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Abstract 

In tribology laboratories, the management of material samples and test specimens, 

the planning and execution of experiments, the evaluation of test data and the long-

term storage of results are critical processes. However, despite their criticality, they 

are carried out manually and typically at a low level of computerization and stand-

ardization. Therefore, formats for primary data and aggregated results are wildly 

different between laboratories, and the interoperability of research data is low. 

Even within laboratories, low levels of standardization, in combination with ambig-

uous or non-unique identifiers for data files, test specimens and analysis results 

greatly reduce data integrity and quality. As a consequence, productivity is low, 

error rates are high, and the lack or low quality of metadata causes the value of 

produced data to deteriorate very quickly, which makes the re-use of data, e.g. for 

data mining and meta studies, practically impossible. 

In other fields of science, these are mitigated by the use of Laboratory Information 

Management Systems (LIMS). However, at the moment, such systems do not exist 

in tribological research. The main challenge for the implementation of such a sys-

tem is that it requires extensive interdisciplinary knowledge from otherwise very 

disparate fields: tribology, data and process modelling, quality management, data-

bases and programming. So far, existing solutions are either proprietary, very lim-

ited in their scope or focused on merely storing aggregated results without any 

support for laboratory operations.  

Therefore, this thesis describes fundamentals of information technology, data mod-

elling and programming that are required to build a LIMS for tribology laboratories. 

Based on an analysis of a typical workflow of a tribology laboratory, a data model 

for all relevant entities and processes is designed using object-relational data mod-

elling and object-oriented programming and a relational database is used to pro-

vide a reference implementation of such a LIMS. It provides critical functionalities 

like a materials database, test specimen management, the planning, execution and 

evaluation of friction and wear tests, automated procedures for tribometer param-

eterization and data transmission, storage and evaluation and for aggregating in-

dividual tests into test sets and projects. It improves the quality and long-term us-

ability of data by replacing error-prone human processes by automated variants, 

e.g. automated collection of metadata and data file transmission, homogenization 
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and storage. The usefulness of the developed LIMS is demonstrated by applying 

it to Transfer Film Luminance Analysis (TLA), which is a newly developed ad-

vanced method for the analysis of the formation and stability of transfer films and 

their impact on friction and wear, but which produces so much data and requires 

such a large amount of metadata during evaluation that it can only be performed 

safely, quickly and reliably by integration into the presented LIMS. 
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Kurzfassung 

In tribologischen Laboren sind die Verwaltung von Materialproben und Prüfkör-

pern, die Planung und Durchführung von Experimenten, die Auswertung von Ver-

suchsdaten und die Langzeitspeicherung von Ergebnissen kritische Prozesse. Ihre 

Durchführung erfolgt bis heute ganz überwiegend manuell und ist entsprechend 

fehleranfällig und wenig interoperabel. Eine besondere Herausforderung ist dabei 

die Erfassung und Speicherung von Metadaten und von semantischen Zusam-

menhängen zwischen den vielen verschiedenen Entitäten. Während vor allem im 

Gesundheitswesen Labor-Informations-Management-Systeme (LIMS) eingesetzt 

werden, um die Durchführung von Prozessen zu unterstützen, sind solche Sys-

teme in der tribologischen Forschung nur wenig verbreitet. Bestehende Lösungen 

und aktuelle Bestrebungen sind hauptsächlich reine Ergebnisdatenbanken, die als 

nachgelagerte Datenspeicher für Labore dienen und daher im eigentlichen Labor-

betrieb praktisch keine Rolle spielen. Im Bereich der Prüfkörperverwaltung fehlt es 

an Informationssystemen, die kritische Laborprozesse wie die Vergabe von Iden-

tifikatoren für Werkstoffe und Prüfkörper, das Speichern von Prüfkörper-Merkma-

len auf unterschiedlichen Aggregationsebenen (z.B. einzeln oder als Charge) oder 

die systematische Archivierung von Probekörpern unterstützen. Im Bereich der 

Versuchserstellung und Verwaltung gibt es aktuell kein einheitliches Informations-

system für die enorme Vielfalt von Versuchsarten, Prüfkörperanordnungen, Bewe-

gungsarten und Versuchsabläufen. Im Bereich der Versuchsdurchführung beste-

hen die Hauptherausforderungen im Fehlen automatisierter Prozesse für die Pa-

rametrierung von Tribometern und der Verwaltung der primären Versuchsdaten. 

Entsprechend gering ist der Computerisierungsgrad bei Auswertung und Darstel-

lung von Messdaten sowie bei derer Aggregation. Bestehende Lösungen sind des-

halb häufig auf einzelne Arbeitsgruppen oder gar nur einzelne Personen be-

schränkt. 

Diese Arbeit befasst sich daher mit dem Entwurf und der Implementierung eines 

exemplarischen Informationsmanagement-Systems für Tribologielabore, mit dem 

Ziel die genannten Lücken zu schließen. Die Basis hierfür ist eine ausführliche 

Analyse und Beschreibung der Konzepte, der physischen Entitäten und der Pro-

zess in einem typischen Arbeitsablauf eines auf Versuche der Kategorien VI („Mo-
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dellversuch mit einfachen Probekörpern“) bis IV („Versuch mit unverändertem Bau-

teil oder verkleinertem Aggregat“) spezialisierten Tribolabors. Zu den daraus ab-

geleiteten Anforderungen gehören insbesondere die Unterstützung des Werkstoff- 

und Prüfkörpermanagements, die Erstellung und Verwaltung tribologischer Versu-

che, deren Aggregation zu Versuchsreihen und Projekten, die Automatisierung von 

der Parametrierung von Tribometern, der Übertragung, Speicherung, Auftragung 

und Auswertung von Messdaten sowie die Projektverwaltung und Berichtserstel-

lung. Zur Erfüllung dieser Anforderungen wird mit Hilfe der Objektrelationalen Da-

tenmodellierung ein ausführliches logisches Datenmodell aller relevanten Entitä-

ten erstellt, inklusive deren semantischer Relationen, und dieses dann mit Hilfe der 

objektorientierten Programmierung implementiert. 

Für die Herausforderung des variablen Detaillierungsgrads bei der Identifikation 

und Beschreibung von Prüfkörpern (einzeln, als Charge oder als Klasse) wird hier-

bei ein Modell mit drei assoziierten Klassen entwickelt, die diese unterschiedlichen 

Aggregationsstufen repräsentieren. Die in einem Tribolabor verwendeten Arten 

von Prüfkörpern (Ring, Block, Scheibe usw.) werden dann mittels Spezialisierung 

einer allgemeinen Prüfkörperklasse dargestellt, und zwar auf jeder der drei Aggre-

gationsebenen. Mittels atypischer Eigenschaftspropagierung erlaubt es dieses Mo-

dell, Attribute von Prüfkörpern auf jeder der drei Aggregationsebenen zu definie-

ren, und zwar sowohl attributs- als auch prüfkörperspezifisch. 

Für tribologische Versuche wird – ebenfalls mittels Spezialisierung, die auf Pro-

grammcode-Ebene hauptsächlich mittels Vererbung dargestellt wird – erstmalig 

ein Datenmodell entwickelt, das die große Vielfalt, die sich aus der unterschiedli-

chen Anzahl und Geometrie der beteiligten Prüfkörper, der variablen Versuchsseg-

mentierung (Mehrstufenversuche) und der unterschiedlichen Arten und Versuchs-

segmenten (Gleiten, Stehen, Losbrechen, Oszillieren usw.) ergibt, einheitlich be-

schreibt. Diese Vereinheitlichung bildet die Grundlage für das vorgestellte allge-

meine Verfahren zur automatisierten Parametrierung von Tribometern. Hierfür wird 

serverseitig eine maschinenlesbare Darstellung eines Versuchs erstellt und an ei-

nen Prüfstand übermittelt. Dieser interpretiert die erhaltenen Daten und konfiguriert 

den Versuchsablauf entsprechend. Durch die Automatisierung dieses bisher fast 

ausschließlich manuellen Prozesses wird die Häufigkeit von Fehlern in der Ver-

suchsdurchführung stark reduziert. 
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Als natürliche Verlängerung dieser Maschine-zu-Maschine-Kommunikation wird 

die automatisierte Übermittlung der von einem Tribometer erstellten Messwertda-

tei(en), sowie die serverseitige automatisierte Speicherung unter Aufrechterhal-

tung der logischen Relation zwischen Messwertdatei(en), Versuch, Werkstoff und 

Projekt beschrieben. Die Grundlage hierfür bildet der Ersatz von benutzerdefinie-

ren Identifikatoren für alle abgebildeten Entitäten durch die Vergabe von maschi-

nenlesbaren Identifikatoren durch das System. Für das spezielle Problem der ge-

ringen Standardisierung von Messwertdateien und der daraus resultierenden Viel-

seitigkeit der zu verarbeitenden Dateiformate wird ein einheitliches Dateiformat 

vorgeschlagen. Die Umformatierung erfolgt hierbei mittels einer Spezialisierung 

von Importfiltern bis auf die Ebene der Instanzen des Tribometer-Modells. Hierfür 

wird erstmalig eine Lösung auf der Basis von dynamisch generierten Instanzme-

thoden vorgestellt, deren Programmcode die instanzspezifische Domänenlogik 

enthält und der nicht im Quellcode des Systems, sondern im Datenbankeintrag der 

jeweiligen Tribometerinstanz gespeichert ist. Auf der Basis dieser Harmonisierung 

der Messwertdateien werden Lösungen für die automatisierte und vereinheitlichte 

grafische Auftragung und für die Auswertung von Messwertdateien vorgestellt. 

Neben der Lösung zahlreicher „Bestandsprobleme“ des Informationsmanage-

ments in Tribolaboren wird der Einsatz des Systems bei der praktischen Durchfüh-

rung der Transferfilm-Luminanzanalyse demonstriert. Hierbei handelt es sich um 

ein im Rahmen dieser Arbeit ebenfalls neu entwickeltes Verfahren zur photo-opti-

schen Quantifizierung von Transferfilmen, die sich vor allem im trockenen Gleiten 

von Kunststoffen und Kunststoffverbundwerkstoffen auf Stahl bilden. Anders als 

alle bisher in diesem Bereich bestehenden Verfahren ist dieses gleichzeitig quan-

titativ, zeitauflösend, vollflächig, materialunspezifisch und benötigt keine besonde-

ren Versuchsumgebungen (z.B. Vakuum). Bei seiner Durchführung müssen je-

doch nicht nur sehr große Mengen an Bilddaten bearbeitet werden, sondern auch 

Messdaten aus unterschiedlichen Quellen zusammengeführt und mit einer Viel-

zahl an Metadaten kombiniert werden. Manuell ist dieses Verfahren aufgrund sei-

ner Komplexität nicht durchführbar. Durch die Integration in das neu entwickelte 

Laborinformationssystem gelingt sie jedoch sicher, schnell und - aufgrund der 

Speicherung aller zur Auswertung benötigten Primär- und Metadaten - auch lang-

fristig zuverlässig nachvollziehbar. 
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Glossary 

Abbreviations and Acronyms  

1:1 One-to-one (relationship) 

1:n One-to-many (relationship) 

AAAA Authentication, Authorization, Auditing, Accountability 

ACTIS A Computerized Tribology Information System 

AFM Atomic Force Microscopy 

AISI American Iron and Steel Institute 

AMD Advanced Micro Devices 

API Application Programming Interface 

ARMES  Abrasion resistant materials expert system, name of a tribolog-

ical expert system developed in Australia 

ASTM ASTM International, formerly: American Society for Testing and 

Materials 

ATLAS Automatisches Tribologisches Auswertungssystem, name of 

the reference implementation for a LIMS for tribology laborato-

ries described in this work 

AUS Australia 

BAM Bundesanstalt für Materialforschung 

BeO Beryllium Oxide 

BSD Berkeley Software Distribution, a family of free software li-

censes 

CGI Common Gateway Interface 

CHN People’s Republic of China 

CMDN China Modern Design Net 

CNC Computerized Numerical Control 

COF Coefficient of Friction 

CPU Central Processing Unit 

CRuby Interpreter for the Ruby Programming Language 

CRUD Create, Read, Update, Delete 

CTDB China Tribology Database, name of a tribological database, ex-

pert system and directory for research units and tribologists de-

veloped in the People’s Republic of China 
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DDR4 Double Data Rate 4 

DLC Diamond Like Coating 

DSL Domain Specific Language 

EDS Energy Dispersive Spectrometry 

EDX Energy Dispersive X-ray 

EN Ax European Norm for Cast (EN AC) and Wrought (EN AW) Alumi-

num 

ER Entity-Relationship 

ERD Entity-Relationship-Diagram 

FIB Focused Ion Beam 

FP Functional Programming 

FRA France 

FTIR Fourier-Transform Infrared (Spectroscopy) 

GB Gigabyte 

GeO2 Germanium Oxide 

GER Federal Republic of Germany 

GGr15 Chinese Standard for Bearing Steel 

GIL Global Interpreter Lock 

GPL GNU General Public License 

HH:MM:SS Time format (hours:minutes:seconds) 

HRc Rockwell Hardness, Scale C 

HTML Hypertext Markup Language 

I/O Input/Output 

i-TRIBOMAT Name of a research project in the field of tribo-informatics 

IVW Leibniz-Institut für Verbundwerkstoffe GmbH 

KEY Keyword 

LED Light Emitting Diode 

LI(M)S Laboratory Information (Management) System 

MIT Massachusetts Institute of Technology 

Mo-S-Pb Molybdenum-Sulfur-Lead 

MoS2 Molybdenum disulfide 

MRI Matz’s Ruby Interpreter 

MTI Multi-Table Inheritance 
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MySQL Name of an SQL-based relational database management sys-

tem 

n:m many-to-many (relationship) 

NED Netherlands 

NIST National Institute of Standards and Technology 

OM Optical Microscopy 

Inc. Incorporated 

IR Infrared 

ISIS Name of a tribological expert system developed in the United 

Kingdom of Great Britain and Northern Ireland 

IVW Leibniz-Insitut für Verbundwerkstoffe GmbH 

JSON JavaScript Object Notation 

OOP Object Oriented Programming 

ORM Object-Relational Mapper or Object-Relational Mapping 

PA66 Polyamide 66 

PC Personal Computer 

PDF Portable Document Format 

PEEK Polyether ether ketone 

PHP Perl Hypertext Preprocessor 

PM Project Management 

PostgreSQL Name of an SQL-based relational database management sys-

tem 

PPS Polyphenylene sulfide 

PRECEPT Name of a tribological expert system developed in the Nether-

lands 

PTFE Polytetrafluorethylene 

RAID Redundant Array of Independent Disks 

(Ruby on) Rails Web development framework for Ruby 

RDBMS Relational Database Management System 

Ruby Name of an object-oriented programming language 

rH Relative Humidity 

rpm Revolutions Per Minute 

SEM Scanning Electron Microscopy 

SOVTRIBO Name of a tribological LIMS developed in the Soviet Union 
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SQL Structured Query Language 

STEM Scanning Transmission Electron Microscopy 

STI Single-Table Inheritance 

TB Terabyte 

TLA Transfer Film Luminance Analysis 

TR4 Mainboard socket for CPUs 

TRIBEX Name of a tribological expert system and database developed 

in the Federal Republic of Germany 

TRIBOCOLLECT Name of a tribological LIMS developed in the Federal Republic 

of Germany 

TRIBODATA Name of a tribological database developed in the Federal Re-

public of Germany 

TRIBOLOG Name of a tribological database developed in France 

TRIBSEL  Name of a tribological expert system developed in the United 

Kingdom of Great Britain and Northern Ireland 

TS Test Specimen 

TSC Test Specimen Class 

TSL Test Specimen Lot 

UAP Uniform Access Principle 

US(A) United States (of America) 

UK United Kingdom of Great Britain and Northern Ireland 

UML Unified Modelling Language 

UMT-3 Universal Mechanical Tester 3, brand name of a tribometer 

manufactured by Bruker Corporation 

URL Uniform Resource Locator 

USSR Soviet Union 

UTC Universal Time Coordinated 

UTF-8 8-Bit Universal Coded Character Set Transformation Format 

XML Extensible Markup Language 

YAML Yaml Ain’t Markup Language 
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Latin symbols  

°C Degree(s) Celcius 

\d{n} n-digit integer 

\s+ Whitespace, one or more 

A In-roi horizontal coordinate 

𝑎 Horizontal image position 

𝑎i Horizontal beginning of the region of interest, in absolute image 

coordinates 

𝑎f Horizontal end of the region of interest, in absolute image coor-

dinates 

A-H Beam path designations for TLA 

B In-roi vertical coordinate 

b Vertical image position 

bi Vertical beginning of the region of interest, in absolute image 

coordinates 

bf Vertical end of the region of interest, in absolute image coordi-

nates 

𝑓 Aperture number 

h Hour(s) 

K Calibration constant of a camera’s light sensor 
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L Luminance, absolute, w/ polishing correction 

𝑙 Luminance, absolute, w/o polishing correction 

mm Millimeter 

N Grayscale pixel value 

𝑛 Integer number 

P Test parameter for polishing detection 

𝑅 Polishing ratio 
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Ra Arithmetical mean deviation of the assessed profile, a rough-

ness parameter 

Rz Average of the maximum peak to valley heights of the various 

sampling lengths of a surface profile 

Rp Average of the maximum valley peaks above the mean line of 

the various sampling lengths of a surface profile 

Rv Average of the maximum valley depths below the mean line of 

the various sampling lengths of a surface profile 

S Sensitivity of a camera’s light sensor 

t Time 

texp Exposure time 

trot Rotation period 

w Wear track width 

x Wear track lateral position 

 

Greek symbols  

α Threshold for polishing detection 

Δ𝐴 Width of the region of interest 
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Mathematical symbols, Indices, Superscripts, Miscellaneous  
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 1  Laboratory Information Management in Tribology 

Laboratory information systems (LIS) are mostly defined by their purpose and func-

tionality: “They were initially developed to collect, record, present, organize, and 

archive laboratory results, often with a focus on generating information for proper 

financial management of the laboratory.” [1]. While LIS focus on test specimen and 

testing data, Laboratory Information Management Systems (LIMS) extend this to 

data analysis, workflow and features to meet regulatory requirements. In 2012, 

Prasad et al. provided a definition that reflects the extended scope of a LIMS over 

a mere LIS: “In a very broad sense, the term IS is frequently used to refer the 

interaction between people, processes, data and technology. A management sys-

tem is the framework of processes and procedures used to ensure that an organi-

zation can fulfill all tasks required to achieve its objectives” [2]. A possible use-

agnostic definition of a LIMS might be that it is a data system that manages infor-

mation that are created and processed in a laboratory environment and that addi-

tionally supports a given set of operations in order to comply with internal and ex-

ternal regulations. Despite the difference in scope, the terms LIS and LIMS are 

frequently used as synonyms. 

 1.1  State of the Art 

The use of information technology in tribology can be divided into four different 

types of application: test result and material property databases, bibliographical 

databases, LIMS and expert systems. 

Databases for test results and material properties as well as bibliographic data-

bases are often designed as “flat file databases”, i.e. as single tables which have 

a large number of columns which contain the individual pieces of information on 

test parameters and results [3]. As the results of tribological experiments depend 

on a wide range of parameters, “like load, velocity, temperature, type of motion, 

contact geometry, surrounding medium, the compilation of a numerical database 

for tribological results must include information on the test parameters and the ma-

terial treatment of the test couples” [4]. The user benefit of such systems originates 

from the very quick retrieval of large amounts of data from one single source and 

from the level of detail that can be crafted into electronic queries, e.g. with respect 
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to type of material, temperature range etc. Of course, both of these benefits signif-

icantly depend upon the amount of data stored and on the efforts that were put into 

the original system design and into data input. While easy to implement and main-

tain, flat file databases are highly prone to inconsistencies that arise from spelling 

errors when entering redundant data. Keeping the same information that is stored 

in different locations (rows) of the table synchronous over subsequent batch up-

dates is another issue for such databases. Furthermore, as the number of rows 

grows, the potentially high degree of information redundancy takes up much 

memory and slows down database operations as more information needs to get 

parsed. The main advantages of flat file databases are their ease of design and 

implementation. However, due to their issues with high data redundancy, reduced 

performance and low data integrity they are usually only used for small projects 

with limited scope (e.g. spreadsheet calculations) where short development time 

greatly outweighs these disadvantages. For large scale, long terms projects with 

compliance requirements, flat file databases are no viable option.  

Tribological expert systems “consist basically of a combination of literature data-

bases, material databases, construction rules and numerical results databases” 

[4]. Thus, they usually are complex software packages that comprise tools for an-

alyzing tribological systems with respect to loadings, temperatures, shear stresses, 

contact mechanics and other parameters that occur in the system in question. 

Based on such analyses, they offer tools for the design and basic numerical simu-

lation of typical tribological components of which journal bearings are the most 

prominent example. 

LIMS were originally developed for use in medicine, analytical laboratories in health 

care, biology and chemistry. This origin is reflected by the results of a Scopus 

search on KEY(“Laboratory Information System” OR LIMS). On 28th Nov 2021, this 

query yielded 2,810 hits. Amongst others, they were distributed across subject area 

as follows: Medicine 2,053, Biochemistry, Genetics and Molecular Biology 496, 

Health Professions 263, Computer Science 245, Engineering 213. Even when re-

stricting the search results to “Engineering”, the spectrum of keywords revealed 

that the main focus still was on medical disciplines: Laboratory Information System 

88, Clinical Laboratory Information Systems 75, Human 57, Hospital Information 

System 52, Humans 50, Laboratories 49. Changing the above query to include 
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“Tribology” in either Title, Abstract or Keyword field yielded no hits at all. The same 

was true for adding “Wear” to these fields instead of “Tribology”. 

The first notable effort to use modern computer and information technology in the 

field of tribology dates back to 1985 when the National Institute of Standards and 

Technology (NIST) of the United States of America started the development of “A 

Computerized Tribology Information System” (ACTIS) [5], [6]. Its aim was to con-

centrate tribological data in one location and therefore simplify the transfer of latest 

tribological research into application. It not only contained tribological data like 

wear rates and coefficients of friction but also other material data like heat capacity, 

density or electrical resistivity. Technically, ACTIS consisted of a flat file database 

with 43 columns and 368 rows (entries). The dataset that was provided with ACTIS 

was selected from scientific literature by the software maintainers in cooperation 

with tribologists. Selection of material candidates for a given application was then 

achieved by entering ranges or limits for parameters like wear rate into an applica-

tion software that was run on a PC. Based on user entry, the software then filtered 

the database entries and retrieved the entries that matched the user-supplied cri-

teria. Beyond being a sole material property database, ACTIS also contained ex-

pert system modules that should support the design and numerical modeling of 

basic tribological components like plain and journal bearings as well as gears [7]. 

ACTIS was marketed from 1994 by Actis Inc. of Wilmington, Delaware, USA [8]. 

However, as of 2021, ACTIS Inc. has ceased operation and ACTIS is of no further 

relevance. 

Roughly at the same time than ACTIS was developed in the US, A.M. Zhakarov of 

the Russian Academy of Sciences started to develop SOVTRIBO [7]. It consisted 

of a bibliographical index, tribological material data and expert systems for the de-

sign of tribological components required for the construction of agricultural machin-

ery as well as for calculating wear between rail tracks and train wheels [5]. Further-

more, SOVTRIBO also contained databases and modules that were developed 

and maintained by other research institutions of the former USSR, specifically on 

material data for polymers and composite materials and material data from low 

temperature and vacuum tribology testing [7]. Overall, there is only very little infor-

mation about SOVTRIBO available in Western literature, especially there are no 

referrals to it anymore in recent literature. Hence, it must be assumed that 

SOVTRIBO, like its US counterpart ACTIS, is of no more relevance today. 
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Table 1: Historical and existing electronical data systems for material and tribolog-
ical data, reproduced from [9], expanded 

Acronym Title Country System type/content 

ACTIS A numerical tribology infor-
mation system  

USA Expert system, 
data base 

PRECEPT Tribological principles in an 
expert system  

NED Expert system 

ARMES Abrasion resistant materials 
expert system  

AUS Expert system 

TRIBEX Wear expert system for unlu-
bricated tribosystems  

GER Expert system, 
data base 

TRIBOLOG Numerical data bank FRA Data base 

TRIBODATA Tribological behaviour of poly-
mers 

GER Data base 

TRIBSEL Coating selection expert sys-
tem 

UK Expert system 

ISIS Surface coating selection sys-
tem  

UK Expert system 

TRIBOCOLLECT Numerical, tribological data 
base 

GER Data base 

SOVTRIBO SOVTRIBO USSR Bibliographical index, 
expert system, results 
data base 

- none - Data-Base System of Tribo-
logical Coating Materials 

Jordan Data base 

CTDB China Tribology Database CHN Publications, Products, 
Tribologists and Re-
search Units, Material 
data, Greases, Hydro-
dynamic bearing 

A much more recent example of a tribological test result and material property da-

tabase is TRIBOCOLLECT which has been designed and developed by a team of 

researchers of the Bundesanstalt für Materialforschung (BAM) in Germany [9]. It is 

designed as a flat file database that “contains about 150 attributes per set of data 

(numeric and alphanumeric)” [4]. 

In 1993, work on the China Tribology Database (CTDB) began. It consists of sev-

eral subsystems, including a general information subsystem that consists of “four 

sub-banks: Publications, Products, Tribologists and Research Units”. Furthermore, 

there is a technical subsystem that contains “data of friction materials, abrasive 

wear with fixed abrasive, abrasive wear with loosen abrasive, static friction coeffi-

cients, friction and wear under boundary lubrication in reciprocating motion, seizure 

(PV) limits, fatigue wear of slide bearing materials under boundary lubrication. It is 

also the data of erosion of metals, viscosity–pressure and viscosity–temperature 
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relations of lubricating oils produced in China, and anti-friction or anti-wear perfor-

mance of materials under reinforced friction and wear test.” Furthermore, data on 

greases and on “stiffness and damping coefficients of hydrodynamic bearings” are 

included. CTDB is intended to “connect with the China Modern Design Net (CMDN) 

to support a plan of remote collaborative design in China.” [10] As of December 

2021, no scientific literature on CTDB other than [10] can be found in bibliograph-

ical databases. 

In 2008, Sedlaček et al. reported that they had developed a database for tribolog-

ical properties of Diamond Like Coatings (DLC) in order to be able to collect and 

compare data on DLC coatings, to improve the process of selecting a coating for 

a given set of requirements and to gain new insights by analyzing the collected 

data. [11] For this, they designated 49 attribute fields, including fields on material 

description, coating deposition parameters, test specimen dimensions, test param-

eters and test results. The authors did not only put their own test results into their 

database but also retrieved data on about 800 coatings from scientific literature. 

