies. On the other hand, arriving tuples are probed against all partitions

in parallel, which decreases overall latency.

Example

For a more concrete look at the join procedure of MultiStream, let us consider a

ternary join where the strategy is to send tuples from R �rst to the S-store and then

to the T -store. Again, S and T are partitioned into two tasks. This scenario is in an

abstract way depicted in Figure 5.1a. A tuple is sent in parallel to S1 and S2 where

the intermediate join result r & S is computed in two parts, r & S1 and r & S2. The

former is sent to T1 and T2 and the latter is also sent to T1 and T2. The two tasks of

T compute four partial join results whose union resembles the desired join result.

For a concrete example, let us consider that each tuple ofR (S, T ) only consists of

a single value a (b, c) and the query wants all triplets where the value ofR is less than

the value of S is less than the value of T . Figure 5.1b shows the current state of the

S and T tasks, e.g., task S2 stores tuples (1) and (4) of relation S. Tuple (5) ∈ R is

arriving and sent to both tasks S1 and S2. While in S1 both tuples satisfy the predicate

R.a < S.b and thus the result contains {(5,7), (5,9)}, no result is produced in S2 und
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(b) Concrete data �ow for tuple r = (5)

Figure 5.1: Join computation for query q = (R,S,T,R.a < S.b, S.b < T.c).

thus no intermediate tuples need to be sent from S2. The intermediate results from

S1 are then sent to T1 and T2. At T1 only one join partner is found (only 7 < 8) and

at T2, both arriving tuples can be joined with (10).

This example illustrates the di�erence between messages and tuples. Between S1

and the T -tasks, only one message is sent which contains two tuples. Each message

contains at least one tuple; an empty intermediate result does not generate a mes-

sage as seen in S2. The maximal size of a message is the size of the pre�x stored in

the sending task. If necessary, messages can be chunked without compromising the

correctness of the join result.

5.2 Constructing Multi-Way Trees

There is no fundamental limit to the number of inputs a single MultiStream operator

can handle. But instead of using a single operator, we can combine multiple Multi-

Stream operators into a join tree. As MultiStream produces a streamed relation, this

can serve as input to upstream operators. Such a join tree is depicted as a rooted n-
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Figure 5.2: Two options for joining n relations using either a single MultiStream op-
erator or combining multiple MultiStream operators into a join tree.

way tree, where each operator is an inner node or the root, and the sources are the

leaves. In graphical notation, we depict all nodes that represent a materialized rela-

tion in a boxed style while nodes drawn inside of an ellipse (in this case, only the root)

are not materialized.

Figure 5.2 illustrates how a join over n inputs can be computed by a single or

a combination of three MultiStream operators. In Figure 5.2a all n inputs �ow into

a single MultiStream operator. As we discussed in the previous section, there are n

stores, and n probe orders. In Figure 5.2b, the inputs are split into two partitions,R1 to

Rj and Rj+1 to Rn. Both partitions are handled by a MultiStream operator each, and

these operators are input to the root operator. Here, there are two additional stores

required for materializing the intermediate results of &i=1..j Ri and &i=j+1..nRi, as

well as probe orders between those two relations.

5.2.1 Inner Nodes as Communication Barriers

When a query is answered using a non-�at join tree, inner nodes of the tree act as

barriers for communication. The iterative probing process is only conducted between

all direct children of a node and if multiple descendants are subsumed into a single

child node, only this child node needs to be probed.

Consider the join depicted in Figure 5.3a where the subquery over R and S is

materialized and T is joined with R & S. Figure 5.3b illustrates the routing of probe

messages in the physical graph generated for this plan. Tuples from R and S are

still sent through both other stores to compute join results: First, they use the probe

orders for the inner MultiStream operator, and then the one for the root operator.

Tuples from T , however, are sent directly to the RS-store that hosts tuples of R & S.

This also implies, that forR and S there is less freedom in choosing the probe orders:

IfRwas �rst sent to the T -store for probing, this would not create the required result

for R & S.
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Figure 5.3: Three-way join with materialization of intermediate results.

5.2.2 Complexity of Multi-Way Trees

Figure 5.4 shows all �ve (structurally) di�erent join trees over four relations. Consider

Shape III, there we could exchange S1 and S3 and end up with di�erent materialized

intermediate results, and thus a di�erent join plan. The MultiStream operator is com-

mutative by construction, and thus, swapping S1 with S2 in Shape III would not lead

to a di�erent plan. The same is true for MultiStream operators on intermediate re-

sults, so swapping both, S1 and S3, and S2 and S4 essentially changes positions of

the intermediate results in Shape III, thus leading to the same plan. This also means,

that there is only one plan for Shape IV.

For a query over n relations, the number of di�erent plans that can be constructed

grows quickly. To see how fast, consider the choices for the root of such a plan: Either

this root has n children with arities 1+ 1+ ⋅ ⋅ ⋅ + 1 (i.e., all children input relations), or

it has n−1 children with arities 2+1+ ⋅ ⋅ ⋅ +1 (i.e., a binary join and the remainder are

input relations), or 3+2+1+⋅ ⋅ ⋅+1 (i.e., a ternary, a binary join, and the remaining input

relations), and so on. The combinations of numbers that sum up to n is also called

partition and is a lower bound for the number of plans. Asymptotically, the number

of partitions grows p(n) ∼ (4n
√

3)−1 exp(π
√

2n/3) [38]. For bigger numbers of

relations (n ≥ 12) the estimation from Section 2.4 for binary trees to grow with C(n−

1) already provides a higher lower bound. This suggests that the variations due to

commutativity, which is not covered by p(n), has a strong e�ect on the available

plans.
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Figure 5.4: All structurally di�erent join trees over four streamed relations.

5.3 Static Optimization

We have seen how a single MultiStream operator uses iterative probing to compute

join results and how we can arrange multiple operators in an operator tree where

inner nodes represent communication barriers but also require storage for the mate-

rialized tuples of these partial results. Naturally, this brings up the question of how to

select a tree for answering a query at hand. Therefore, we now introduce a cost model

and thereon we propose di�erent optimization methods for trees of MultiStream op-

erators.

5.3.1 Cost Model

Our cost model involves three aspects: storage, communication, and latency. The

aspects describe characteristics of a deployed topology, however, we formulate them

for operator trees which are easier to reason about.

Storage Cost

Storage is the amount of data that is stored across the topology. It consists of the sum

of stored inputs as well as all intermediate results. For a tree T composed of a root

Oroot, inner operators O, and relations Ri, we de�ne storage cost SCost formally as:

SCost(T ) =∑
i

∣Ri∣ + ∑
O∈O

∣O∣. (5.2)
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The root is not in�uencing the storage cost, as it does not need to be materialized. For

inner nodes O ∈ O wich materialize intermediate relation (R1, . . .Rk, θ), we employ

a standard cardinality estimation for join sizes [27]:

∣O∣ = ∏
i∈1..k

∣Ri∣ ∏
i,j∈1..k,i≠j

fi,j . (5.3)

Probe Cost

The communication cost is composed of probe cost and storage cost. Storage cost

appears also under communication, as each tuple that is stored must be sent to the

storage location. And since each intermediate result is created exactly once, it is sent

once to its assigned store. The probe cost of an entire tree is composed of the individ-

ual probe cost of each involved operator:

PCost(T ) = ∑
O∈O

PCost(O). (5.4)

The probe cost of an individual operator is more involved. We start with a single

probe order for Ri. At �rst, we only look at the sizes of the produced intermediate

results. All tuples fromRi are broadcast to theRσi(2)-store in order to be joined there.

The expected result contains ∣Ri∣ ⋅ ∣Rσi(2)∣ ⋅ fi,σi(2) ⋅
1
2
=∶ c2 tuples. This estimate is

grounded on standard selectivity estimation and the fact that only tuples rσi(2) ≼ ri

are contained in the join result. The generated results are then sent to the Rσi(3)-

store, and here we expect c2 ⋅ ∣Rσi(3)∣ ⋅ fi,σi(3) ⋅ fσi(2),σi(3) ⋅
1
3

tuples. Again, this is

a combination of the selectivity-based estimation of the join size combined with the

restriction on tuples with rσi(3) ≼ ri. With these considerations, and the fact that

each tuple created at step j − 1 is broadcast and thus copied Nj times, the general

estimation on probe cost for the MultiStream operator O is:

PCost(O) = ∑
2≤j≤n

Nσi(j) ⋅ ∣
j−1
&
k=1

Rσi(k)∣ ⋅
1

j
. (5.5)

Communication cost considers the number of tuples that have to be forwarded

to the individual components. This number is heavily dependent on the degree of

parallelism of components due to broadcast tuples. A high number of sent tuples

implies not only a higher bandwidth consumption but also more logic to be executed at

the receiving nodes, thus, reducing this factor will enable higher overall throughput.

Latency

Latency is the average expected number of network hops a tuple undergoes until a

join result can be returned and is important for real time requirements. For a tree
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where input relation Ri is connected to the root Oroot through inner operators O,

the expected number of hops is:

ELat(T ) = ∑
O∈O∪{Oroot}

out(O) − 1. (5.6)

Each operator is completed from the input by probing the other children of this op-

erator, hence out(O)−1. We currently ignore the local evaluation cost of the join for

this cost estimation, which means that if expensive predicates are involved, e.g., for

image analysis [63], the estimation has to be further re�ned.

For this chapter, we assume data characteristics like arrival rate of streams and

selectivities of the join predicates are known upfront and are assumed to be stable,

such that the plan for a query is not changed during query time (hence the section

title “Static Optimization”). We describe dynamic re-evaluation later in Chapter 7.

5.3.2 Locally Optimizing MultiStream

While technically every set of permutations could serve as a probe order in a Multi-

Stream operator and produce the correct result, it makes sense to select one that does

not generate too much network overhead according to the estimation of Formula 5.5.

Due to the similarity to textbook join-order optimization, we could proceed by

ordering the relations according to the size of the join result similar to the approach

by Golab and Özsu [30]. However, we also have to incorporate the parallelism of the

stores as exempli�ed in the following: Consider a join R & S & T with ∣R∣ = 2 000,

∣R & S∣ = 1 000, ∣R & T ∣ = 1 500, and the parallelism of the stores S and T is NS = 5

and NT = 1, respectively. If we decide to route tuples from R �rst to S, then to T , it

would cause fewer di�erent intermediate tuples to be created, than sending the tuples

�rst to T and then to S. However, due to the parallelism of S, more copies of the same
tuple are created: while ⟨R,S,T ⟩ provokes 10 000 + 1 000 tuples to be communicated,

⟨R,T,S⟩ only needs 2 000 + 7 500 as given by the inner sum of Formula 5.5.

Greedy Probe Order Ordering

The entire space of possible probe orders for n relations consists of (n − 1)! possi-

bilities to choose from, and we need one for each starting relation. In order to avoid

scanning in totaln! permutations and still �nd a set of probe orders with decent PCost,

we leverage the bottom-up greedy algorithm shown in Algorithm 1. This algorithm

exploits information about the parallelism of the stores and, in Line 3, it iterates over

all pairs of to-be-scheduled relations (Rj ,Rk) for �nding the next relation. With this

approach, we can determine the next relation Rj based on the number of tuples that

have to be sent to this relation, ∣σi∣ ⋅Nj . We use σi as shorthand for all already sched-

uled relations. At the same time, we avoid too big intermediate results by computing
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Algorithm 1 Greedy algorithm for probe-order optimization.

input: starting relation Ri
other relations R (without {Ri})
parallelism of stores N

1 σi ∶= ⟨Ri⟩
2 while R ≠ {}

3 Rj , _ ∶= arg minRj ,Rk∈R ∣σi∣ ⋅Nj + ∣&(σi ∪Rj)∣ ⋅Nk
4 R = R ∖ {Rj}
5 σi = σi ○ ⟨Rj⟩
6 return σi

the possible number of to-be-sent relations in the next iteration. Note that Rk is not

scheduled yet, rather all possible Rk are tested in order to avoid a choice for Rj that

causes a bigger intermediate result in the next iteration.

This algorithm is invoked once for each starting relation of the MultiStream op-

erator at hand, thus, the overall selection for n input streams takes O(n4) time.

5.3.3 Global Join-Tree Optimization

Construction of trees poses the decision how much storage we want to spend or how

much communication we want so save. For real-world applications, the ultimate op-

timization target is depending on the situation, and can be a mixture of the aforemen-

tioned costs as well as additional constraints, like:

• for a certain system capacity, �nd a plan that maximizes usage of that capacity

and thereby minimizes the total probe cost,

• for a certain system capacity, �nd a plan with minimal average depth, or

• �nd a plan with minimal storage cost.

If the topmost priority is saving the space required for storing pre�xes, then a

trivial solution is to just not materialize anything else than the inputs, as shown in

the �at tree in Figure 5.5b. There, R1, . . . ,R5 are joined using a single MultiStream

operator.

One constructive optimization approach is to just build a left-deep tree like the

one in Figure 5.5a. Here, the intermediate result of R1 & R2 =∶ R12 is materialized,

the result ofR12 &R3 is computed and materialized, and so on. In contrast to the join

ordering in relational database systems, where allocated memory can be freed after

an operation is completed, we continuously read fresh input. Thus, the intermediate

results are never “�nished” and the tuples have to be kept forever in the case of full-

history joins. As already hinted at in Chapter 1, a left-deep plan might be prohibitively
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Figure 5.5: Di�erent possibilities of constructing query plans for �ve input relations.

expensive, as it requires n − 2 additional materialization points for a query over n

relations.

To avoid hitting such a limit, a plan like in Figure 5.5c can be used. Consider the

case of a join where each pair of relations R1,R2, and R3 produces a big result, but

the result of the joinR1&R2&R3 is just roughly of the same size as the input relations.

Then, it is preferable to materialize only the entire result instead of the intermediate

joins. Figure 5.5c is also an example for the role of materialization as boundary for

communication: When tuples of R4 arrive, they only have to be probed against the

pre�x of R5 and the pre�x of the materialized result of R1 &R2 &R3, but not against

R1, R2, or R3 individually. Each of the latter relations is still probed against all other

relations.

As potential extension, Figure 5.5d shows a plan which materializes intermediate

results from overlapping intermediate relations, which areR1&R2&R3&R4 andR2&

R3&R4&R5. This way, tuples from both,R1 andR5 can compute the result in a single

hop (compared to the left-deep plan where only R5 can do that). Obviously, both

intermediate results have to be maintained. We will not investigate such overlapping

strategies in this thesis.

Greedy Algorithm for Constructing Generalized Left-deep Query Plans

Here, we limit the output of the tree optimization to generalized left-deep trees. A

generalized left-deep tree is a tree with n-ary nodes where at most one child is a left-

deep tree. To avoid enumerating all n! possible trees, we use a greedy heuristic, shown

in Figure 5.6. The algorithm generates a sequence of relations that are interpreted as

leaf nodes of the left-deep tree. In order to avoid a bad start, each relationRi is consid-

ered a starting relation. This resembles a classical, textbook approach for generating

left-deep trees. In variable l the sequence of the relations is kept, r indicates the re-

maining relations, and b tracks the budget spent so-far. However, each left-deep plan
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input: relations R, budget B
1 for Ri ∈ R
2 l ← [Ri]; r ← R ∖ {Ri}; b← ∑Rj∈R ∣Rj ∣

3 while r ≠ {}

4 R′ ← arg minRj∈r ∣l &Rj ∣

5 b← b + ∣l &R′∣

6 if b > B
7 break
8 r ← r ∖ {R′}

9 l ← l ○R′

10 updateBest(l, b)

Figure 5.6: Greedy algorithm for generalized left-deep plan construction under budget
constraints.

over n relations consists of n − 2 materialized intermediate results, which might ex-

ceed the available budget. Thus, we add the option to terminate the construction of

the tree early, such that the �nal plan is composed of a k-way MSJ root where one

child is a left-deep subtree. This subtree is as big as the budget permits.

As each relation’s pre�x needs to be stored, the budget spent is initialized with

the sum of the pre�x sizes in Line 2. As long as there are remaining relations in r,

the algorithm tries to schedule another relation R′ to l and chooses the one with

minimum join size (Line 4). If this choice would lead to a plan exceeding the budget

B, it is not included and the left-deep part with Ri is complete, as all other possible

choices would also exceed the budget. Otherwise, R′ is removed from the remaining

relations and added at the end of l.

Restriction to Linear Join Graphs (Chains)

In Algorithm 5.6, we limited the form of the output tree upfront to be left-deep. In

order to support large join graphs, here, we shrink the search space by limiting the

exploration to only linear join graphs (also called chains). If multiple linear join graphs

exists, e.g., in a clique, a random one is selected. This means, the optimization strategy

internally considers only joins of relations R1, ...,Rn with join predicates θi,i+1.

The strategy operates in a top-down fashion and starts with a �at query plan con-

sisting of a single MultiStream operator. Then, it proceeds with iteratively merging

children into new operators, until the system capacity is reached. The pseudo code in

Algorithm 2 describes this procedure. First, a representation of the �at tree is initial-

ized in Line 1 as list of lists and the initial budget is set as for the previous approach to

generate left-deep trees. As long as the budget is not exceeded, the algorithm searches

for relations to merge, as follows: For all indexes i and j over the �attened list T , the

ones which reside in the same sublist are considered valid. Then the pair (i, j) with
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Algorithm 2 Top-down strategy for incrementally adding materialization.

input: relations R, budget B
1 T ← R.map(λx.[x])
2 b← ∑Rj∈R ∣Rj ∣

3 while b < B
4 (i, j)← argmin(i,j),s.t.valid(T,i,j)SCost(mat(T, i, j))
5 if B > SCost(mat(T, i, j)
6 break
7 T ←mat(T, i, j)
8 return convertToTree T

minimal cost for materializing the join of relations Ri, . . .Rj is selected in Line 4. If

the cost for materializing this would exceed the budget, the algorithm terminates—

otherwise, it introduces a materialization for these relations and continues. Finally,

the nested list of lists is converted into a tree and returned in Line 8. The runtime

complexity of this algorithm is in O(n4).

Iterative Merging Strategy

We put forward another approach, seen in Algorithm 3: Given a join over n relations,

we start with a single n-ary node combining all relations (Line 1). Then we re-iterate

(Line 2, loose syntax for brevity) as long as we �nd a node N with a proper subset

of children S that consists of at least two leaves and the communication and storage

cost, as computed in Formulae 5.4 and 5.2, for S is between given bounds L and U .

If we �nd such N and S, then we replace in N these children by a freshly created

node that contains the children (Line 3–Line 4). Thus, materialization stages are only

introduced if they do not occupy too much storage (< U ) and if they seem useful at

all (> L). These bounds can be set according to the memory one wants to invest. A

higher value for U allows creating plans that materialize bigger intermediate results,

while a higher value for L restricts creating more employed worker nodes (bolts) that

would only save little communication. These parameters can be set depending on to

the sizes of the input relations, e.g., L =max(S)/2 and U = 2max(S).

This algorithm re�ects this tradeo� by starting with a tree that has minimal stor-

age requirements and iteratively adds new materialization points that worsen the stor-

age cost of the resulting tree. At the same time, the communication cost is lowered,

as intermediate results do not have to be reconstructed by probing.
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Algorithm 3 Iterative construction of join trees.

input: relations S , bounds L, U
output: join tree T
1 T := createNode(S)
2 while ∃N ∈ T .∃S ⊂ N. card(S) ≥ 2⤦

∧L < CCost(S)∧ < SCost(S) < U
3 X := createNode(S)
4 replaceChildren(N,S,X)

5 return T

5.4 Correctness

In this section, we discuss two aspects of correctness for our approach. First, exactly-

once processing, which makes sure that the result contains all the expected tuples

and only them. And second, we discuss ways to maintain correctness under di�erent

system failures.

5.4.1 Exactly-Once Processing

In order to ensure that the join is computed correctly, i.e., each element from the

crossproduct of all involved relation that satis�es the join predicate is output exactly

once, we need to show two properties: each result is computed at least once, and each

result is computed at most once. As basis for a formal reasoning and similar to [47],

we introduce a total order on the tuples

∀ri ∈ Ri, rj ∈ Rj . ri ≺ rj ∨ rj ≺ ri (5.7)

whereRi andRj are relations from the query and ≺ is any order, e.g., the lexicograph-

ical order over timestamp and relation name.

We now decompose the desired result for a join R, into all subsets where a tuple

of stream relation Rj arrived last:

R = {r1 ○ ⋅ ⋅ ⋅ ○ rk ∣ ri ∈ Ri ∧ θ is satis�ed}

= ⋃
1≤j≤k

{r1 ○ ⋅ ⋅ ⋅ ○ rk ∣ ri ∈ Ri ∧ ∀j′≠jrj′ ≺ rj ∧ θ(r1, .., rk)}

This decomposition is correct, as there is a total order among the tuples, thus, each

result r1 ○ ⋅ ⋅ ⋅ ○ rk falls in one of these partitions. That means, it is enough for each

tuple rj to be joined with all tuples that have a lower timestamp, or, expressed more

intuitively, with all tuples that arrived earlier.

Consider an arbitrarily chosen tuple r = r1 ○ ⋅ ⋅ ⋅ ○rn of the join result. There is one

tuple ri ∈ {r1, . . . , rn} =∶ r̃ such that ∀rj ∈ r̃. rj ≺ ri. Intuitively, ri is the tuple that
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arrived most recently at a MultiStream operator and it visits the stores according to

probe order σRi .

Lemma 1, MultiStream computes each join result at-most-once. Proof: We make sure

that no other probe order than σRi can produce r by adding ≺ to the join predicate

during probing. When some rj is probed against the pre�x of a storeRk , all resulting

tuples satisfy θj,k(rj , rk) ∧ rj ≺ rk . The resulting intermediate tuple is assigned the

higher timestamp, thus, during iterative probing, only tuples with timestamp lower

than the initial tuple can be joined. ◻

Lemma 2, MultiStream computes each join result at-least-once Proof: ri is sent as

probe to the other stores in order to probe with tuples rj ≺ ri. It might occur that a

tuple r′j with rj ≺ r′j ≺ ri arrives after ri. Logically, ri had to be probed against r′j
but this was physically impossible when the store received ri. In order to eliminate

this source of error, a so called probe log is used. Each arriving probe tuple is kept

in the probe log and when a store tuple arrives, the probe log is checked for such a

missed probe tuple. Compared to the stored pre�x, the probe log can be kept small

using stream punctuation techniques. ◻

Based on the two lemmata, we can directly deduce the following theorem.

Theorem: As each join result is produced at-most-once and at-least-once, the Multi-

Stream operator produces overall the correct results.

Example

Consider the three-way MultiStream operator computing (R,S,T, θ) with local join

orders ⟨R,S,T ⟩, ⟨S,R,T ⟩, and ⟨T,S,R⟩. This operator is realized with a store for

each relation and the interconnection between these stores. Further, assume that each

store has stored the tuples as indicated in Figure 5.7, where the indices indicate the

timestamps of the tuples, and let all tuples satisfy the join predicate. Here, tuple r8 just

arrives and is sent to theR-store for storing and to the S-store for probing. There the

intermediate result {r8 &{s2, s5}} is computed which is again sent to the T -store for

probing. It is crucial that here only t4 is considered for probing. If said intermediate

result would also be joined with t9, then the T -store would report {r8 & {s2, s5} &

{t4, t9}}. At the same time, we only know that tuple t9 is stored but it could be

still on its route as instructed by the operator and then R could produce the result

{t9 & {s2, s5} & {r1, r3, r8}}, as r8 in the meantime arrived at the R-store. Looking

at these two results, the tuples (r8, s2, t9) and (r8, s5, t9) occur in both presented

results, clearly violating the at-most once guarantee.

We solve this problem by assigning each source tuple a timestamp and join this

tuple only with other tuples having a smaller timestamp. This means, that the source

tuple’s timestamp is kept at each network hop independently of the timestamps of

other tuples in the intermediate results. The dispatcher assigns timestamps as mono-
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Figure 5.7: Timestamp-sensitive routing of three-way MultiStream operator.

tonically increasing sequence numbers. If for some reason multiple tasks for the dis-

patcher are needed, then the dispatcher task’s id is added to the timestamp and serves

as tie breaker.

The next question is, how to deal with delayed tuples. Consider again the example

in Figure 5.7 after r8 is fully processed. Now, tuple s7 arrives late at the S-store. Ac-

cording to our approach, if this tuple arrives at the R-store, regardless of whether r8
is already stored there or not, s7 and r8 cannot be joined there due to the timestamps.

Instead, when r8 arrives at the S-store it is put in a special bu�er which is inquired

every time a tuple of S arrives for storing. Then, the arrival of s7 lets not only s7 be

stored, but also s7 is probed against this bu�er and the intermediate result r8 & s7 is

produced and sent to the T -store. In order to prevent this special bu�er from occu-

pying too much heap space, tuples which will not have a delayed join partner have

to be discarded. This can be achieved by stream punctuation techniques, which send

special packages with the current maximum timestamp through all streams. Since

all components are connected via FIFO streams, the arrival of a punctuation package

with timestamp t indicates that no other tuples with timestamp t′ < t can arrive later.

Hence, the special bu�er can be freed from all tuples with such a lower timestamp.

5.4.2 Fault Tolerance

The problem raised by a node failure translates to the loss of a part of the state of the

join operator. Consider the S-store of a join R & S being distributed on machines S1

and S2. If S2 dies, arriving tuples from R can only be sent to the remaining store and

R&S1 can be computed but not the entire result. A way to solve this problem would

be to persist every incoming tuple on the worker node. Then, the process working

for S2 can be restarted and recover its state.

Another way, which also prevents the system from waiting until the restart is

complete, is to back up each task by a secondary task that has a copy of the data of

the primary [37]. This way, the total memory consumption of the plan would double,

but only store messages would have to be sent twice, and in case of a failure the

replicated node can take over the join processing. When the failed node restarts, it
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can recover its state from the other replicated node leading to a (presumably) short

peak in network usage.

A third way of recovering the state is possible if the source streams support re-

playing the data streams as, e.g., Apache Kafka does [9]. Then, the tuples from the

relevant streams can be fed again into the system and need only to be routed such

that the operator’s state can be restored. However, due to the random nature of the

partitions, all other tasks’ states have to be restored as well.

5.5 Experiments

In this section, we explore the e�ects of di�erent choices of operator trees on achiev-

able performance of the overall join computation workload. We deploy the Storm

topologies generated by CLASH on an Amazon EC2 cluster consisting of multiple

t2.large instances each having two virtual cores, 8 GB main memory, and being in-

terconnected with “low to moderate” networking performance. According to iperf

measurements the network provided at least 50 Mbps. Each instance is running up

to two workers and the number of instances is adjusted based on requirements of the

plan and degree of parallelism. For example, for a plan that requires 5 stores and each

store has a parallelism of 3, we would allocate ⌊5 ⋅ 3/2⌋ instances. Storm version 1.1.0

is used running on Oracle Java 1.8 and Ubuntu Server 16.04. Locally, we use a plain

nested-loops join which is able to produce the desired result for any given computable

binary predicate.

5.5.1 Setup

We use data from the TPC-H benchmark [3], which is commonly used for evaluating

stream processors [47, 61]. We generate the data set with scale factor 1 and the joins

inside queries Q2, Q3, and Q5. For example, Q2 actually �lters according to a certain

part size and type and selects the supplier that has minimal cost. However,

we are only evaluating the join of the base relations without considering nested sub-

queries or aggregations. The TPC-H queries consist of equi joins according to the

foreign-key relations between tables. However, we refrain from exploiting this in the

routing. This means that our performance results remain valid for other, non-equi-

join predicates.

Further, we use a custom generated dataset that allows the creation of linear join

queries with arbitrary selectivities for the individual joins. This way we can speci�-

cally explore the e�ects of the intermediate result sizes on the performance of di�erent

plans. We appoint the queries according to the combination of low (L), medium (M ),

or high (H) selectivities, e.g., as Custom-MHL for a four-way join chain with selec-

tivities f1,2 = L, f2,3 =M , and f3,4 = H , and explain the choices for L, M , and H as
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well as the sizes of the relations where necessary.

We let the topology consume the datasets from Kafka, one topic for each relation.

This enabled repeating each experiment while having an environment close to an

industrial production setting. Specialized installations can go further and partition

the topics and read in parallel, however this goes against our core idea of enabling

users to pose arbitrary queries.

When a Kafka topic is read multiple times, each but the �rst reading are as fast as

supported by Kafka or the consumer. For rate-limited experiments, like the latency

experiment in this section, or later experiments for windows, we use a driver program

which acts as Kafka producer. This program feeds given lists of tuples into Kafka and

it can con�gure a rate for each of the lists.

We compare the following approaches, respectively, shapes of the join trees:

• A plan that only consists of a single non-materialized MultiStream operator,

with all involved relations as leaves, denoted Flat.

• A plan consisting of a left-deep combination of binary MultiStream operators.

This resembles the BiStream approach as suggested in [47], denoted LD.

• For more than three relations, there are other plans possible than the ones listed.

These are denoted Ti and explained later.

While the system is able to incorporate other join operators like HyperCube, we do

not report on results, since it is already outperformed by BiStream, as reported in [47].

In fact, it was deemed not applicable to joins involving more than two relations in �rst

experiments.

5.5.2 Throughput and Scalability

For measuring the throughput of di�erent plans, we feed the data into the topology

as fast as possible and take the time di�erence between the �rst read tuple by the

dispatcher and the last output join result. The throughput is then the number of input

tuples divided by this time di�erence. The results for Q2 are shown in Figure 5.8a;

here T1 is an optimized plan. We see that with parallelism 1, the �at plan provides the

highest throughput, which is presumably because there is less overhead due to fewer

active bolts in the topology.

In order to see how the throughput behaves when a store is scaled over multiple

Storm tasks, we globally increase the degrees of parallelism, i.e., the number of Storm

tasks that run a certain store bolt. This means, with a higher degree of parallelism,

the number of tasks grows depending on the number of bolts. Figure 5.8b illustrates

that the deployed Storm topology consists of more concurrently active tasks for the

left-deep plan than the other two plans with the same degree of parallelism and that
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Figure 5.8: Throughput and parallelism.

the number of tasks grows linearly. Figure 5.8a shows the behavior of the throughput

for di�erent plans and varying parallelism: With higher parallelism, the left-deep

BiStream plan scales better because it requires less tuples to be sent around during

join computation.