Although they only took their data from selected peer-reviewed, high-impact jour-

nals (e.g. Surface and Coatings Technology, Wear, Material Science and Engi-

neering, Tribology International and Thin Solid Films), where “testing procedures 

and conditions as well as the results and conclusions are described”, they found 

that “in spite of this, it is not always easy to compare the results” or to “make con-

structive comparisons”. Specifically, they find that the lack of a common reporting 

standard within the scientific community resulted in a large, albeit inhomogeneous, 

data set: “The main problem in gathering data from the bibliography lies in the fact 

that the results are largely given in very general, sometimes only informational 

terms. Furthermore, the test conditions are often not defined exactly. Thus the co-

efficient of friction values are given in large spans (from 0.05 to 0.2), with the de-

gree of wear too often described as great, small or hardly measurable. This kind of 

data is useless if we want to conduct any kind of comparison.” Therefore, their 

attempt to correlate results of their own pin-on-disc tests on DLC coatings with the 

data from their database yielded only very limited correlation for the coefficient of 

friction, while the prediction of the impact of contact conditions on friction and wear 

was virtually impossible. As of December 2021, no follow-up publications on the 

2008-paper of Sedlaček et al. can be found, and although, according to Scopus, it 
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has been cited 55 times, citing papers mostly refer to the numerical results pre-

sented in the paper in order to compare them with their own results. In 2012, Abu-

Ein et al. reported on their database for tribological “coatings, their properties, com-

position, and applications” which is very similar to Sedlaček’s approach [12]. 

In 2019, work began on the most recent electronic system for tribological data 

called i-TRIBOMAT. Its goal is to “develop the world’s largest user-driven open 

innovation test bed that enables versatile tribological characterisation of materials 

and the up-scaling of tribological material behaviour to industrial dimensions” [13]. 

It aims to do so by establishing a ”shared tribological infrastructure of more than 

100 tribometers and characterisation equipment”, including “newly developed pro-

tocols … and online data acquisition”. It is intended to provide “services (for) data 

storage, data sharing and data analytics” as well as a “tribological material data-

base”. Additionally, i-TRIBOMAT should include expert systems for component de-

sign which are supposed to bridge the ”gap between lab-scale characterisation of 

materials, and the tribological requirements of a real-life application”. This is sup-

posedly achieved by providing “material models and dynamic solvers to predict the 

system-dependent tribological behavior of materials, like the life-time or energy ef-

ficiency of various machine components”. Ultimately, i-TRIBOMAT aims at finally 

enabling the transferal of “laboratory results to field applications (lab-2-field)” [14]. 

In the context of the work on i-TRIBOMAT, the “challenges for the design of a uni-

versal tribological database for materials” have been formulated [15] of which data 

harmonization, data interrelation, data re-traceability, data searchability, metadata 

storage and results reporting are the most critical issues to be solved by i-TRIBO-

MAT. The suggested solution for these issues is to utilize the commercial and pro-

prietary Granta MI software package of ANSYS Inc. While including a renowned 

company in i-TRIBOMAT probably increases the chance to achieve the project’s 

ambitious goals, it must be seen how much of the underlying technology will be 

disclosed to the academic community. As of December 2021, only a list of “Chal-

lenges for the design of a universal tribological database for materials” has been 

published [15] but nothing about the solutions that have been identified at least on 

the design or the actual implementation of the data model for laboratory or field 

experiments [16]. 

In 2021, Zhang et al. described a general concept of “tribo-informatics” and an 

architecture for it [17]. They define “tribo-informatics” as a collection of interrelated 
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tasks establishing tribology standards, building tribology databases, and using in-

formation technology to collect, classify, store, retrieve, analyze, and disseminate 

tribology information with the aim of increasing the research efficiency of tribology. 

They too note that the establishment of a comprehensive tribological database is 

much more difficult than for other disciplines (like chemistry, biology or mechanical 

properties) since tribological systems contain many different components (like 

coatings or lubrication oils) that all need to be described properly in order to ensure 

the usability of collected data. The architecture that the authors describe ranges 

from storing experimental raw data through data analysis and interpretation to the 

inclusion of stored data in theoretical models, simulation models and artificial intel-

ligence prediction models. However, the authors only provide a general description 

of a “tribo-informatics” architecture. Although they provide a use case in which an 

implementation of such a system has proven useful to develop and optimize com-

putational models that predict the impact of test parameters on friction and wear of 

a bushing, no information is provided about which actual components should form 

such a tribo-informatics system or how it should actually work. 

Already in 2020, Kügler et al. have addressed the issue of the conceptual com-

plexity of tribological experiments and described an ontology for ball-on-plate tests 

which gives a more formal definition on an important range of entities that are part 

of tribological experiments [18]. While this can be considered a “first step of a for-

mal and explicit specification to enable a shared understanding in the domain of 

tribology” and opens up the possibility of for the “application of machine learning 

techniques for automated processing and analyzing data”, it still does not answer 

the question on how use such an ontology to provision support for everyday oper-

ations in a tribology laboratory, especially to non-experts in the field of ontologies. 

Overall, tribology laboratories conduct most of their procedures manually. Espe-

cially defining individual tests and whole test plans for projects, labelling test spec-

imen, handling and evaluation of measurement data files, result aggregation and 

statistical analysis as well as plotting of primary, computed and aggregated data. 

Some tribometer manufacturers provide proprietary solutions for use with their 

equipment that provide computerized assistance for selected tasks, most notably 

MoohaTM from Ducom Instruments [19] and TriboScriptTM from Bruker Corporation 

[20]. However, being proprietary software, they are typically not free to use, not 

interoperable and limited to functionality of the manufacturers’ tribometers. 
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 1.2  Shortcomings of the state of the art, objectives of this work and 
solution procedure 

Until today, no universally accepted LIMS exists for tribology laboratories beyond 

some narrow-scoped proprietary solutions. Existing solutions and current efforts 

are mainly results databases which serve as downstream data storage and there-

fore play practically no role in actual laboratory operations. In the area of specimen 

management, there is a lack of information systems that support critical laboratory 

processes such as the assignment of identifiers for materials and specimens, the 

storage of specimen characteristics at different aggregate levels (individually or as 

a batch), or the systematic archiving of specimens. In the area of test creation and 

administration, there is currently no uniform information system for the large variety 

of test types, test specimen arrangements, movement types and test procedures. 

In the area of test execution, the main challenges are the lack of automated pro-

cesses for the parameterization of tribometers and the administration of primary 

test data. The degree of computerization in the evaluation and plotting of meas-

urement data and in their aggregation is correspondingly low. 

The objective of this thesis is to bring the domain knowledge of operating a tribo-

logical laboratory, data modelling and programming together in order to create a 

LIMS that provides solution for these shortcomings. Specifically, it will demonstrate 

how to build data models for all key entities of a tribology laboratory and how to 

use using object-oriented programming for implementing them into a LIMS that 

meets the main data storage and process support needs of tribologists. An addi-

tional aim is to demonstrate how using such a system can increase data integrity 

and quality over what is achievable by manual processes. To make sure that that 

its results are universally applicable by the tribological research community, it only 

uses open-source software that is licensed “for free” for academic use. 

For this, this thesis first lays out the fundamental concepts and technologies that 

are needed for translating domain entities into data models and for writing a server-

run, browser-interfaced web application (Section 2, Fundamentals). Then, based 

on a workflow analysis, a set of requirements for such a LIMS is formulated (Sec-

tion 3, Requirements for a LIMS for tribology laboratories). Section 4 then presents 

Atlas, a sample implementation of a LIMS for tribology laboratories. Finally, in Sec-

tion 5, Transfer Film Luminance Analysis (TLA) is presented. While it solves the 

most pressing issues of other techniques for investigating transfer films, it demands 
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the evaluation of a large number of images, the synchronization and joining of dif-

ferent data sources and the persistence of metadata and a large amount of result-

ing data that it cannot be executed manually. However, by integrating it into the 

newly developed laboratory information system, it succeeds safely, quickly and re-

liably traceable in the long term. 

  



10  

 

  



 11 

 

 2  Fundamentals 

While formally also being state of the art, this section summarizes concepts and 

techniques that are used as tools to achieve the desired scientific progress in the 

field of LIMS for tribology laboratories. 

 2.1  Entity-Relationship Data Modeling 

The entity-relationship (data) model (“ER model”, also “ER data model”) has been 

formally described by Chen in 1976 [21]. ER modeling is the structured process of 

creating an ER data model for a given scope (also called “domain” or “business 

domain”). A data model mainly consists of entity types, entity attributes and their 

relationships as well as a set of rules, often called “domain logic” or “business logic” 

that apply to entity classes and their interaction, as well as of the relationships that 

exist between different entity classes. 

According to Chen, “An entity is a ‘thing’ which can be distinctly identified. A spe-

cific person, company, or event is an example of an entity” [21]. Entity classes are 

abstract definitions used to classify individual entities. Examples of entity classes 

that can be used in a tribology laboratory are “block test specimen” (a physical 

object), tribological experiment (a concept) or test specimen machining (a pro-

cess). A specific tribometer, i.e. an “UMT-3” (by Bruker Corporation), is an example 

for an entity that belongs to the entity class “tribometers”. 

A relationship, according to Chen, “… is an association among entities. For in-

stance, ‘father-son’ is a relationship between two ‘person’ entities.” The description 

of relationships includes, first, names of the associated entity classes. However, 

as in this example, actually only one single entity class – the person class – is 

involved in the “father-son” association. Therefore, both entities should be given 

role names that clarify the role of the individual class. In this case, the “person” 

class participates in the “father-son” relationship in two roles: “is father of” and “is 

son of”. In 1983, Chen published a guide for extracting entities, their classes and 

their roles form English sentences [22]. Finally in 1997, Chen suggested the use 

of fixed word types for various aspects of associations: common nouns for entity 

classes (“planet”), proper nouns for specific entities (“jupiter”, “solar system”), tran-

sitive verbs for roles (“is part of”), intransitive verbs for entity attributes (“large 

planet”) etc. [23]. This system is still in use today and is the de-facto standard in 
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naming relationships and their components. Furthermore, relationships are char-

acterized by two meta-attributes: optionality and cardinality. Cardinality describes 

the maximum number of entities that can be part of the relationship (for both roles). 

If a relation is optional (on any given role), the number of entities that can take fulfill 

the respective role can be zero. Typically, cardinalities larger than one are not 

specified by a finite number but by “many”. Therefore, the following standard car-

dinalities exist: one-to-one (1:1), one-to-many (1:n), many-to-one (n:1) and many-

to-many (n:m), with n and m being potentially infinite positive integers, as well as 

their optional analogues, where n and m are potentially zero. By defining (and en-

forcing) cardinality and optionality of relationships, business and data integrity rules 

can be modeled. As an example, by defining that the relationship between the 

“block on ring-test” class and the “ring tests specimen” class is a mandatory n:1 

relationship, instances of this test type can be formally classified as valid (if each 

test has exactly one test specimen related to it) or as invalid (if there are more than 

one blocks on any test or if any test does not have an associated block). 

Data models exist in three hierarchical levels: conceptual, logical and physical data 

model. The conceptual data model is the most abstract view on the domain. Its 

scope typically spans the whole organization, e.g. a research institute, or academic 

field. Based on this, the logical data model is designed. The logical data will typi-

cally have a narrower scope, i.e. friction and wear testing in an institution’s tribology 

laboratory, and it will contain specific definitions of this scope’s entities (materials, 

tribometers, test specimen), their attributes (test specimen width), attribute data 

types (numeric, string, etc.) and the (semantic) relationships between entities. 

Therefore, several logical data models can exist in an organization or in an aca-

demic field in parallel. Finally, the physical data model defines the actual imple-

mentation of data storage, typically in a relational database management system 

(RDBMS, “relational database”). It specifically describes tables to represent entity 

classes which includes the definition of table columns that store the attributes of 

an entity class. While the logical data model is abstract enough to be independent 

of the actual implementation of the physical data storage, the physical data model 

specifically depends on it and needs to be adjusted in case of changes in the uti-

lized software and/or hardware. 

An Entity-Relationship-Diagram (“ERD”) is a graphical representation of an ER 

model. ERDs use different graphical representations for each component of a data 
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model, e.g. for entities and relationships. Today, many different ERD “styles” exist, 

among them the Chen-Notation [21], the Bachman-Notation [24], the Barker-Nota-

tion [25], the Martin-Notation [26], [27] and the Unified Modelling Language (UML)-

Notation [28], [29]. Mostly, entities are represented by boxes that contain the enti-

ties name as a heading and below it a list of attributes. Relationships are repre-

sented by arrows which are styled or annotated to represent optionality and cardi-

nality. Barker and Bachmann are basically the same: while Barker uses the “crow’s 

foot” to denote an n-ary cardinality of a role, Bachmann uses an arrow. Unary roles 

are simple lines in both notations. Optional roles are denoted with an open circle 

by Bachmann and by a dashed line by Barker. Martin represents cardinality with a 

“crow’s foot” for n-ary roles and with a single cross-line for unary roles. On both 

inner sides of the connections, Martin denotes optionality: an empty circle repre-

sents optional roles (like in the Bachmann-notation) but mandatory roles are de-

noted by a single cross-line. Therefore, mandatory unary roles are represented by 

two cross-lines in the Martin-notation. 

 2.2  Object oriented programming  

 2.2.1  Functional programming 

In functional programming (FP) data and functions exist separately within a com-

puter program. Data is typically defined as a set of variables that contain infor-

mation. Functions are portions of callable code and are intended to operate on 

data. It is up to the programmer to achieve a given goal by feeding data to the 

respective functions and to decide what to do with the function output. 

In Ruby, the programming language that has been chosen for the implementation 

of a sample LIMS (see Section 4) functions are called procedures. While some 

programming languages differentiate between functions, which have one or more 

return values, and procedures which do not have a return value, Ruby does not 

make this difference because in Ruby, all callable objects always have a return 

value (either an explicit one, defined by the return keyword, an implicit one, de-

fined by the last evaluated expression or the default return value nil). When using 

an explicit return value, Ruby procedures return not only from themselves but also 

from the context in which they were called which is often counterintuitive to how a 

function should behave. However, Ruby procedures have a special subtype called 
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lambdas which only return from themselves when using an explicit return value. 

They are therefore the closest match to functions of other programming languages 

and are therefore often called “Ruby functions”. 

For two liquids, water and ethanol, both stored at -14.7 °C (at normal atmospheric 

pressure) a program should decide whether each is frozen. Code listing 1 shows 

corresponding Ruby code in functional programming style. First, the lambda fro-

zen is defined, then the data that represents the substances’ freezing points and 

the current temperature is defined and finally, the lambda is called for each sub-

stance. 

Code listing 1: Deciding whether water and ethanol are frozen at -14.7 °C using 

functional programming in Ruby (=> denotes return values). 

# function definition 

frozen = lambda{ |temp:, freezes_at:| temp <= freezes_at }  

# data definition 

water_freezes_at = 0.0   ethanol_freezes_at = -114.1 

water_boils_at = 100.0   ethanol_boils_at = 78.4 

current = -14.7 

# function calls 

frozen.call(temp: current, freezes_at: water_feezes_at) => true 

frozen.call(temp: current, freezes_at: ethanol_feezes_at) => false 

 2.2.2  Object definition 

Object oriented programming (OOP) eliminates this separation of function defini-

tion, data definition and function calls by joining semantically related data and func-

tionality into a data structure called “object”. Code listing 2 shows the implementa-

tion of the same problem in OOP-style Ruby code. In Code listing 1, the two liquids 

do not appear as monolithic objects in the code. Instead, they are described indi-

rectly by a collection of variables that share the substance name as a prefix, 

thereby creating a pseudo-namespace (which could of course be refactored into in 

a composite data structure like a hash, for example, which would also create a 

semantically joint storage for information on a given object). In Code listing 2 how-

ever, each liquid is explicitly represented: one by the variable water and the other 

by the variable ethanol, which are instances of either the Water or the Ethanol 

class, which are subclasses of the Substance class. When instantiated, they are 

given their respective freezing points which they store internally and which thereby 

become “attributes”. 
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Code listing 2: Deciding whether a liquid is frozen or not, OOP style. 

class Substance 

  # instance method definition 

  def initialize(freezes_at:)  

    @freezes_at = freezes_at 

  end 

  def frozen(current) 

    current < @freezes_at 

  end 

end 

water = Substance.new(freezes_at: 0.0) 

ethanol = Substance.new(freezes_at: -114.7) 

water.frozen(-14.7) => true 

ethanol.frozen(-14.7) => false 

In this program, as it does not define an attribute setter for @freezes_at, the 

freezing points of instances of Substance or its subclasses cannot be altered by 

direct attribute assignment, see Code listing 3, or by mass assignment. This be-

havior is called “encapsulation” and is a major feature of OOP that enables granular 

control on how data stored inside objects can be read or modified. 

Code listing 3:  Attributes and encapsulation – freezing temperatures defined at 
object creation cannot be changed later 

water.freezes_at = -50.0 

=> NoMethodError (undefined_method ‘freezes_at’ for 1:Substance) 

While in FP, the freezing of liquids was defined in a separate function, OOP moved 

this function into a Substance class and called it a “method”. Methods are there-

fore functions that are defined within a class. While in FP, the frozen function is 

called in the global scope of the program, methods are called on their respective 

objects. As each of the two objects that represent water and ethanol stores the 

freezing point of its respective substance internally (in an instance variable), both 

can execute the same instance method, however each using its own internally 

stored freezing point. The difference is that, once the objects are instantiated, the 

caller does not need to know the freezing point of the object but only needs to 

provide the temperature for which the information on the aggregate state is re-

quired. Overall, FP and OOP distinguish themselves significantly by their organi-

zation of data and functionality. While FP typically defines a set of functions to 

operate on data, OOP joins data and functions to form objects whose internal state 

can be isolated from the exterior. 
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 2.2.3  Inheritance, Generalization and Specialization 

Besides encapsulation, another feature of OOP that clearly distinguishes it from 

FP is inheritance [30]. Inheritance is the construction of classes based on one or 

more existing classes instead of building each class from scratch. A class that is 

created this way is called “subclass” and the class from which it is derived is called 

“superclass”. The central principle of inheritance is that subclasses inherit the at-

tributes and methods of their superclass(es). While other programming languages 

allow subclasses to be derived from more than one superclass (“multi-class inher-

itance”, e.g. Python), in Ruby classes can only inherit from one class, but each 

class can have an unlimited number of subclasses. While allowing single-class in-

heritance only greatly restricts the flexibility of composing tailored classes from a 

collection of base classes, Ruby allows classes to mix-in an infinite number of mod-

ules (= non-instantiable classes) in addition to inheriting from one class. 

Code listing 4: Class inheritance in Ruby 

# define superclass 

class Substance 

  def frozen_at(temp) 

    temp <= self.class.instance_variable_get(:@freezing_point) 

  end  

end 

# define subclasses                  

class Water < Substance            class Ethanol < Substance 

  @freezing_point = 0.0              @freezing_point = -114.7 

end                                end 

# object instantiation  

water = Water.new 

ethanol = Ethanol.new 

# method calls 

water.frozen_at(-14.7) => true 

ethanol.frozen_at(-14.7) => false 

Code listing 4 revisits the frozen liquids problem but this time three classes are 

defined. Now, Substance only defines the freezing behavior of a substance in 

general. The specific behavior of water to freeze at 0 °C is now defined in Water. 

In terms of data modelling, Water and Substance are in a subclass-superclass 

relationship. The same applies for Ethanol. 

While the term inheritance implies a downstream flow of object implementation, it 

can also be seen as an upstream process: OOP allows for groups of similar classes 
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to be generalized by extracting duplicate behavior and attributes into one or more 

joint superclass(es). Therefore, inheritance is also called generalization when seen 

as an upstream process and specialization when it is seen as a downstream pro-

cess. In each case, the inheritance relationship between superclass and its sub-

classes is characterized by being either partial and complete and by being either 

overlapping or disjoint [31]. It is called “disjoint” if an instance can belong to only 

one subclass and “overlapping” if it can belong to multiple subclasses. The rela-

tionship is called “partial” if an instance of the superclass can exist without also 

belonging to any of the superclass’ subclasses and “complete” (or “total”) if it can-

not. For Ruby, inheritance is partial and disjoint. For Ruby on Rails, it can be made 

complete and disjoint by declaring the superclass to be abstract, i.e. non-instanti-

able. 

 2.2.4  Extension and method overriding 

In addition to inheriting all attributes from their superclasses, OOP subclasses in 

general - and particularly Ruby’s subclasses - are extensible which means that 

subclasses can be given methods that their superclasses do not possess. For ex-

ample, this is the case when not all methods are extracted into a superclass during 

generalization or when - when inheriting - subclasses are given methods that are 

not present in the superclass. 

A special form of extension during inheritance is method overriding which in OOP 

describes the ability of a subclass to provide a specific implementation of an inher-

ited method. Code listing 5 shows implement method overriding in Ruby using the 

example of the sublimation of carbon dioxide. 

Code listing 5: Method overriding 

class CarbonDioxide < Substance co2 = CarbonDioxide.new 

  def frozen_at(temp) co2.frozen_at(-14.7) 

    false => false 

  end 

end 

Overriding the frozen_at method of the Substance superclass results in a sit-

uation where different subclasses, in this case Water, Ethanol and CarbonDi-

oxide, exhibit different implementations of the same method name, in this case 

frozen_at. 
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 2.2.5  Association, Aggregation, Property Propagation and Duck Typing 

Association is a relationship type that connects entities that are considered to be 

otherwise independent of each other. Chen’s example of the relationship between 

father and son is such an association. It connects two people that are otherwise 

independent entities and defines the semantics of this connection. 

Aggregation is a special case of association in which one entity is declared to be a 

part of another entity. An example for an aggregation is a collection of people that 

are students of the same class. Frequently, aggregation objects consist of collec-

tions of objects that are similar in type, attributes and methods. For an aggregation 

object, emphasis is not on its own attributes or methods but on those of its mem-

bers. Aggregation objects (which sometimes are also called association objects) 

typically implement methods that do not access internally stored attributes of the 

aggregation object itself, but whose return value is derived from attributes and 

methods of their members. This technique is called property propagation. The al-

gorithm which determines how exactly the response is derived from the members 

is called propagation function [32]. Code listing 7 shows how a surface object is 

composed of polygon objects of different types and how the total area of a surface 

is derived from the individual members by summing up their respective areas. 

Therefore, the area property of a surface object is a propagated property. This 

OOP design pattern, where all potential members of a collection implement a cer-

tain method (or set of methods) so that they can be iterated over without explicit 

type checking is called “duck typing” (refer to [33] for a more formal definition). 

Code listing 6: Surface as an aggregation class whose instances propagate 

their area property. 

class Surface class Rectangle class Square 

  def initialize(members:)   def initialize(a, b)   def initialize(a) 

    @members = members     @a = a; @b = b     @a = a 

  end   end   end 

  def area   def area   def area 

    @members.map(&:area).sum     @a * @b     @a * @a 

  end   end   end 

end end end 

r = Rectangle.new(a: 7, b: 2) 

s1 = Square.new(a: 3) 

s2 = Square.new(a: 4) 

Surface.new(members: [r, s1, s2]).area => 39 
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 2.2.6  Composition 

Another important concept of object-relational data modelling and of OOP is com-

position which has been initially described by Smith in 1977 [23] and which com-

poses objects from two or more other objects, called components. The difference 

to aggregation objects is that the existence of a composition’s components de-

pends on the existence of the composed object. When a university gets dissolved, 

its individual departments cannot exist independently and get dissolved as well. In 

contrast to aggregation objects, emphasis is on attributes and methods of the com-

posite itself. 

 2.2.7  Uniform Access Principle 

The Uniform Access Principle (UAP) says that “all services offered by a module 

should be available through a uniform notation, which does not betray whether they 

are implemented through storage or through computation” [34]. For a programming 

language to fulfill this requirement, all requests to an object, particularly method 

calls and attribute getters must be syntactically equivalent. This enables the inter-

nal implementation of a response to any given call to be effectively made opaque 

to the world outside of an object. A prominent example is that attributes can be 

either internally stored data that can be simply retrieved and returned, or it can be 

a virtual attribute, whose value is not actually persisted, but which is the result of 

an operation that is performed when the attribute is called. The same concept ap-

plies to setting values of attributes. Therefore, programming languages that sup-

port UAP, like Ruby, greatly simplify the construction of aggregation objects with 

type-mixed members who partially exhibit stored and virtual attributes. Further-

more, they enable code that is much more extensible and much more robust with 

respect to refactoring attributes to methods and vice versa. 

 2.3  Relational Database Management Systems 

A relational database management system is a software that maintains a relational 

database. A relational database structures data according to the relational data 

model proposed by E. F. Codd in 1970 [35]. In this model, data sets are stored in 

tables of rows and columns. The data model is called “relational” because Codd 

used the mathematical term “relation” to describe a row of data in a table. By de-

fault, any given table of a relational database is used to represent one entity type. 
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Therefore, a data model that includes “materials” and “parts” for example would 

have a separate table for both types of entities. Columns of a table represent the 

individual attributes of an entity, e.g. density, name, or color for materials. Further-

more, columns have data types, e.g. “decimal” for density and “string” for color of 

name. Rows, also called records, then contain individual instances of the respec-

tive entity. In order to execute operations on a database, a relational database 

language is needed. Many relational database management systems use the 

Structured Query Language (SQL) for this. SQL has been developed by IBM based 

on the relational data model presented by Codd [35], [36]. 

 2.3.1  Identity 

In order to be able to select individual records, records need to have an identity, 

i.e. a set of attributes that unambiguously distinguishes it from other records of the 

same table. As, mathematically speaking, records are sets, no two records may 

coincide, i.e. have the same values for all attributes. Therefore, a set of all records 

is the trivial choice for identity. For every table of a relational database such a set 

of attributes must be defined and this set is called the primary key of that table. 

This implies that a table with a given set of columns and a given set of rows may 

have multiple attribute sets that qualify as primary key. While for an empty table 

any set of attributes is still eligible as primary key, as no records exist that might 

violate the uniqueness requirement of a primary key, the choice of primary keys 

can be limited for tables with existing records. 

On the other hand, by picking a given primary key for a table, further additions of 

rows to the table may be limited with respect of which values their attributes can 

have. Therefore, the choice of a primary key must be made with care and consid-

eration. However, there are scenarios in which duplicate entries, i.e. entries which 

coincide with respect to all of their attributes that are part of the primary key should 

be allowed. The typical solution for this is to introduce an attribute that is not actu-

ally required to describe the nature of the entity to be recorded but that is solely 

introduced to enable the discernibility of otherwise identical records, i.e. to ensure 

their identity. Therefore, this attribute is typically named “id”. It is a typical example 

of metadata, as it is “data that provides information about other data” [37]. 
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 2.3.2  Relationships 

Relational databases are able to record relationships between records of different 

tables. The standard procedure for this is to set the value of a selected column in 

one table to the value of the primary key of the other table. Such a column is called 

a foreign key column and the value in any row of that column is called “foreign key”. 

The table, which contains the foreign key column is called the “referencing table” 

of that specific relationship and the table whose records are referenced is called 

the “referenced table”. On the level of individual records, the terms “referencing 

record” and “referenced record” are used. As foreign keys do need to have unique 

values, multiple records of one table may reference the same record in another 

table. In general, a table can have none, one or multiple foreign key columns. 

If a record in a given table is thus referenced by multiple records of another table 

and if a referenced record is updated, the updated information will automatically be 

retrieved if any of the referencing records navigates the reference to retrieve the 

referenced record. This way data redundancy can be eliminated, which greatly de-

creases the required memory while increasing data integrity and performance com-

pared to flat file databases. This greatly simplifies the development of multiple-

entity projects. Relational databases are therefore a good choice for implementing 

Laboratory Information Managements Systems. 

In OOP, classes can also have “polymorphic associations” to other classes. In the 

case of binary associations only one of the two roles is defined statically, i.e. the 

class that plays that static role is defined explicitly and cannot be changed. In con-

trast to normal binary associations the second role can be played by a range of 

different classes. The exact class that plays that variable role can be different or 

the same for all instances of the fixed class. 

While ternary relationships, i.e. relationships with three roles, and even higher-or-

der relationships exist in theory, they have not found widespread use. Instead, they 

are typically upgraded to entities of their own, for which a collection of binary rela-

tionships is then defined [38]. 

 2.3.3  Data Quality and Data Integrity 

Data integrity is the maintenance of accuracy and consistency of data. Maintaining 

accuracy means that data is not altered unintentionally over time or as the result 
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of repeated read or write operations. Data consistency mainly refers to a system’s 

ability to ensure that data complies to a defined set of rules. These rules originate 

from the domain logic and must be formulated within the database system with a 

set of tools provided by it. Examples for tools provided by PostgreSQL are required 

fields (“NOT NULL”), unique entries (“UNIQUE”) and foreign key constraints. When 

a column of a table is declared as “NOT NULL”, no record in that table may contain 

a “null” value, i.e. no data at all. This is typically used to represent the optionality 

of an attribute of a data model. When a field (or set of fields) is declared as foreign 

key, the RDMS ensures that the referenced record actually exists (“foreign key 

restraint”). Once a relationship that is subject to a foreign key restraint is estab-

lished, the RDMS will ensure the ongoing integrity of this relationship. In order to 

do so, it needs to be declared how to handle actions that would break existing 

relationships. The typical example is that an action tries to delete record B that is 

referenced by record A. If the delete operation would be allowed to succeed, A 

would reference a no more-existing record. Possible options to resolve such a sit-

uation are a) to reject the delete operation (“RESTRICT”), b) to delete A as well 

(“CASCADE”), c) delete the reference between A and B (by blanking the value of 

the foreign key field(s) (“SET NULL”), valid only if the role of A’s entity within the 

relationship is “optional”) or d) to set the value of A’s foreign key field to a default 

value (e.g. if the relationship is mandatory on A’s side, “SET DEFAULT”). It is up 

to the stakeholder of the business rules to define the response of the RDMS to any 

action that will destroy the integrity of any declared relationships. 

Data quality is a measure for the usability of data for a given purpose. Therefore, 

important aspects of data quality are completeness and correctness. In contrast to 

data integrity, due to their complexity and variability, these two properties of data 

cannot be easily ensured by database systems. However, there is a small overlap 

between data integrity and data quality: business rules be designed to impose con-

straints on quality-related information: mandatory fields, data types or duplicate 

prevention can be a great help in ensuring that the users of system obtain infor-

mation that is considered critical to data quality and to convert to the most useful 

data type before entering it into the system. Also, on the application level, trans-

forming text type fields into select fields which get populated by the instances of 
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another model directly relates to the use of a foreign key constraint (with the clas-

sical example being a select field instead of a text field for the “country” attribute 

on an address). 

 2.4  Object relational mapping 

In OOP programming languages, entities and their classes are represented by in-

memory objects. RDMS, however, store information as tuples in tables. Therefore, 

OOP objects and database records are incompatible data types. This disparity of 

concepts (objects with attributes versus tables with fields and rows) is called “ob-

ject-relational impedance mismatch” and is by itself the subject of academic re-

search [39]–[41]. When in-memory are to be persisted, a statement must be for-

mulated that can be interpreted by a RDMS and that, upon successful execution, 

results in the creation of a new database record or in the update of an existing 

record. On the other hand, when an in-memory object is to be loaded from storage, 

a statement must be formulated that can be interpreted by a RDMS and that makes 

it return the corresponding record. Then, the returned information must be trans-

formed into an in-memory object. Web application frameworks typically include 

subsystems, called “object-relational mappers” (ORM) that handle this conversion 

processes automatically. Rails, for example, ships with an implementation of the 

ActiveRecord ORM design pattern invented by Fowler [42]. 

 2.5  Representation of specialization in RDMS 

There are two main strategies to reflect object inheritance on the level of a RDMS. 

First, the instances of sibling-classes, i.e. subclasses of the same superclass, can 

be persisted in one single table. This approach is called “single table inheritance” 

(STI) and is typically used when subclasses differ mainly by behavior, i.e. by 

method implementation, but otherwise use the same attributes. This results in rel-

atively few empty database fields, as only a small number of columns is used by 

only a few subclasses. In the opposite case, i.e. when siblings use highly disjoint 

sets of attributes, multi-table inheritance (MTI), where sibling classes are stored in 

a separate tables, is a more feasible approach. For MTI, the declaration of rela-

tionships becomes more difficult on the database level, as any record who wants 

to relate to an instance of an MTI subclass would also need to know the type of the 

associated record in addition to its primary key. This issue naturally does not exist 



24  

 

for STI where instances of sibling classes are stored in one table. While for MTI 

the class of a record is unambiguously defined by the table it is stored in, STI re-

quires a type column for specifying the class of each individual record. 

 2.6  Web applications 

The most popular system architecture for web applications is the client-server 

model, which divides the application’s execution domain into client-side and 

server-side with both being connected via a computer network. Communication 

happens exclusively between the clients and the server but never between two 

individual clients. In addition, there is no application logic stored permanently (“in-

stalled”) on the client side. Instead, whenever a client needs to receive data, it 

needs to connect to the server and ask for it. When this software architecture pat-

tern was originally designed, clients were considered ‘dumb’ devices, which should 

only display data or collect raw data for sending to the server. Processing was done 

exclusively on the server side. The disadvantage, however, is that every server 

request induced a network latency when submitting the request, another latency 

while the server processed the request and then another for transmitting the re-

quest response back over the network. With the advancements made in client-side 

hardware, browser technology and the advent of server-side scripting languages, 

especially JavaScript, the server-client architecture was slightly modified. It was 

now possible to not only transmit static information, e.g. HTML pages, to a client 

for mere display but also to add code that could be executed on the client side. 

While this also brought along some new issues, particularly security-related ones 

[43], the number of server requests could be reduced significantly as the client was 

now able to autonomously react to user actions. The next big step in the develop-

ment of client-server web applications was the invention of asynchronous request 

[44]. While in a synchronous request to the server resulted in a complete reload of 

the entire web page, asynchronous web applications allow for the retrieval of sub-

page information snippets from the server and for the partial update of the client’s 

application state without reloading the entire page. 
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 3  Requirements for a LIMS for tribology laboratories 

The main task for LIMS is to support laboratory processes. Therefore, this section 

analyses a typical workflow of a project in a laboratory that mainly does standard 

compliant (category VI, see [45]) model wear tests, customized model wear tests 

(category V) and some component tests on components that closely resemble 

standard test specimens of model wear tests, e.g. thrust washer discs, anti-friction 

coatings on planar components or journal bearings and bushings (category IV). 

For laboratories that do higher-category tests, the workflow may look different, spe-

cifically about test specimen preparation and the complexity of test specimen 

mounting and test setup. 

 3.1  Workflow analysis 

Figure 1 represents a typical workflow in a friction and wear testing project. It is 

simplified because all potential decision-making points have been replaced by 

fixed routes and alternative routes have been ignored altogether. The process may 

represent a project as a whole or only a subproject of a larger super project. In this 

case, the starting point for the whole workflow is the requirement of a customer or 

of a super project specification. Typical requirements are the selection of a suitable 

material for a specified application or the production of test data for testing a sci-

entific hypothesis. Furthermore, the reception of material samples is the starting 

point for a second workflow. The formulation of two separate processes reflects 

the two different roles that are typically involved in tribological testing projects: the 

workflow on the left is executed by the project manager, who is typically an aca-

demic tribologist (“PM workflow”). This workflow includes tasks that require aca-

demic education and experience in the field of tribology: translating customer or 

project requirements into a test plan, specifying the exact type, number and pa-

rameterization of tests, evaluate test results and report generation. The workflow 

on the right side is made up of a series of fundamental and technical tasks: recep-

tion of material samples, test specimen machining, test setup and conduction, test 

specimen examination and committing test specimen to storage (“laboratory work-

flow”). 
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Within the PM workflow, the first step 

is to design a generic test plan based 

on the customer or project require-

ments. Typically, this involves the def-

inition of basic project parameters: 

type of tests, selection of material com-

binations, tribological parameters 

(loading, temperature, sliding speed, 

lubrication) and whether to do multi-

segment or single-segment tests. In 

addition, whether to use a design of 

experiment approach or whether to 

use classical permutation of test pa-

rameters, test types and material com-

bination needs to be decided. This 

sub-process greatly depends on a 

combination of scientific education and 

practical experience. Any attempt to 

digitalize this process either in full or 

even only partially would have to deal 

with a large amount of unstructured in-

formation. However, potentially within 

the scope of ontologies and machine 

learning (see [18]), this is currently out 

of scope for Atlas. 

The next two sub-processes of the PM 

workflow, the type and number of re-

quired test specimen and the tests that 

should be conducted need to be de-

fined. Specifically, this means that in-

stances need to be created which requires the generation of identities, the record-

ing of attributes and metadata as well as the establishment of relationships to many 

other entities. Examples include the name and potentially the production lot of the 

material that a test specimen is (to be) made of, its dimensions, the tribometer on 

 

Figure 1: Exemplary project workflow. 
Boxes represent processes, ar-
rows represent workflow and 
dashed arrows represent main 
data/information flow. Test 
setup and conduction are exe-
cuted in a loop until all tests 
have been done. Grey: com-
puterized support. 
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which a test should be conducted and the project that it should belong to. Further-

more, for the sake of statistical analysis, individual tests are typically parts of a test 

series that consist of a set of identically parameterized test. These sets need to be 

created as well, including the establishment of the membership of each test in such 

a set. These two steps, especially the creation of identifiable test specimen in-

stances rely on information from the laboratory workflow, where received material 

samples are registered, identified and labelled. 

When the tests and the required specimen have been defined, this information 

needs to be transferred to the laboratory workflow so that test specimen can be 

machined and examined in their pre-test state. This may include numerical inves-

tigations like roughness measurement, profilometric volume measurement, hard-

ness measurement and control measurements of machined dimensions as well as 

procedures with non-numeric results, e.g. photographic documentation. The re-

sults of all these investigations must be passed back to the PM workflow because 

they might be needed in the evaluation and reporting steps. 

 

Figure 2: Sub-process for the set-up and execution of a single test. Needs to be 
iterated for each test. Grey: computerized support. 

Figure 2 shows the sub-process for setting up and executing individual tests. It 

starts with the task of conducting a specific test. Based on the specified test the 

needed test specimens need to be identified and to be mounted on the correspond-

ing tribometer (which also needs to be identified). The source of information should 

be the test plan than has been created within the PM workflow when all tests and 

test set were defined. Based on the same information source, the tribometer con-

trol software needs to be parameterized and test execution needs to be started. 

After the test has ended, the resulting measurement data file needs to be trans-

ferred from the local storage on the tribometer to a central storage. 

 

Figure 3: Sub-process for evaluating a single test. Needs to be iterated for each 
test and test set. Grey: computerized support. 
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Figure 3 shows an exemplary sub-process for the evaluation of an individual test. 

First, all relevant data needs to be collected and joined into a single data set. This 

includes the measurement data file and any auxiliary data files from the tribometer 

as well as any data from pre-test investigations. If needed, the evaluation process 

must be parameterized. The classical example for such a parameterization is the 

selection of evaluation ranges for averaging or fitting data. The evaluation needs 

then to be executed and its results need to be plotted in order to be able to classify 

the results as either “valid” or “invalid”. The next step (“statistical analysis”) consists 

of several of sub-steps: for each test set, based on the numerical results of the 

corresponding sets’ individual tests, aggregated data needs to be computed. In 

practice, this means the calculation of arithmetic mean, standard deviation, coeffi-

cient of variance, (frequentist) confidence interval and the identification of outliers 

[46], [47]. These steps must be done for a range of quantities, including linear and 

specific wear rates, coefficient of friction, various temperatures and ambient con-

ditions. The set of quantities that needs to be analyzed typically depends signifi-

cantly on customer/project requirements and needs to be specified by the project 

manager. 

 

Figure 4: Sub-process for report generation. Grey: computerized support. 

Figure 4 shows the sub-process for report generation. It consists of a sub-step for 

creating test report on test sets which includes the reporting of the computed ag-

gregate data on starts with the plotting of a selected set of primary quantities that 

have been recorded by the tribometers sensors, e.g, friction force versus sliding 

distance. Additionally, selected derived and computed quantities might have to be 

plotted, e.g. coefficient of friction versus sliding distance. Typically, test reports also 

include aggregated data like the average coefficient of friction in steady state or 

the linear, time-related wear rate in steady state or the overall test specimen height 

or weight loss. Metadata also needs to be included in a report with typical data 

being project name or period of testing. 
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 3.2  Summary of requirements 

Based on the above workflow analysis, the main requirements for a LIMS are: 

Materials database 

• provide a database for materials and their attributes as well as for individual 

material lots 

• manage documents that are related to the reception of material samples 

Test specimen management 

• provide test specimen ID generation 

• persist and manage test specimen attributes (e.g. material name and lot, ge-

ometry, dimensions) 

• support unique test specimen labeling 

• support structured physical storage by providing an indexable and sortable or-

der criterion 

Generation of wear tests 

• support the process of defining wear tests, including multi-segment tests 

• manage relationships, e.g. between projects, test sets and individual tests or 

between tests and test specimens 

• persist test attributes (sliding speed, loading, temperature, …) on a per seg-

ment-basis 

Wear test setup and conduction 

• provide storage locations for pre- and post-test examinations on test speci-

mens and manage the relationship of examination results to the corresponding 

test specimens or wear tests 

• support the parameterization of tribometers according to the specification of 

the test to be done, specifically reduce errors due to configuration errors 

• support handling, identification and storage of measurement data files, prevent 

ambiguities that arise from non-uniform data file naming 

• automatically extract and persist metadata, e.g. timestamps or tribometer log 

files 

Wear test evaluation 

• support the identification and retrieval of the measurement data file(s) that be-

long a given test 
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• provide standardized evaluation procedures, enable parameterization and cus-

tomization 

• provide automatic plotting of recorded, derived and aggregated test data 

• persist derived and aggregated test data 

• persist the manual classification of test data as “valid” or “invalid”, according to 

[47] 

• provide tools for the statistical analysis within a test series, including testing for 

outliers 

• enable and support individual evaluation and data plotting 

Compliance, quality management and economic requirements (selection) 

Additionally, there are requirements which are workflow-independent: 

• enable the traceability of reported data to individual tests and original meas-

urement data files, thereby support internal issue resolving and processing of 

customer complaints 

• prevent manipulation and forgery of measurement data files 

• improve data integrity and quality, especially by managing the units of physical 

quantities 

• reduce the error rate for the process of tribometer parameterization 

  



 31 

 

 4  Sample implementation: Atlas 

The LIMS that will be described throughout this work has been given the name 

“Atlas” which is an acronym for its German full name “Automatisches TriboLo-

gisches AuswertungsSystem” (automatic tribological evaluation system), which 

represents one of the systems main functionalities. 

 4.1  Components 

Atlas is not a monolithic piece of software but is instead composed of several in-

teracting components. The exact types of its components are a direct consequence 

of the most basic design decision: Atlas is a web application with classical server-

client architecture. Therefore, its basic components are: web server, application 

server, application code and data storage on the server’s operating system. The 

exact choice of every single component (relational data modelling over tree data 

modelling, RDBMS over flat table, PostgreSQL over MySQL, Ruby on Rails over 

Python/Django, etc.) directly affects much of the material that is presented in this 

work. Still, much of what is presented are concepts. Once established, they can be 

easily abstracted from the presented implementation and re-implemented in sys-

tems with a different set of components. 

Throughout this work, implementation of Atlas is done in the Ruby programming 

language, specifically with version 3.0.0 of the CRuby interpreter. Ruby is a dy-

namically typed, interpreted, high-level open-source programming language that 

was initially released in 1995 under the “Ruby License” [48] by its inventor Yukihiro 

Matsumoto and which is still under active development. It was mainly chosen for 

the Ruby on Rails web application framework that is based on it. For implementing 

Atlas, Ruby on Rails 6.1.4.4 has been used which ships with ActiveRecord as its 

default ORM [42] and which natively supports OOP concepts that Atlas relies on 

heavily: uniform access principle, duck typing, monkey patching, single table inher-

itance, polymorphic associations and application-level model invariants. Ruby on 

Rails is licensed according to the MIT license. 

The presented implementation of Atlas was done using the open-source database 

system “PostgreSQL 12”. PostgreSQL is licensed according to the “PostgreSQL 

License” which is “a liberal Open Source license, similar to the BSD or MIT li-

censes” [49], [50]. As Rails natively provides a database adapter PostgreSQL, it 
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can be directly used with ActiveRecord, Rails’ default object relational mapper. Due 

to its extensive use of open-source components and due to being interpreted code 

instead of compiled code, Atlas is very easy to extend. 

For automated data plotting, Atlas uses the cairognp terminal on gnuplot 5.4. For 

this, no Ruby binding libraries are used. Instead, data and gnuplot instruction files 

are generated on the file system and passed as arguments to dynamically gener-

ated system calls to gnuplot. This creates an I/O-situation in which gnuplot is run 

in a separately spawned operating system thread which are not prone to Ruby’s 

global interpreter lock (GIL) and therefore graph generation can easily be parallel-

ized using Ruby’s built-in threads. 

 4.2  Hardware, operating system and parallel computation strategy 

Atlas runs on an x64 compatible personal computer with an AMD Threadripper 

X1950 CPU that exhibits 16 physical and 32 logical cores. It is mounted in a TR4 

socket of an ASUS Prime X399-A mainboard. As RAM, two banks of DDR4-3200 

CL15 modules with 8 GB each are used. The operation system, Atlas itself and its 

first-tier data storage reside on a 512 GB Samsung 960 Pro M.2 PCIe 3.0 drive 

which exhibits a mean time between failures of 1.5 million hours and a 4K random 

read/write speed of 330.000 per second. Atlas’ second tier data storage is a RAID 

1 system made up of two identical 5,900 rpm, 4 TB drives from Western Digital. 

Although, as a LIMS server, the computer is operating headless most of the time, 

a generic Nvidia Geforce GT1050 graphics card has been added for local mainte-

nance. Furthermore, the presented Atlas implementation utilizes Ubuntu 18.04 

LTS which is open source and which is licensed according to the GPL.  

LIMS are potentially used by a large number of clients. Therefore, in order to make 

full use the 32 logical cores of the Atlas server, a stack of Apache as web server 

and Unicorn as application server is used. Unicorn’s worker threads run in separate 

operating system processes which circumvents CRuby’s GIL and this enables con-

current request to be handled in parallel on different CPU cores. 

 4.3  Primary keys, identity and labelling system 

As described in Section 2.3.1, identity depends on the existence of an attribute, or 

a set of attributes, that is unique for each record of a given table. In SQL, this 

attribute or set of attributes is called “primary key”. If the values of the primary keys 
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are unique across all tables of a database, they alone are sufficient to safely iden-

tify any record in any table. If the primary keys in different tables may assume the 

same set of values, only the combination of table name and primary key becomes 

a unique identifier for all records in a database. Atlas uses PostgreSQL’s built-in 

functionality for the generation of auto-incremented sequences of integers as pri-

mary key for all tables. These, by design, cannot yield a number twice and can 

therefore, together with their class names, be used for identifying all entities in At-

las. These composite identifiers, e.g. “wear test 57” or “material 25”, can also be 

used for labelling physical entity instances which makes it easy to find database 

records for physical entities and vice versa. 

For reasons of maintainability, it is of course possible to manipulate the value of a 

field that is declared as a primary key and to also manipulate the current value of 

a sequence that tracks the integer sequence of a tables primary key. However, the 

SQL statements that are required to do so are different from those used for regular 

create, read, update and delete (CRUD) operations on records. While this is al-

ready enough to prevent any unintended change of ids, the application should be 

programmed in a way that no potentially dangerous user input can get through to 

the database. However, this is a difficult task by nature and even experienced de-

velopers can produce code glitches that expose a database to the execution of 

arbitrary - and thus potentially dangerous - code. Therefore, the database login 

credentials used by Atlas in its normal production environment correspond to a 

PostgreSQL user account with restricted privileges so that neither ids of existing 

record can be altered nor that the current value of the corresponding id sequence 

could be altered. Additionally, in order to prevent code glitches from making the 

root login available to standard users in production, the root user can only login to 

the PostgreSQL console off-application via a server terminal. For more information 

on how to grant database operation privileges to specific users and how this relates 

to data safety and data integrity, refer to the PostgreSQL user manual [51] or to 

other specialized literature [52]. 

 4.4  Materials and material lots database 

Atlas exhibits a very basic sub-database for materials which provides fields for per-

sisting material name, material number and AISI-code, EN Ax-code, an alphanu-

merical “fillers” field for persisting the fillers of particle filled polymeric composites, 
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as well as a few fields for basic material properties: density, coefficient of linear 

thermal expansion, thermal conductivity and heat transfer coefficient to air. All of 

these material properties are dependent on state, e.g. on temperature. However, 

Atlas only provides a single numeric field for their persistence which should be 

used to represent the value of these properties at standard ambient temperature, 

humidity and atmospheric pressure. 

Materials have an optional one-to-many relationship to material lots and an optional 

relationship to a company model which should be used to persist the manufacturer 

of the respective material. This field is optional since its persistence is not useful 

for generic materials like AISI 304 stainless steel (1.4301) which is typically man-

ufactured by a wide range of companies without being branded individually. 

Figure 5 shows the form that Atlas provides for creating new and editing existing 

materials and their attributes and the index table it provides for the materials data-

base. 

 

Figure 5: Form for creating new and editing existing materials (left) and Material 
index table (right, simplified). 

 4.5  Test specimens 

 4.5.1  Domain 

Atlas has models for the following types of test specimens: block, ring, ball, disc, 

bushing, cylinder and plate. Table 2 shows their respective specific attributes and 

relationships. Additional attributes that are common to each test specimen type are 

material and lot, (nominal) hardness, status, custom label and several attributes 

for different basic roughness parameters, specifically, Ra, Rz, Rp and Rv. Of these, 
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“custom label” can be used to persist custom labels of individual test specimen, 

e.g. when test specimens have been received from external source and which 

carry identifiers that are either incompatible to Atlas’ own identification system but 

which need to be persisted too. For example, when external documentation relies 

on these labels, their persistence in Atlas can make external data relatable to in-

ternal test specimen identifiers. 

Table 2: Test specimen classes modelled in Atlas and their specific attributes. 

Attribute Block Ring Ball Disc Bushing Cylinder Plate 

width x x     x 

gauge x       

length     x x x 

cross_section x   x x  x 

height x   x   x 

inner_diameter  x  x x   

outer_diameter  x  x x   

diameter      x  

Test specimens do not only exist as individual entity instances but they also come 

in lots. Such test specimen lots consist of a set of test specimens that originate 

from a single production run, are made of material of the same material lot and 

exhibit a uniform set of attributes. Therefore, when test specimen lots can be used 

to represent a larger number of individual test specimens without creating an indi-

vidual identity for each of them. The classical example is a lot of steel rings that 

have been manufactured in the same production run, e.g. surface finishing, and 

therefore exhibit highly uniform values for all tribologically relevant attributes, like 

outer diameter, material, hardness and roughness.  

On an even higher level, test specimen lots belong to a test specimen class which 

defines geometry type, nominal values for geometry-related attributes as well as 

the material that the test specimens are made of. This three-tiered model delegates 

the definition of a test specimens attributes in a way that allows the user to choose 

the desired level of granularity with which a wear tests test specimen should be 

identified, depending on customer or project requirements. Furthermore, it enables 

the resolution of test results for a single material down to the level of individual 

material or production lots for test specimens which in turn allows for the identifi-

cation of the influence of material or test specimen production on the results of 

friction and wear. Finally, it helps with tracking down tests that might have been 
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affected by errors. For example, when after a test series or project has already 

been concluded an error that has gone unnoticed for a while but which has even-

tually been identified, e.g. a ring test specimen lot with a wrong surface roughness, 

the exact collection of tests that has been done with this lot can be identified when 

either all individual rings have been related to a joint ring lot or when the tests in 

question have been related to this ring lot since all individual tests where consid-

ered to be equivalent and therefore no individual ring identities had been created. 

 4.5.2  Data modeling 

Atlas uses a general class to define general attributes, properties and relationships 

that are the same for all types of test specimens, e.g. their belonging to (zero or 

more) wear tests, and then uses specialization to model type-specific behavior, 

see Section 2.2.3. Despite their attributes being significantly disjoint, especially 

their geometry-related attributes, STI is used to persist the instances of the various 

subclasses on the database level. The main reason for this the ease of database 

actions across the collection of all specimens of all types. Figure 6 shows the ERD 

for this model. 

The three-tiered hierarchy of the test specimen model is, top to bottom, modelled 

by three classes: TestSpecimenClass (TsC), TestSpecimenLot (TsL) and 

TestSpecimen (Ts), each of which is related to the level below it by a one-to-

many relationship. According to the domain logic, the TsL class is related to Ma-

terialLot class and the TsC class is related to the Material model. As there 

is a relationship between Material and MaterialLot, a circular reference is 

created by this model which introduces the possibility of contradiction. However, 

especially with generic materials, there is not always an identifiable material lot as 
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the basis for the production of a 

domain instance of the TsL class. 

For such cases, it is favorable to 

be able to create a model TsL in-

stance without having to provide a 

material lot. Instead, potential col-

lisions are avoided by providing 

the user with forms that use inter-

linked select fields which only al-

low valid combinations of refer-

ences. In case that these fail, are 

manipulated or circumvented (e.g. 

by API use), model-level validity 

checks additionally ensure that ref-

erences are void of contradictions. 

Next, the new Ts, TsL and TsC 

classes were specialized by defining subclasses for each test specimen geometry 

that is supported by Atlas, see Section 4.5.1. Figure 7 shows the resulting ERD. 

For clarity, only block-type subclasses are displayed. 

 

Figure 7: Atlas’ three-level hierarchical data model for individual test specimen, 
test specimen lots and test specimen classes. For clarity, only the block 
type subclasses are shown. Corresponding subclasses exist for all other 
supported test specimen types, see Table 2. 

 

Figure 6: Bachmann-notation of Atlas’ test 
specimen data model. Subclasses 
are printed light and are connected 
to their superclasses by empty-
headed arrows. 
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 4.5.3  Atypical inverse property propagation 

When test specimens are machined with 

machine tools, e.g. blocks with CNC milling 

machines or rings with CNC turning or 

grinding machines, individual variations of 

the actual dimensions of test specimen can 

be so small that the effort of measuring and 

recording the actual dimensions of every 

individual test specimen greatly outweighs 

the gain in accuracy. Therefore, it is feasi-

ble to not measure the dimensions of each 

individual specimen but to the correspond-

ing values of the associated TsL or even of 

the TsC. This resembles property propaga-

tion which occurs when an aggregation ob-

ject is queried for an attribute that it does 

not store internally but that it computes dy-

namically. Therefore, the object typically does not possess an attribute of the cor-

responding name but instead exhibits a method of this name. However, compared 

to this, it is “atypical” since propagation needs to happen along a relationship be-

tween classes that are not inheriting from each other or that are components of an 

aggregation object. It is furthermore “inverse” as data travels from higher to lower 

hierarchy levels (which, due to the lack of inheritance, are solely defined by domain 

logic). Figure 8 shows the workflow for this mechanism. When an individual test 

specimen is queried for a propagatable attribute and the value that the individual 

test specimen has stored for this attribute is blank, the method call gets propagated 

to the test specimen’s TsL instance. When this has a non-blank value for the at-

tribute in question, it is returned. When the TsL instance also does not have a non-

blank value for the requested attribute, the query is propagated to the respective 

TsC, whose internally stored value is returned, no matter whether it is blank or not 

(as there is no other entity to which it could forward the request to). According to 

the encapsulation principle of OOP, this forwarding is not visible to the original 

method caller. 