It is not necessary to scale globally, but speci�cally increase the number of tasks

for that store which needs to keep the most tuples in memory. This might be neces-

sary if the desired pre�x gets too large, and thus a scale out cannot be avoided. The

e�ect of this can be seen in Figure 5.8c where for answering Q2 the parallelism of

the ’partsupp’-store was increased. Neither of the queries signi�cantly gain or lose in

terms of throughput which is important, because it con�rms, that a speci�c scale-out

operation can be done without harming the performance.

The selectivities of joins in Q2 make intermediate relations smaller than input

relations. In contrast, MHM is designed such that the intermediate relations are larger

than the input relations. In Figure 5.8d we see the impact of this, most importantly the
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throughput is lower than for Q2 by an order of magnitude. Secondly, increasing the

parallelism does not bring a signi�cant performance boost with any plan. The plans

used correspond to the shapes illustrated in Figure 5.4, the �at plan matches shape I

and the left-deep plan is an instance of shape V. In plan T1, R1 &R2 is computed by

a MultiStream operator and a MultiStream root combines this result with R3 and R4

(shape II), plan T2 materializes the results ofR1&R2 andR3&R4 yielding a balanced

tree (shape III), and plan T3 combines a R1,R2, and R3 in a three-way MultiStream

operator (shape IV). Hence, for join queries that cause huge intermediate results they

do not have to be stored in order to get throughput performance gains.

While communication is an important factor for scalability (i.e., the less communi-

cation the better the scalability) it also in�uences the variation in achievable through-

put. If we measure the throughput of a workload, generally, a single run takes less

than 10 minutes. However, from one to the next measurement the di�erences may

be huge, which is especially true for communication intensive plans. We expect such

a measurement to result in signi�cantly less scattering if conducted in a more con-

trolled environment. However, this indicates what to anticipate when deploying such

a plan in a shared environment like EC2. Still, such a setup is becoming more and

more relevant in today’s cloud computing landscape.

Scaling also a�ects the number of tuples sent during processing of a workload.

Figure 5.9a shows how the number of observed communication actions changes when

Q3 is processed using �at and left-deep plans with higher degree of global parallelism.

As expected, the left-deep join plan causes signi�cantly less communication which is

saved by materialization and thus avoiding re-computation of intermediate results.

5.5.3 E�ect of Materialized Intermediates on Communication

Here, we compare the savings for di�erent scenarios. First, for custom-LLLL a �ve-

way, low-selectivity join with equal relation sizes of 106 and a pairwise selectivity

of 10−8. Figure 5.10a shows the number of probed tuples depending on the capacity

of a single store. If the task capacity is enough for a tenth of the incoming tuples

of each relation (the leftmost case on the x-axis), over half of the probe tuples can

be saved with LF compared to a Flat. The more task capacity there is, the less need

of parallelizing the individual stores, and consequently also less probe overhead. If

every task can handle the entire incoming relations, the di�erence is negligible (the

rightmost case on the x-axis).

For medium selectivities of 10−6 as shown in Figure 5.10b, the left-deep plan still

shows an advantage, however, the relative saving is not that big anymore. If the

selectivities are getting larger to 10−5 , shown in Figure 5.10c, then LD becomes even

worse. This e�ect is due to the increased parallelism requirement on the stores of the
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Figure 5.9: Latency and communication behavior.

intermediate relations: the higher the selectivity, the more intermediate results, and

the more tasks are required in order to store the pre�xes. Therefore, probe tuples have

to be broadcast to more stores, increasing the overall communication. This means, a

single MultiStream operator is very well usable for scenarios where high selectivity

joins are involved.

5.5.4 Latency

To measure the latencies of tuples, we assign each tuple t the timestamp of the system

time using the Java system method currentTimeMillis(). The resulting tuple

of a join between t and another previously stored tuple gets the same timestamp. If

this tuple �nally arrives at the sink, i.e., if t �nds join partners such that the overall

query is satis�ed, the sink again reads the current system time and reports the dif-

ference between those timestamps in milliseconds. This measurement requires the

clocks of the hosts where dispatcher and sink run to be synchronized, which we ac-
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Figure 5.10: E�ect of task capacity on sent tuples for linear queries with varying se-
lectivity.

complish by calling the Unix command ntpdate before every run. In contrast to

the throughput measurements, here we feed the input tuples with a low rate into the

topology in order to avoid measuring the time how long a tuple is bu�ered in the in-

or output queues of the tasks.

The boxplots in Figure 5.9b show that intelligent placement of communication

boundaries e�ectively limits the latency encountered for Q2, where the average la-

tency of the mixed plan is half of the latency of the naive left-deep or �at plan. The

boxes are showing the quartile bounds and the whiskers indicate the 2.5 and 97.5

percentiles. The reason behind this is the guaranteed low number of network hops

between hosts. Figure 5.9c shows the results for answering query MMM under dif-

ferent parallelization factors. The median latency is reduced when using more store

instances in parallel. However, also much more tuples need also signi�cantly more

time, since the network load increases due to the excess of broadcast tuples.

In order to understand the decrease in mean latency, we look at the time needed to

compute a local join. As we use nested-loops joins in order to remain compatible with

the ultimate goal of computing theta joins, the complexity depends on the size of the

stored pre�x. Thus with a parallelism factor of 4, only a quarter of the join predicates

have to be evaluated in each store instance compared to parallelism factor 1, and the

evaluation can be done in each store instance in parallel. Figure 5.9d shows how the

time to locally compute a join when a probe tuple arrives changes over the course of a

workload computation. As more tuples arrive, the time also changes. However, with

a higher degree of parallelism, the number of join candidates found in a store instance

per probe grows more slowly, hence the time of the local join computation in�uences

the end-to-end latency less. Similar to the avoidance of broadcasting tuples, here, it is

desirable to get more information about the join predicate in order to use a specialized

join algorithm, e.g., a hash join for equi-join queries.

5.5.5 Storage Space Occupation

The overall storage space occupation of a topology can be statically computed if, as

we assume, the relation sizes and join selectivities are known. The least storage is
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occupied by a single �at plan over every relation, and the most (in terms of non-

maliciously evil query plans) by a left-deep tree that needs to store n−2 intermediate

results when joining n relations. Tuples are not stored redundantly when operators

have a higher degree of parallelism, thus, scaling out does not in�uence the total

amount of required space.

For Q2, the �at plan needs to store ∣Q∣+ ∣PS∣+ ∣S∣+ ∣N ∣+ ∣R∣ tuples, while the left-

deep plan needs additionally ∣N &R∣+ ∣N &R&S∣+ ∣N &R&S&PS∣ tuples. Q3 needs

only a single additional store, and Q5 needs two additional stores for intermediate

results when using a left-deep plan. As visualized in Figure 5.11a the left-deep join

plan consumes for each query more space obviously for storing the additional tuples,

for query Q2 by factor 1.82, for Q3 and Q5 about 1.2, and 1.5 for MMM and MLM.

In Figure 5.11b, we show for query MMM how many tuples are kept in the heap

during processing depending on how much percent of the data is read. The steeper

slope of the left-deep plan’s space usage originates from the additionally stored in-

termediate results in the MultiStream operators. With these observations about the

storage requirements, it is clear that if the goal is to provide correct join results over

large windows—or even for a full history—while using limited storage resources, we

can resort to a storage-friendly plan as consisting of a single non-materializing root.

Considering in Figure 5.11b that only 40k tuples can be held in memory at the same

time, then, the left-deep plan would have to discard previous tuples after only two

thirds of the workload being read.

For each materialized operator, the per-instance storage occupation is interest-

ing as it is undesirable to have one instance that stores way more tuples than the

others. The results shown in Figure 5.11c con�rm that the usage of Storm’s shu�e

grouping evenly distributes the tuples to the instances of each store throughout the

processing of a given workload. Here, the number of stored tuples is shown for four

instances of the the same MultiStream operator’s store. If the distribution would use

a value-based partitioning, which is commonly used for equi-join computation, then

additional measures have to be taken in order to avoid uneven resource usage due

to data skew. The message distribution between the stores, however, depends on the

plan used.

5.5.6 Message Load

We count the messages that are sent during join processing and compare the number

of messages sent in di�erent plans for di�erent queries. As a reminder, a message

may consist of multiple tuples, e.g., in a join R & S a tuple r that arrives at a S-store

might produce {r ○ s1, r ○ s2, r ○ s3} if all satisfy the join predicate. This is emitted as

a single Storm tuple containing a list of three data tuples.

Table 5.1 shows that the messages arriving at each instance of the same store
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Figure 5.11: Storage occupation.

are evenly distributed, as well as the join results produced at each output. The plan

which answers query MMM combines S1, S2, and S3 in a MultiStream operator that

materializes its results in store S123 and as root a MultiStream operator that joins that

result with S4. Due to the local join orders for the nested join, the stores for S2 and S3

receive more messages thanS1. This imbalance cannot easily be reduced by allocating

more instances as this would only decrease the number of arriving store messages, not

the probe messages, and it is part of ongoing work to �nd better solutions to this.

We also observe the amount of delayed joins. In this case, the arrival rate of the

tuples is very high, thus tuples from S0 are arriving earlier for probing at the S123-

store than the join results of S1 & S2 & S3 which should be materialized. Hence, all

joins that are conducted at the S123-store are in fact delayed ones. This shows the

importance of handling delayed joins in order to maintain correct results—and not

only report a subset of the desired tuples.

5.5.7 Validity of Cost Models

We also validated the introduced cost models for required storage and caused commu-

nication. In order to do so, we measured sizes and rates o�ine for input data. Then

we executed the queries and measured the according numbers inside the topology.

Figure 5.12 shows this comparison for the extremes of a �at and a left-deep plan on

the linear four-way query custom-MMM with relation sizes 104 and M = 10−4. The

comparison for estimated and measured storage cost is not visible, as the estimation

and the amount of actually stored tuples is perfect. We notice a light overestimation of

the probe cost for the query plans with longer probe orders. For the goal of deciding

between di�erent query plans, this is acceptable.
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Store task Input [t/s] Output [t/s] Delayed [t/s]
S012,1 118.86 15.25 15.25
S012,2 120.25 15.81 15.81
S012,3 119.65 14.80 14.80
S012,4 119.38 15.30 15.30
S0,1 118.32 0.05 0.05
S0,2 118.67 0.06 0.06
S0,3 119.88 0.04 0.04
S0,4 119.32 0.06 0.06
S2,1 214.27 48.57 0.07
S2,2 214.87 49.79 0.06
S2,3 213.28 46.12 0.12
S2,4 214.72 49.48 0.04
S3,1 120.52 23.70 0.01
S3,2 120.32 23.52 0.03
S3,3 121.26 24.46 0.01
S3,4 122.24 25.46 0.01

Table 5.1: Statistics on the average input messages per second, the produced join
results per second, and the delayed messages per second for each store instance with
four tasks per store.
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Figure 5.12: Estimated cost (E) and measurements (M) from deployed plans with dif-
ferent degrees of parallelism.
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Chapter 6

Windowed and Equality Joins
In this chapter, we add two aspects to the previous work that are commonly found in

real-world streaming systems, namely windows and equality predicates.

Streaming queries operate by nature on unbounded input. This poses a problem

we ignored in the last chapter, which is, the state required by a join operation even-

tually over�ows the available memory. The common solution to this is to introduce

windows [13, 18], periods of time in which relevant data lies, with the idea that data

that is no longer in the current window does no longer contribute to the result and

thus can be evicted from memory.

A consequence of this windowed view is that the interesting characteristics of

the arriving and produced relations is no longer the size but the rate of the streamed
relation. We begin this chapter with a discussion on query formulation and evaluation

with windows and continue with the implications of the expiration and eviction of

tuples.

Thereafter, we add understanding of equality predicates. If all, or a subset of, the

queried predicates are equalities, we can exploit this in two ways: Equi-joins carry

a straight-forward way of partitioning the operation across multiple compute nodes,

thus they �t naturally into the computation model of partitioned scale-out systems

like Flink or Spark. Locally, equi joins enable using indexes to speed up the match-

making with stored items, reducing latency. While equi-join computation alone is

not new, we tightly integrate it into our framework, allowing e�cient computation

of joins with a mixture of equalities and arbitrary predicates.

6.1 Windowed Join Queries

We extend queries by a notion of time-based sliding windows and write R[W ] when

we want to express for some point in time t all tuplesR[W ](t) ∶= {r ∈ R, r.τ+W ≥ t}.

The timestamp is a special attribute of a tuple, denoted r.τ for tuple r. Now, a join

query over three relationsR, S, and T can be written as (R[WR], S[WS], T [WT ], θ),

whereWR,WS , andWT are the windows. If at some time t a tuple ofR arrives, it can

be joined with tuples from S[WS](t) and T [WT ](t) which satisfy the join predicate.

Consider Figure 6.1, where a tuple of R arrived at time τ . According to the join

predicate, this tuple �nds three join partners in S, indicated by the blue lines. How-

ever, the window of S is evaluated for time τ and only contains the three tuples inside

the box. Thus, the R-tuple is only joined with the two tuples indicated by the solid
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Figure 6.1: Join with two other relations restricted by windows.

line. Now, there is a partial result which needs to be joined with T . Again, the window

of T is evaluated for time τ , thus only tuples inside the box drawn on T ’s time line

qualify. Especially, for the second tuple the join predicate is satis�ed (indicated by the

line), but since it is outside the window-box, it must not be joined with the recently

arrived R-tuple.

6.1.1 Sources of Time

In Section 5.4, we discussed the usage of timestamps in order to determine which

store is responsible for producing a join result. This does not need to be an actual

timestamp. In fact, it could be a random number, as long as it can be used to derive a

strict order between all tuples. Now, the timestamp becomes a part of the correctness

of the query result.

As discussed in Section 2.1, we di�erentiate between event timestamps and system
timestamps. The event timestamp is a timestamp from the query domain, for example,

if the input stream contains emails, it could be the date �eld of the header or the date

of the last received �eld.

But there might not always be such a �eld in arriving tuples. In such cases, the

system timestamp is assigned at arrival at the system. Inherently, this timestamp has

an approximative character: Consider two (distributed) systems answering the same

query with the same input tuples. In practice, the clocks on the underlying systems

are diverging and thus, the system timestamp of the same tuple will di�er in both

systems. Consequently, the tuple with the earlier timestamp might �nd more join

partners.

The bene�t of system time, however, is that two tuples which arrive some time-

span ∆ apart, have a di�erence in timestamps of about ∆. With application time, as in

the example with date headers of emails, tuples with timestamp di�erence ∆ can ac-

tually arrive within a timespan of ∆′ >> ∆, hence tuples need to be stored longer, and

it becomes infeasible to guarantee correct join result for arbitrarily delayed tuples.
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Figure 6.2: Continuous arrival of tuples with di�erent rates.

6.2 Rate-based Optimization and Windows

When we restrict the relevant join partners by time windows, it does not make sense

to measure sizes of relations. Instead, the content of a window is interesting. As

the window duration is given by the author of the query, we need the rate of the

streamed relation to get the content size. In this section, we explain how we migrate

the size-based optimization from Chapter 5 to rate-based optimization, and thus can

reuse algorithms.

Consider streamed relations R, S, and T which have tuples arriving with rates
∣R∣δ , ∣S∣δ , and ∣T ∣δ , such that δ is a time unit. It does not matter if δ is a second or a

minute, and actually also each relation could be described using a di�erent value for

δ, but for the rest of this discussion we will use δ = 1 s. Figure 6.2 depicts how tuples

of R, S, and T are arriving continuously with arriving rates ∣R∣1s = 3 1
s

, ∣S∣1s = 5 1
s

,

and ∣R∣1s = 3 1
s

. If unambiguous, we will drop δ and the rate unit and from now on

write, e.g., ∣R∣ = 5 to indicate that 5 tuples of R arrive per second.

The join selectivity is, analogously to its de�nition for static relations, the frac-

tion of realized joins and possible joins; now per rate. This means, that if two rela-

tions have arrival rates of ∣R∣1s and ∣S∣1s, and the join between has an output rate of

∣R & S∣1s, fR,S is ∣R & S∣1s/∣R × S∣1s.

Other parameters, like number of tasks and task capacity, however, remain static.

For the number of tasks, nothing changes. But now we need to use rate times window

size of a relation to check whether the task capacity with given degree of parallelism

su�ces to store the current pre�x of that relation.

6.2.1 Windows and Intermediate Results

During tree construction we also implicitly introduce a materialized sub-query for

each inner node. As it is materialized, it requires a window, otherwise we would not

be able to estimate the required storage size. Let R1, . . . ,Rj be the tuples that are

materialized and Rk be the relation that probes this materialized store.

Each of these relations Ri have a window Wi assigned. Then, rk arrives and can
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only join with tuples ri with ri.τ > rk.τ−Wi. In the case of an intermediate result, this

means for a each tuple (r1 ○r2 ○ ⋅ ⋅ ⋅ ○rj) that r1.τ > rk.τ −W1∧ ⋅ ⋅ ⋅∧rj .τ > rk.τ −Wj .

This means, an intermediate relation needs to be annotated with the windows from

all its inputs, and cannot have a single aggregated window.

6.3 Expiration and Eviction

With the introduction of windows, tuples expire, i.e., starting at some point in time

they cannot be join partners of a new arriving tuple anymore, thus they do not con-

tribute to results. Expired tuples can be evicted from the system, thereby freeing re-

sources. But tuples are not necessarily evicted as soon as they expire.

6.3.1 Delayed Eviction

A tuple r ∈ R[W ] logically expires at time r.τ +W , thus it could be evicted at r.τ +

W . Practically, however, tuples can arrive with a delay (see discussion about event

time 2.1). Compared to operators that work on �nished windows (like aggregation), a

continuous join operator can just output delayed results and let downstream operators

take care of it. This means, delayed tuples are handled by producing all join results

with partners for this delayed tuple.

But allowing arbitrary delay means, not evicting tuples at all, which is not practi-

cal. Instead, users can de�ne a eviction o�set E, similar to Flink’s maximum lateness

or Spark’s late threshold. This eviction o�set is illustrated in Figure 6.3. Here the blue

round dots indicate tuples arrived at R at some time in the past. They are placed on

the time line according to their event-time timestamp.

Now at time τ a probe tuple s arrives, but its event-time timestamp is lower than

τ . As discussed in Section 5.4, this tuple must not join with the r3 to avoid producing

the same output multiple times. Since s arrived with a delay smaller than E, when

evaluating the window for this tuple, we need to be able to return r2 ○ s, so r2 must

not have been evicted at this time.

Further, when tuple t arrives with a delay higher than E, there is a problem. As

indicated by the red brace, t is in theory joinable with r1. But since at the arrival of t,

r1.τ < τ −WR −E the system may have evicted r1 already. At the same time, if t ○ r2
are joinable, this result could be returned, so results could be incomplete. There are

two options, (1) drop probe tuples with delay higher than E, and (2) allow them and

return a result of unknown completeness. It is not clear, if such incomplete delayed

results would harm the overall query, thus it should be con�gurable for the user of a

system, how such tuples are handled.
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Figure 6.3: Window evaluations with delayed tuples.
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Figure 6.4: Sequence of epochs for R-store with their partitions.

For store tuples we have a similar problem, as very late tuple can still serve as

join partner for another probe tuple. However, it might have missed tuples that were

already evicted from the delayed probe bu�er.

6.3.2 Lazy Eviction and Expiry Check

Inside the store tasks, we divide time into non-overlapping partitions. This is similar

to Spark’s DStreams [10] where data is located in time-sliced RDDs or BiStream’s

chained in-memory indexes [47]. Each partition, also called epoch, is responsible for a

certain period of time. When an epoch is too old, i.e., its highest timestamp is smaller

than τ −W −E, its associated data can be evicted. When an epoch is young enough,

i.e., its lowest timestamp is higher than τ −W , tuples can be joined without even

checking for timestamps.

Figure 6.4 shows epochs e1 to e6 and for time τ a windowW as well as the eviction

o�set E. Arriving store tuples are placed into e6 while the other epochs are stable

(ignoring delay). When a probe tuple arrives at (event) time τ , it needs to evaluate the

entire contents of e3 to e6, but for e2 only tuples that satisfy θ ∧ r.τ ≥ τ −W . For e1
we know that no tuple satis�es the second clause, thus it can be evicted.

6.4 Routing and Partitioning

In Chapter 5, we built a routing strategy that ensures that every pair of tuples can

see each other. We now restrict the placement of tuples at stores and explain how to

adjust the routing strategy.
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6.4.1 The MultiStream Operator for Equi-Joins

The high-level idea is this: instead of partitioning each relation randomly over the

tasks of a store, partition it according to an attribute of an equality predicate, and then

use this to set up a routing strategy that avoids broadcast messages where possible.

Consider a query (R,S,T,R.a = S.a∧θS,T ) that we compute using a MultiStream

operator with these adjustments for equi-joins. Tuples of T are distributed randomly

on the T -store as before. Tuples of R and S are now partitioned according to their a

attribute. In Figure 6.5 we show a part of the routing for this operator. When a tuple

of R arrives, it obviously knows the value of R.a, thus it is sent directly to the task

assigned to that value. As join results need to satisfyR.a = S.a, this tuple can be sent

directly to the S-task containing S-tuples with the same a value. After that, tuples

need to be broadcast to all T -tasks.

Figure 6.5b shows the routing for a T -tuple, which starts like in the theta case:

The tuple is sent to a randomly chosen task of the T -store, and is then broadcast to

both S-tasks. There, intermediate results are computed, and now they are sent to the

R-store. In the �gure, connections are drawn between all tasks, but in this case they

are no broadcasts. Figure 6.5c illustrates this for a tuple (5) ∈ T , where we assume

for simplicity that θT,S = true and S and R only consist of their a attribute. We see

that (5) is sent to both tasks of the S-store where each stored tuple is joined with the

arriving one. The example is constructed such that all matching join partners for the

output of aS-task would be found on di�erentR-tasks, and thus, eachR-task receives

messages. However, in contrast to the theta-join computation, these messages do not

contain duplicates, so the number of tuples sent is here independent from the degree

of parallelism of the receiving store.

Multiple Equi-Joins

In the previous example, θ contained only one equality clause, thus it was straight-

forward to partition the stores. When more or even all predicates are equalities,

we need to choose the partitioning for some of the stores. Consider now query

(R,S,T,R.a = S.b, S.c = T.d), where there are two options.

Option 1: partition S according to b. Then tuples of R can be sent to the S-task

indicated by their a-value. All resulting tuples (⊆ R&S) do have a c-attribute and can

then be sent to the correct T -task. Tuples t ∈ T , however, do not have an attribute

with a value that can indicate the S partition. This means, tuples of S with a c-value

of t.d can be found in every partition of the S-store. Thus, t has to be broadcast to

all partitions of the S-store. The result of this join (⊆ S & T ) consists of tuples with a

b-attribute which can be used to look up the according R-partition.
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(a) Routing for tuples of R.
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{(5,4)}
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(c) Concrete example for the path of a tuple of T .

Figure 6.5: MultiStream operator where R and S are partitioned for R.a = S.a.

Option 2: S is partitioned according to c. Then tuples of T can be directly sent to

the correct partition of S without broadcasting. But now R lacks this information, as

a can no longer indicate the correct partition, so R tuples have to be broadcast to the

S-store. In both cases, tuples from S can be sent without broadcasting either �rst to

R and intermediate results to T or the other way round.

The Adjustment of MultiStream

The previous examples showed, how we can con�gure a MultiStream operator in

presence of equality clauses. In general, this is a partitioning scheme P , i.e., a
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6. Windowed and Equality Joins

complete mapping from stores to attributes: {R1, . . .Rn} ↦ A
2 where mapping to

the empty set indicates random partitioning; and adjusted probe orders, where in each

step it is known which attribute to use for addressing the receiving task of the next

step.

6.4.2 Optimizing Plans

First, we need to update the cost formula to include partitioned stores. The storage

cost remains the same, as the amount of tuples to be stored does not change.

Given a partitioning scheme P and the probe orders σ1, . . . , σn. Then the total

cost for probing expressed in number of tuples is:

PCost(O) = ∑
1≤i≤n

∑
2≤j≤n

χσi(j) ⋅
j−1
∏
k=1

Wσi(k) ⋅
k=j−1,k′=j=1

∏
k=1,k′=1

θk,k′ ⋅
1

j
, (6.1)

with

χσi(j) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 if P(Rσi(j)) ⊆ ⋃1≤k≤jA(Rσi(k))

Ni(j) otherwise.
(6.2)

Informally, χ is used to quantify the number of copies that are simultaneously sent

during probing of the j-th store when a tuple from relationRi arrives. If all attributes

which the Rσi(2) store is partitioned after are known, the probe tuple can be sent

directly to the desired partition. However, if only one attribute is missing, this is not

possible anymore, and it has to be sent to each partition, which is re�ected by Ni(j).

6.4.3 Optimization

The search space for optimization now includes another dimension, which is the par-

titioning of stores. We can use the query to determine a set of partitioning candidates

for each (potential) store. For each input relation the candidate attributes are these

attributes that are referenced in an equality predicate, e.g., if R.a = S.b ∈ θ, then a

is a candidate attribute for R and b is a candidate attribute for S. For a materialized

intermediate result, all attributes that are referenced by equality predicates between

a relation of this intermediate result and another relation are candidates.

What this means can easier be understood by looking at the query graph in Fig-

ure 6.6. This graph represents a query over �ve inputs that should be joined using the

equality predicates annotated at the edges. Now we want to �nd partitioning candi-

dates for the store materializing (R2,R3,R4,R3.e = R4.f,R2.g = R4.h), as marked

by the blue area. The predicates that can contribute to the partitioning candidates are

the ones leaving the blue area, and the attributes are the ones referencing a relation

inside the blue area, marked yellow. Thus, we can use R2.b, R3.d, or R4.i for parti-
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R1.a = R2.b

R1.c =
R3.d

R3.e = R4.f

R 2
.g
=
R 4
.h

R4 .i = R5 .j

R1

R2

R3 R4

R5

Figure 6.6: Query graph for a query over �ve relations with predicates annoteted at
the edges. The blue area marks a potentially materialized sub-relation.

input: query q = (R1, . . .Rn, θ)
1 C ← {}

2 for (Ri.a = Rj .b) ∈ θ
3 C[Ri] << a;C[Rj] << b

4 leastCost = ∞, bestPlan = �
5 for P ∈ createPartitioning(C)

6 (cost, plan) = optimize(q,P, ⋅)
7 if (cost < leastCost) = bestPlan ← plan

8 return plan

Figure 6.7: Enumerating partitioning strategies.

tioning. These attributes are all known when a result is sent to theR234-store, but for

exampleR3.e is also known. However, it makes no sense to useR3.e for partitioning,

as it will no longer be used to �nd join partners.

Enumerating Partitioning Candidates

Let a query have at most one predicateRi.a = Rj .a′ between any two relationsRi,Rj
referencing di�erent attributes a and a′ each. Then the number of possible partition-

ing schemes P is the product of the degrees of all relation nodes in the query graph.

In the worst case there is a predicate for each relation. Then there are n ⋅ (n− 1) par-

titioning schemes for n relations. If we allow multiple predicates between the same

pair of relations, e.g., Ri.a = Rj .a
′ and Ri.b = Rj .b′, this can be interpreted as al-

lowing multiple edges between nodes in the query graph, thus the worst case is not

bounded by the number of relations anymore, but by the predicates. The best case, is

for all predicates that reference relationRi to be of formRi.a = Rj .bwith some �xed

a. Then, Ri’s only choice is to be partitioned according to a.

With these considerations, we enumerate the candidates as shown in Figure 6.7.
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Figure 6.8: Throughput and materialization of Q3 using di�erent window sizes.

6.5 Experiments

We continue the experimental evaluation of Section 5.5 and extend the observations

to windowed joins and equality predicates. For the computation of windows we use

system time by applying the current time at the spout that reads a tuple into the

topology.

6.5.1 Windowed Throughput

For examining the e�ect of window sizes on throughput we cannot just feed tuples

as fast as possible into the topology. The �rst tuples would �rst be processed and

later tuples only if enough processing resources are free, thus later tuples would be

delayed, and thus contents of the windows would vary too much. Instead, we start

with a low input rate and increase the rate to �nd the lowest rate such that Storm

does not need to apply backpressure. We then report on the throughput based on this

rate. This strategy of computing throughput is also called the maximum sustainable

throughput [58].

In Figure 6.8, we show the results for execution of Q3 with theta-predicates and

window sizes of 25 and 50 seconds. First, 6.8a shows the throughput for varying

degrees of parallelism using global scaling with a window of 25 seconds. As Q3 spans

three input relations, the �at and the left-deep tree are all possibilities. We see that

both plans are scaling sublinearly, which is presumably due to the communication

overhead of the theta-join computation. The left-deep plan’s relative performance

gets better with higher task parallelism, as the additional intermediate result saves

probing.

Figure 6.8b shows a similar behavior of the plans, this time for a 50 second window.

The trend is the same, however the achievable throughput varied more. With paral-

lelism of 2, the �at tree was able to achieve a higher throughput and the achievable

72



6.5 Experiments

1 2 4
0

0.2

0.4

0.6

0.8

1

1.2

⋅104

Parallelism

T
hr

ou
gh

pu
t[
t/
s]

Flat
LD
T1

(a) The theta variant, Q2θ .
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(c) The mixed variant, Q2θ=.

Figure 6.9: Throughput and parallelism of di�erent variants of Q2.

rate was actually the same. In general, the throughput was about half of the through-

put with 25 second windows, which we attribute to the lower amount of nested-loops

joins.

This can be better understood by looking at Figure 6.8c, where we see the number

of materialized tuples over time. Every �ve seconds, we emit a marker tuple into

the topology which forces workers to log the current number of materialized tuples.

The sum of these logged numbers is shown in the graph. At the beginning of the

computation, the number of materialized tuples grows until the �rst window duration

is reached. After this had happened, the sizes stay the same, and we see that the plans

executing a twice as big window also contain twice as much tuples. Further, as seen

before, the left-deep variant stores signi�cantly more tuples than the �at plan.