 

Figure 8: Atypical upstream of attrib-
ute queries and down-
stream of attribute data. 
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Figure 9: Test specimen data model for downstream property propagation: all 
propagatable attributes are present in each level of the hierarchy. 

For this mechanism to work, a propagatable attribute must be defined for all three 

involved classes, see Figure 9. Code listing 8 shows the specific implementation 

of request propagation. In Rails, all classes whose instances should be persisted 

to the database must be subclasses of ActiveRecord::Base that is provided by 

Rails. Such subclasses automatically exhibit attribute readers, one for each data-

base field of the underlying table. Therefore, by defining a width field for the test 

specimens table, all instances of the corresponding class, and all instances of all 

its subclasses, will exhibit a width method that return the value of the actual width 

field of the corresponding record, see Code listing 8. These automatically gener-

ated methods are therefore called the “attribute readers”. Analogously, a width= 

method gets defined, which will write handed-over values to the underlying data-

base field and which is therefore called “attribute setter”.  

Code listing 7: Example for the automatic generation of attribute getters and set-

ters for subclasses of ActiveRecord::Base. 

class ApplicationRecord < ActiveRecord::Base 

end 

class TestSpecimen < ApplicationRecord 

end  

class Block < TestSpecimen 

  # the PostgreSQL table for test specimens 

  # has a “width” field 

end 

b = Block.new({ width: 5}) 

b.width => 5 
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However, automatically defined attribute readers only check for the attribute of the 

queried instance and do not propagate the query if the internally stored value is 

blank. Therefore, they need to be overridden by propagating versions, see Code 

listing 8. 

Code listing 8: Implementation of atypical property propagation for width. 

# override ActiveRecord’s attribute readers for width 

class TestSpecimen < ApplicationRecord 

  def width 

    read_attribute(:width) || self.test_speciman_lot.send(:width) 

  end 

end 

class TestSpecimenLot < ApplicationRecord 

  def width 

    read_attribute(:width) || self.test_speciman_class.send(:width) 

  end 

end 

# create instances 

block_class = BlockClass.new({ width: 5 }) 

block_lot = BlockClass.new({ test_specimen_class: block_class }) 

block = Block.new({ test_specimen_lot: block_lot }) 

# query individual test specimen for its widht 

block.width => 5 

# check whether the result was propagated 

block.propagated?(:width) => true 

Propagation happens when read_attribute(:width) which reads the actual 

value of an object’s width attribute from the corresponding database record, yields 

a blank (nil which represent SQL’s NULLs in Ruby). In this case, the logical “or” 

operator (||) calls the alternative expression which retrieves the associated TsL 

instance and queries it for its width attribute. This query is handled by the width-

instance method of the TsL instance which is also overridden with a propagating 

version of an attribute getter. If the attribute value of the TsL instance is also blank, 

the request will be forwarded to its associated TsC instance. Whatever the value 

of this TsC instance is for width will then be returned, including a potential blank 

value. This implementation could then be reproduced for each propagatable attrib-

ute. However, this would lead to redundant and therefore error prone code. Ruby 

supports “metaprogramming”, i.e. the programmatical writing of code [51] [52]. For 

this, Ruby objects possess the define_method method which works like the def 

keyword (however without acting as a scope gate). 
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Code listing 9: Implementation of inverse property propagation. 

module AttributePropagation 

  def self.included(base) 

    def base.propagates_blank(*attributes_list, to:) 

      class_variable_set :@@propagated_when_blank, 

                         [attributes_list].flatten.map(&:to_sym) 

      class_variable_set :@@propagate_blank_to, to 

      attributes_list.each do |attr| 

        define_method("real_#{attr}"){ read_attribute attr } 

        define_method("real_#{attr}="){ |new| write_attribute attr, new } 

        define_method(attr) do 

          self.send("real_#{attr}") || propagate_blank_to.send(attr) 

        end 

      end 

    end 

  end 

  def propagated_when_blank 

    self.class.class_variable_get :@@propagated_when_blank 

  end 

  def propagated_when_blank?(attr) 

    propagated_when_blank.include? attr.to_sym 

  end 

  def propagate_blank_to 

    self.send self.class.class_variable_get(:@@propagate_blank_to) 

  end 

  def propagated?(attr) 

    return false unless propagated_when_blank?(attr) 

    self.send("real_#{attr}").blank? 

  end 

end 

Code listing 9 shows the implementation of the AttributePropagation mod-

ule. When included into a class, represented by the first positional argument of 

Module.included, it provides this class with the new class method propa-

gates_blank which accepts a list of attribute names that should be propagated 

and the name of an association that attribute queries for blank attributes should be 

propagated to. Code listing 10 shows how the new class method propa-

gates_blank is used to declare the propagation of the attributes width, gauge 

and height when they are blank. In Ruby, “class variables” are actually “class 

hierarchy variables”, which means they are accessible from all classes of an inher-

itance hierarchy. Therefore, it is sufficient to include the module into the base class 

of the three levels of Atlas test specimen taxonomy: TestSpecimenClass, 

TestSpecimenLot and TestSpecimen. 
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Code listing 10: Property propagation using AttributePropagation. 

class TestSpecimen < ApplicationRecord 

  include AttributePropagation 

  propagates_blank :width, :gauge, :height, to: :test_specimen_lot 

end 

class TestSpecimenLot < ApplicationRecord 

  include AttributePropagation 

  propagates_blank :width, :gauge, :height, to: :test_specimen_class 

end 

When rendering HTML views, the propagated?-method can be used to visualize 

whether individual attribute values have been propagated. Figure 11 shows a test 

specimen index table that visually indicates the different sources of displayed at-

tributes by using different type set styles. 

 

Figure 10: Test specimen index with different type setting for propagated (grey, 
italic) and non-propagated (upper face, bold) attributes of individual test 
specimen (here: width, gauge, height and cross section of blocks). 

 4.5.4  Test specimen labelling and archiving 

Each of the three levels of the test specimen model has a custom_label attribute 

in order for satisfy the domain requirement of persisting custom test specimen la-

bels, e.g. from an external source. However, external labels are optional and po-

tentially non-unique and are therefore only useful for relating internal identification 

to external identification.  

For actual identification, Atlas uses PostgreSQL sequences to assigns sequential 

integers to the id fields all records. In combination with the respective class name, 

this forms a unique identifier for all entities of a given Atlas server instance. For 

test specimens, there is even only one sequence for each hierarchy level as all 

subclasses of a given hierarchy level are persisted with STI. Therefore, the name 

of the hierarchy’s superclass can be used to form a unique human-readable iden-

tifier. In order to enable a compact representation, “individual test specimen” is 

abbreviated by “TS”, “test specimen lot” by “TSL” and test specimen class by 
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“TSC”. For an even more compact version, this can be further reduced to “S”, “L” 

and “C”. 

Code listing 11 show the implementation of this convention in the form of a module 

and its exemplary integration into the superclasses of the hierarchy level for indi-

vidual test specimens. 

Code listing 11: Implementation of the LabelLable module and its use in test 

specimen-related superclasses. 

module TestSpecimenLabel 

  def self.included(base) 

    def id_label(variant: :normal) 

      uppercase_chars = self.class.base_class.to_s.scan(/[A-Z]/) 

      prefix = case variant.to_sym 

                 when :normal then uppercase_chars.join 

                 when :compact then uppercase_chars.last 

               end 

      "#{prefix} #{id}" 

    end 

  end 

end 

class TestSpecimen < ApplicationRecord 

  include TestSpecimenLabel 

end 

# load existing record 

block = Block.last 

block.id_label 

=> TS 34589 

The labels that are generated by this code then can be used in the laboratory for 

sorting and archiving test specimens. Individual test specimens can be archived in 

sequence, e.g. in ascending order of their id. As all subclasses of a given test 

specimen superclass use the same id counter, all individual test specimens can be 

easily stored in a joint storage which enables the retrieval of a range of mixed-type 

specimens in one work step. Test specimens that are collectively label by their lot-

based label (e.g. “TSL 357”), can be grouped together in suitably sized storage 

containers and also archived in ascending order. It is recommended to use three 

separate storage locations, one for each hierarchy level, in order to prevent id col-

lisions and in order to be able to operate each storage in append mode only. 
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 4.5.5  GUI elements for workflow support 

Given the mandatory role of test specimen lots in their relationship to individual test 

specimen, any test specimen lot that a new test specimen ought to be related to 

must exist before any individual test specimen can be created. The same is true 

for test specimen classes and lots. Therefore, the natural workflow is top-down: 

create a new or select an existing TsC, then create a new or select an existing TsL 

and then create any new individual test specimen. 

 

Figure 11: Forms for creating new test specimen in Atlas. 

Figure 11 shows the three forms that Atlas provides for these operations. For at-

tributes that establish relationships, e.g. between a TsC instance and a material 

instance, automatically populated select fields are provided. Thus, the user can 

only select entities that are valid choices for the underlying foreign key restrictions. 

For all other attributes, input fields are provided. 

While the type-specific attributes of each subclass must be specified when creating 

new test specimen class instances, this is optional when defining test specimen 

lots or individual test specimens. When non-blank values are provided for attributes 

that are propagated, see Section 4.5.3, attribute propagation will be interrupted 

and instead these values will be returned when the corresponding instance is que-

ried for the attribute in question. 
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 4.6  Tribometers 

 4.6.1  Domain 

While most tribometers can only be equipped with one set of test specimens, some 

have been designed to host multiple sets. In this case, they typically exhibit a cor-

responding number of individual test specimen mounts, see Figure 12. 

 

Figure 12: Left: block on ring-tribometer with four parallelized sets of block/ring-
pairs. Rings are mounted to one common shaft that is driven by a drive. 
Right: pin on disc-tribometer with four parallelized sets of pin/disc-pairs. 

 4.6.2  Data model 

As tribometers exhibit a variable number of test positions, each of which can take 

an individual test specimen pair (or more general, a tuple), tribometers are mod-

elled as composite objects with test positions as their components. This one-to-

many association is mandatory on both sides, see Code listing 12 and Figure 13. 

Code listing 12: Association between tribometer and testing position(s). 

class Tribometer class Position 

  has_many :positions   belongs_to :tribometer 

  validates :positions,   validates_presence_of :tribometer 

            length: { minimum: 1 } 

end end 

Trivially a tribometer has exactly one test position and the association collection 

consists of only one object. Still, the one-to-many association allows the digital 

representation of tribometers with multiple test positions. Being a composite object, 

there are attributes that belong to a tribometer, e.g. name, inventory number, ser-

vice status or the IP address of its control computer which are implemented as 

attributes of the tribometer class itself. 
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Figure 13: Modelling of the relation of wear tests and tribometers by (testing) po-
sitions. 

On the other hand, there are attributes whose values are specific for each individ-

ual position, e.g. geometry-related correction factors for friction force and height 

loss signals or a human-readable, tribometer-specific numbering of the test posi-

tions, e.g. one-to-many. The exact number of test positions of a tribometer is an 

example for a propagated attribute, see Section 2.2.5, with the propagation algo-

rithm being as simple as counting the number of associated objects, see Code 

listing 13. 

Code listing 13: A tribometer’s number of test positions is a propagated attribute.  

class Tribometer 

  def number_of_test_positions 

    positions.size 

  end 

end 

 4.7  Wear Tests 

 4.7.1  Domain 

Wear tests belong to the central entities of a tribological laboratory. Important at-

tributes of wear tests are the test parameters that have to be applied, e.g. sliding 

speed, oscillation frequency, test duration, loading etc. A wear test is called “non-

segmented” if the same set of test parameters is applied over the whole test dura-

tion. If one or more test parameters need to change during the course of a test, the 

test is called “segmented”. Whether a test can be executed in segments or not is 
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a property of the corresponding tribometer. When a test is segmented, the collec-

tion of test parameters must be subdivided into a set that is subject to segment-

wise alteration (segment-specific parameters) and into a set of parameters that are 

not subject to alteration within segments but which are constant during all seg-

ments (test-specific parameters). Again, the total set of available parameters and 

their distribution into these two sets is specific to the respective tribometer and 

depends on its mechanical design, its electronics and its programming. When a 

tribometer uses static weights to apply the normal load, normal load is a test-spe-

cific parameter. When it used computer-controlled devices like hydraulics, pneu-

matics or electromechanical actuation, it is a segment-specific parameter. Sliding 

speed has been set for decades using a potentiometer which made it a test-specific 

parameter. With modern computer-controlled drives, it has become a segment-

specific parameter. A typical example for a segmented wear test is the ASTM G137 

block on ring-test which requires the measurement of the static coefficient of fric-

tion, followed by a period of uniform, unidirectional sliding, followed by another 

measurement of the static coefficient of friction [53]. Furthermore, wear tests have 

important metadata attributes like time of creation, modification and start of test. 

Metadata contains valuable information: timestamps for the start of test can be 

used to verify that a test has been done in a time interval for which the tribometer’s 

sensors have been calibrated or to combine recorded test data with data from dis-

parate devices, like camera equipment (see Section 5) or from climate control de-

vices. Furthermore, data about the validity of a test’s primary data and its results 

are of interest, e.g. a test can have invalid real time wear loss data because of a 

malfunctioning of the wear tracking sensor while the data recorded by other sen-

sors is perfectly valid. 

Wear tests are not isolated entities but have associations to many other entities in 

a tribology laboratory. Amongst them are the tribometer on which the test should 

be (or was) done, the set of test specimen on which the test was performed, the 

person who conducted the test (the operator). Furthermore, the test standard that 

was followed the lubricant that was used, the test set they belong to and finally the 

project that they belong to. Finally, every wear test must be related to its results, 

which mainly consist of the collected primary data during the test, but also of addi-

tional results, like analytical results which can be qualitative, e.g. micropscopic im-

ages taken of the test specimen before and/or after the test, or numeric results like 



48  

 

post-test surface roughness. Additionally, wear tests can be related to arbitrary 

information in the form of generic entities like document or comment. Typical ex-

amples include photographs of the test setup or comments of the operator on spe-

cial occurrences or of the project manager on specific details of the interpretation 

of the test’s results. 

 4.7.2  Data model 

The logic data model for wear tests, like the one for test specimens, uses the de-

sign pattern of specialization, see Section 2.2.3. Starting from one WearTest su-

perclass which includes all the general attributes behavior and relations of wear 

tests, a set of subclasses is defined, see Figure 14. 

 

Figure 14: ERD of Atlas’ data model for wear tests 

Each subclass represents a specific type of wear test, e.g. block on ring-tests or 

pin on disc-tests. By default, each of the subclasses inherits the attributes, relations 

and methods of the WearTest superclass and can then implement the specific 

behavior of the test it represents by overriding the corresponding methods. On the 

level of the physical data model, Atlas persists wear test instances using single 

table inheritance, see Section 2.5. This allows wear test segments to relate to any 

subclass of the wear test model using a standard binary relationship to the wear 

test superclass. 

Due to the segmentation of wear tests into individual segments, wear tests are 

composition objects with segments as their components. As per the domain rules 

the number of segments is at least one, the cardinality of this composition is one-

to-many. Many attributes that one might naturally consider to be attributes of a 

wear test instance actually are attributes of the individual wear test segments. 
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Therefore, test parameters like sliding speed, duration or temperature are not at-

tributes of the wear test to which they belong to but of the individual wear test 

segments. While within a segment all test parameters are constant, one parameter, 

none or all may change when one segment ends and the next segment starts. 

Consequently, the same applies to “test results” like COF, linear wear rate, counter 

body temperature et cetera which are actually “segment results” in Atlas. 

Figure 15 shows the data model of wear tests and their segments and Code listing 

14 shows the establishing of this one-to-many composition on the code level.  

 

Figure 15: ERD of the wear test and wear test segment models including their respective 
subclasses 

Code listing 14: Declaration of the relationship between tests and test segments. 

Class WearTest < ApplicationRecord class WtSegment < ApplicationRecord 

  has_many :wt_segments   belongs_to :wear_test 

  validates :wt_segments,   validates_presence_of :wear_test 

            length: { minimum: 1 } 

end end 

Additional complexity arises from the different operation modes of tribometers 

which typically serve the purpose of measuring different quantities. For example, it 

is a requirement of the ASTM G137 standard to measure the static COF before 

and after each sliding wear test. This mandates the definition of such a test in at 

least three individual segments: static COF measurement, uniform sliding, static 

COF measurement. Each of these segments requires a set of test parameters of 

its own. Therefore, Atlas uses specialization to create specific subclasses that rep-

resent all relevant types of wear test segments: sliding, oscillation, cyclic position-

ing, measuring of the static COF and stopping. On the level of physical data stor-

age STI is the preferred choice, as it enables the establishment of the association 

between all subclasses of wear tests and wear test segments by one single decla-

ration on the level of the two superclasses which then gets inherited to both sub-

class hierarchies. 
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Overall, wear test segments exhibit 264 attributes that are distributed across six 

categories: test parameters, evaluation results, validity data, evaluation parame-

ters, metadata and miscellaneous. Each of these may contain attributes that are 

common to all subclasses and subclass-specific attributes. Due to their different 

purpose and different execution during tribometer operation, type-specific attrib-

utes are most common in the group of test parameters, see Table 3. 

Table 3: Wear test segment subclasses and their domain-specific attributes. 

 
Attribute 

 
Slide 

Cyclic 
Positioning 

 
Oscillate 

 
Stop 

Static 
Cof 

sliding_speed x     

oscillate_speed_forwards   x   

oscillate_speed_backwards   x   

sliding_distance x  x   

oscillation_frequency   x   

stroke   x   

duration    x  

static_cof_rate     x 

static_cof_latency     x 

positioning_type  x    

positioning_cycles  x    

positioning_duration  x    

While a segment that represents uniform sliding over a given period of time re-

quires the total sliding distance, the sliding direction and the absolute of the sliding 

speed, an oscillation segment requires oscillation frequency, stroke and total slid-

ing distance. As sliding speed, total sliding distance and duration are not independ-

ent of each other, Atlas assumes sliding speed and total sliding distance to be 

independent and will, when asked, compute the duration from these two parame-

ters. However, there are models for which sliding distance is no suitable test pa-

rameter, e.g. stop segments. For such cases, Atlas provides an explicit duration 

attribute, whose value is then returned directly when queried for. Ruby’s natural 

support for the uniform access principle, see Section 2.2.7, makes this different 

implementation (return value of a method vs. attribute) very easy because method 

calls and attribute queries use exactly the same syntax (if the method call does not 

require the supplement of attributes), see Code listing 15. 

Test parameter attributes that are common to all segment subclasses include, but 

are not limited to, ambient temperature, set specimen temperature (e.g. when heat-

ing the steel ring in a block-on-ring test), temperature control mode, loading, max-

imum eligible wear, initial lubricant amount, lubricant feed rate, as well as ambient 
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temperature and humidity. Furthermore, there are “non-tribological” parameters 

that are needed for parameterizing tribometer operation and data acquisition, like 

logging frequency and averaging time as well as flags for taring sensors at the 

beginning of the segment and a corresponding pre-tare latency. 

Code listing 15: Implementation of the duration of a wear test segment as a derived 
attribute using UAP (handling of units omitted). 

Class SlideSemgent < WtSegment class StopSegment < WtSegment 

  def duration   # without an explicit definition 

    sliding_distance / sliding_speed   # ActiveRecord’s default attribute 

  end   # reader will be used 

end end 

 

segment_1 = SlideSegment.new({ sliding_speed: 1, sliding_distance: 21600 }) 

segment_1.duration 

=> 21600 

segment_2 = StopSegment.new({ duration: 3600 }) 

segment_2.duration 

=> 3600 

Metadata includes timestamps for the datetimes of creation and (last) update of 

the record as well as whether the segment has already been executed (“done”), 

whether a measurement data file has already been uploaded and whether it has 

already been evaluated as well as a timestamp for the beginning of segment exe-

cution (started_at). While the presence of a timestamp for started_at al-

ready implies that a segment has been done, there may be rare cases when it is 

known that a segment has been executed, but the timestamp for the start of exe-

cution is unknown. For such cases, Atlas overrides the default attribute reader for 

done that will return true even if the actual value for done is false (which is this 

field’s default value) but a timestamp is present for started_at. 

Another important meta information is the order in which wear test segments 

should be executed. The id of a segment is no useful order criterion since it cannot 

be modified after creation. Furthermore, programmatic segment creation via mass 

assignments might not always yield the intended order. Therefore, wear test seg-

ments exhibit a segment_index attribute which is used for ordering segments of 

the same wear test. 

 4.7.3  Attributes and Associations 

Wear tests have a wide range of attributes and relationships. First, they need to be 

related to the test specimens that should be used. While, for example, a block on 
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ring test typically utilizes a block and a ring, a pin on disc test will use a pin and a 

disc. Typically, the number and types of test specimen is highly individual to the 

specific type of the test. This variability has been modeled by specialization, i.e. 

each type of test has been modeled as a subclass of the generic wear test class. 

On the database level, single table inheritance has been chosen as mechanisms 

for persisting the instances of the various subclasses. With the aim of ensuring that 

test specimens can be identified for any wear test, business logic mandates that 

the relationships between wear tests and their test specimens have been imple-

mented as mandatory. However, the combination of representing specialization by 

STI on the data base level with the hierarchical model for test specimen (class, lot, 

individual) poses a special challenge for the technical implementation of the rela-

tionship between wear tests and test specimens. Specifically, it was not possible 

to represent the requirements for the presence of declared test specimens using 

foreign key restraints on the data base level. While data base-level triggers and 

procedures would have been a viable alternative for this, polymorphic associations 

and application-level constraint checking have been implemented due to their ease 

of use, see Code listing 16. While this basically makes Atlas prone to read/write 

anomalies, this has been found not to be a serious problem for low- to medium 

traffic Rails applications (like Atlas), even when they utilize Unicorn for a multi-

process approach to concurrent request handling (as Atlas does) [54]. As a con-

sequence of these design decisions, the wear test table exhibits one type and one 

id field for each of the possible test specimen geometries (block, bushing, disc, 

plate, ball, cylinder and ring). By declaring these relations to be polymorphic, Rails 

automatically uses the value of the corresponding type field to identify the target 

table and the value of the id field to identify the correct record from the target table. 

Code listing 16: Declaration of the relationship between block on ring- and ball on 
plate-tests and their respective test specimens using class meth-

ods provided by ActiveRecord. 

Class BlockOnRingTest < WearTest class BallOnPlateSrvTest < WearTest 

  belongs_to :block,   belongs_to :ball, 

             polymorphic: true              polymorphic: true 

  belongs_to :ring,   belongs_to :plate, 

             polymorphic: true              polymorphic: true 

  validates_presence_of :block   validates_presence_of :ball 

  validates_presence_of :ring   validates_presence_of :plate 

end end 
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In order to enable Rails to resolve this relation the other way round, a complimen-

tary declaration must be made on each of the three levels of the test specimen 

hierarchy, see Code listing 17. These declarations are then inherited to the individ-

ual subclasses within each hierarchy level. 

Code listing 17: Declaration of the inverse relation between block on ring wear 

tests and blocks in the Block, BlockLot, BlockClass classes. 

Class TestSpecimen class TestSpecimenLot class TestSpecimenClass 

  has_many :wear_tests,   has_many :wear_tests,   has_many :wear_tests, 

           as: :ring            as: :ring            as: :ring 

  has_many :wear_tests,   has_many :wear_tests,   has_many :wear_tests, 

           as: :block            as: :block            as: :block 

  has_many :wear_tests,   has_many :wear_tests,   has_many :wear_tests, 

           as: :disc            as: :disc            as: :disc 

end end end 

Figure 16 shows Atlas’ data model that results from using a three-tiered test spec-

imen hierarchy in combination with polymorphic associations for relating a block 

on ring test to its “ring” test specimen. Though omitted, for the sake of clarity, the 

same is true for the relation of block on ring tests to their respective rings as well 

as for all other test type/test specimen combinations in Atlas. 

 
Figure 16: Polymorphic association between BlockOnRingTest and Ring. 

Ringable is the name of the polymorphic association between any of 

the ring-type subclasses of Atlas’ main test specimen classes and sub-

classes of WearTest. 

The ability of associating any specimen hierarchy element to any subclass of the 

wear test superclass enables users of Atlas to specify the degree of “specimen 

identity” they want to relate their test results to. For example, steel rings are ground 

to their final surface in a batch process. Due to the high reproducibility of today’s 

machine aided grinding, such production batches typically yield ring lots with very 

little inter-specimen scattering of attributes, e.g. of surface roughness parameters. 
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Therefore, rings are typically related to block on ring wear tests only via their test 

specimen lot and not per individual test specimen ids. On the other hand, if required 

for detailed analytics, the relation can still be based on individual rings, if the user 

opts to do so. 

In Atlas, tribometers are related with a set of testing positions. Wear tests are there-

fore not directly associated to tribometers, but to one of the positions that are as-

sociated to the respective tribometer, see Figure 17. 

 

Figure 17: Relationship between wear tests, (testing) positions and tribometers. 

By adding testing position-specific data to this relation, this data is easily accessi-

ble when processing the recorded primary test data later, e.g. by applying leverage 

ratio of a lever on displacement or force transducer data. In a more advanced data 

model, which is beyond the scope of this work, this design might be upgraded even 

more, e.g. by adding relations between the testing positions and measuring instru-

ments that are installed at that respective position. Such an extension would es-

tablish a trace from aggregated results through recorded data to calibration certifi-

cates of sensors. Furthermore, when adding validity periods for such certificates, 

an automatic classification of wear tests as “done with validly calibrated sensor 

equipment” could be implemented. 

In addition to their relationships to tribometers (through the position relationship) 

and test specimens (through which they are related to a material), wear tests and 

their segments are related to the lubricant model, the test standard model, the per-

son model (in the role of an operator), to the graph model to the test set model and 

through this to the project model. 

 

Figure 18: Relationships between projects, wear test sets and wear tests. 
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 4.7.4  Creation of wear tests 

The process of creating a wear test includes the creation of a new instance of the 

corresponding WearTest subclass, the assignment of values to all relevant attrib-

utes of the new object and the assignment of associated object instances to rela-

tionships. As described in Section 4.7.3, even in their simplest form of single-seg-

ment tests, wear tests and their segments consist of more than 100 individual 

pieces of information. Many of them are critical to the successful conduction and 

evaluation of a wear test. A good example for this is the combination of averaging 

time and logging frequency. When not set to (typically very narrow) correct ranges 

of values, which are possibly even interdependent, the tribometer control software 

might be perfectly able to execute the test, but the resultant measurement data file 

might be useless in terms of friction force data. The issue with this large number of 

parameters and their definition is that humans have error rates for elementary tasks 

that makes any process that relies on a human operator to not make an error in a 

high number of critical operations highly likely exhibit at least one such critical error 

with a non-neglectable probability. For the lack of reasonable error estimates for 

elementary processes in a tribology laboratory in general and for the process of 

entering a large amount of data into a LIMS. 