6.5.2 Equi-Join Throughput

We looked at the throughput of Q2 executed in three variants. Q2θ is the variant like

described in Section 5.5, where each predicate is handled as theta-join predicate. Then

we let CLASH handle all predicates as equalities inQ2=, thus each store is partitioned

and executes hash joins locally. Finally, as combination of both, Q2θ= handles all but

the predicate between the two biggest inputs, part and partsupp, as θ joins. The

results in Figure 6.9 show the throughput for a �at plan consisting only of a single

MultiStream operator joining all �ve inputs, the optimal left-deep tree (LD), and T1
is again the optimized tree by CLASH. Figure 6.9a is a repetition of Figure 5.8a with

the throughput results of running Q2 in pure theta mode. Figure 6.9b shows the pure

equality mode, where each tuple has a single destination and locally no nested-loops

joins are used. In this �gure, all three trees scale linearly, altough the �at tree is a little

shy of the other two, presumable because it still has more probe work to do.

It is remarkable, that the variants with equi joins seem to be much more stable.

We attribute this to stronger variances in performance of the EC2 machines that host

these experiments. Also, due to the reduced work, the achieved throughput is an order

73



6. Windowed and Equality Joins

of magnitude higher than with theta joins.

Finally, when we examine Figure 6.9c, we see, that this variant nearly has the same

throughput as the results for Q2=. This can be explained by the rather small fraction

of theta joins which negatively impact the performance.
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Chapter 7

Multi-Query Optimization and
Adaptive Join Processing
In this chapter, we extend our approach to answering multiple queries at once and

introduce ways to adaptively change the processing strategy when query workload or

underlying data characteristics change. Due to the long standing nature of streaming

queries, it is almost natural to try to share computation paths or intermediate results

between multiple queries.

Previously, the main focus was on tree-based optimization where a tree of rela-

tions is built. Now, we shift the focus to the probe orders and see materialization

points merely as artifact of the choice of probe orders.

7.1 Optimization using Integer Linear Programming

An integer linear program (ILP) is in general an optimization problem that deter-

mines assignments for a set of variables such that a cost term is minimized (or max-

imized) [54]. The cost term is the inner product of the user-de�ned cost for each

variable ci and the integer variable xi, so c1x1 + c2x2 + . . . is subject to minimization

(or maximization). Further, these variables have to ful�ll a set of constraints, all given

in the form of a1,1x1 + a1,2x2 + ⋅ ⋅ ⋅ ≥ b1.

We follow the approach of [23] for formulating a multi-query optimization prob-

lem as ILP. Consider a query qi for which we have alternative join plans pi,1, . . . , pi,k
to choose from. For each such query qi, we generate equations for the ILP:

xi,1 + xi,2 +⋯ + xi,k = 1 (7.1)

where xi,j = 1 i� plan j is chosen for query i. As the variables xi,j are integers,

these equations are satis�ed i� exactly one plan is chosen for each query. Each plan

is composed of multiple tasks which represent the computation of a subresult and

have cost assigned. For example, plan pi,1 is composed of tasks t1, . . . , tr with cost

c1, . . . , cr respectively. Then, we also add equations

−Cxi,1 + c1xt1 +⋯ + crxtr ≥ 0 (7.2)

where C ∶= ∑i=1...r cr . Thus, if plan pi,j is chosen, xi,j is set to 1 and negative cost

have to be balanced by selecting all the associated tasks. The same tasks might appear
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Algorithm 4 Candidate probe order construction algorithm.

input: query q, MIR
output: candidate probe orders
1 fun construct_rec(head)
2 result ← []

3 for r ∈ joinable(q, head, MIR)
4 newHead ← head + r
5 if newHead is complete
6 result ← result + [newHead]
7 else
8 result ← result + construct_rec[newHead]
9
10 for relation in query
11 construct_rec(relation)

in candidate plans for di�erent queries, and thus, if such plans are selected, computa-

tion can be shared between these plans. In total, the sum of costs times tasks is subject

to minimization. Now we need to generate candidate plans (in this case probe orders)

to chose from, and then translate these choices into topologies.

In order to translate the query set into an ILP, we �rst create for each query mate-
rializable intermediate results (MIR) and, based on that, a set of candidate probe orders.

An MIR consists of a subset of the queried relations and the join predicates de�ned

on them such that cross products are avoided. For example, for query (R,S,T,R.a =

S.a,S.b = T.b) the materializable intermediate results would be (R,S,R.a = S.a)

and (S,T,S.b = T.b) but not (R,T ). An MIR can be seen as the relation computed

by a potential inner MultiStream operator when constructing operator trees.

The candidate probe orders are determined using Algorithm 4. For each relation in

the query the recursive sub-function construct_rec is called in order to construct

probe orders from head to tail. It returns all probe orders that can be used to answer

q if the starting tuple is the result of joining head. In this sub-function in Line 3, we

iterate over all MIRs which are, according to the given query, joinable with the current

head. This way, we avoid producing cross products. If joining head and r yields a

complete result, i.e., all input relations of q are covered, the probe order is completed.

Otherwise, the same function is recursively called to yield all probe orders that start

with the previous head joined with r. We assume here that there are no queries which

include a cross product. For this case one can revert to constructing probe orders as

described in Chapter 5 by adding arti�cial true-join predicates.

We further need candidate attributes for partitioning of the MIR stores. For an r ∈

MIR these are all attributes which de�ne a join with another relation that is not part of

r. To give an example, if for query q = (R,S,T,R.a = S.a,S.b = T.b) the intermediate
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Algorithm 5 ILP construction procedure.

input: queries Q, probe order candidates C ,
partitioning candidates P

output: ilp constraints A, optimization goal G
1 A← {}

2 for q ∈ Q, r ∈ rel(q)
3 p← apply_partitioning(C[r], P )

4 for σ ∈ p
5 A← A ∪ cost_constraint(σ)
6 A← A ∪ probe_order_constraint(p)
7 G← goal(A)

result (R,S,R.a = S.a) is materialized, a is not a candidate for partitioning, because

there is no join with T that uses this attribute. However, attribute b is a candidate for

partitioning. This makes sense because all tuples that are sent to the RS-store know

the value of the b-attribute and, hence, can be routed correctly. Also, partitioning

according to a implies that tuples from T need to be broadcast to all T -tasks, while

with a partitioning according to b this full broadcast is avoided.

While the input relations are always materialized, this is not necessarily the case

for intermediate relations. They are only required if a probe order is selected which

also uses those relations. Thus, for intermediate relations, we also generate probe

orders using the subquery for the intermediate result as input to the candidate probe

order construction.

Based on probe order and partitioning candidates, we construct the ILP as shown

in Algorithm 5. In variable A, we collect all constraints that the ILP must satisfy. In

Line 2, we iterate over all combinations of queries and possible starting relations to

add constraints that select a probe order for each starting relation. Therefore, the

partitioning is applied to the probe order candidates for the starting relation, C[r].

In Line 3, variable p contains probe orders where all MIRs are decorated with the

partitioning attribute. This is necessary for building the cost constraint (Line 5). The

cost values are set according to Equation 6.1 and in order to compute χ, it is necessary

to distinguish between di�erently partitioned stores.

For computing probe_order_constraint(p), with probe orders σ1, . . . , σn ∈ p, for

each probe order σi a new variable xi ∈ {0,1} is introduced.

x1 + x2 +⋯ + xn = 1

This line resembles Equation 7.1. If the probe order identi�ed by xi contains a materi-
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alized intermediate result over relations 1, . . . , l, this also has to be computed. Hence

for each of the inputs, a probe order which creates the intermediate result needs to be

installed, which is made sure by the following constraints:

− k1 ⋅ xi + x
′
1,1 + x

′
1,2 +⋯ + x′1,k1 ≥ 0

. . .

− kl ⋅ xi + x
′
l,1 + x

′
l,2 +⋯ + x′l,kl ≥ 0

Here, kj is set to the number of probe orders required for computing the result starting

from relation j ∈ 1, . . . , l. Variables x′ indicate if the probe order for that subquery

will be executed. Since each line needs to be non-negative, it is guaranteed that the

intermediate result is actually computed.

The cost_constraint(σ), which we will model using Equation 7.2, is composed

of the cost of all the pre�xes of that probe order. With σ = ⟨S1, S2, . . . , Sm⟩ these

pre�xes are σ1 = ⟨S1, S2⟩, σ2 = ⟨S1, S2, S3⟩ up to m. For each pre�x we introduce a

step variable yi, and it is crucial, that all equal pre�xes used in candidates of other

queries get the same variable yi assigned. For each of these pre�xes, we also introduce

the step cost which is the innermost term of the inner sum in Equation 6.1. For a

probe-order pre�x ⟨S1, S2, S3⟩ this is the cost of sending the partial result S1 &S2 to

S3. Thus, for each probe order σ the following constraint is added:

−PCost(σ) ⋅ x1 + StepCost(σ1) ⋅ y1

+⋯ + StepCost(σm) ⋅ ym ≥ 0

In Line 7, the goal is set. The goal is derived from the step cost and step variables

of the previously added constraints:

min ∑
i=1...m

StepCost(σi) ⋅ yi

As yi ∈ {0,1}, the value of the sum is only a�ected by the variables set to 1. Only

combinations of variables yi can be set to 1 such that all queries have all necessary

probe orders for computing their results. Thus, a solution that minimizes this term

can also be translated to a correctly working topology. This topology needs to be

deployed to a stream processor like Apache Storm and processes the query.
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ILP Creation Example

Consider the two three-way queries q1 = (R,S,T,R.b = S.b, S.c = T.c) and q2 =

(S,T,U,S.c = T.c, T.d = U.d). In Figure 7.1, we see �rst the materializable interme-

diate results composed of the input relations as well as the intermediate results. Here,

RS stands for the result of the subquery qRS = (R,S,R.b = S.b). Since we have

potential intermediate results, they also need to be created, and thus, probe orders

for them have to be installed as well. The probe orders are listed next. There is one

probe order per input relation of each query. For example, q1 consists of three inputs

and hence, three sets of probe orders are created and one of the candidates of each set

needs to be used.

Thereafter, the partitioning is applied to the probe orders. In Figure 7.1, we only

show the options for probe orders for q1 and R. Here it is interesting to see, that also

partitioning which is not bene�cial to the current query is included. For example,

the probe order ⟨R,S[b], T [d]⟩ indicates that the S-store is partitioned according to

attribute b and the T -store is partitioned according to d. If this probe order is installed,

a tuple from R, after it probed the S-store, needs to be broadcast to all T -workers in

order to compute the result for q1, because this tuple does not contain the value of

attribute d. The partitioning of T according to d is only useful for q2.

Finally, the constraints for the ILP are added. The �rst constraint requires that

exactly one from the probe order candidates σ1 to σ6 is chosen. For this we add an ILP

variable xi for each σi that takes values in {0,1}. Then, we need to make sure, that

for probe orders which include intermediate results, these intermediate results are

actually computed. The next constraint showcases this for σ5. In this probe order, R-

tuples are sent to the ST -store which is partitioned according to b for probing. To do

so, the ST -store needs to be installed and also kept up to date with this intermediate

result. In turn, probe orders for computing S & T need to be installed. In this case,

there are four probe orders, one for sending S to the T -store and one for sending T

to the S-store and each store can be partitioned according to two attributes. Out of

these probe orders we need two (one for each relation) and thus we add constraints 2

and 3.

Actually, the computation of the intermediate result is independent from the par-

titioning of this result’s store. Thus, the same intermediate result computation can

be used for σ6. We then need to make sure that each probe order, if it is chosen, is

computed correctly. Probe order σ1, for example, has the pre�x σ7. Thus we add

constraint 4 where ILP variables for each step in that probe order are set, y7 and y1.

These variables are associated with the step cost for σ7, which is the cost for sending

tuples from R to the S-store that is partitioned by b, and the step cost for σ1, which

is the cost for sending tuples from the S-store to the T -store that is partitioned by c.

In constraint 5, the next probe has the same �rst step, and thus, it is crucial that the
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same variable y7 is put into the ILP, otherwise the ILP would not take the shared work

for y7 into account. The optimization goal of the ILP is then to minimize the sum of

the step costs of all used steps.
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q1 = R(b), S(b, c), T (c), q2 = S(c), T (c, d), U(d)
MIR = R,S,T,U,RS ,ST ,TU
Candidate probe orders:
for q1:

• R: ⟨R,S,T ⟩, ⟨R,ST ⟩

• S: ⟨S,T,R⟩, ⟨S,R,T ⟩

• T: ⟨T,S,R⟩, ⟨T,RS ⟩

for q2:

• S: ⟨S,T,U⟩, ⟨S,TU ⟩

• T: ⟨T,U,S⟩, ⟨T,S,U⟩

• U: ⟨U,T,S⟩, ⟨U,ST ⟩
for qRS :

• R: ⟨R,S⟩

• S: ⟨S,R⟩

for qST :

• S: ⟨S,T ⟩

• T: ⟨T,S⟩
for qTU :

• T: ⟨T,U⟩

• U: ⟨U,T ⟩

Probe orders with partitioning for q1 and R, including probe order pre�xes:

σ1 ⟨R,S[b], T [c]⟩

σ2 ⟨R,S[c], T [c]⟩

σ3 ⟨R,S[b], T [d]⟩

σ4 ⟨R,S[c], T [d]⟩

σ5 ⟨R,ST [b]⟩

σ6 ⟨R,ST [d]⟩

σ7 ⟨R,S[b]⟩

σ8 ⟨R,S[c]⟩

Constraints:

1. xσ1 + xσ2 + xσ3 + xσ4 + xσ5 + xσ6 = 1 (one probe order)

2. −2xσ5 + xσ′1 + xσ′2 ≥ 0

3. −2xσ5 + xσ′3 + xσ′4 ≥ 0 (subqueries for σ9)

4. −PCost(σ1) ⋅ xσ1 + StepCost(σ7) ⋅ y7
+StepCost(σ1) ⋅ y1 ≥ 0

5. −PCost(σ3) ⋅ xσ3 + StepCost(σ7) ⋅ y7
+StepCost(σ3) ⋅ y3 ≥ 0

. . .

Optimization goal:

min StepCost(σ1)yσ1 + StepCost(σ3)yσ3

+ StepCost(σ7)yσ7 + . . .

Figure 7.1: Deriving an ILP for queries q1 and q2.

81



7. Multi-Query Optimization and Adaptive Join Processing

Multi-Query Optimization Example

In this example, we only focus on choosing probe orders and ignore materializing

subqueries and partitioning. Thus, we ignore additional cost for broadcast and do not

write the partitioning attribute. Consider the queries q1 = (R,S,T,R.a = S.a,S.b =

T.b) and q2 = (S,T,U,S.b = T.b, T.c = U.c) where each relation streams at a rate

of 100 tuples per time unit and the join between S and T produces 150 intermediate

results, while the other join produces only 100 intermediate results. We now focus on

what happens with relations S in q1 and T in q2. Optimizing each query individually,

we would install the probe orders ⟨S,R,T ⟩ and ⟨T,U,S⟩ in order to avoid the more

expensive intermediate join between S and T , and send in total 475 tuples for prob-

ing in each query, thus 950 tuples in total. Since for answering q1 (respectively, q2)

correctly tuples must to be sent from T to S (S to T ), we can exploit this and instead

install probe order ⟨T,S,U⟩ (⟨S,T,R⟩) for q2 (q1).