Table 4: Estimates for human error rates of elementary processes, reproduced 
from [55] with modification. 

 
Process 

Error rate 
[%] 

Passive inspection (general walkaround) 10.0 

Inspector fails to recognize initial error by operator 10.0 

Install O-Ring – improperly install 6.67 

Read instructions – make procedural error 6.45 

Carry out Plant Policy – no check on operator 5.00 

Simple arithmetic error (without redoing calculation on separate paper) 3.00 

Technician ‘‘seeing’’ an out-of-calibration instrument as ‘‘in tolerance’’ 2.00 

Adjust mechanical linkage – improper adjustment 1.67 

Read gauge incorrectly 0.50 

Tighten nuts and bolts – not tightened 0.48 

General error of omission for items imbedded in a procedure 0.30 

General errors of commission, e.g. misread label and selected wrong switch 0.30 

Select wrong controls 0.30 

Assemble connector – bent pins 0.15 

Error of omission – 10-item check off list 0.10 

Selection of switch dissimilar in shape or location to desired switch 0.10 

Install nuts and bolts – not installed 0.06 
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Table 4 shows estimates for the error rates a selection of elementary technical 

processes conducted by trained human operators. Although mainly determined for 

processes in chemical and power plants, the presented selection of processes is 

assumed to be relevant for tribology laboratories as well. From this, it becomes 

obvious that creating new wear tests from scratch, i.e. not by cloning existing tests, 

requires computerized support that ensures that all required data is entered, that 

relationships are formed only to existing and valid objects (i.e. that referential in-

tegrity is ensured and maintained, see Section 2.3.3) and that whatever data that 

can be auto-completed is so. For this, Atlas includes a guided process through a 

series of HTML forms that are supported by code- and database-level validation 

on the server side. The user starts with a basic form in which he enters general 

data on the projects to which the newly created tests should belong to, which tri-

bometer ought to be used to do the tests, what general standard to follow and 

whether to relate the new tests to an existing wear test set or to create a new one, 

see Figure 19. On form submission the browser sends this information to the server 

using an asynchronous request. The server then uses the provided tribometer id 

and finds the number of test positions that are related to it. For each test position, 

it renders a set of HTML elements that includes inputs about the test respective 

test specimens for the new test. As the relationship between wear tests and their 

test specimens is polymorphic, two pieces of information must be entered for each 

test specimen: its class name and its id. This provides the user with a very high 

degree of granularity from which he can choose the correct level for depending on 

domain requirements. The server sends the rendered HTML back to the browser 

which then inserts it into the web page. Figure 21 shows the result of this process 

for the four-position block-on-ring tribometer shown on the left side of Figure 13. 

Next, the user enters the data that identify the test specimens that he wants to use 

in the new tests. By default, Atlas assumes that when individual test specimens 

are used, they will exhibit sequential ids. Therefore, any number that is entered 

into the id field of a test specimen on the first position, the entered number will be 

forwarded the to the respective fields of all other positions, incrementing the id 

accordingly so that a gap-free sequence is created. Correspondingly, when a test 

specimen lot subclass is selected and an id is entered, Atlas will assume that the 

same TSL is to be used on all positions and will forward the entered id without 

incrementing it. 



 57 

 

 

Figure 19: Form-based creation of wear tests for a four-position tribometer, step 1: 
general data. 

 

Figure 20: Form-based creation of wear tests for a four-position tribometer, step 2: 
test specimen data. 

 

Figure 21: Form-based creation of wear tests for a four-position tribometer, step 3: 
loading information snippets for validation. 
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Figure 22: Form-based creation of wear tests for a four-position tribometer, step 
4.1: define type and number of segments to add. 

 

Figure 23: Form-based creation of wear tests for a four-position tribometer, step 
4.2: definition of a sequence of six segments that vary in temperature. 

This assistance function is activated by default whenever the workflow of creating 

new wear tests is started. The reason for this is that the behavior of the forwarding 

function reflects the standard workflow at the author’s laboratory. By turning it on 

by default, it greatly supports the laboratory policy on using sequential ids when 

individual test specimens are used in a multi-station tribometer and to use the same 

lot on each station when test specimen lots are used. This greatly reduces the 

number of opportunities at which a human can enter erroneously numbers even if 
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he is fundamentally aware of the correct number. Additionally, error correction by 

a human supervisor can be saved which is also highly error-prone process, see 

Table 4. As Atlas’ JavaScript functionality and the templates for its HTML forms 

can be split across different files and even be re-created live from the database, 

other policies and workflows, e.g. of other laboratories can be easily implemented. 

After the first set of tests has been created, the form remains in the browser window 

by design. The user can then adjust the test specimen ids and re-submit the form. 

This process can be repeated the required number of times until all tests with the 

same specification have been created. This reduces the number of error-prone 

user operations to the possible minimum, i.e. every parameter has to be entered 

only once. Additionally, automatic functions exist that compute the suggested de-

fault values for selected test parameters. Specifically, when the user enters the 

sliding speed for a sliding segment, the recommended values for logging frequency 

and averaging time will be computed. This infusion of domain logic into automated 

functions obliviate the user from making calls or calculations that have proven to 

exhibit especially high error-rates. 

The number of user operations can be even further reduced when the user needs 

to create new tests that are replicates of existing tests. For this, Atlas’ GUI provides 

a special form that allows the cloning of sets of existing tests. Again, by providing 

the tribometer in question, the id of a wear test and the id of a target project or test 

set, an asynchronous HTTP request is sent to the Atlas server which then gener-

ates a set of inputs for test specimen identifiers, one for each test position, pre-

populate them with the ids of the original tests and send them back to the browser 

who will insert them into the page. The user can then inspect the test specimen ids 

of the source tests and either keep them, if he wants the new tests to use the same 

specimens than the source tests, or he can update them to make the new tests 

use other specimens.  

 4.8  Test setup and execution of wear tests 

The process of conducting a wear test roughly consists of the steps shown in Fig-

ure 2. First, the test specimens need to be identified and mounted to the tribometer. 

Atlas supports this step by providing an overview of all tests that belong to a given 

project that includes information on all relevant test parameters, including which 

test specimens should be used for which test. Figure 24 shows a sample for such 
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a project-based overview. For clarity, tests are grouped by test set and segment 

index and sorted by test set id, segment index and wear test id. 

Once identified, the test specimens are retrieved from storage which is greatly sim-

plified when the storage system described in Section 4.5.4 is used, and then 

mounted to the corresponding tribometer position. Then any required auxiliary 

equipment, like lubricant pumps or heating and cooling devices are mounted. At 

the moment, the process of the selection of the required additional equipment de-

pends on the appropriate knowledge of the laboratory personnel which in turn de-

pends on proper staff training and process documentation (both of which having 

however non-negligible error rates, see Table 4).  

 

Figure 24: HTML-view of tests that belong to a sample project, grouped by wear 
test sets and sorted by test set id, segment index and wear test id. 

Once the test specimens are mounted and all required additional equipment has 

been identified and readied, the tribometer’s control software needs to be param-

eterized correctly, i.e. in a way that it will execute the test as planned. Even tests 

with a low number of segments can more than dozens to more than one hundred 

parameters that need to be put into the tribometer control software. The state of 

the art on how this is supported by computerized tools greatly varies between tri-

bometer manufacturers. Mostly, a large number of fields for the required test pa-

rameters is presented to the user with hardly any fill-in help or automatic validation 
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check or unit conversion (i.e. from rpm to v and vice versa or from absolute sec-

onds to segment duration in hh:mm:ss format). Typically, a tribometer control soft-

ware will offer the option to load an existing test, modify its parameters and save it 

as a new test. However, this process is very prone to a sequence of errors, 

amongst which omitting the necessary change of a parameter, making a required 

change but entering the wrong value, overwriting the chosen template or choosing 

the wrong test as a template should be the most frequent ones. 

A proprietary solution that includes the assisted creating of wear tests and their 

automatic transmission to a tribometer is the TriboScriptTM software of Bruker Cor-

poration, which “utilizes a drag-and-drop methodology to prepare test scripts” and 

which is able to transmit these offline-prepared scripts to a Bruker tribometer for 

execution [19]. Currently, no published literature contains estimates on error rates 

of elementary processes in a tribology laboratory in general or for the process of 

tribometer parameterization. Without conducting any structured process hazard 

analysis, but based on his years long experience as head of a tribology laboratory, 

the author’s personal estimate for the probability of making at least one non-recov-

erable error when configuring a tribometer control software, i.e. making an error 

that mandates the repetition of the test, is 5-10 % for single-segment tests with 

uniform sliding and 10-20 % for multi-segment tests that include oscillation, static 

COF or cyclic positioning segments. As these error rates are unacceptably high, 

Atlas provides a functionality for the automatic transmission of test parameters to 

a tribometer for which Figure 26 shows the basic workflow. Basically, Atlas sup-

ports three modes of automatic parameterization: online pull, online push and of-

fline. In pull mode, the ids of the test(s) are entered into the tribometer control soft-

ware which then sends a corresponding HTTP request to the Atlas server. For this 

to work, the tribometer control software needs to support this functionality. It needs 

to provide inputs for the wear test id(s), needs to issue the HTTP request, thereby 

supplying all information needed by Atlas and finally, it needs to be able to under-

stand and process the returned configuration which is send as part of the HTTP 

response. The GET HTTP request should be made to /wear_tests/autoconfig.[for-

mat], where [format] is the expected response format. Currently only “txt” for a plain 

text response is available which is the expected document format of the Atlas TT 

tribometers of Tribologic GmbH (Germany) and of IVW – which are the only tribo-

meters that are currently designed for use with Atlas’ auto-configuration function. 
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When the request completes successful, 

i.e. with a status code in the 200-299 

range, the server’s response will include 

a document of the requested format in its 

body. The tribometer control software is 

then expected to parse this document 

and to extract all required information to 

execute the test. The tribometer software 

needs to include the following mandatory 

information as Common Gateway Inter-

face (CGI) parameters: the tribo-

meter_id of the corresponding tribo-

meter record on the Atlas server that the 

request is sent to and one set of key 

value pairs for each combination of posi-

tion (key) and wear test (value). The key 

must be equal to the value of the pos_no 

attribute of the corresponding position’s 

Atlas record and the value must be equal 

to the id of the Atlas record of the wear 

test that is to be done on the correspond-

ing position.The relative URL for requesting a text-formatted configuration docu-

ment for the execution of wear test 786 on position 1 and wear test 787 on position 

2 of the tribometer with id 3, would be /wear_tests/autoconfig.txt?tri-

bometer_id=3&1=786&2=787. 

The workflow for push and offline mode both start with entering the above-men-

tioned information into the form shown in Figure 26, by selecting the required mode 

(download or push) and by clicking on “OK”. Atlas will then generate the requested 

document and either send it as a download to the user’s browser (offline mode) or 

directly to the tribometer’s control PC via an HTTP POST-request (push). In the 

latter case, the tribometer control software needs to return a corresponding re-

sponse that at least indicates the result of the parsing process, e.g. a 201 status 

 

Figure 25: Automatic configuration of 
a tribometer with Atlas. 
Grey: computerized sup-
port. Method Support is 
subject to support from the 
tribometer control soft-
ware. 
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code if the test has been set-up correctly. 

When the user has chosen to download 

the document, he needs to transport it 

manually to the tribometer control soft-

ware. The document is then injected into 

the tribometer control software using 

whatever process is provided by it. 

Finally, when the configuration has been 

parsed by the tribometer control software 

and if the test has been set up correctly, 

the user starts the test. 

 4.9  Measurement data files 

 4.9.1  Domain 

The main source of measurement data files are tribometers which produce them 

over the course of an experiment. Given the huge range of brands and models, 

they come at an equal range of data formats and with different naming strategies. 

As for naming strategies, the data file name is typically a string whose length and 

allowed characters are determined by the underlying operating system. Therefore, 

the user is typically provided with a file select dialogue that is provided by the op-

erating system. Tribometer operators then need to define a set of rules for creating 

“meaningful names” for data files. Such rules then specify what information should 

be included in the file name so that the file’s content can be safely related to a 

specific test. In other words, the purpose of the file name is to serve as an identifier 

for the file itself and to associate it with the corresponding experiment. Mostly, this 

is done without correctly defining the domain of the task and its entities and rela-

tionships explicitly, without defining a data model for this and without defining iden-

tifiers for entities that should be associated with the data file, i.e. operators, test 

devices, test specimens, project name or id etc. Often, the inclusion of metadata 

like recording date, file version or file format are also specified. Additionally, the 

use of certain characters can be mandated or excluded, like special characters or 

characters that serve special purposes on certain operating systems (e.g. on Linux, 

a leading “.” Indicates a “hidden” file or directory) or that are customarily reserved 

 

Figure 26: Form for starting a push 
workflow for tribometer 
configuration. 
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to indicate special roles (e.g. trailing tilde for automatic backup files). Additional 

rules then cover the location at which a file should be stored. Typical information 

that needs to be minded when deriving storage location are project, sample name, 

backup priority, investigator/operator and rules concerning internal folder structure 

of storage locations. All those rules together form a “policy on data file naming and 

storage locations”. Even being only a part of an even wider set of rules (“Research 

Data Management Policy”), they can easily fill dozens of pages. This policy needs 

to be published to the laboratory personnel, be reviewed and updated periodically 

and the personnel needs to train its application, including processes for arbitrating 

ambiguities and non-included edge cases. Although a huge step up from com-

pletely unregulated naming and storing of data files, or more general “assets”, this 

process is still prone to significant error rates, see Table 4. Therefore, laboratories 

should consider whether the improvements achieved as a result of the introduction 

and operation of a file name and storage location policy actually exceed the costs. 

Measurement data files also come in different states of processing. The two basic 

processing state are “as generated by a tribometer” and “evaluated”. In-between, 

there might be none, one or more steps of partial processing or format conversion. 

Such intermediary states may be either completely transient in-memory states or 

they might be persisted to a file storage system. 

 4.9.2  Uniform data format and naming convention 

Today, tribometers are computer-controlled and equipped with an array of sensors 

for a set of physical quantities, e.g. friction force, normal force, test specimen tem-

perature or ambient humidity. On multi test-station tribometers, some of these may 

be recorded for each test position individually and some may be recorded as global 

variables that apply to each test position in the same way. The classification of a 

specific physical quantity of being either test position-specific or global may depend 

on tribometer design. For the two construction variants of four position-tribometers 

shown in Figure 12 ambient humidity is a global parameter for the block on ring-

variant because the four positions are operated in the laboratory atmosphere, 

whose humidity and temperature therefore apply to each position equally. For the 

pin on disc-variant, which exhibits individual climate chambers for each test posi-

tion, ambient humidity and temperature can potentially be different for each test 

position. 
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The simplest approach that covers all potential combinations of physical quantities 

and their classification as either position-specific or global is to produce one write 

all recorded data into a single data file that contains recorded data in columnar 

format, with one recorded quantity per column. For position-specific quantities this 

results in a data file that contains multiple columns for the same physical quantity, 

e.g. friction force, with one column per test position. This – very popular – data file 

format is however at odds with the concept of individual tests by producing a joint 

data file for otherwise independent tribological tests. Specifically, it generates the 

risk of race conditions in which a process that executes an operation on one of the 

tests whose data is included in one given data file, e.g. computing an average 

temperature, may collide with another process that operates on a different test that, 

by chance or not, has its data stored in the same data file. Such race conditions 

can cause unpredicted results including data corruption, data loss, unhandled ex-

ceptions that cause the system to crash and, even more dangerous, unnoticed 

obfuscation of data in-between tests. While preventing such race conditions is ba-

sically possible, it is much easier to design the data file format in a way that pre-

vents such race conditions by design. One simple way to do so, is to write a sepa-

rate data file for each test that is done in parallel on a multi-position tribometer. 

This makes it necessary either duplicate global data by writing it to each separate 

file or to write a separate data file that only includes global test data.  

 

Figure 27: Example of a tab-separated columnar data file from a tribometer. The 
column width exceeds the viewer tab width at several occasions, re-
sulting in partial shift of columns. 

While the first approach is “just” verbose and requires more storage space, the 

latter approach is – again – prone to race conditions and to increased overhead for 

establishing and maintaining the relationship between the potential joint data file 
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and the collection of tests that have their global 

data stored in this file. Out of these choices, At-

las creates an individual data file for each test 

that is done in parallel on a multi-position tribo-

meter and it duplicates global data in each of 

these files. Thereby it trades minimum data file 

size for adherence to the encapsulation princi-

ple which in turn results in an inherently in-

creased robustness to race conditions. 

Once test data is recorded and stored in data 

files, provisioning of automated functions for 

handling, analyzing and plotting this data re-

quires the LIMS to know the exact storage lo-

cation of each physical quantity. This necessi-

tates that the LIMS knows the name and the 

storage location of the data file that corre-

sponds to a given test (together, they form the 

storage path of the test’s data) and the exact 

storage location of the physical quantity in 

question within that file. For columnar data, this 

means knowing the corresponding column in-

dex. The most common solution to this is to use 

one or more “header lines” which contain hu-

man readable identifiers for the physical quan-

tities that are stored in the corresponding columns and for their physical unit. When 

the unit is included, it may either be on the same line than the quantity or in a 

separate column, see Figure 27: 

In order to be usable in an automated way, e.g. for automated data handling, pro-

cessing, aggregation or plotting, a machine-readable relationship must be estab-

lished between the file’s identifiers (and unit labels) and the corresponding busi-

ness logic entities (“friction force” and “loading”). While this is easy to do for an 

individual file or for a type of homogeneous files that were produced by the same 

tribometer, it becomes a more complicated task when data files exhibit incompati-

 

Figure 28: Example of a YAML-
file that contains an 
Atlas data file column 
descriptor. 
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ble versions (for example when the tribometer’s set of sensors is altered or its con-

trol software is change) or if they originate from different tribometers, potentially 

even from different brands and manufacturers. The advantage of such a key-value 

storage is that it can be easily expanded by new key-value pairs. For example, 

storing the minimum and maximum values of each column can be used for quickly 

determining plotting range without having to re-parse the actual data. Other inter-

esting metadata include the presence or absence of a column, i.e. due to a missing 

or disabled sensor, or the validity of the data, e.g. when a sensor has ex-post been 

found to have been recording wrong data. In order to enable functionalities that 

require the stored metadata without having to re-read the whole data file from disk, 

Atlas stores its data file descriptors in separate, small files on disk (with the data-

base itself as an even faster alternative). For doing so, a variety of data formats is 

available, e.g. the Extensible Markup Language (XML) [56], JavaScript Object No-

tation (JSON) Data Interchange Format [57] and the “YAML Ain’t Markup Lan-

guage” (YAML) [58] of which YAML was chosen for Atlas due to its support by 

Ruby’s core library [59]. 

In order to work properly, in addition to the information from the data file header, 

transformation scripts will typically require meta-information about the test, test 

specimen, testing conditions and/or tribometer. From within Atlas, all this infor-

mation is easily available by using the entity relationship diagram to retrieve the 

required objects – either by directly looking them up if their ID is known, or by 

following the specified relationships to retrieve them as associated objects. Once 

the correct object is found, it can be queried for the corresponding attribute. While, 

via the API, this is also possible from outside Atlas, it is much easier to do from 

within. “From within” in this case means in-memory objects of an Atlas server in-

stance. However, as different tribometers produce different raw, i.e. non-normal-

ized, data files, highly specific transformation scripts are needed. Here, specificity 

at least includes tribometer brand or even ID and possibly even data file version 

(unless it can be included in a single multi-version script). 

Overall, specific scripts require specific information from the LIMS in order to con-

vert a tribometer-generated data file into an internal data file that complies with a 

predefined, uniform format. Atlas solves this issue by providing an individual pre-

process method to each instance of the tribometer class using the OOP concept 
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of “singleton methods”, which are instance-specific methods or method implemen-

tations. Code listing 18 shows the definition of singleton methods for two tribo-

meters instances. 

Code listing 18: Definition of singleton-methods for two tribometer instances. 

# create two new tribometer and print their IDs 

tribometer_1 = Tribometer.create({ name: “XTM 1000” }) 

tribometer_1.id 

=> 1 

tribometer_2 = Tribometer.create({ name: “SRV 5” }) 

tribometer_2.id 

=> 2 

# define singleton methods that will be different for both instances 

tribometer_1.define_singleton_method(:say_hello) do  

  puts “Hello, this is tribometer #{self.id}!” 

end 

tribometer_2.define_singleton_method(:say_hello) do  

  puts “Bonjour, c’est le tribomètre #{self.id} ici!” 

end 

# call method for both tribometer instances 

tribometer_1.say_hello 

=> Hello, this is tribometer 1! 

Tribometer_2.say_hello 

=> Bonjour, c’est le tribomètre 2 ici! 

The advantage of this individualization is that both instances have full access to 

Atlas’ data, as can be seen from the inclusion of the instance IDs in the output of 

Code listing 18. Specifically, this access is also provided to the code block that is 

passed as an argument to the call of the define_singleton_method method 

(which all Rails instance objects inherit from Ruby’s Object class by default). 

Code listing 19: Dynamic definition of a singleton-method that transforms a data 

file for wear_test located at file_path to standard format. 

Class Tribometer 

  after_initialize do |tribometer| 

    # define singleton method for this instance 

    tribometer.define_singleton_method(:preprocess) do 

      eval tribometer.preprocess_code 

    end 

  end 

end 

Next, each tribometer must be given its own singleton method which will host the 

specific domain logic of the respective tribometer and the data files produced by it. 

In order to prevent the inclusion of their implementation into Atlas’ source code 
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(which would lead to collisions between different server instances), the source 

code of the transformation scripts is persisted in an attribute of the tribometer 

model called preprocess_code, whose content is then used to dynamically cre-

ate an internal preprocess singleton method which is then executed, see Code 

listing 19.  

By convention, each preprocessing code is expected to return a transformed data 

file that complies to Atlas’ standard file format. This requires the encoding of the 

file to be UTF-8 and the content to be tab-separated columns of data, numeric 

values to be either in scientific, exponential or engineering format (with ‘.’ As deci-

mal separator) and “\n” as newline character. Furthermore, one file per segment is 

required, with the file name being “\d{8}.\d{4}.\s+”, where \d{8} is the eight-digit 

wear test id (filled-up to eight digits with leading zeroes), \d{4} is the four-digit seg-

ment index (again, filled-up to four digits with leading zeroes) and \s+ representing 

the files processing state. By default, Atlas supports three different processing 

state identifiers: 

 “dat” for data files which have either been produced by tribometers that na-

tively support Atlas’ standard data file format or which have been converted 

from non-complying file formats during upload (see Section 4.9.6). 

 “orig” for data files that have experienced partial preprocessing but which are 

not yet fully evaluated. Possible reasons for this is the conversion of 

timestamps to elapsed test time or sliding distance data (see Section 4.9.6), 

or the insertion of external data into a “dat” file for forming consolidated data 

for further processing (see Section 5.4). 

 “proc” for fully processed and evaluated data files. Typically, files in this state 

contain data that is used for generation plots of recorded and computed quan-

tities as a function of elapsed test time and for the computation of aggregated 

data, e.g. of mean coefficients of friction or of wear rates in steady-state, see 

Section 4.9.7) 

Additionally, for each processing state, Atlas expects accompanying (but separate) 

files that contain the machine-readable file column descriptor, see Figure 28. 
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 4.9.3  Type specific domain requirements 

Different types of wear test segments furthermore require data files with different 

special characteristics. A typical example for this is oscillatory sliding motion which 

is modeled by the OscillationSegment class. Oscillatory motion is character-

ized by the existence of two reversal points. In close spatial and temporal vicinity 

to these turning points, the resolution and accuracy of the data acquisition is often 

not good enough to always yield valid data, especially concerning the friction force. 

Specifically, any combination of sensor sampling frequency and logging interval 

will lead to the situation in which there is one logging interval that will partially in-

clude forwards motion, the reversal point and backwards motion. With the typical 

convention of recording friction forces as positive in one direction and as negative 

in the other direction, the resulting average friction force that is recorded for this 

logging interval will be lower than the friction force that was in effect actually. Still, 

most of times, data gets written to the measurement data file in one long sequence 

of rows, with one row representing each logging interval and without any logical 

markers for the reversal points. This loss of procedural information imposes great 

difficulties to the evaluation procedure when it has to identify the data points that 

need to be excluded from certain operations, e.g. when computing a arithmetic 

mean for the coefficient of friction or when plotting the coefficient of friction as a 

function of test elapsed time or sliding distance. 

Therefore, Atlas supports features that reflect type-specific features of measure-

ment datafiles. An example for this is the inclusion of reversal point markers (“### 

period x”) in data files that represent oscillation segment, where x is the number of 

the oscillation cycle of the data below, see Figure 29. 

 

Figure 29: Use of reversal point markers for segmenting data files that represent 
oscillation segments. 
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For tribometers that do not implement such reversal markers, Atlas provides func-

tionalities that will identify reversal points in continuous streams of data. This fea-

ture needs to be implemented as part of the tribometer-specific conversion scripts, 

see Code listing 18. 

Other type-specific features that mandate or support the use logical markers for 

segmenting a wear test segment’s data into meaningful subsegments are the po-

sitions that form the skeleton of the elementary motion pattern that is cyclically 

repeated as part of a CyclicPositioningSegment. 

 4.9.4  Data model 

Atlas implements a Datafile class to implement the general domain logic of data 

files (i.e. save to disc, read from disc, standardize data file name, on-server storage 

location etc.). The domain logic of measurement data files that belong to individual 

wear test segments are then generically modelled by SegmentRecordedData-

file which is a subclass of Datafile. Then, on the next level of hierarchy, a 

group of sibling subclasses is defined which represent the different types of wear 

tests segments, see Table 3, and which can be used to override existing methods 

of the SegmentRecordedDatafile class, i.e. to reflect specifics of the file’s do-

main logic like an internal data structure that is different to that used by other seg-

ment types, or to add new methods that implement domain logic that is exclusive 

to the respective segment type and its measurement data files. 

Datafile itself all its ancestors are no subclasses of ActiveRecord and their 

instances are therefore not persisted to the database. Instead, they are generated 

on-the-fly by a custom attribute reader and returned as its return value. This estab-

lishes a relationship between the class that implements this reader and the datafile 

class whose instances are generated. Code listing 20 shows this using the exam-

ple of the relationship between WtSegment and SegmentRecordedDataFile. 

When a test segment requests its datafile object, the exact class of the returned 

object is determined from the subclass of the segment (“self.type”) and the re-

quested processing state (“type”). 
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Code listing 20: Association between wear tests and data files. 

Class WtSegment < ApplicationRecord 

  def datafile_class(type) 

    “#{self.type}#{type.to_s.capitalize}Datafile”.constantize 

  end 

  def datafile(type) 

    type = type.to_sym 

    @datafiles ||= {}.with_indifferent_access 

    if @datafiles[type].blank? 

      @datafiles[type] = datafile_class(type).new({ wt_segment: self }) 

    end 

    @datafiles[type] 

  end 

end 

 

class SegmentRecordedDatafile < Datafile 

  attr_accessor :wt_segment 

  def initialize(wt_segment: nil # more parameters omitted for clarity) 

    @wt_segment = wt_segment 

    # more code omitted 

  end 

end 

The services that datafile objects provide include the loading and saving of data 

from and to disk, storing data while it is in-memory, accessing columnar data based 

on standardized quantity identifiers, see Code listing 21. 