For the optimization problem we assign variables for the steps in the probe order,

e.g., xRS for the cost of sending R-tuples to the S-store for probing, or xRST for the

cost of sending the intermediate result of R & S to the T -store for probing. The cost

associated with these variables is 100 for all �rst steps, and 75 for joins between S

and T and 50 for the other joins (c.f. Formula 6.1). For q1 and starting relation S the

following constraint rows are added to the ILP:

x1 + x2 = 1

−150x1 + 100xSR + 50xSRT ≥ 0

−175x2 + 100xST + 75xSTR ≥ 0

x1 stands for the probe order ⟨S,R,T ⟩ and x2 for the probe order ⟨S,T,R⟩. The

�rst line makes sure that only one of these variables can be 1 and this variable deter-

mines which of the probe orders will be installed in the running topology. The second

line enforces that if x1 is set to 1, then also xSR and xSRT are set to 1.

For q2 and starting relation S there is only one probe order, thus the following

constraints rows are added to the ILP:

x3 = 1

−150x3 + 100xST + 75xSTU ≥ 0

Essentially, this leaves no choice: x3 has to be set, and consequently also xST and

xSTU have to be set, and thus S tuples need to be sent to T and afterwards to U in
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order to produce all desired join results. The optimization goal then includes the here

mentioned cost variables and more which are not shown for clarity:

min 100xSR + 50xSRT + 100xST + 75xSTR + 75xSTU

As discussed, xST and xSTU need to be set to 1 due to q2. This way, selecting the

probe order x2 (and thus setting xSTR to 1) adds only 75 to the cost. Selecting x1,

on the other hand, requires xSR = xSRT = 1 and adds 150 to the cost. Hence, the

locally—for query q1 in isolation—suboptimal probe order x2 is chosen and an overall

lower number of tuples needs to be sent around.

7.1.1 Analysis

The number of materializable intermediate results of a query over n relations is in the

worst case 2n when the query graph is a clique, i.e., for every pair of relations there

is a join predicate. For example, for a linear query, the size of MIRs is the number

of consecutive subsequences of a word of length n, so only n(n + 1). The number

of candidate probe orders per query and relation is, in the worst case, the number of

permutations of these subsequences times the number of partitioning options. This

all heavily depends on the query. For example, for a linear query there are 2n−2 and

a star query has only n − 1 partitions to choose from. The number of ILP variables is

then for all queries the sum of the amount of candidates for each query, as well as the

pre�xes of the probe orders.

7.1.2 Transformation to Executable Strategies

The result of the ILP optimization is the assignment of probe order variables (and step

variables, but we can ignore them). We now detail on how to construct a topology of

compute tasks for actually computing the query.

The probe orders with variables set to 1 are the probe orders that should be used

in the actual query execution. We merge probe orders into probe trees, as illustrated

in Figure 7.2. Here, we see several probe orders for the starting relation R. Since σ1
and σ2 both have the same �rst step, probing the S-store, they are represented by

the edge from R to the node with label S[d]. Multiple outgoing edges in this graph

indicate that a tuple is copied and sent to both targeted stores. This is done for all

probe orders, such that we end up with a forest of such probe trees. For each distinct

label of the inner nodes, a store is introduced in the topology. This way, nodes with

the same label in di�erent probe trees refer to the same store and data is not stored

redundantly. For the roots, ingestion methods (in case of Storm these are Spouts) need

to be installed. For each edge of a probe graph, a new, unique, edge label is introduced.
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Algorithm 6 Non-adaptive version of incoming tuple handling procedure.

1 fun handle(ein, tuple)
2 rules ← ruleset[ein]
3 for rule in rules
4 switch type(rule)
4 case StoreRule: store(tuple)
5 case ProbeRule: probe(tuple)

With help of these edge labels, rules are registered at all stores. These rules de�ne

the behavior of the store for a received tuple based on the incoming edge label. The

sending store is not enough, as there might be tuples from di�erent probe trees sent

from one to the other store. These tuples stem from di�erent (sub)relations and the

probe result is sent to di�erent stores for further processing, so we use the edge labels

instead. A rule follows the pattern if tuple arrives from edgeEin, probe using predicate
P , and send result (if any) to Eout. All rules registered to a store are organized in a

ruleset. On each arriving tuple this ruleset is consulted for deciding how to proceed

with the tuple. During runtime, Algorithm 6 is used to decide on a worker how to

process a tuple: in Line 2, the matching rules for the incoming edge are extracted.

Since this is done for every tuple, this must happen quickly, so the ruleset is organized

as hash map keyed by the incoming edge labels. Then the type of the rule decides how

the arriving tuple has to be handled. If the rule is a store rule, like in Line 4, the arriving

tuple is added to the local store of arrived tuples, and is ready for other later arriving

probe tuples. These arrive over edges where a probe rule is registered. If such a tuple

arrives, Line 5 makes sure it probes with the previously arrived tuples of the stored

relation.

A probe rule contains a description of the way of accessing the tuples. For exam-

ple, a tuple sent via s3 in Figure 7.2 contains a partial result of R&S, and the T -store

contains the previously arrived tuples of T . For the local probe handling at work-

ers it is irrelevant how the store is partitioned. Consider here that the probe should

determine join partners for the predicate R.b = T.c. The probe rule accesses the R.b-

attribute of the incoming tuple and needs to �nd all stored tuples with the same value

in T.c for creating join results. For each distinct attribute access in a store, indices are

created locally for e�ciently answering probe request.

We implement this ILP-based optimization in CLASH as individual optimizer that

produces a physical graph. With this physical graph, the same topology generation

and execution infrastructure as in our previous approaches can be used.
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σ1 ∶ ⟨R,S[d], T [b]⟩

σ2 ∶ ⟨R,S[d],W [e]⟩

σ3 ∶ ⟨R,U[a]⟩

R

S[d]s1

U[a]s2

T[b]s3

W[e]s4

Figure 7.2: Three probe orders for the same starting relation merged into a probe tree.
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Figure 7.3: Extension of our join processing architecture for estimator, optimizer, and
topology controller.

7.2 Continuous Optimization

In this section, we detail on the process used for continuously deciding on optimizing

the query plan in use. The high-level aspects can be seen in Figure 7.3, where the

dotted box in the middle houses the join processing stores as explained in the previous

chapters. Before, optimization was done o�ine, i.e., the query and estimation data was

sent to the optimizer, the optimizer produced a plan and consecutively CLASH built a

topology which is submitted to a Storm cluster. Now, optimization becomes an online

process. For this, �rst estimations need to be continuously updated. The estimator

component periodically receives statistics from the stores, as well as a sample from

the input. Based on this, the estimator provides estimations to the optimizer. The

optimizer does the same as before, and provides a query plan. This plan is now sent

to the controller, which is able to instruct the stores to behave di�erently, e.g., by

installing new probe orders.

7.2.1 Estimation

For estimation, we use a combination of sampling and result interpretation. The idea

is, that we can exactly measure the performance of the installed probe orders. For

potentially better probe orders, we can only make educated guesses based on statistics.
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Consider the following example. We have a three-way join query (R,S,T,R.a =

S.a,S.b = T.b), and currently probe order σS = ⟨S,R,T ⟩ is in place. From this

probe order, we can actually observe selectivities fR,S and fR&S,T . However, there

is another valid probe order σ′S = ⟨S,T,R⟩. In order to estimate the performance of

σ′S we need to estimate fS,T and fS&T,R. From the probe orders σR and σT , we can

observe fR,S and fR&S,T as well as fT,S and fT&S,R. Now there are two additional

cases for the predicates that in�uence how much we can learn from them. The �rst one

is, if the predicate correlates with time. This means, as a probe from S to T will only

join the arriving s tuple with tuples from T that arrived before, and if the predicate

says “T comes after S”, then the observed join fS,T will have close to zero results,

however we cannot use this estimation for fT,S . If the predicate is independent of

time, then we can actually use the observed value of fT,S from σT to estimate the �rst

part of σ′S . The next case is independence of predicates. If R.a = S.a and S.b = T.b

are independent, then fR,S,T = fR,S ⋅ fS,T . If this is the case, then we can estimate

fS&T,R from fT,S and fR,S (both assuming time-independence).

Sampling

The data we gather for sampling depends on the query. For example, for a query

(R,S,R.a = S.a), the b-value (if it exists) of either relation is not interesting. Instead,

for each relation Ri with attributes a1, . . . , ak occurring in some predicate of the

query, we record a sample RSi ⊆ πa1,...,ak(Ri) with sampling factor sfi such that

∣RSi ∣ ⋅ sfi = ∣Ri∣.

As streams may occur with di�erent input rates, it is not useful to set a sampling

factor equal for each relation. For example, for a stream with low input rate it might

be feasible to use the entire stream for the size estimation, however for a fast stream

using the entire stream would over�ow the sampling component.

7.2.2 Adapting to Changes

As data characteristics or query work load changes, a new strategy might become

more optimal than the currently deployed one. The goal is to switch to this new strat-

egy without downtime or loss of results in the meantime. We achieve this by dividing

the time into epochs and making the con�guration of all components depending on

these epochs.

7.2.3 Epoch-Based Con�guration

In Section 6.3, we introduced epochs as periods of time for grouping stored data. Now,

we also use the level of epochs for dynamic recon�guration. An epoch has a starting

timestamp and is considered the current epoch until another epoch with a later time-
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Figure 7.4: Above: Changes in statistics gathered during one epoch impact the epoch
after the next one. Below: Tuple r ∈ R arrives and can �nd join partners depending
on the stores installed in the candidate epochs.

stamp is created. For each epoch, the data sampled from the epoch is used to create

epoch-local data characteristics. This is done in the next epoch, and so changes can

be decided for the epoch after that. Figure 7.4 illustrates this: during epoch i sample

data is gathered from the inputs. When epoch i + 1 starts, the statistics from i are

evaluated and fed into the ILP optimizer. If the optimization result di�ers from the

previous one, a new con�guration is created. This con�guration is sent to all workers

to be active starting at epoch i + 2.

In this example, there are two targets for the �rst probe, and in general there can

be more. Thus, the task receiving the input tuple needs to keep track of where tuples

need to be sent. Algorithm 7 demonstrates how this is done. In Line 2, we determine

the target epochs where join partners according to the windows in the query can be.

This also depends on the queries installed in the system. In Figure 7.4, for tuple r

the target epochs are i, i + 1, and i + 2, and the receivers are the S and the ST -store.

This could be the result of the optimizer deciding for epochs i and i + 2 to use probe

orders ⟨R,S,T ⟩ and for epoch i + 1 probe order ⟨R,ST ⟩. In Line 3, we iterate over

the receivers and then emit the tuple in Line 4 to the receivers and also send the target

epoch. This epoch variable signals the state of the stores the probe tuple wants to see.

This is re�ected in the changed handle function, also shown in Algorithm 7. Here

each tuple arrives annotated with an epoch. Using this epoch, we get the ruleset that

is valid for this epoch in Line 7. If there are store or probe rules, we also store or probe

with respect to this epoch in Lines 10 and 11. This means, that also for each epoch,

an independent container is created on each worker together with all aforementioned

indexes. If at the end of probing a result is observed, the receivers of the next step

depend on the epochs determined by the originating tuple’s timestamp. In the end,

the entire result consists of the union of the results of all covered epochs.
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Algorithm 7 Adaptive version of handling procedures for tuples of input relations
and intermediate tuples.

1 fun handle_input(tuple)
2 for epoch in get_epochs_for(tuple)
3 for receiver in receivers of target_epochs
4 emit(receiver, epoch, tuple)
5
6 fun handle(ein, epoch, tuple)
7 rules ← ruleset[epoch, ein]
8 for rule in rules
9 switch type(rule)
10 case StoreRule: store(epoch, tuple)
11 case ProbeRule: probe(tuple)

As the query’s window is not aligned with the epochs, the workers need to check

not only the join predicate, but also that the window condition is satis�ed.

7.2.4 Supporting Query Changes

So far, the description focused on a given set of queries and how to adapt to changing

data characteristics. In a long-standing streaming system, users also want to install

new queries or remove old ones when they are not interesting anymore, which also

captures updating a query. When a new query is installed, at the next run of the

optimization procedure, it is also considered and corresponding probe orders will be

generated. Hence, results can start being reported as soon as the new con�guration

is installed.

Typically, if a system starts answering a new query, the �rst window size does not

contain all data. This is because only after the query is installed, tuples are started to

be collected in operators for joining. Consider the scenario in Figure 7.5 where at time

τ0 a new query for joining R and S is installed. If streamed relations R and S were

only to be observed since τ0, consequently only these tuples can be probed against.

This means, if at τ1, a tuple from R arrives, and it is probed against the S-store, it is

not possible for the system to match these tuples from S that satisfy the join predicate

and the window condition, but were observable in the original data stream before τ0,

as indicated by the red line from τ1 into the past. Vice versa for the tuple arriving at τ2
which cannot meet the theoretical join partner from R. If at time τ3 the tuple arrives

and a join partner was arriving after τ0 in the probed stream, this partial result can

be made. Thus, only after waiting a full window length, such a system can provide

complete answers. If a system is continuously running, and as it is answering other

queries, the state used for the other queries is available to a new one. This means, the
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Figure 7.5: The result of query (R,S, θ) installed at τ0 when it can only access tuples
arrived later than τ0 or also prior tuples.

registered stores can be exploited to provide complete answer for new queries more

quickly.

If for all but one inputs of a query stores are registered, we compute probe orders

for all epochs that overlap with the current window, and append these probe orders to

the worker’s con�gurations. This way, we can instantly begin answering all desired

join results, and avoid the bootstrap problem of having incomplete statistics.

When a query is not needed anymore, it is removed from the optimizer input.

But that also means, that previous store windows might not be needed anymore. A

reference counting strategy determines the number of queries a store is serving. As

soon as this counter drops to zero, the store is deregistered.

7.3 Experiments

The experiments are organized into three sections. First, we investigate the overall

performance of our adaptive multi query optimization. Second, we speci�cally look

at single-query performance to understand the bene�ts of adapting query plans to

changing data characteristics. Last, the impact of input sizes to the ILP performance

is investigated in detail.

We implemented the described routines as extensions to CLASH in Kotlin 1.4,

and Gurobi 9.0.0rc21 is used as the solver for the ILPs. The optimized query plans

are translated by CLASH into Apache Storm v2.2.0 [1] topologies and executed on

OpenJDK 11 running on a compute cluster of 8 machines. Each machine has 128GB

DDR3 memory and two Intel Xeon CPUs 1.7 GHz with 6 cores. This means, we could

run up to 96 workers with 10GB memory in parallel. The cluster nodes are connected

1https://www.gurobi.com/
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using 10Gbs ethernet network. Input data is consumed from and output is written to

Kafka over the same network; the state of the stores is kept in the main memory of

the worker processes.

7.3.1 Multi-Query Performance

The following alternatives to processing bulks of queries are considered for compar-

ison:

1. Several independent Apache Flink [8] Jobs, one for each query, are initiated.

We refer to this strategy as Flink Independent (FI).

2. Analogously for Apache Storm topologies, coined Storm Independent (SI).

3. A naive multi query optimization strategy where each query is optimized indi-

vidually with common subplans being executed only once and shared in Flink,

coined Flink Shared (FS) and

4. likewise for Storm, Storm Shared (SS).

5. Lastly, our approach of global optimization: CLASH-MQO (CMQO).

Like in the previous chapters, we used the TPC-H data set [3] with a scale factor

of 10. We create join queries based on present primary, foreign keys and, additionally,

type compatible data of TPC-H, which means that two columns can be used for joining

if they contain equal values. This leads to a mixture of common primary-foreign-key

style joins, high-selectivity joins (e.g., on ‘lineitem.linestatus’ and ‘orders.orderstatus’

where the domain consists only of F, O, and P), and low-selectivity joins (e.g., on ‘cus-

tomer.custkey’ and ‘nation.nationkey’ where only customer tuples with the lowest

keys �nd a join partner). Using these potential joins, we construct queries by select-

ing a random relation and then randomly adding joins until the desired query size is

reached.

We start by investigating the throughput of the systems. For this, data is fed into

Kafka at the maximum sustainable rate for each con�guration. The throughput is

the time di�erence between the �rst and the last processed input tuple divided by

the number of input tuples. We use the �ve queries shown in Figure 7.6a where no

additional �ltering was imposed on the inputs and the full history of the input tu-

ples is considered, and another test with ten queries, with additionally more partly

overlapping joins.

In Figure 7.6b we see the throughput of these workloads where Flink and Spark

reach roughly the same performance as well as already a speed up of 1.4 with triv-

ial sharing. Flink’s throughput is a smidge higher what can be explained with the

overhead of our routing implementation. Our approach of globally optimizing these
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Figure 7.6: Multi-Query Performance on TPC-H data.

queries brings us a speedup of 2.6 compared with the naive implementations. The

great potential of sharing state can be seen in Figure 7.6c where we compare the

Storm implementations of isolated and shared execution. We see here, that with �ve

queries running independently, 3.1 times the memory is required and with ten queries

even 5.3 times. For measuring the latency, we assign each tuple a timestamp when it

arrives at the system and another timestamp when all join results with this tuple are

computed, and record the di�erences between these timestamps. Figure 7.6d shows

that the average latencies with shared multi query optimization are increased by 14

to 16%, compared to the other modes. This is due to the increased chance of selecting

locally suboptimal probe orders which then leads to tuples taking longer in order to

report a result.
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7.3.2 Impact of Adaptation to Individual Queries

For this test we use a four-way linear join query of arti�cially generated relations

(R,S,T,U,R.a = S.a,S.b = T.b, T.c = U.c) where the inputs arrive with a constant

rate of 100k tuples per second. The join attributes are set such that each tuple will be

part of one join result, i.e., half of the tuples �nd join partners during probing. The

window size is �ve seconds for each input and the epoch duration is one second. We

initialize the optimizer with a little higher selectivity for S(b), T (b) to make sure the

probe orders ⟨S,R,T,U⟩ and ⟨T,U,R,S⟩ are selected.

We compare the latencies of adaptive reoptimization (A) and the initial static plans

(S) and initially they perform very similar with a little short of 56ms latency, as de-

picted in Figure 7.7a. After 15 seconds the input changes drastically, now every tuple

of S �nds 100 join partners in R, but none in T ; vice versa for T -tuples. Immediately

after this the latency of both topologies increases slowly to about 72ms, which is due

to tuples being longer in bu�ers as the workers try to catch up. In the adaptive strat-

egy this works and after roughly a window a healthy latency is regained. The static

strategy cannot recover from this change and eventually the workers failed due to

memory over�ow.

We then use the same query, but with di�erent input rates. R has 5M tuples per

second, the other ones several orders of magnitude slower at 5k tuples per second. In

Figure 7.7b we show the latency for the static topology which remains at the same

constant level. Again after 15 seconds we induce a change of the incoming data, now

the size of the intermediate result of S,T , and U gets very low. This is recognized

again after one epoch and a store for the result of the join of S,T , andU is introduced.

We see a decline of the average latency that stabilizes from second 22 on a value of

about 36ms. During the decline phase, join partners are found already in the new

store, but also older join partners need to be probed iteratively.

7.3.3 ILP Optimization

We simulate an environment consisting of multiple relations that can be joined to-

gether with given input rates and join selectivities. In this environment we randomly

generate queries and for each query we generate all probe orders and the correspond-

ing ILP model as described in Section 7.1. This model is solved using Gurobi. We

compare the cost of the joint query plan where query plans are shared and the cost

for plainly applying only the best probe order for each query individually. Tests were

conducted on a system with 3.1 GHz Intel Core i7 CPU and 16 GB main memory.

The input relations have all the same arrival rate and a join between any two

relations has a selectivity of arrival rate−1.

The �rst trial consists of ten input relations with three attributes each. We gener-
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(b) Adaptive join processing lowers the aver-
age end-to-end latency.

Figure 7.7: Adaptive execution.

ate nQ queries that each span three relations and eliminate exact duplicates (as these

would be anyway answered together by a naive implementation). Figure 7.8a shows

the cost without sharing in the line for individual optimization and with sharing for

multi query optimization. The more queries we generate (over the same set of in-

put relations), the higher the average probe cost gets for both. But in case of multi

query optimization, the probe cost of the MQO is signi�cantly lower, around 50%,

than without sharing of probe order pre�xes.

In Figure 7.8b, we show how the problem sizes grow: the number of variables

fed into the ILP solver, indicated by the green line, grows more slowly the higher

the number of queries; for 100 queries with each 3 relations, it is in average 1717.

This slow growth is because the more queries are optimized simultaneously, the more

potential for sharing probe order pre�xes there is, and each shared probe order pre�x

also shares a variable. The purple line indicates the number of probe orders and it

also grows slowly. This is due to the fact that as we draw more queries over the small

amount of input queries, the chances of producing the same query again increases.

We now examine the bene�ts for a higher number of input relations: the queries

are now randomly drawn from 100 input relations, each with three attributes. Fig-

ure 7.8c shows the probe cost savings, and here we see that for few queries nearly no

savings are visible. For example, at 50 queries around 15% of the cost can be saved.

In Figure 7.8d we see how also the problem size behaves more linearly. If we look

at the absolute numbers, we see, for example for nQ = 50 that 3000 variables are re-

quired compared to less than half of it in Figure 7.8b. This is due to the fact that the

generated queries have very little overlap and thus only little possibility of sharing.

Both graphs are not linear but slightly convex. This is because each new query also

adds more possibilities for partitioning of a store, and each partitioning choice also

increases the numbers of probe orders generated for a single query and consequently
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7. Multi-Query Optimization and Adaptive Join Processing

also the number of variables generated in the ILP.

In Figure 7.8e, we show the runtime for optimizing a di�erent number of queries

generated over 100 input relations, and see that it grows linearly, while even at 100

simultaneous queries, the optimization time is at 120 milliseconds. In this experiment,

all queries where over three relations. We wanted to �nd out, how this approach scales

to bigger queries, and thus altered the query size, i.e., the number of relations input

into a query. In Figure 7.8f, we see how the size of input relations e�ects optimization

time. Already ten queries of size four take 400ms—one order of magnitude more than

ten queries of size three. Optimizing ten queries of size �ve takes twelve seconds, and

optimizing 30 queries of size �ve takes over two minutes. While this adds to the delay

of restructuring the topology to run in an optimized way, query answering can begin

earlier with locally optimized probe orders de�ned on the input relations.
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Figure 7.8: ILP Experiments.
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Chapter 8

The CLASH System for Multi-
Way Join Computation
This chapter details on CLASH, the research prototype we built for implementing the

join computation strategies presented in the previous chapters. CLASH is a generic

and extensible system, and goes far beyond a proof-of-concept prototype. It accepts

users’ queries formulated in a subset of SQL or via a programmatic API. The opti-

mization framework is designed such that experienced users can develop a custom

optimizer, and the runtime can be extended by specially �tted local join algorithms.

CLASH is designed as high-level abstraction on top of Apache Storm, however,

the optimization artifacts are abstract and can be applied to similar infrastructures

that give control about tuple routing and stateful execution like the recent Apache

Flink framework Stateful Functions [8].

CLASH is not reinventing the wheel when it comes to tuple routing primitives, like

key-grouping, random assignment, full broadcast, etc., as it is using existing stream

processors, as routing substrate—bene�ting further from provenly robust, mature sys-

tems with out-of-the-box properties like fault tolerance. As it is focused on join com-

putation, it only has very rudimentary support for other, orthogonal, operations like

aggregation or classi�cation.

We now �rst look at the big picture of CLASH and explain details of selected

components in the following sections.

8.1 Overview

Figure 8.1 shows an excerpt of the di�erent modules of CLASH and how they depend

on each other; arrows point away from the depending module. The modules can be

roughly divided into core and runtime components, where the former are responsi-

ble for understanding and optimizing queries and the latter are responsible for the

execution of the query.

The common module contains the con�guration and elementary types that are

used by most other modules, like Relation, AttributeAccess, or Predi-
cate. As it is automatically included in all other modules, these arrows are only

lightly drawn for visibility. The query module contains concrete classes for describ-

ing relations and thus queries, and the SQL parser and the QueryBuilder which are

used to construct query objects. The physical_graph module contains the Physi-
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8. The CLASH System for Multi-Way Join Computation

Figure 8.1: Excerpt of CLASH’s modules and their interdependencies.

calGraph and a builder for it, and the optimizer module contains all optimizers.

Since the result of the optimization phase is a physical graph, the optimizer module

depends on physical_graph, and as both need an in-depth understanding of the query

(relation/predicates) at hand, they depend on the query module.

In the runtime section, the documents module contains a description of the wire-

format for messages that are sent between stores. The workers module contains the

part of the stores that actually executes probing and storing operations along with

indices and handling of late tuples. Note that this is separate from the storm mod-

ule, which only cares about setting up bolts and spouts for a topology and using the

rules to call correct functions of a worker. This loose coupling enables usage of other

runtimes, like the one in the local module which emulates Storm in a single-threaded

mode. As the storm and local modules need an understanding of AttributeAc-
cesses, Rules and more, they depend on the query and physical graph modules;

however they are not interacting with optimizers, and vice versa, optimizers do not

care about the runtime logics.

There are more modules that are not shown in Figure 8.1 for clarity. These are

tasked with connection to other systems (e.g. Kafka or In�ux), with supporting fron-

tend functions (like manager and strummer for a REST-API and web-interface), or

contain test data like TPC-H queries and statistics.

8.2 Declarative Querying

Queries in CLASH are declarative; for example, although the syntactical order

of input relations and predicates di�ers, the two SQL-like queries 8.2a and 8.2b are

equivalent. In fact, these queries are also equivalent to queries 8.2c and 8.2d which

are formulated using the programmatic queryBuilder.

While declarative querying is not new—in fact, every relevant database manage-
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8.2 Declarative Querying

SELECT r.a, t.c
FROM r, s, t
WHERE r.a = s.a

AND s.b = t.b

(a)

SELECT r.a, t.c
FROM t, s, r
WHERE s.b = t.b
AND r.a = s.a

(b)

queryBuilder
.from("R").from("S").from("T")
.where("r.a = s.a")
.where("s.b = t.b")
.select("r.a", "t.c")

(c)

queryBuilder
.from("S").from("T")
.where("s.b = t.b")
.from("R")
.where("r.a = s.a")
.select("r.a", "t.c")

(d)

Figure 8.2: Di�erent forms of expressing the same query.

ment system supports this via SQL—the big contemporary stream processing systems

do not or only poorly support this. The bene�t of declarative querying is that neither

human users nor query-generating programs accidentally encode a processing strat-

egy into the query. Since users only express their intent, CLASH can freely choose

a processing strategy best for the current data characteristics or available computing

resources.

8.2.1 Representing Queries as Relations

In CLASH, streamed relations are represented by Relation objects. A Relation
consists of

• inputs, a map from names of other relations to window de�nitions,

• �lters, unary predicates that are de�ned on the input relations individually,

• joinPredicates, binary predicates that are de�ned on pairs of input relations,

• projections, a description of which attributes to include in the result, and

• an alias, a name for this relation.

This de�nition of a relation is purely a speci�cation of the output tuples, and a

query is a thin wrapper around the relation. So in the end, when a user submits

a query, she de�nes how the resulting tuples should look like. CLASH’s task is to

generate a con�guration of the underlying stream processor, to produce such tuples.
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Relation(
inputs = TODO(),
filters = emptySet(),
joinPredicates = setOf("r.a = s.a", "s.b = t.b").toBinary(),
projection = Projection.AttributeProjection(

listOf("r.a", "t.c").toAttributeAccess()
),
alias = RelationAlias("q")

)

Figure 8.3: Construction of a relation object equivalent to the queries in Figure 8.2.

queryBuilder
.from("part").from("partsupp").from("supplier")
.where("part.partkey = partsupp.partkey".toBinary())
.where("partsupp.suppkey = supp.suppkey".toBinary())
.from("nation").from("region")
.where("nation.regionkey = region.regionkey".toBinary())
.where("supplier.nationkey = nation.nationkey".toBinary())
.select("supplier.acctbal", "supplier.name" /*...*/)
.build()

Figure 8.4: Using the QueryBuilder to create a query for TPC-H Q2.

Consider the constructor invocation shown in Figure 8.3. This creates a relation

object equivalent to the previously discussed queries. Here it is again very explicit

that no processing order is encoded into a query, as both, inputs and join predicates,

are unordered. On the other hand, this set-oriented approach allows decomposing a

relation into sub-relations, which in turn can be used by optimizers to better under-

stand partial results they are creating.

Writing such relation objects directly is not very convenient, thus CLASH has two

other methods discussed in the following two subsections, the QueryBuilder and an

SQL-like interface.

8.2.2 Programmatic Query Builder

The recent trends on streaming APIs in programming languages, like Java and Rust,

and data management frameworks, like Flink and Spark, show the urge to provide

means to programmatically construct queries. For this, CLASH exposes the Query-
Builder, which can be used to de�ne the components of a relation in a piece wise

manner. Repeated method calls are used to register inputs, predicates, and projections,

until the build()-method is called and constructs the desired Relation object.
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queryBuilder
.from("tweets", "newer", WindowDefinition.minutes(1))
.from("tweets", "older", WindowDefinition.hours(1))
.where("older.user_id = newer.user_id".toBinary())
.select(Projection.StarProjection)
.build()

Figure 8.5: Encoding window de�nitions while using the QueryBuilder.

A query over the well known TPC-H schema [3] representing the joins used in

Q2 can be built as shown in Figure 8.4. Note, that the n ∶ m join between part and

supplier is syntactically separate from the join betweennation andregion and

thus both could be extracted into separate methods without sacri�cing optimization

potential. In the end, the optimizer is responsible for the push down of predicates as

well as attribute selections.

Inputs and Windows

We di�erentiate between input names and relation aliases. An input name indi-

cates the (technical) source of a tuple. This could be for example, a connection to

Twitter collecting all tweets classi�ed as Dutch-language tweets or a subscription to

some Kafka topic. Such an input name needs to be registered independently of the

query. A relation alias is a name that can be given to any relation, e.g., to query results.

But we also use it to give inputs more meaningful names or for identifying multiple

occurrences of the same input in a self-join scenario. For the writer of a query, as-

signing relation aliases is most of the time optional; CLASH implicitly uses the input

name as relation alias if not speci�ed otherwise.

Windows are assigned to relation aliases such that self joins can be conducted over

di�erent windows. Consider the query in Figure 8.5 with a self join of recent tweets

(last minute) with older tweets (last hour) of the same user. Both from-calls refer to

the same input name “tweets”, and use di�erent aliases and di�erent windows.