Code listing 21: Using datafile instances to load data from disk and to get columnar 
data for measured ambient humidity. 

Slide_segment = SlideSegment.last 

slide_segment.datafile(:proc).load 

proc_df.get_data_for :ambient_humidity 

=> # array holding friction force data 

proc_df.get_unit_for :ambient_humidity 

=> “percent” 

 4.9.5  Server-side storage 

Atlas uses a model of its own for storing assets on the server-side called Asset-

Folder. This model encapsulates all on-disk processes like, writing of a new file, 

transferring uploaded files to their storage location, finding out whether a requested 

file exists and if so, reading it. When associated to another model, they represent 

the on-disk storage locations for all data that is associated with this model but that 

should not be persisted in the database. Like instances of Datafile, instances of 
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AssetFolder do not inherit from ActiveRecord::Base. Besides not being per-

sisted to the database, they cannot be associated to other objects using Rails built-

in domain specific language for declaring relationships. Instead, like with datafiles, 

their association to other objects is established by creating a corresponding attrib-

ute reader that constructs the requested instance on-the-fly, see Code listing 22.  

Code listing 22: Association between wear tests and asset folders. 

Class ApplicationRecord < ActiveRecord::Base 

  after_create :create_asset_folder 

  after_destroy :destroy_asset_folder 

  # create virtual association 

  def asset_folder def asset_folder=(af) 

    @af ||= AssetFolder.new(owner: self)   @af = af 

  end end 

  def create_asset_folder def destroy_asset_folder 

    asset_folder.create   asset_folder.destroy 

  end end 

end 

# inherit asset folder to subclasses of ApplicationRecord 

class WearTest < ApplicationRecord  

end 

WearTest.sample.asset_folder.relative_path 

=> “/wear_tests/00001000-00001999/00001724/” 

The most import functionality of AssetFolder is the derivation of the storage lo-

cation for all data that is handed to it. This enables Atlas to consistently read and 

save assets of any given object to an identifiable and consistent location on the 

server’s storage. Code listing 23 demonstrates this using the example of compos-

ing the on-disk storage path for an instance of the Attachment class. 

Code listing 23: AssetFolder 

class Attachment 

  def file_path 

    File.join asset_folder.path, 

              file_name_on_hdd 

  end 

end 

The root of Atlas physical storage is part of the configuration of the respective 

server instance and may be either a machine-local storage or a remote storage 

that is integrated into the server’s file system, e.g. a network file system resource.   
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 4.9.6  Data file upload and automatic standardization 

Before a measurement data file can be stored on the server, it must be uploaded 

to it, see Figure 30. As Atlas does not provide direct access to its data storage 

system, data files can only be pushed to the server by an HTTP request. The rel-

ative URL is /wear_tests/[ID]/upload_datafille.html, with [ID] being 

the id of the wear test for which one or more 

data file(s) should be uploaded. As described 

in Section 4.9.1, Atlas stores measured test 

data in one separate file per test segment and 

the data file header in another separate file. 

The exact number of files that needs to be up-

loaded therefore depends on the number of a 

test’s segments. In order to support this, Atlas 

will accept a zip file as part of the POST re-

quest which it will unpack and check for its 

content. When already in standard format, the 

unpacked files will be sent to their asset folder. 

Data files which are not in standard format, will 

be converted on the fly to Atlas’ standard data 

file format. Then, the converted data file(s) are 

moved to storage. Atlas does not persist any 

uploaded data files that are not in standard for-

mat and discards them. Log files that comply 

to Atlas naming convention for this file type will 

also be transferred to storage. See Section 

4.9.5 for a detailed description on how Atlas 

determines a data files’ on-server storage lo-

cation. 

 4.9.7  Automatic evaluation and result persistence 

One of the major challenges in evaluating measurement data files programmati-

cally, i.e. by the use of software-coded procedures, is the high variability of input 

data. This already starts with such fundamental data as the “independent variable” 

 

Figure 30: Workflow for uploading 
measurement data files. 
Grey: computerized 
support. *Level of sup-
port depends on ma-
chine. 
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which is most frequently “time”. Possible data formats include decimal notation in 

all kinds of units (mostly seconds or hours) or the HH:MM:SS format. When repre-

senting “test elapsed time”, this kind of data starts at “zero” at the beginning of the 

test, i.e. at 0 or at 00:00:00. Furthermore, time data can be expressed as 

timestamp, in which case they refer to an absolute time scale. They come in an 

even wider variety of data formats, for example as a numeric vale that represents 

the elapsed time since the beginning of an “epoch” (e.g. since January 01, 1970 

UTC in the case of Unix time stamps) or in an alphanumeric format that explicitly 

defines a point in time in a given time zone (e.g. “2021-12-13T14:22:26+00:00” 

according to ISO 8601). The number of possible permutations, and thereby com-

plexity, is further compounded by the virtually infinite numbers of physical quanti-

ties that can be included in a data file, the column they are stored in and the range 

of physical units they can be stored in. 

Atlas solves this issue by converting uploaded measurement data files to a uniform 

internal data format, combined with a machine-readable data file header. The re-

quired domain knowledge that is needed to achieve this uniformity is hereby in-

cluded in the tribometer-specific conversion scripts that are stored in the prepro-

cess_code of the tribometer instances. 

The second major challenge is the high variability of evaluation procedures and of 

the results that they produce. While some types of experiments enable the calcu-

lation of test specimen wear from sensor data, e.g. the calculation of the linear 

wear rate from time-resolved data on the height loss of test specimens, others do 

not allow this specific calculation. There are similar situations for other result quan-

tities, test types and even tribometers, e.g. when one tribometer tracks test speci-

men temperatures while another one does not. Additional variability arises from the 

different types of test segments that a wear test can be made of. While in uniform 

sliding the average dynamic coefficient of friction in steady state typically is a rele-

vant result, this quantity is not even defined for a static COF segment. Atlas mainly 

uses the OOP concept of specialization to mirror this variability: Whenever a pro-

cedure, e.g. the calculation of a contact area as a function of height loss, Depends 

on the test geometry, this procedure is implemented in the subtypes of the Wear–

Test class. Each subclass can then use its specific domain knowledge to imple-

ment the appropriate procedure. 
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The same strategy is used for implementing differences that arise from different 

types of wear test segments, see Code listing 24. In this, all the shown segment 

types implement different calculations of the sliding speed using the conversion 

library for physical quantities of Olbrich [60]. For a sliding segment instance this is 

a straight-forward construction of a unit string from its attributes sliding_speed 

and sliding_speed_unit and its subsequent interpretation as a Unit object 

[60] and conversion to the unit specified by the corresponding argument. 

Code listing 24: Implementation of type specific calculations of the same information us-
ing specialization. 

Class OscillateSegment < WtSegment 

  def sliding_speed(unit: ″m/s″) 

    f = U “#{oscillation_frequency} #{oscillation_frequency_unit}” 

    s = U “#{stroke} #{stroke_unit}” 

    v = f * s * 2.0 

    v.convert_to(unit).scalar.to_f 

  end 

end 

class SlidingSegment < WtSegment 

  def sliding_speed(unit: ″m/s″) 

    v = U “#{sliding_speed} #{sliding_speed_unit}” 

    v.convert_to(unit).scalar.to_f 

  end 

end 

class StopSegment < WtSegment 

  def sliding_speed(unit: ″m/s″) 

    return 0.0 

  end 

end 

s = SldidingSegment.new({sliding_speed: 5, sliding_speed_unit: “mm/s”}) 

s.sliding_speed(unit: “cm/min”) => 30.0 

For an oscillation segment instance, the construction of two physical quantities as 

Unit instances is needed, which are then multiplied, converted to the desired out-

put unit and then the absolute value is calculated and returned as a float. For stop 

segment instances, the implementation is trivial. In all three implementations, the 

methods exhibit the same name and the same set of parameters and return values 

of the same type. Therefore, all three are called identically, can be supplied the 

same values as parameters and will yield the same return value type. In addition 

to the shown implementations, Atlas also has implementations for instances of the 

CyclicPositionSegment and OscillateSegment classes. As a conse-

quence, any code that will query an instance of any segment type does not need 
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to check whether it will respond to a call to sliding_speed and what type of 

value it might return because this method is implemented for all existing subtypes 

of the WtSegment class. Furthermore, by defaulting the return value to be in m/s 

unless explicitly stated otherwise, all code occurrences that do not specify another 

unit can be sure to get a value in m/s. 

Using these techniques to reduce domain complexity, Atlas is able to automatically 

evaluate test data with a small set of pre-determined identifiers for physical quan-

tities and evaluation procedures. By default, evaluation is conducted by calling the 

instance method evaluate of a wear test or a wear test segment. Then, within 

the evaluate method this segment, its domain knowledge can be translated into 

code. If a segment type typically computes an arithmetic mean of the dynamic co-

efficient of friction, the respective 77alculateon can be conducted and the result 

can be stored in the respective attribute of the segment instance. In order to en-

force the “don’t repeat yourself” paradigm, such “atomic” building block of an eval-

uation are written as isolated procedures that use an interface that exhibits the 

generalization that is required for the procedure to be used by different types of 

callers and by passing-in parameters with such a degree of standardization, that 

the internals of the procedure do not need to worry about type-specifics (which 

should be handled in type-specific code sections). 

Code listing 25 shows the implementation of such a method. Its first argument is 

the identifier of the quantity that should be computed. By design, the quantity is 

derived from the name of the attribute in which the calculation result should be 

persisted. A second attribute is a data file object, i.e. an instance of any of Atlas’ 

data file classes. This attribute is optional, as not all quantities might require access 

to the content of a data file (e.g. the calculation of mass loss which only requires 

the initial and final mass of the respective test specimen, both of which are per-

sisted as attributes of segment instances). The specific calculations for the various 

attributes are then included in a branch of a case switch (other potential implemen-

tations include code blocks as the value of a key-value storage with the keys being 

the attribute names). When the calculation is completed (and quality checked, e.g. 

for infinite numbers), the result is persisted to the specified attribute and returned 

to the caller. 
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Code listing 25: Implementation of a method for performing elementary calcula-
tions during the evaluation of wear test segments. For clarity, only 
one such calculation is shown. Other calculations can be included 
by adding new branches to the case statement. 

Class WtSegment < ApplicationRecord 

  def compute(attr, df=nil) 

    val = case attr.to_sym 

          when :cof_mean 

            df = datafile(:proc) if df.blank? 

            if df.has_data_for? :cof 

              data_A = df.get_data_for :cof 

              get_eval_interval_data(:cof_avg,data_A).arithmetic_mean 

            else 

              nil 

            end 

          end 

    val = nil if val.numeric? && (not val.to_f.finite?) 

    self.send “#{attr}=”, val 

  end 

end 

In order to prevent code duplication, this instance method is defined for the WtSeg-

ment class, which is the superclass of all type-specific segment classes in Atlas, 

and then inherited to its type-specific subclasses. When these want to override 

only parts of this implementation, they can do so via Ruby’s super keyword, see 

Code listing 26. 

Code listing 26: Partial overriding of the compute method to reflect segment-type 
specific domain logic without overriding all functionality of the su-
perclass’ implementation. 

Class StaticCofSegment < WtSegment 

  def compute(attr, df=nil) 

    case attr.to_sym 

      when :cof_mean 

        self.cof_mean = 0 

      # other type specific branches 

      else 

        # delegate calls to all other attributes to the overridden method 

        super 

      end 

  end 

end 

Having used inheritance, specialization, overriding and back-referral to overridden 

methods to define type-specifics, these building blocks can be used to compose 
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segment type-specific definitions of the evaluation method. When a calculation pro-

duces not (only) an aggregated result that should be stored in a single-value attrib-

ute but (also) a new data column that should be stored in the datafile that repre-

sents evaluated data, it must be stored in the corresponding data file object. After 

all columnar data has been added, the data should be written to disk.  

Code listing 27: Calculation of columnar data for the coefficient of friction, its stor-
age in a “proc”-type data file object and persistence of the data file 
object to disk. 

# load pre-processed data from disk 

orig_df = datafile(:orig, autoload: true) 

# create new data file object for processed data 

proc_df = datafile(:proc) 

# get friction force data column 

friction_force_data = orig_df.get_data_for :corrected_friction_force, 

                                           unit: ‘N’ 

# get normal force 

normal_force = self.loading(unit: ‘N’) 

cof_data = friction_force_data.divide_by normal_force 

# create entry for data file column descriptor of proc data file 

cd = { name: ‘Coefficient of friction’, 

       unit: ‘1’ 

     } 

proc_df.set_data_for :cof, data: cof_data, cd: cd 

# make other calculations, add more columns and then save data to disk 

proc_df.save 

 4.10  Visualization of results 

Once wear test data is evaluated and stored, the results need be visualized, e.g. 

for inspection, quality control and approval by the user or for being used in a project 

report or in a scientific publication. Important ways of visualizing result data are 

tables and graphs. For generating tables, Atlas renders HTML table elements. 

Depending on the type of result and level of aggregation, Atlas provides different 

visualization tools. Aggregation levels include individual wear test, wear test set 

and project. On the level of individual results, Atlas provides a detailed overview of 

all data that is associated with an individual test in HTML format, including test 

parameters, metadata, numeric test results, user comments, results of profilo-

metric measurements or any other data in the form of attachments (e.g. optical 

micrographs, photographs of the test setup, SEM-images etc). 
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On this page, controls for creating graphs of columnar data are included. For each 

wear test segment, the user can create an arbitrary number of graphs. For this he 

can either generate a generic graph for which no settings are predefined, or, as an 

assistance, predefined graphs (so called “prototypes”) can be created for which the 

type of quantity that is shown on each of the four plot axes (x, x2, y and y2) is 

predefined. When any of these 

options is chosen, an associ-

ated JavaScript function will 

send a corresponding asyn-

chronous request to the Atlas 

server, who will create the re-

quested graph object, render 

its HTML representation and 

send this back to the browser, 

who will then insert the graph 

into the existing page. The user 

can then modify the default set-

tings (if any) and replot the 

graph, see Figure 32. The set 

of quantities that can be plotted 

is dynamically retrieved from the column descriptor of the “proc”-type data file of 

the corresponding segment. This dynamic population keeps the set of option up to 

date if new quantities are added to the data file (see Section 5.4 for an example) 

and makes sure that only quantities can be selected for which data are actually 

available. 

Even with a small number of tests, and even with the shortcuts that are provided 

for predefined graph types, the task of creating result plots can become very re-

petitive (and therefore error-prone) very quickly. Most of times, the selection of 

results plot for individual tests is the same within a project, or at least within a larger 

testing campaign. For this, Atlas provides the option to pre-select all, any or none 

of the predefined graphs directly when creating tests. 

 

Figure 31: Controls for creating a new graph for 
recorded data (and columnar data de-
rived from it). 
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Figure 32: Form for changing the settings of a recorded data graph. 

As with data files, Atlas uses a hierarchical data model for graphs, see Figure 39, 

in order to reflect the variability of graph types and the variability that this induces 

on the specifics of attributes and behavior. The two major types of graphs in Atlas 

are recorded data graphs and graphs of aggregated data. Here, each subclass 

fulfills its own specific purpose. Graphs that plot columnar sensor data or data com-

puted from it are modelled by instances of the SegmentRecordedDatafile 

class. There are three further specializations, collected, spanned and averaged 

recorded data graphs. Collected recorded data graphs plot data from different tests 

of the same set into one common coordinate system. They are used for the com-

pact display of a large amount of recorded or computed test data with special em-

phasis on depicting the inter-test variance of the plotted quantity under retention of 

temporal resolution. 

Averaged recorded data graphs serve the same purpose, however, they do not 

depict a series of curves but they average all corresponding curves and compute 

additional curves for upper and lower confidence boundaries. In contrast, the Seg-

mentRecordedDatafile class, these two classes are not associated to individ-

ual tests but to wear test sets. Spanned recorded data graphs are useful to plot 
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curves from multiple segments of an individual test as one continuous line, see 

bottom left of Figure 33. The second group of graphs are those for aggregated 

data. They can be used to display dependent variables as a function of one inde-

pendent variable, e.g. linear wear rate vs. sliding speed for multi-segment test with 

variable sliding speed. This type of plot is available at three aggregation levels: for 

individual plots, for test sets and for projects. Then, surface response graphs are 

plots of dependent variables as a function of two independent variables, e.g. coef-

ficient of friction vs. loading and speed. This type of graph is available for the same 

aggregation levels than their single-parametric counterparts however here these 

three separate functionalities have been joined into one single class. 

For plot generation duck typing is used: each class possesses a plot instance 

method which uses gnuplot as a backend [60]. These specialized plot methods 

implement the domain knowledge and rules of their respective classes, like know-

ing how to load or aggregate data according to the data source they are associated 

to (test, test set or project). Figure 33 shows a selection of graphs that can be 

plotted with Atlas built-in functionality. For cases in which a graph needs to be 

customized beyond the standard functionality, Atlas provides the option to down-

load a graph, including the data file that contains the plotted data and the gnuplot 

script that was used to generate the graph. 
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Figure 33: Exemplary plots. Top left: collection of the COFs of eight individual 
tests, top right: arithmetic mean, upper and lower confidence of the 
COFs of 8 individual tests, center left: linear wear rates of 6 different 
materials, center right: response surface plot (COF vs. normal force 
and sliding speed), data points represent arithmetic means of a set of 
12 individual tests, bottom left: multi-segment of recorded data, bottom 
right: COF and linear wear rate versus sliding speed for a set of eight. 
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 4.11  Assessment and storage of the validity of results 

While convenience and consistency are important reasons for automated visuali-

zation of results, it also serves as a foundation for the assessment of the validity of 

results. This assessment is made on the level of individual test results, e.g. for 

COF, linear wear rate or measured test specimen temperature. Atlas supports two 

reasons for a result to be invalid: as the result of an automated outlier test (accord-

ing to Nalimov’s modification of Grubb’s test [46]), or as the results of a user’s 

decision. This decision is based on the user’s academic training, experience and 

intuition. If a user classifies a result as invalid, this decision is stored to the data-

base and supersedes any automatic outlier test. Any invalid results will be excluded 

from automatic calculations, like that of the arithmetic mean of a set of results that 

belong to a given test set. Furthermore, it is ignored when data is aggregated for 

plotting aggregated data graphs. 

Atlas provides the possibility of classifying a result as invalid only for a limited set 

of results, amongst which are steady state COF, linear, specific and gravimetric 

wear rate, mass loss, static COF, frictional power density or measured test speci-

men temperatures. As these results are persisted on the level of individual wear 

test segments, Atlas implements the instance method valid for the WtSegment 

class, see Code listing 28. 

Code listing 28: Implementation of the valid method on the test segment-level. 

class WtSegment < ApplicationRecord 

  def valid(attribute) 

    case attribute.to_sym 

      when :ambient_humidity 

        return ambient_humidity_data_valid 

      when :ambient_temperature  

        return ambient_temperature_data_valid 

      # more branches for more attributes that can be invalid 

    end 

  end  

end 

This method consists of a switch-statement in whose branches the algorithms are 

implemented according to which the decision is made whether the requested at-

tribute is valid or invalid. In the shown cases of ambient humidity and temperature, 

the decision is simply made by calling for corresponding attributes of the segment 
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in question. These are stored as Booleans and therefore do not require any addi-

tional processing or type casting. All other branches are also programmed to return 

Boolean values. Therefore, the return value of this method is used for the men-

tioned exclusion from calculations or from data aggregation. 

Furthermore, in combination with the automatically conducted Nalimov’s test, it is 

used to display the status of a given result in several of Atlas’ result views. 

 4.12  Automatic report generation 

In addition to its in-browser views, Atlas can also render reports in PDF format. 

While the details of the implementation of this process, which basically is rendering 

the same information, or a subset thereof in a different output format, is beyond 

the scope of this document. However, Figure 37 shows the form that is provided 

for customizing the content of such a report and a full report is shown in the Ap-

pendix. 

 

Figure 37: Form for customizing the content of automatically generated reports. 
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 4.13  Limitations and known issues 

Authentication only: Out of the standard AAAA-concepts for LIMS (Authentication, 

Authorization, Auditing, Accountability), Atlas only implements authentication. 

Units of physical quantities: Although Atlas has a system for handling units of phys-

ical quantities, see Code listing 24, it does not use it on all possible occasions, see 

Figure 11 for an example of hardcoded quantity units (gauge in mm). 

Only flat material composition: Particle-filled polymers are a popular class of ma-

terials in tribology. Frequently, a single material consists of 2-8 different fillers, each 

of which having a different type, brand name, particle size distribution and filler 

content. The “filler” attribute that Atlas includes for its material model is however 

only a single-valued string attribute. This issue could be solved by, developing the 

material model into a composite model whose components contain information 

about names and the content of the individual components, i.e. matrix and fillers. 

No material processing: Atlas does not contain any data models for the provenance 

of test specimens or for processing information on materials. 

Limited interoperability: Atlas uses auto-incremented sequences of integers as pri-

mary keys for all tables. These sequences are maintained locally on each server 

instance. Specifically, no coordination happens between individual server in-

stances which greatly impairs the exchange of records between Atlas server in-

stances. 

No support for measuring equipment monitoring: In its current implementation, At-

las does not provide a subsystem for managing measuring equipment. 

Limited code (quality) management: While Atlas’ application code is subject to ver-

sion control and bug-tracking using gitlab, it is not subject to automated testing 

(e.g. using test-driven development) or formal specification (e.g. using RSpec). 

Limited security: Atlas has been designed for use in a protected and trusted envi-

ronment. It implements some practices which are considered security risks: it does 

not require SSL encryption, does not limit session duration or makes use of security 

features provided by Rails, like cookie rotation or strong parameters [59].  
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 5  Transfer Film Luminance Analysis 

 5.1  State of the Art 

Polymers and polymeric composites are in widespread use for tribological applica-

tions in general and especially for sliding applications. An elementary process of 

sliding is the formation of a so-called 'transfer films' which is the (mutual) deposition 

of worn material on the other sliding partner. The mechanisms by which transferred 

material resists its potential removal are considered to be adhesion, mechanical 

interlocking and by the formation of covalent bonds [61]. Despite being called 

'films', microscopic inspection of transfer films often reveals that they are actually 

rather a collection of local material depositions. In the most extreme case, they can 

consist of only minimal amounts of debris that only just fill the valleys of the rough-

ness profile [62]. However, due to the limited optical magnification of the human 

eye they typically appear as coherent material layers. 

Transfer films formed from worn polymeric material were reported as early as 1964 

by Makinson and Tabor who identified the formation of a polymeric film made of 

abraded polytetrafluorethylene (PTFE) on glass [63]. The authors reported a coin-

cidence of the occurrence of high coefficients of friction (>0.3) and 'lumpy' transfer 

films, while coefficients of friction between 0.07 and 0.3 coincided with homogene-

ously distributed films. This observation, i.e. a high variability in the morphology of 

formed transfer films as well as the accompanying variable impact on friction, was 

also reported by Lancaster, however this time concerning the impact of transfer 

films on wear [64], [65]. He found that transfer films can smoothen the metallic 

surface and thus lead to lower localized stress and therefore to lower wear. How-

ever, Lancaster also reported an increase of wear due to transfer film formation, 

especially in the case of brittle materials such as epoxy resins or brittle thermo-

plastics like polystyrene and polyester. From these contradictory findings, Lancas-

ter concluded that the influence of transferred material on friction and wear would 

be a material property. 

In 1978 Rhee and Ludema reported that the formation of a transfer film of 

PA66/PTFE on steel increased the temperature at which mild wear transitions to 

severe wear is increased by 50 °C [66]. In 1991 Rhee et al reported that transfer 

films not only affect friction and wear, but also the noise production in automobile 
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brakes [67]. In 2015, Zhang et al. found that transfer films can also prevent tribo-

logically induced oxidation [68]. Today, the formation of a transfer film is considered 

to be one of the reasons for the typical observation of a "gradual transition from a 

transient wear behavior to steady state wear behavior" [69]. 

Recently, Alam et al. reported on the importance of stable transfer films for wear 

rates of PTFE-based composites to be 'ultra-low' (< 10-7 mm3/Nm) [70]. Further-

more, the stability of transfer films formed by MoS2 has been identified by Yu et al. 

as prerequisite for “superlow” friction of H-DLC films [71]. For brake pads, Nishi-

mura et al. found that the stability of transfer films formed by copper-free materials 

directly impacted the temporal stability of the  coefficient of friction and that transfer 

film stability was influenced  by material composition [72]. Similar findings were 

made for asbestos-free brake pad materials [73]. 

The significant impact of transfer films on the behavior of tribological systems has 

prompted many studies on transfer films, specifically on their detection, assess-

ment and quantification. As a result, a wide set of methods has been established 

for these purposes. 

Microscopic inspection is the family of detection methods for transfer films that 

is most frequently used. Its most prominent members are optical microscopy (OM), 

scanning electron microscopy (SEM) [61], transmission electron microscopy (TEM) 

[74] and scanning transmission electron microscopy (STEM) [75]. Typically, the 

main purpose of microscopy is the visual assessment of the transfer film, e.g. with 

respect to the shape, size and distribution of the deposited material with high to 

extreme spatial resolution. Electron microscopy is frequently combined with fo-

cused ion beam (FIB) for in-situ preparation of cross sections for the quantification 

of the (local) film height and with energy dispersive x-ray analysis (EDX) for the 

elucidation of the chemical elements of the transferred material.  

In 2014 Ye et al. reported on an effort to amend the issue of non-numerical results 

from microscopy: they introduced “free-space length” which is a quantitative meas-

ure for blank regions in-between patches of transferred material, based on optical 

micrographs, SEM images or profilometric data [76]. The authors were able to 

demonstrate the coincidence of the reduction of the free-space length and the spe-

cific wear rate of PTFE sliding on 440C steel. Despite the obvious usefulness of 

their approach, they were only able to solve the issue of the high locality of their 

analysis only by recording multiple OM images and by then stitching them together. 
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It is therefore probably no coincidence that they selected an oscillation experiment 

with a stroke of only 25.4 mm as to keep the effort at a reasonable level. With 

today's sophisticated microscopes with automatic multi-imaging routines and algo-

rithms for auto-stitching, capturing an image of the full wear track is possibly feasi-

ble for flat specimen, e.g. discs from pin on disc tests. However, for non-flat wear 

tracks, e.g. on a ring, a shaft or a gear tooth, the test specimen must not be trans-

lated laterally but rotated in order to capture the whole wear track. However, neither 

auto-rotatory specimen holders nor image recording software that is synchroniza-

ble with such a device is standard tribology laboratory equipment. 

Apart from issues with image capturing, the process of determining the free-space 

length requires the user to provide the algorithm with training data for each image. 

Therefore, the algorithm must be provided with a set of user-defined and user-

classified regions in each image. Also, the procedure is ex-situ. Therefore, in order 

to achieve time resolved data, the test must be operated intermittently, with all the 

usual implications for its result (as friction and wear are no material properties but 

instead depend on system history). 

Despite being undoubtedly useful, microscopic techniques are typically ex-situ, 

highly localized and require expensive equipment (more so in the case of 

S(T)EM/EDX/FIB, less so in case of OM) and they hardly yield quantitative data 

that can be directly correlated to other test data, e.g. with coefficient of friction or 

wear data. This is true regardless of whether this other data is available as time-

resolved in-situ data series, as intermittent ex-situ data or only in the form of the 

difference between initial and final state (e.g. from difference weighting). Last but 

not least, its highly local nature makes microscopic analyses susceptible to a gen-

eralization error: local observations are used to explain other observed phenom-

ena, e.g. wear or friction data which, however, are the integral result of vast number 

of local phenomena and processes. While an experienced and responsible re-

searcher might be able to make such a generalization, it is still very hard for the 

reader to re-examine the drawn conclusions, as typically only a pre-selected set of 

local observations is presented. 

Surface metrology methods include optical methods like laser or white light pro-

filometry and tactile methods like atomic force microscopy (AFM) [77]. As modern 

metrological methods reach vertical resolutions of single digit nanometers and be-

low, their main goal is typically to directly measure the height of the transfer film. 
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While optical methods are basically suitable to record laterally extensive images – 

in the best of cases even images of the whole wear track -- tactile methods are 

typically restricted in the size of the region of interest they can record. Restrictions 

can be by design, e.g. being unable to scan a wear track on a ring without an auto-

rotator, or they can be practical restrictions, like uneconomically long measurement 

times. Furthermore, for 'thin transfer films', i.e. films that only consist of wear debris 

in the valleys of surface profile, it can be difficult to determine transfer film height 

at all, as it potentially is smaller than the height variations of the surface profile. 

Profilometry is another sub-family of surface metrology and it aims at measuring 

the surface profile of a worn surface with such a high resolution that the height of 

the transfer film can be read from the profile height data directly. One of the many 

studies that utilizes this technique is the one of Li et al from 2015 in which they 

found a correlation of the transfer film height, the initial surface topography and 

friction and wear [78]. 

In 2014, Sebastian implemented an in-situ measurement of the transfer film height 

using a white light displacement sensor on a custom-built block-on-ring tribometer 

[79]. It yields time-resolved in-situ data of the transfer film height that is synchro-

nous with all other in-situ measured data. It is therefore, by design, very well-suited 

to understand the dynamics of transfer film formation and the impact it has on fric-

tion and wear. However, until today it has not yet found wide-spread use. 

Overall, although this family of methods basically yields quantitative data, like mi-

croscopy, they are also mostly ex-situ only. Additionally, although sometimes pos-

sible in theory, in practice it is often so costly to produce laterally extensive meas-

urements of the wear track that researchers often resort to local investigations, 

thereby running the risk of the mentioned generalization error. 

Micro-mechanical analysis is a group of methods that does not directly aim at 

measuring the transfer film height. Instead, they focus on collecting information 

about mechanical properties of the film. Most often, the hardness of the film is 

measured. As transfer film 'heights' often are below 1 µm, mandates the use of 

nano-indentation as to avoid substrate artifacts. Exemplary, such investigations 

were made by Randall [80], [81] and Chang et al [77]. Zhang et al used the differ-

ences in elastic moduli of transfer film and substrate to produce a transfer film 

coverage map [68]. 
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Overall, micro-mechanical analysis techniques typically are ex-situ, highly local 

and time consuming. Therefore, all the above-mentioned issues apply. Further-

more, their results, despite being mostly quantitative are even harder to correlate 

with friction forces or wear rates as there is no standard model which easily relates 

transfer film hardness or electric resistivity with either. 

Spectroscopy basically yields information of the wavelength dependent interac-

tion of light (or more general: electromagnetic waves) with matter. It is a highly 

developed and specialized field of natural science and has been used extensively 

to study transfer films. Therefore, only the most important methods, with respect to 

the above formulated criteria, are cited. Infrared (IR) spectroscopy has been used 

in many ways for investigating transfer films. Jain and Bahadur used quantitative 

transmission absorption IR spectroscopy to directly measure the thickness of 

transfer films [82]. However, their method is only applicable to situations on which 

both test specimen do not absorb IR radiation completely. As some absorption is 

needed by design, and as the optical absorption coefficients of solid are typically 

very high, tests must be made with thin films which are difficult to prepare, handle 

and test. 

In 2003, Scharf and Singer introduced an in-situ Raman technique that enables 

the measurement of the transfer film height by ex-situ calibration of Raman spectra 

to film heights and coverage ratios [83], [84]. Using this technique, they were able 

to demonstrate the temporal coincidence of transfer film build-up and reduction of 

the coefficient of friction during the running-in phase of an experiment as well as 

the temporal coincidence of transfer film degradation and fluctuations of the coef-

ficient of friction in later stages of the experiment. While this technique yields quan-

titative and time resolved data about the transfer film thickness and about the per-

centage of the wear track that is covered with transfer film, it also possesses some 

serious issues. First, the used infrared radiation needs to pass through one of the 

two sliding partners which seriously restricts the material combinations that can be 

investigated. Second, as the initial transparency of the test specimen, typically a 

glass or sapphire hemisphere, degrades over the course of an experiment (due to 

wear) and as loose debris accumulates in the observed region of interest, this tech-

nique can only yield data for a very limited amount of time. 

In 2008, Singer et al reported on an in-situ Raman IR analysis that was able to 

detect MoS2 which has been formed by tribomutation when sliding glass on a Mo-
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S-Pb anti-friction coating and which they identified as the reason for low friction 

and wear [85]. Although the authors concluded that their technique "... opens a 

new window on the buried sliding interface", as of today it has not yet found wide-

spread use, most likely due to the required highly specialized equipment (a Raman 

spectrometer converted to a tribometer). 

Photo-optical analysis includes all techniques that directly observe the wear track 

through photo- or videographic instruments. Images can be recorded continually 

or intermittently and can be evaluated either numerically or by visual inspection. 

In 2007, Chromik et al. introduced the so-called "Newtonian interference analysis", 

also known as Newton's ring analysis, [86], [87]. By monitoring the relative position 

of Newton's rings outside the contact zone as sliding progresses, the thickness of 

transfer films can be quantified. Comparable to the in-situ Raman spectroscopy 

introduced by Scharf and Singer [84], this method also yields quantitative, laterally 

extensive and in-situ data. Still, in requiring at least one of the two sliding partners 

to be transparent, the selection of material pairings is also seriously restricted. Fur-

thermore, the non-transparent test specimen needs to be very smooth, i.e. polished 

which restricts the range of simulatable applications even further. Also, the accu-

racy of the measurement degrades over the course of an experiment if the initially 

polished surface gets roughened during the test. 

In 2016, Meneghetti et al. introduced the continual video observation and greyscale 

analysis for a twin disc tribometer [88]. They did not explicitly study transfer films 

but instead used the detection of certain above-threshold greyscale values as an 

indicator for the onset of pitting. Although not aimed at the detection, analysis or 

quantification of transfer film, the method is a prime example for how continual 

optical in-situ inspection can be used to produce time-resolved, quantitative and 

laterally extensive data. 

Autoradiographic transfer film analysis is based on the spatially resolved detec-

tion of radioactive decay. This requires one of the two sliding partners to contain a 

radioactive nuclide that is transferred to the other, non-radioactive specimen during 

transfer film formation. Therefore, at whatever position the non-activated specimen 

emits an elevated level of radioactivity, it must be covered by transferred material. 

Applying this technique to dry metal/metal sliding, Kerridge and Lancaster were 

able to demonstrate the build-up of a transfer film. However, as the method could 
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not be applied in-situ, temporal resolution was only achieved by intermittent auto-

radiography [89]. Rabinowicz and Tabor reported a correlation between the 

amount of transferred metal and the observed coefficient of friction [90], [91]. 

The major issue of this method is that it requires a chemical element that can be 

activated by radiation in order to be used a marker. In contrast to metal/metal slid-

ing contacts, polymers however do not typically include atoms that can be easily 

activated. 

 5.2  Shortcomings of the state of the art, objectives and solution pro-

cedure 

Overall, the presented selection of existing methods for observing and analyzing 

transfer films exhibit five major shortcomings: 

1. Data cannot be collected in-situ and thus temporal resolution can only be 

achieved by intermittent test operation, (potentially) including the temporary 

removal of the test specimen from the tribometer. 

2. The analysis is highly local, either by principle or due to time and costs re-

strictions. 

3. The collected data is either non-quantitative by design or quantitative data is 

only obtainable through non-trivial and time-consuming calibration. 

4. The selection of materials and test specimen designs to which the method can 

be applied is restricted by design, e.g. by requiring transparency or radioactive 

emission. Often these restrictions are severe. 

5. The required testing equipment is expensive, very special-purpose, requires 

special testing environments (e.g. vacuum) or is not even commercially avail-

able and/or requires highly trained personnel. 

Table 5 classifies a selection of existing methods according to these five catego-

ries. For comparison, the novel photo-optical luminance analysis is also included. 

While recently no significant progress has been made in terms of methodology, 

researchers have used the existing methods to investigate transfer films. In each 

of their reports, one or more the identified shortcomings can be readily identified. 
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Table 5: Classification of methods for transfer film analysis based on five selected 
issues. 

 
Method 

Quantitative 
Quantity 

In-situ 
Sustainable 

Laterally 
Extensive 

Economic 
Efficiency 

Material 
Selection 

Microscopy      

- OM No No No Medium Unrestricted 

- OM + Free 
  space length 

Yes, free 
space length 

No No Low Unrestricted 

- SEM No No No Low Unrestricted 

- SEM + FIB Yes, 
film height 

No No Very 
low 

Unrestricted 

- TEM Yes, 
film height 

No No Very 
low 

Unrestricted 

Surface metrology      

- Free 
  space length 

Yes, free 
space length 

No Possible Medium Unrestricted 

- Profilometry Yes, 
film height 

No Possible Medium Unrestricted 

Spectroscopy      

- X-ray 
  spectroscopy 

No No No Low Unrestricted 

- Inelastic Raman 
  scattering 

Yes, 
film height 

Yes, No Yes Low Transparent 

- Quant. Infrared 
  spectroscopy 

Yes, 
film height 

No No Low Transparent 

Photo-Optical      

- Newtonian 
  interference 
  analys. 

Yes, 
film height 

Yes, No Yes Low Transparent 

- Luminance 
  analysis* 

Yes, 
luminance 
change 

Yes, Yes Yes High Unrestricted 

Autoradiography No No No Low Radioactive 

* novel method presented herein 

In 2019, Placette et al. have studied the impact of relative orientation between slid-

ing direction and grinding direction on the formation of transfer films by neat PEEK 

in dry sliding against hardened A36 steel [92]. They utilized a white light profilome-

ter to determine film volume and height and the fraction of the wear track area that 

was covered with transfer film. In order to reach quasi-lateral extensivity of their 

data, they sampled the wear track in discrete intervals and then extrapolated to the 

full wear track area. Furthermore, Raman IR spectroscopy was used locally to de-

termine the chemical composition of the films. All investigations on formed transfer 

films were done exclusively ex-situ. Therefore, no time-resolved data could be ob-

tained. Although the authors state that they used white light interferometry to de-
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termine transfer film volume and height, no numerical data from these investiga-

tions are presented. From purely reciprocating tests, they found that transfer film 

formation was less pronounced in parallel than in perpendicular orientation. On 

average, more wear was found for parallel orientation and hence the authors con-

cluded that the formation of less transfer film was the reason for increased "poten-

tial for wear". They reported on a series of other findings as well, however, as they 

only did 1-3 individual tests per testing condition, i.e. combination of wear path 

(square or linear reciprocation) and sliding speed, and taking into account the sig-

nificant variation that is deferrable from the presented graphs, it is highly question-

able whether any of their conclusions would hold up to a statistical hypothesis test. 

Also in 2019, Bashandeh et al. investigated the usefulness of graphene nano plate-

lets and PTFE as solid lubricants for polymeric coatings at temperatures up to 

300 °C. [93]. From their experiments, they found that transfer films had been 

formed. The investigation methods were optical and scanning electron microscopy. 

Again, all investigations were done post-test only and only qualitative results were 

obtained by interpreting the taken images. The authors found that temperature had 

a significant effect on the extent of transfer film formation, with more material being 

transferred with increasing temperature. Furthermore, the authors state for coat-

ings with graphene nanoplatelets "a more uniform and continuous transferred film 

was developed with increase of temperature". The evidence provided is a series of 

OM images from which the reader can either agree with the author's qualitative 

findings or not. In no way could he verify that the presented images are either rep-

resentative for the whole wear tracks or reproducible over a series of experiments. 

In 2020, Sun et al. reported on the ultralow wear of PTFE-based composites filled 

with beryllia and germania particles [94]. In this study wear tests were run intermit-

tently in order to produce time-resolved wear data. Transfer films were investigated 

using IR spectroscopy, OM, laser microscopy and stylus profilometry. From stylus 

profilometry transfer film height was calculated. In the case of IR spectroscopy, the 

authors commented on how they tried to produce laterally extensive data: "Spectra 

were collected at five different locations and averaged to obtain a single repre-

sentative." In the case of stylus profilometry, however, this aspect of data acquisi-

tion remains without comment. Furthermore, it is noteworthy that for microscopy, 

stylus profilometry and spectroscopy only post-test results are presented. Still, alt-

hough not having suitable experimental data -- i.e. time-resolved and quantitative 
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data on the extent of transfer film formation, to support such a hypothesis, the au-

thors wrote that the observed transition from severe to mild wear of BeO- and 

GeO2-filled PTFE "[...] reflects the development of wear resistant tribofilms at both 

the sliding surfaces [...]". 

Most recently, Cui et al. investigated the role of transfer film formation on the tribo-

logical properties of composite materials with a PEEK/PTFE hybrid matrix and ad-

ditional fillers like carbon fibres, molybdenum disulfide, graphite and graphene na-

noplates sliding against "GGr15" steel in vacuum at temperatures form 20 to 

-100 °C [95]. In this study, transfer film morphology was characterized using SEM 

and confocal Raman microscopy and transfer film chemical composition was in-

vestigated using energy dispersive spectrometry (EDS) and infrared spectroscopy. 

All these investigations were done after the tests were finished, i.e. post-test. 

Among other, the authors found that at temperatures -30 °C and below, transfer 

films were formed on the steel counter bodies. Furthermore, they attributed an ob-

served fluctuation of the coefficient of friction to an instability of the formed transfer 

film. Specifically, they wrote: "When the temperature is -30 °C, the formation and 

removal of transfer film occur simultaneously, leading to the instability of friction 

coefficient in the early stage of sliding, which finally stabilized at high friction due 

to the failure of transfer film formation as evidenced by FTIR characterization." 

However, given that all their transfer film investigations took only place after the 

end of their tests, it remains unclear how exactly it was conceived that the observed 

fluctuations of the coefficient of friction actually coincided temporally with instabili-

ties of the transfer film. Besides this, it remains unclear which physical quantity 

would have been chosen to represent transfer film formation numerically and how 

corresponding numerical data would have been obtained in a time-resolved man-

ner. 

Overall, even from this very limited selection of recent studies on transfer film re-

search, it becomes obvious that studies typically do not include the production of 

time-resolved and quantitative data on transfer film formation. Furthermore, the 

issue of lateral extensiveness is not always properly addressed. Still, it happens 

that researchers relate time-dependent friction and wear data to the temporal evo-

lution of transfer film formation without clarifying how exactly these conclusions are 

based on either time-resolved data or how they could have been retro-polated from 

post-test investigations. 



 101 

 

Based on the shortcomings of the state of the art on in-situ time-resolved transfer 

film detection and quantification and on the demonstrated shortfalls that the lack of 

such information is regularly producing in the research on transfer films, the second 

aim of this thesis was to develop a novel method for detecting transfer films. This 

method should solve as many of the identified issues as possible. Specifically, the 

acquired data should be quantitative, in-situ, laterally extensive, universally appli-

cable (in terms of test setup, material selection and test specimen shape and sur-

face roughness), infinitely sustainable, require only components that are commer-

cially available and affordable and should not require advanced personnel training. 

Finally, the primary data produced by the method should be stored in the presented 

LIMS and data processing, data plotting and aggregated data storage should also 

be handled by the presented LIMS. 

 5.3  Photo-optical transfer film luminance analysis (TLA) 

 5.3.1  Preliminary considerations and assumptions 

Basically, transfer films can be formed on both sliding partners. In polymer metal-

slide pairings, however, transfer films are usually formed exclusively 'one-way', i.e. 

by the transfer of worn polymeric material to the metallic sliding partner. The 

method and apparatus presented in this study therefore describe the observation 

and measurement of such a polymer-based transfer film on a metallic sliding part-

ner. However, with some simple adaptions and device duplication, it can also be 

applied to situations where transfer films are potentially formed on both materials. 

Furthermore, for ease of use, the simple geometric setup of an ASTM G137 block-

on-ring test has been utilized for demonstrating this method for the very first time. 

 5.3.2  Measurement principle, test setup and data recording 

The fundamental principle of the presented method is to measure the change of 

the wear track luminance on the metallic test specimen. It is assumed that changes 

is luminance result from the absorption of light by the formation of a transfer film 

during the experiment. Luminance is the photometric measure for the amount of 

visible light which an illuminated body reflects into a given direction. 

The data acquisition is therefore based on the capturing of photographic images of 

the wear track on the metallic counter body, in this case a steel ring, during the 
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whole test. Typically, images are taken in regular intervals whose length is chosen 

by the experimenter. One of the main requirements for taking the images is that 

the lighting situation, i.e. the intensity and the angular distribution of incident light, 

should remain constant throughout an experiment. This is best achieved by the 

utilization of a dome lighting. 

 

Figure 38: Schematics of the experimental setup for a block on ring experiment: 
diagonal view with longitudinal section through the light dome (left) and 
section of the whole test setup showing typical ray traces (right) 

Figure 36 shows a schematic of the test setup, including the position of the lighting 

and the camera with respect to the ring. It is crucial that the center hole of the 

dome, the camera lens and the radius of the ring are aligned. During the test, 

(white) light is emitted from light emitting diodes that are integrated into the base 

of the light dome (A). As an example – there are many more ray paths not shown 

here – a light ray B is shown. It hits the inner surface of the light dome, which is 

painted in matte white, at point C where it gets reflected diffusely. Again, out of the 

many ray traces that start at this point, ray D is shown as an example. It travels to 

the steel ring and hits it at point E. The actual reflection from the metal surface can 

be viewed as a superposition of perfect specular reflection and perfect diffuse re-

flection, i.e. mixed reflection. It is well known that the relative contributions of these 

two modes to actual reflection significantly depend on the surface roughness of the 

steel ring. Unless otherwise noted, diffuse reflection is assumed to be the predom-

inant reflection mechanism. This is indicated by the emission of many rays of weak 

intensity (represented by thin lines) in many different directions. Some of these 

travel to the camera lens (G) and therefore ultimately reach the camera's light sen-

sor. Ray F is an example for such a ray trace. 
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Although it is possible to do this test under ambient lighting conditions, it is recom-

mended to isolate the experimental setup from ambient stray light at all times dur-

ing the test. 

In contrast to classical microscopic analysis of transfer films, the optical magnifica-

tion of this setup is significantly lower. While sacrificing the ability to resolve indi-

vidual patches of deposited wear debris, and more so to visualize their morphology, 

the aim is to observe the full lateral extent of the wear track. Figure 39 visualizes 

this strategy: 

 
Figure 39: Wear debris patches located on the wear track are discretized on the 

camera sensor. 

Instead of applying a high magnification on the four exemplarily depicted patches 

of transferred material – a strategy which ultimately is responsible for the high lo-

calization of classical micrographs – the optical system of the camera depicts the 

wear track with a magnification of approx. 1 (in this case) onto the camera's sensor. 

Due to the finite size of the sensor's pixels and due to the ratio of pixel size to patch 

size, the contours of the individual patches are blurred due to discretization. 

While being exposed to light, each pixel registers photons that are emitted from a 

specific surface area increment of the ring in general and therefore also from the 

wear track. When photons hit the sensor at a position that represents a pixel of the 

recorded image at image position (𝑎, b) with 𝑎 being the horizontal position of the 

pixel and b being the its vertical position, they are converted into an integer value. 

When using a color camera, actually three integers are recorded for each sensor 

position; one for each of the fundamental colors (red, green and blue). However, 

as color is of no relevance for this method, cameras should be operated in gray-

scale mode. Then, only one single pixel value is yielded according to: 

 𝑁(𝑎, 𝑏) = 𝐾 ∙
𝑡exp ∙ 𝑆

𝑓2
∙ 𝑙(𝑎, 𝑏) (1) 
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where 𝐾 is a calibration constant of the camera sensor, 𝑡exp is the exposure time, 

𝑆 is the ISO sensitivity, 𝑓 is the aperture number and 𝑙(𝑎,𝑏) is the luminance of the 

area on the ring that the camera's lens (system) projects onto the sensor at a po-

sition that corresponds to image position (𝑎,𝑏). 

While a photograph of the ring already depicts a significantly larger portion of the 

whole wear track than any microscopic technique, a standard short exposure im-

age does not yet contain information on the whole wear track. However, as the ring 

rotates during an actual wear test, the whole wear track can be easily captured in 

any individual image by setting the exposure time 𝑡exp of the camera to an integral 

multiple 𝑛 of the rotation period 𝑡rot of the ring: 

 𝑡exp = 𝑛 ∙ 𝑡rot (2) 

Now, each circumferential position of the ring surface gets into the view of the 

camera once (more generally 𝑛 times) during a single exposure. Therefore, the 

deposition of transferred material which is assumed to be encoded in the pixel val-

ues of the image is included into each picture. This way, the issue of many of the 

existing transfer film recording techniques of observing only a tiny fraction of the 

whole wear track, and thus of the whole transfer film, is solved. In order to discern 

them from short exposure images, images that satisfy the exposure time matching 

criterion of equation (2) are called “circumferentially averaged”. Unless stated spe-

cifically otherwise, the term ‘image’ will always refer to a circumferentially averaged 

image. 

Figure 40 shows a schematic of how circumferential averaging produces vertically 

averaged images while retaining the lateral resolution of the transfer film infor-

mation contained in the image. Also, by the example of a short exposure image 

and a circumferentially averaged image of the same transfer film, it shows how the 

process of projecting each position along the whole circumference onto the sensor 

can change the brightness of the wear track at the marked position significantly. 

The reason for this is that (at any given point in time) the transfer film is not only 

inhomogenously distributed in lateral direction but also in circumferential direction. 

Therefore, when rotating the ring, out-of-view circumferential sections with different 

transfer film coverages get into view of the camera. This leads to an averaging of 

the circumferential luminance distribution of the wear track. At the marked image 

area, this leads to a significant increase in brightness, because the short exposure 
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image has – by chance – recorded a local minimum in ring surface luminance. This 

is a good example for how highly local observations can yield non-representative 

results when the investigated transfer film is laterally highly inhomogeneous. The 

same concern applies to ex-situ, i.e. intermittent or post-test transfer film investi-

gations where only a transient or the final state of a transfer film is investigated but 

where the findings are then used to explain friction and wear data that have been 

recorded at previous points in time without there being any guarantee that there is 

any mechanistic correlation between the data and the observed state of the trans-

fer film. 

Because of circumferential averaging, each pixel with the same 𝑎-position accu-

mulates photons from a cylindri-

cal section of the ring's surface 

which spans the whole circumfer-

ence of the ring. Therefore, at 

any given 𝑎-position, the lumi-

nance of a circumferentially aver-

aged image contains the same 

information on transfer film for-

mation at all corresponding 𝑏-po-

sitions. The only variation of lumi-

nance in 𝑏-direction now origi-

nates from the curvature of the 

ring (which causes changes in 

the ratio of specular to diffuse re-

flection as a function of 𝑏-posi-

tion). 

 5.3.3  Image processing and 

data extraction 

At this point the concept of image 

segmentation is introduced which 

defines a region of interest (roi) 

and a reference area (ref). Figure 40 shows an example for such a segmentation. 

   

 

Figure 40: Transition from short exposure im-
age to circumferentially averaged 
image by exposure time matching 
(top). Luminance change due to cir-
cumferential averaging (bottom). 
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To do so, a new coordinate system for the roi in which the horizontal in-roi pixel 

position 𝐴 is defined as 

 𝐴 = 𝑎 − 𝑎i, (3) 

where 𝑎 is the absolute horizontal pixel position with respect to the origin of the 

total image's coordinate system (in the lower left corner) and 𝑎i is the roi's lateral 

starting point (in absolute image coordinates). Correspondingly, the vertical in-roi 

pixel position 𝐵 is defined as 

 𝐵 = 𝑏 − 𝑏i. (4) 

Analogously, the pixel positions at which the roi ends in horizontal and vertical di-

rections are called 𝑎f and 𝑏 f respectively.  Using these new quantities, roi width Δ𝐴 

and roi height Δ𝐵 are defined as: 

 Δ𝐴 = 𝑎f − 𝑎i. (5) 

 Δ𝐵 = 𝑏f − 𝑏i.  

Using an asterisk to denote the reference area, analogous quantities are defined 

for the reference area: 

 𝐴∗ = 𝑎∗ −  𝑎i
∗ (6) 

 𝐵∗ = 𝑏∗ − 𝑏i
∗  

 Δ𝐴∗ = 𝑎f
∗ − 𝑎i

∗  

 Δ𝐵∗ = 𝑏f
∗ − 𝑏i

∗  

The roi should typically span the whole width of the wear track. The reference area 

should be chosen as to that it exhibits lighting conditions equivalent to the roi. This 

is considered to be the case if 

 the incident light has the same intensity and angular distribution in both roi 

and the reference area, 

 and the ring has the same curvature in the both areas. 

Strictly this is impossible due to the combination of the gradient in light intensity in 

vertical direction (caused by the ring's curvature) and the circular shape of the light 

dome which causes a light intensity gradient in both horizontal and vertical direc-

tion. In practice, roi and ref can be considered to be lighted equivalently if the fol-

lowing conditions apply: 

 the dimensions of roi and ref are small compared to those of the ring and the 

light dome (in this case this ratio is smaller than 1:15) 
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 roi and ref begin and end at 

(pairwise) identical 𝘣-pixel po-

sitions (to ensure comparable 

curvatures of the ring), i.e. 