8.2.3 The SQL Interface

In addition to the programmatic API, CLASH also o�ers a SQL-like interface. This

interface is realized using the JSqlParser library which is aptly described on their

project website as “JSqlParser parses an SQL statement and translate it into a hierarchy

of Java classes. The generated hierarchy can be navigated using the Visitor Pattern”.1

While JSqlParser o�ers a bunch of features, like parsing DDL and DML statements

1https://github.com/JSQLParser/JSqlParser
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SELECT *
FROM r(’sliding’, ’1’, ’minutes’),

s(’sliding’, ’2’, ’minutes’)
WHERE r.y = s.y

(a) Valid query

SELECT r.x, t.z
FROM r(’sliding’, ’1’, ’minutes’),

s(’5’)
WHERE r.y = t.v

(b) Invalid query

Figure 8.6: Examples of a valid and an invalid query.

or being able to handle dialects of di�erent DBMS vendors, we only use it to parse

SELECT-queries or fragments of it.

Parsing (or rather, interpretation of parsing results) is part of the query module.

Here, we de�ne visitors for all features needed which collect information during their

visit of the syntax tree nodes. Only the parts of the query that are relevant for CLASH

are extracted, so for example, trying to parse SELECT * FROM r WHERE r.y =
(SELECT s.x FROM s) will result in an exception informing the user that using

a sub-select in an equals predicate is not supported.

De�ning Windows

Standard SQL has no means of de�ning window restrictions on relations in the FROM
clause, and our notion of a window is not to be confused with window functions that

can be used in the SELECT clause for aggregation of values. Arasu et al. suggest

in [11] a bracket notation like FROM relation [RANGE 10 seconds] r to

indicate that the input relation relation should have a sliding window of size 10

seconds applied on and is available under alias r for the rest of the query. Support-

ing such a schema implies extending JSqlParser’s lexer to understand such a bracket

expression, which is possible but undesirable, as it means that updates of this library

cannot be easily retrieved from upstream.

Instead, we formulate windows as table functions which JSqlParser supports out-

of-the-box. The parsing result consists of the name of the table function and the

arguments. We interpret the former as relation name and the latter as window de�ni-

tion. Consider for example the query in Figure 8.6a. Here, we have an input relation,

r with a sliding window of 1 minute, and an input relation with a sliding window of

2 minutes. The �rst parameter of the table function indicates the type of the window

(in this case, sliding), and the other parameters are parameters to the window.

Validation of Queries

While CLASH does not require a full-�edged schema, queries need to make sense. For

example, the query like the one in Figure 8.6b has multiple problems. First, the projec-
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tion list contains a reference to t which is not known; the same for the join predicate

in the WHERE clause. Second, the arguments for table function s do not describe a

window (that CLASH can understand). These are all reasons for the validation phase

to reject this query.

8.2.4 Operations on Relations

A big bene�t of such a declarative Relation object is, that it can easily be trans-

formed into another one, similar to relational algebra operations. For example, two

Relations can be joined together by computing the union of their inputs, �lters,

join predicates, and projections, and by assigning a new alias.

Further, we can decompose a Relation into sub-relations as follows: Given a

relation and a list of aliases, create a new relation with the inputs associated with

the given aliases, all �lters that reference one of the aliases, and only join predicates

that compare two aliases. If the projection list of the parent relation contains explicit

attributes, the sub-relation needs also to contain these as well as attributes referenced

in join predicates that connect the sub-relation with the remainder. A new alias can

be de�ned if necessary.

The relations given by a user are inputs and query results. Through compos-

ing and decomposing these relations, optimizers can understand which partial results

are created and stored and access these partial results when answering a new query.

Another way of thinking about this is as implicitly created materialized views in a

database system.

Composability

A query can itself be input to one or multiple other queries. This way, a query written

once can easily be reused. Using a subquery as input to another query is not even an

optimization barrier, as such a complex query can easily be �attened: inputs and join

predicates are uni�ed and the projection is taken from the superquery.

8.3 The Physical Graph and the Optimizer

The goal of the optimization process is to generate a physical graph which is an ab-

stract de�nition of a topology. While this work has Storm as a target in mind, as

description of a data �ow it is still abstract enough, that adapters to other systems

can be used. We will �rst have a look at a physical graph, and then examine the

optimizers which are used to create such a graph.
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8.3.1 The Physical Graph

A PhysicalGraph is a graph consisting of nodes which are interconnected by

directed edges and describes at a high level the processing strategy for answering a

query. It plays a role similar to a physical query plan in a database system, hence the

name.

Nodes can be of multiple types, for example, SelectProjectNodes repre-

sent combined selection and projection operations on streams, or Storess which

store and probe tuples—some of the core components which we explained in the pre-

vious chapters. Like Storm bolts, these nodes carry a meaning of parallelism, and

thus can be partitioned. For example, a ThetaStore is partitioned randomly, and a

PartitionedStore is partitioned according to a list of attribute accesses.

Edges are labelled with a type, one of ALL, SHUFFLE, or GROUP_BY. If the re-

ceiving node of an edge is parallelized, this edge type indicates which parallel in-

stances of that node are targeted. ALL-edges send a copy of the tuples to each instance,

SHUFFLE a single copy to a randomly chosen instance, and GROUP_BY edges send

tuples with the same group-by attributes to the same instance. This might seem re-

dundant, since nodes can already be de�ned with a certain kind of partitioning (c.f.

ThetaStore and PartitionedStore), however it is important to be able to send tuples

with di�erent types to the same store, for example for probing from two di�erent

relations as seen in the previous chapters.

In Section 4.2 we already discussed a simpli�ed version of the physical graph for

a join between two relations. Now we extend this example to see all details of the

physical graph implementation as shown in Figure 8.7. On the left again are input

stubs and on the right is the output stub. The input stubs are labelled with the relation

they are serving, in this case only (R) and (S). In general, this could also be a relation

with a �ltering predicate, for instance, if the input comes from an API that allows such

�ltering, or even a more complex relation. In the center, there are two stores which are

now labelled with the relation they store and also with the relation they produce. This

re�ects the twofold roles stores play, as storage for relations and execution for join

operations. Not every store needs to produce a relation, for example for a three-way

join with probe orders ⟨R,S,T ⟩, ⟨S,R,T ⟩, ⟨T,S,R⟩, only T - and R-store produce

(R,S,T, θ). The nodes of the graph are connected with edges, which now not only

have a type (in this case, shu�e or all), but also an automatically generated name

si, i ∈ N. This name is used to identify edges in rules. The R-input stub for example

has two rules assigned which instruct it to send all incoming tuples of R over s0 and

s3. The R-store has a corresponding role for receiving tuples over s0 and store it as

tuples fromR. TheS-store has the corresponding joinResult for tuples from s3, which

should be joined using predicate θ and use it as a result for the query. If a result is

produced, the resultSend rule instructs this result to be sent along s5. Note, that the
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(R
)

s₀

s₃

s₁

s₂

(S
)

(R
,S
,θ
)

storing: (R)
producing: (R,S,θ)

storing: (S)
producing: (R,S,θ)

[send((R),s₀),
send((R),s₃)]

[receive((R,S,θ),s₄),
receive((R,S,θ),s₅)]

[receive((R),s₀),
joinResult(θ',(R,S,θ),s₂),
resultSend((R,S,θ),s₄)]

[send((S),s₁),
send((S),s₂)]

s₄

s₅

[receive((S),s₁),
joinResult(θ',(R,S,θ),s₃),
resultSend((R,S,θ),s₅)]

input stubs

rules

stores

output stub

shuffle
all

Figure 8.7: Physical graph with annotations for computing (R,S, θ).

joinResult rule is denoted with θ′ instead of θ. This indicates, that this is not only the

predicate itself but decorated with information on which input of the predicate is the

store and which is the probe tuple. Finally, the output stub has receive rules attached

to the incoming edges such that it understands which relations it receives.

8.3.2 Translating MultiStream Operators to Physical Graphs

In the chapters on MultiStream, we have seen how optimizers create di�erent operator

trees. Now these trees need to be used as templates to systematically construct a

physical graph.

The physical graph is built from the bottom of the tree up. First, for each input,

an input stub and a store are registered as well as connections between them. The

input stubs are marked as “relation producers” for their corresponding input relation,

which will be important later.

Then, for each MultiStream operator, the probe orders are implemented towards

the top. The �rst step of the probe order ⟨σR1 , σR2 , . . . σRn⟩ is to connect the relation

producers of σR1 with the store for σR2 . In case of a input relation these are the input

stubs as mentioned before, but for materialized MultiStream operators, this might be

a set of stores. The σR2 store gets an IntermediateJoinRule assigned that instructs it

to react on incoming tuples of σR1 by probing with θσR1
,σR2

and if there is a result,

this should be sent to σR3 . These IntermediateJoinRules are used up to σRn−1 , for σRn

we assign a JoinResultRule. This rule does not consist of an output stream, only of

the instruction for a �nal predicate evaluation. Instead, σRn is also marked as relation

producer for the result of this MultiStream operator.

Finally, all relation producers of the root node are connected with the output stub.
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8.4 Join Processing Runtime

The previous sections were concerned with reading and optimizing queries, and gen-

erating a topology from that. This section explains, how the components that provide

the runtime for join processing are built and deployed. We focus on the discussion

of bolts which execute the store logic, but it should be noted for completeness that

the runtime also includes spouts for reading several types of inputs, bolts for writ-

ing to several types of outputs, as well as more infrastructural elements for logging,

watermarking etc.

8.4.1 Pre�x Containers

A Pre�xContainer is a thin layer that stores tuples in an inner data structure like a list

or a hash map and probes that inner data structure. It is independent of Storm, such

that it can easily be tested and also be deployed to other runtime providers.

The interface of a Pre�xContainer basically consists of two functions, store and

probe. Thestore function places a list of tuples for a given timestamp and attribute

access into the pre�x. The pre�x may use this timestamp and attribute access for

indexing, but this is a implementation decision. A list of tuples is used over a single

tuple, as in general multiple tuples associated with the same timestamp are stored,

as seen in the case of inner nodes of a join tree. This function also uses the given

timestamp to �nd tuples that arrived as probes and have a higher timestamp in order

to return a delayed join result as discussed in Section 5.4.1.

The probe function takes a list of tuples and predicate evaluations and returns

a list of tuples, the join partners. Our predicate evaluations already carry the infor-

mation which parameter of the predicate should be �lled with the stored and which

with the probed tuple. Again, this probe also takes timestamp and attribute access

as parameters, so the implementation can use this for index access. The implemen-

tors of this function are responsible for saving the probe tuples for the delayed result

generation.

8.4.2 Store Bolts

The StoreBolt is now the shell around a (or multiple) pre�x container(s). As the name

suggests, it is a Bolt in the sense of Storm, so it implements the execute function

that reacts on receiving Storm tuples. In CLASH, the StoreBolt contains the set of

rules that were assigned to the corresponding physical graph nodes.

Algorithm 8 shows in a condensed way the implementation of the execute func-

tion. It receives a (Storm) tuple and the sourceStreamId over which this tuple arrived.

This sourceStreamId is used to lookup the rule which was installed in the physical

graph for handling tuples from the corresponding edge. For the rule, there are three
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8.4 Join Processing Runtime

Algorithm 8 Pseudocode for the execute method of a StoreBolt.

input: stormTuple, sourceStreamId
1 rule = rules.get(sourceStreamId)
2 when (rule) {
3 is RelationReceive -> store(stormTuple)
4 is IntermediateJoin -> probe(stormTuple, rule.target)
5 is JoinResult -> probe(stormTuple, rules.sendRulesFor(rule.relation))
6 }

important distinctions: it can be a relation receive, intermediate join, or join result

rule. In Line 3, the receive rule means, that the arriving tuple belongs to the rela-

tion that is located on this store, so the contained documents are extracted and stored

into the pre�x container. If it is an intermediate join rule (Line 4), the tuple is probed

against the pre�x and the results (if any) are sent to the targets set in the current rule.

In the case of a join result rule (Line 5), the tuple is again probed against the pre�x,

but the targets need to be found in the rule set.

This rule-based logic is necessary to allow �exible customization even at runtime.

Further, new functionality can be added easily by adding new types of rules. For

example, if a programmer wants to implement optional persistence, a Flush rule

that forces a write of the stored intermediate results can be added to the store bolt

without interfering with the already existing rules.
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Chapter 9

Conclusion and Outlook
In this work, we have presented CLASH, a full-�edged approach to processing theta

joins in a multi-way fashion. For this, we developed a novel n-way join operator,

coined MultiStream, that leverages �exible probe orders of incoming tuples and allows

constructing versatile join trees. Inside these trees, through an adjustable amount of

speci�c materialization points, trading o� between network bandwidth consumption

and storage requirements is enabled and can be harnessed through the described cost

models and cost-based optimization. The presented approach is extensible in a way

that it allows other operators, like the join-matrix–based HyperCube approach, to be

be easily integrated. We have shown that the integration of more e�cient routing

strategies for equality predicates with the less e�cient but more powerful theta-join

computation is feasible and that a single system can answer such queries.

Further, for computing multiple queries at once, we have seen signi�cant improve-

ment in throughput when combining multiple queries into one big topology. The in-

crease in throughput means, that more tuples can be executed in the same time, thus

the same compute cluster can process streams with a higher arrival rate. Static join

ordering, like used in all currently available streaming systems, is prone to changes in

the size of intermediate join results. However, a strategy for adopting to such changes

avoids crashes, expensive recovery, or missing results.

Both our optimization approaches are computationally expensive, so they are

meant to be used in a scenario like stream processing, where higher upfront cost

of installing a query can be tolerated since the query is meant to be long-running. For

our ILP-approach, optimization takes least time if the individual queries are smaller.

Up to 30 queries of size �ve can be optimized within a second, which is still very

usable for streaming scenarios.

With CLASH, we showed that our approaches are functioning in a realistic system

where complex operators are set up for query answering in an automated fashion. Ul-

timately, join operations are part of the infrastructure of a data analytics application,

and perform in tandem with other operators like aggregations or data access. Our us-

age of stores as containers of entire relations and designated sets of relation-producers

enable the extension of CLASH or the adaption of MultiStream into other systems.

Outlook

We envision that this general approach to compute arbitrary join queries over multiple

streamed relations has the potential to enable new, scalable streaming analytics tasks
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which were not done so far because no system supported it.

In the future, systems could incorporate MultiStream’s principles to enable theta-

join computation, and thus extend the types of queries they support. Also, the usage of

multi-way trees can, even without theta-join support, be helpful in answering queries

on memory-limited systems, due to the memory optimality of �at trees.

In this thesis, we looked at tuple-by-tuple computation, with the relaxation on

multiple tuples at once if they are intermediate results of a single input tuple. For

high-rate streams there might be use-cases where batching up sequences of input

tuples might be bene�cial, e.g., for sharing iterations in the nested-loops join during

probing and limiting the number of total communication events. This approach is for

example pursued by Spark’s Streaming API [10].

A limitation of our approach is, that there is no support for truly n-ary predicates

that are not conjunctions of binary predicates. An example for such a predicate is

θ(r, s, t) = (r.a + s.b = t.c). Here, tuples of all three input relations r ∈ R, s ∈ S,

and t ∈ T are required to evaluate if (r, s, t) belongs to the join result. With the

current setup of MultiStream, the answering of such a query requires computation of

a Cartesian product which we try to avoid. However, there might be other ways to

cope with such n-ary predicates.
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