𝑏i
∗ = 𝑏i and 𝑏f

∗ = 𝑏f and there-

fore Δ𝐵∗ = Δ𝐵 (i.e. roi and ref 

are of equal height) 

 roi and ref are in close proxim-

ity in 𝑎-direction (to ensure 

negligible changes in incident 

intensity due to non-zero lat-

eral intensity gradients) 

 images should strictly be recorded in radial direction and the camera should 

look at the ring in normal direction 

 roi and ref should be in the center of each image, as there both, the lateral 

and vertical intensity gradients, are at their respective minimums (for geomet-

ric reasons) 

Using these boundary conditions, the vertically averaged pixel value at horizontal 

position 𝐴 can be defined as: 

 𝑁roi(𝐴) =
1

∆𝐵
∑ 𝑁(𝐴, 𝑏)

𝑏f

𝑏=𝑏i

 (7) 

 𝑁ref(𝐴∗) =
1

∆𝐵∗
∑ 𝑁(𝐴, 𝑏)

𝑏f
∗

𝑏=𝑏i
∗

  

Using this, the vertically averaged relative luminance at horizontal position 𝐴 can 

be defined as: 

 𝑙roi(𝐴) =
1

𝐾
∙

𝑓2

𝑡exp ∙ 𝑆
∙ 𝑁roi(𝐴) (8) 

 𝑙ref(𝐴∗) =
1

𝐾
∙

𝑓2

𝑡exp ∙ 𝑆
∙ 𝑁ref(𝐴∗)  

Physically, 𝑁roi(𝐴) represents the vertically averaged luminance of a cylindrical 

section of the ring surface which is projected onto all pixels which share a common 

horizontal position 𝐴. As stated earlier, the fundamental principle of the presented 

 

Figure 47: Exemplary definition of roi 
and ref in a circumferentially 
averaged photograph 
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method is to measure the change of the luminance of the wear track due to the 

absorption of light by a transfer film that forms during the experiment. However, at 

this point the individual luminance still cannot be computed because equation (8) 

contains the camera's calibration constant which typically is unknown and not eas-

ily obtainable. Therefore, using the average reference area pixel value 

 𝑁ref =
1

𝐾
∙

𝑓2

𝑡exp ∙ 𝑆
∙ 𝑁ref(𝐴∗) (9) 

the average reference area luminance can be defined as 

 𝑙ref =
1

𝐾
∙

𝑓2

𝑡exp ∙ 𝑆
∙ 𝑁ref (10) 

which in turn can be used to define the uncorrected1 relative luminance at 𝐴 as: 

 𝑙rel =
100 %

𝑙ref
∙ 𝑙roi(𝐴) =

100 %

𝑁ref
∙ 𝑁roi(𝐴) (11) 

Despite its simplicity, this equation has some very important implications: First, 

within an individual wear test, exposure time, ISO sensitivity and aperture number 

could theoretically vary wildly from image to image. While it is advised to keep them 

constant throughout an individual wear test, it still means that between tests or 

projects, lighting (and therefore exposure time, aperture number and ISO sensitiv-

ity) and camera model can be changed without affecting relative luminance. This 

property makes the presented method robust versus long-term changes in lighting, 

e.g. due to LED degradation and versus camera change, e.g. due to replacements 

for broken equipment. At the same time, it enables the methods use in different 

laboratories and the inter-laboratory exchange of relative luminance data. 

Second, in order to compute the relative luminance at an in-roi pixel position 𝐴, 

only the vertically averaged pixel integer value for 𝐴, i.e. 𝑁roi(𝐴), and the average 

pixel value of the reference area 𝑁ref are required. Specifically, no corresponding 

pixel value 𝑁ref(𝑎i
∗ + 𝐴) is required. Therefore, the reference area does not have 

to be as wide as the roi. Specifically, it can be much smaller than the roi which is 

also the case in Figure 46. This is very handy with respect to the requirement of 

equivalent lighting conditions for roi and ref which is based on assumptions that 

get weaker the wider both areas get. Furthermore, much less unworn reference 

                                                
 

1 see section 5.3.5, page 66 
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area is needed which is very helpful when there are multiple wear tracks present 

on a test specimen. 

Finally, yet importantly, substituting the noisy 𝑁ref(𝐴∗) signal by an average also 

significantly improves the signal-to-noise ratio of the 𝑙ref(𝐴) signal. 

 5.3.4  Data Processing, Aggregation and Plotting 

Once both roi and ref are defined and applied to each image (by design – and 

conveniently – they are the same for all images of a given image series), the rela-

tive luminance is calculated at each 𝐴 of every image. This yields a data set of 

relative luminance as a function of in-roi pixel position 𝐴 and elapsed test time 𝑡. 

Then, by subtracting the relative luminance at the beginning of the experiment 

𝑙rel(0) which should be 100 %, from all 𝑙rel(𝑡), the change in relative luminance due 

to transfer film formation Δ𝑙rel(𝑡) at roi-pixel position 𝐴 and test time 𝑡 is obtained: 

 ∆𝑙rel(𝐴, 𝑡) = 𝑙rel(𝐴, 𝑡) − 𝑙rel(𝐴, 0) (12) 

Using the wear track width 𝑤, 𝐴 can be transformed into the lateral wear track 

position 𝑥: 

 𝑥(𝐴) =
𝑤

∆𝐴
∙ 𝐴, (13) 

or in absolute image coordinates: 

 𝑥(𝐴) =
𝑤

𝑎f − 𝑎i
∙ (𝑎 − 𝑎i), (14) 

for all 𝑎i ≤ 𝑎 ≤ 𝑎i. 𝑥 is 0 at the left and 𝑤 at the right border of the roi. Applying this 

transformation to the Δ𝑙rel(𝐴,𝑡) data yields Δ𝑙rel as a function of lateral wear track 

position and elapsed test time, i.e. Δ𝑙rel(𝑥,𝑡). 

Figure 41 shows a so-called '𝑥𝑡-plot' which is one suggested way to represent 𝑥- 

and 𝑡-resolved data sets graphically. Data are taken from an ASTM G137 block on 

ring test on polyphenylene sulfide (PPS) that contains 40 wt.-% graphite. The test 

was done in dry sliding dry against an AISI 52000 steel ring, ground twist-free to 

Ra = 0.14 – 0.19 µm, Rz = 1.5 – 1.9 µm and hardened to 60 – 62 HRc in standard 

laboratory atmosphere (21 – 25 °C, 40 – 60 % rH). In horizontal direction, the pro-

gression of test time is shown while in vertical direction the lateral wear track posi-

tion is shown. Δ𝑙rel is then represented by a grayscale color. According to the meas-

urement principle, darker regions represent higher light absorption due to more 
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extensive transfer film formation. From this example, it can be seen that the for-

mation of the transfer film is spatially and temporally inhomogeneous. 

While 𝑥-resolved data sets contain the full information that can be extracted from 

a series of recorded images by the described procedure, a slightly higher level of 

data aggregation is reached by averaging the data across the whole wear track 

width: 

 𝑁roi/ref(𝑡) =
1

∆𝐴
∑ 𝑁roi/ref(𝐴, 𝑡)

𝐴f

𝐴=𝐴i

 (15) 

 𝑙rel(𝑡) =
1

∆𝐴
∑ 𝑙rel(𝐴, 𝑡)

𝐴f

𝐴=𝐴i

 (16) 

 ∆𝑙rel(𝑡) = 𝑙rel(𝑡) − 𝑙rel(0) (17) 

The rights side of Figure 42 shows exemplary plots of the laterally averaged data 

from the left side of the same Figure. At the top, the averaged pixel values of roi 

and ref are plotted as a function of elapsed test time. The constant, non-waivering 

𝑁ref-line indicates that the lighting conditions were very constant over the whole 

duration of the experiment. Actually, this is the prime purpose of this kind of data 

set and this kind of plot. 

At the same time, from the 𝑁roi-line a first overview can be gained concerning 

overall transfer film formation, the speed at which any transfer film has formed an 

whether a steady state in terms of luminance change due to transfer film formation 

has been reached during the testing time. If a steady state has been reached, its 

boundaries can be determined and used for computing the steady state average 

of Δ𝑙rel(𝑡). As the simplest of solutions, start and end of the steady state can be 

determined by visual assessment. When 𝑡i is the beginning and 𝑡f is the end of the 

transfer film steady state, the steady state average of Δ𝑙rel(𝑡) is computed accord-

ing to: 

 ∆𝑙rel,avg =
1

𝑚
∑ ∆𝑙rel(𝑡)

𝑡f

𝑡=𝑡i

 (18) 

Where 𝑚 is the number of recorded images between 𝑡i and 𝑡f. In the shown exam-

ple steady state has been identified to be between 10 and 20 h. Using this, a ∆𝑙rel,avg 

of 27 % has been computed. 
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Figure 41: Exemplary plot of Δ𝑙rel as a function of lateral wear track position 𝑥 and 

elapsed test time 𝑡 (left) and Exemplary plot of 𝑁roi/ref(𝑡) (top right) and 
of ∆𝑙rel(𝑡) (right bottom). 

 5.3.5  Polishing Detection 

Revisiting Figure 38, the elementary assumption of the presented method is that 

information about the state of the wear track surface in general and specifically on 

any formed or non-formed transfer film is transported to the camera sensor by light 

rays like ray F. The light picks up this information by interacting with the ring sur-

face and with any polymeric debris that is deposited there in form of a transfer film. 

Therefore, the idea is that detected luminance changes are a direct consequence 

of the formation of a transfer film. Specifically, when the luminance decreases, it is 

assumed that this is due to the partial absorption of light on the ring's surface by 

the transfer film. 

However, there is (at least) one alternative process that also reduces the intensity 

of the light that reaches the camera after interacting with the ring. This happens 

when the ratio of specular and diffuse reflection shifts towards specular reflection. 

Then, the intensity of ray F would be reduced significantly while specular reflection 

from point E would increase. This happens predominantly when the wear track is 

polished, e.g. by the abrasive action of the polymer or of fillers included therein. 

Glass fibers and hard ceramic particles are examples for such fillers. Figure 50 

shows an example for such a situation: of the four wear tracks, tracks 1 and 3 are 
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fully covered with a polymeric 

transfer film. Neither visual nor mi-

croscopic inspection reveal any de-

gree of polishing. Wear track 2 is 

polished in its (lateral) center re-

gion while at its borders a transfer 

film has formed, see Figure 43. 

Note how polishing can locally in-

crease or decrease brightness de-

pending on the light’s angle in inci-

dence, camera position and ring 

curvature. 

For both shown wear tracks (1 and 

2) the region of interest exhibits a 

lower luminance than their corre-

sponding reference areas (not 

shown). For wear track 1, the sole 

reason for this the formation of a 

light absorbing transfer film. For 

wear track 2 the formation of a 

transfer film also contributes to the 

observed loss of luminance. How-

ever, there is also a contribution 

from the polishing in the center of 

the track, where the steel has been 

polished. 

Figure 44 shows the numeric 

Δ𝑙rel(𝑡) data that is obtained by following the procedure described so far. As the 

image on the top is a post-test photograph of the wear tracks, it only corresponds 

to the last data point of the shown Δ𝑙rel(𝑡) curves. To the bare eye, in the regions 

where there actually is a transfer film the change in luminance looks similar. How-

ever, when applied to the whole wear track width, the algorithm computes a much 

higher change in luminance for wear track 2 (36 %) than for wear track 1 (20 %). 

 

Figure 42: Example of local increase or de-
crease of brightness due to pol-
ishing, depending on angle, cam-
era position and ring curvature. 

 

Figure 43: Post-test image of wear tracks 1 
and 2: while track 1 lacks any pol-
ishing, track 2 is polished at its 
center.  
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The reason for this discrepancy is the significant contribution of the polished center 

area of wear track 2 to total luminance change. 

The major issue with polishing is 

that it too can result in a luminance 

decrease. It is therefore not possi-

ble anymore to assume that any 

observed decrease in luminance is 

automatically the result of the for-

mation of a transfer film. It might as 

well be the result of a polishing of 

the wear track; or a combination of 

both, see the given example. In or-

der to discern between them solely 

on a numeric basis, i.e. on a basis 

suitable for an algorithm, additional 

information is required. This addi-

tional information can be obtained by considering ray traces of the lighting setup 

that so far have been ignored, see Figure 45 which is an expanded re-visitation of 

Figure 38. Due to the curvature of the ring, there are regions in each image in which 

the reflection of the light happens by a different combination of diffuse and specular 

reflection. When the steel ring is matte, the predominant reflection mechanism is 

diffuse reflection. This is the case when the ring has the correct initial surface prep-

aration and as long as the ring is not polished. Because diffuse reflection, by defi-

nition, reflects light into all directions, some of the reflected light also reaches the 

camera, see the top left schema in Figure 45. 

However, when the ring is polished in the wear track over the course of an experi-

ment, specular reflection becomes the predominant reflection mechanism, see the 

top right schema. In this situation, virtually no light at all reaches the camera. This 

is because all light that originates from the inner walls of the light dome is reflected 

onto another point at the inner wall due to of the law of specular reflection and the 

convex curvature of the ring. The only light that hypothetically could be reflected 

from the roi to the camera would have to be emitted from the camera itself. From 

this, it is easily understood why polishing results in such a drastic decrease of the 

amount of light that reaches the camera from the roi. 

 

Figure 44: (Uncorrected) changes of relative 
luminance for wear tracks 1 and 
2. The markers indicate the data 
points that correspond to the situ-
ation shown in the post-test im-
age in Figure 43. 
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Figure 45: Effect of wear track polishing on ray traces. Top left: diffuse reflection 
in the center region of the image, some light reaches the camera be-
cause diffuse reflection emits light into all directions, including the di-
rection of the camera. Top right: exclusive specular reflection in the 
center region of the image due to polishing, no light reaches the cam-
era anymore. Bottom left: diffuse reflection below the center region of 
the image, some light reaches the camera. Bottom right: specular re-
flection due to polishing of the wear track – now much more light than 
with diffuse reflection reaches the camera. 

Due to the curvature of the steel ring, the impact of polishing on the amount of light 

that reaches the camera significantly depends on the vertical position of the rec-

orded image. Consider the two schemata at the bottom of Figure 45. When the ring 

is perfectly matte, the only light that reaches the camera from the area below (or 

above, for symmetry reasons) is light that is reflected diffusely. However, due to 

the special geometry of the test setup, outside of the center region of the image 

there is always a ray trace that satisfies the law of specular reflection with respect 

to the camera. Therefore, for real world surfaces, there would be a non-nil contri-

bution of specular reflection to total reflection in these areas, and therefore they 

would look brighter than the central region, even for surfaces that look matte to the 

eye. This is in perfect agreement with the observation from Figure 43. 
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When the wear track is polished, the scenario from the bottom right schema of 

Figure 45 becomes effective: the polishing of the wear track results in an increase 

of the amount of light that reaches the camera from the non-center regions. 

This is the direct opposite of the ef-

fect that polishing has on the roi in 

the center region of the image. The 

special importance of this is that 

while at the center region both 

transfer film formation and polishing 

result in a decrease of luminance, 

this is different in the non-center re-

gions: while the formation of a 

transfer film results in a decrease of 

the intensity of the diffusely re-

flected light due to absorption, pol-

ishing results in an increase of the 

intensity of the reflected light. This is the additional information which is needed to 

decide whether a decrease of the luminance in the roi is caused by either transfer 

film formation or by polishing. 

In order to formalize this realization, we define two new image evaluation areas: 

the polishing detection region (pol) and the polishing detection reference region 

(pol-ref). Figure 46 shows the location of these two new evaluation regions. In an 

analogy to the restrictions for defining the reference area, see equation 6, the fol-

lowing applies to the definition of the pol- and the pol-ref area: 

 The pol region must start and stop at the same horizontal pixel position than 

the roi region. Therefore, roi and pol are of the same width. 

 The pol-ref region must start and stop at the same horizontal pixel position 

than the ref region. Therefore, ref and pol-ref are of the same width. 

 pol and pol-ref must be of equal height. 

 pol and roi should be in close vertical vicinity of each other. 

Using definitions for the average pixel values of the pol region 𝑁pol and of the pol-

ref region 𝑁pol-ref that are analogous to equation 7, a test parameter for polishing 

detection 𝑃 can be calculated as: 

 

Figure 46: Exemplary definition of the  eval-
uation regions needed for auto-
mated polishing detection. 1: roi, 
2: ref, 3: pol, 4: pol-ref. 
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 𝑃(𝐴, 𝑡) =
𝑁pol(𝐴, 𝑡)

𝑁ref(𝐴, 𝑡)
∙

𝑁ref(𝑡)

𝑁pol-ref(𝑡)
∙ 100 % (19) 

With this definition, the no observable effect level is 100 %. Using equation 19, the 

𝑥,𝑡-resolved polishing test parameter data has been calculated for the two wear 

tests that have resulted in the wear tracks shown in Figure 43. The plots of the thus 

obtained data sets, which effectively are 𝑥, 𝑡-plots of 𝑃 are shown in Figure 47. 

At 𝑡 = 0, the mostly dark areas indicate that the polishing parameter is yet close to 

the no observed effect level across the whole wear track. For wear track 2, how-

ever, polishing sets on very soon 

as indicated by rising values of 𝑃. 

As with transfer film formation, 

this happens at different elapsed 

times for different lateral wear 

track positions. For some inter-

vals of 𝑥 it does not happen at all 

during the test, e.g. from 0.0 mm 

to 1.1 mm and from 3.3 to 4.0 

mm. The very right horizontal line 

of the graph directly corresponds 

to the situation shown in Figure 

43. For wear track 1, the whole 

plot remains dark over the whole 

course of the experiment, which 

is consistent with the absence of 

any polishing as per the post-test 

photograph. 

As 𝑃 is a continuously distributed 

variable, “unpolished” and “polished” must be discerned by a threshold α for 𝑃, 

above which 𝑙 data must be considered to contain non-negligible contributions from 

polishing. 125 % has proven to tolerate a certain amount of (natural) scatter in the 

𝑃 data without giving false positives while still being sufficiently sensitive to actual 

polishing. However, this is only a suggestion for an otherwise arbitrary pick that the 

method's user must make. 

 

Figure 47: 𝑥,𝑡-plots for exemplary wear tracks 
1 (top) and 2 (bottom). The color 
scale’s upper limit represents the 
utilized α value. Therefore, white 
color indicates the exclusion of the 
respective 𝑙 data from the calcula-

tion of Δ𝐿rel(𝑡). 
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Once the P (𝑥,𝑡) information is fully extracted from the whole image series and a 

threshold is set, it can be used to exclude contributions to luminance changes from 

polishing. Therefore, any points in an 𝑙rel(𝑥,𝑡) data set for which the corresponding 

polishing parameter P (𝑥,𝑡) exceeds α must be excluded from the calculation of 

𝑙rel(𝑡). Computationally, this is achieved using the Heaviside function Θ which as-

sumes the value 0 for all negative arguments and 1 for all non-negative arguments. 

Using the difference between the computed polishing parameter and the polishing 

detection threshold, i.e. P (𝑥,𝑡) – α, as argument for the Heaviside function, the 

relative luminance that has been initially defined by equation 16 can be redefined 

in a polishing-free variant (indicated by the capital version of letter 𝐿) as: 

 𝐿rel(𝑡) =
1

𝑛∗
∑ 𝑙rel(𝑎, 𝑡) ∙ Θ(𝑃(𝑎, 𝑡) − 𝛼)

𝑎f

𝑎=𝑎i

 (20) 

 ∆𝐿rel(𝑡) = 𝐿rel(𝑡) − 𝐿rel(0) (21) 

with 

 𝑛∗ = 𝑛 − ∑ Θ(𝑃(𝑎, 𝑡) − 𝛼)

𝑎f

𝑎=𝑎i

 (22) 

The right side of Figure 41 shows the plots of Δ𝐿rel(𝑡) for the two wear tests that 

correspond to wear tracks 1 and 2 from Figure 43. Comparing them to the plots of 

the non-corrected data, i.e. Δ𝑙rel(𝑡) (see Figure 44), no change at all has resulted 

for wear track 1 while for wear track 2 a completely different curve is obtained. Now 

the last data points of the curves correspond to Δ𝐿rel(20 h) = 20.1 % for track 1 

and Δ𝐿rel(20 h) = 19.8 % for track 2 respectively which is in perfect agreement 

with the visual impression from the post-test photograph. 

As a last useful quantity, the polishing ratio 𝑅(𝑡), i.e. the ratio of polished wear track 

area to total wear track area can be computed for an image recorded at elapsed 

test time 𝑡 according to: 

 𝑅(𝑡) =
𝑛∗(𝑡)

𝑛(𝑡)
 (23) 

The rights side of Figure 48 shows the (𝑡)-plots for both exemplary wear tracks 

which basically are higher level aggregations of the 𝑥,𝑡-plots for 𝑃 from Figure 47. 

They too are in very good agreement with Figure 43: the last data point of the 𝑅-

curve, i.e. 𝑅(𝑡 = 20 h), for track 2 is about 53 % which very well correlates with the 

ratio of polished wear track area as seen from the post-test photograph. Also, the 
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absence of any polishing from the image of wear track 1 corresponds well with the 

flat-line that has been computed for the corresponding 𝑅(𝑡)-data. 

 

Figure 48: Polishing filtered version of the change of relative luminance (left) and 
polishing ratios for wear tracks 1 and 2. 

 5.3.6  Limitations and known issues 

Based on the measurement principle and on the described evaluation process, the 

following limitations and issues exist: 

Tarnishing: Starting at temperatures as low as 200 °C, steel surfaces are subject 

to thermally induced oxygenation which yields a thin and transparent iron oxide 

layer. Due to its transparency, it enables constructive interference of certain, 

height-specific wavelengths in the visible range which causes visible tarnish. Tar-

nish also changes the absolute luminance of the surface. Currently it is not clear, 

whether uniform tarnish will also affect relative luminance and should therefore be 

avoided until clarified. If tarnish is caused by frictional heat, there is a high chance 

that tarnish exhibits a lateral gradient. In this case, tarnish will falsify the calculation 

of relative luminance, as it affects region of interest and reference area differently. 

Therefore, when planning experiments for photo-optical luminance, test specimen 

and tribometer geometry with a good thermal conductivity should be preferred, ox-

idation resistant materials should be used and good cooling should be provided. 

Thermal light emission: Significantly above the onset of tarnishing, starting at about 

500 °C, metals start to emit visible light which will falsify the recorded absolute and 

relative luminance. More specifically, it will mix luminosity (the amount of light emit-

ted by a body) with luminance (the amount of light reflected by a body) in a poten-
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tially undefined way. While surely out of scope for most polymer/metal-slide pair-

ings, this limitation should be minded when applying the method to high tempera-

ture sliding of more temperature resistant materials, e.g. ceramic/metal pairings. 

Thermally induced changes of geometry: Thermal expansion and contraction due 

to changes in temperature also affect tribometer components. This is an issue if 

the observed test specimen, e.g. the ring, changes position within the recorded 

images. This can happen if the sample mount expands thermally when tempera-

ture changes significantly over the course of the experiment. There are three strat-

egies to prevent this issue: compensation of thermal expansion by shifting the cam-

era's position in sync with any thermal shifting of test specimen position, computa-

tional compensation of thermal shift and avoiding thermal expansion, e.g. by pre-

heating the test setup or by not changing the mount's and specimen's temperature 

excessively (for IVW’s Atlas Block on Ring tribometers 50 °C has proven to be a 

valid threshold below which thermal shifting is negligible). 

Roughness: Due to what is described in section 5.3.5, photo-optical luminance 

analysis requires a minimum surface roughness. The exact value depends on the 

material and the geometry of the photographed test specimen, on the type of sur-

face finish (ground twist-free, ground twisted, sandblasted, etc.) as well as poten-

tially on the used lamps and camera equipment. In the case of IVW’s Atlas Block-

on-Ring tribometers, minimum Ra was about 0.10 µm. 

Absorption: Photo-optical transfer film analysis is based on measuring the lumi-

nance of the test specimen on which the wear track is formed. Therefore, this test 

specimen should not absorb too much light as otherwise the signal-to-noise ratio 

might deteriorate. Currently, no threshold for the upper absorption limit can be 

specified; however, it will likely depend on the same factors than the minimum 

roughness limit. 

Time resolved, but ex-post: Although yielding time-resolved data, transfer film lu-

minance analysis is still an ex-post method, i.e. when the analysis is performed, 

the actual experiment is already over. Therefore, when an “event of interest”, e.g. 

partial spontaneous transfer film degradation, is identified through the analysis, it 

is not possible anymore to investigate the involved specimen, e.g. with microscopy. 
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 5.4  Automation and integration into Atlas 

Temporal resolution of TLA data is achieved by taking images series. The combi-

nation of the inter-picture latency (“recording interval”) determines the temporal 

resolution of the resultant TLA data and the combination with the duration of the 

test determines the number of pictures that a TLA series consists of. With one 

image every ten seconds, typical 20 h tests yield 7,200 images. For a multi-position 

tribometer, this number is compounded by its number of positions. Additionally, a 

laboratory may operate multiple tribometer with TLA equipment. Therefore, the 

number of images that need to be evaluated over the course of one week may be 

in the range of tens to hundreds of thousands. Such amounts of data can only be 

evaluated automatically using a suitable script. 

While such scripts can be designed to work outside of a LIMS (“stand-alone 

scripts”), the typical issues of unstructured and distributed data storage and pro-

cessing would arise from this: data and results would be related to each other using 

naming conventions or convention-based locations on storage media. The same 

is then true for all kinds of derivative works from the original primary data, including 

processed, combined and derived data, result plots and reports. Furthermore, for 

proper operation, such scripts require input data. In the case of TLA, this would be 

the position of the four regions (roi, ref, pol and pol-ref). For this, these regions 

need to be defined which needs to be done only once for each series and which is 

therefore typically done manually. However, this sub-step requires the user to re-

view a large number of individual images from different sections of the test and 

therefore of the corresponding image series. Here, manual selection and definition 

of the evaluation regions is virtually impossible, as with every newly assessed im-

age, it must be decided, whether the previously chosen regions are still valid for 

the current image. This process is then iterated for several sections of the image 

series until the user has decided that the current selection of regions is a good 

enough fit for the whole image series. If, at any point he or she decides that a given 

region definition only adequately matches a subsection of the image series, the 

selection needs to be adjusted and the whole process needs to be restarted (i.e. 

any previous partial assessments become invalid when the region definition is 

modified). This makes the manual review of an image series virtually impossible 

without the aid of a specialized software tool for region definition. Still, even when 
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regions have been determined, they need to be transferred to the evaluation script. 

Additionally, any evaluation script will need the width of the test specimen which is 

used as an estimate for the physical width of the investigated wear track and which 

is therefore used to calibrate pixel sizes to physical dimensions. 

When the evaluation has been done, the obtained numerical results need to be 

joined with other sensor data, e.g. with friction forces or test specimen height loss. 

Due to the large amount of data that is ob-

tained from TLA evaluation, this can only be 

done programmatically, requires a high level of 

user training and experience in terms of pro-

gramming and data handling. Given the com-

bination of task difficulty, human error rates for 

even basic tasks and the breaking of integrity 

of a large amount of data with even small er-

rors, the manual execution of this sub-step 

prone to high error rates. 

Overall, the evaluation of TLA data cannot be 

safely done without being linked to or inte-

grated into a LIMS and without the establish-

ment of automated retrieval and transmission 

of required input data and automated handling 

and processing of evaluation results. For At-

las, a fully integrated process for the evalua-

tion of TLA image series has been imple-

mented for which Figure 49 shows the work-

flow. This ensures the usage of the correct 

evaluation script at all times, enables the use 

of the parallel computing capabilities of the At-

las server and alleviates the user of any re-

sponsibilities for data handling, processing 

and storage. Therefore, this also reduces the 

requirements for user training and the occasions of possible human errors to a 

minimum. The first sub-step, the upload of the image series to Atlas, can be 

achieved with a process that is analogue to the upload of measurement data files, 

 

Figure 49: Workflow of TLA 
evaluation with Atlas. 
Grey: computerized 
support, white: man-
ual. 
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see Section 4.9.6. Atlas will then extract the image series from the uploaded zip 

file and transfer the images to the storage location of the corresponding wear test. 

Next, the user needs to define the four 

regions required for TLA evaluation. As 

pol-ref is fully determined by the posi-

tion of ref and pol, the user can actually 

only determine roi, ref and pol. Figure 

50 shows Atlas’ tool for this. 

It is written with JavaScript and exe-

cuted in the user’s browser. By shifting 

the position of the slider below the im-

age, images from different sections of 

the wear test can be displayed (which 

are loaded from the server dynami-

cally). Then, by using the three mouse 

buttons, the user can draw three re-

gions. By holding the left mouse button 

clicked, the roi can be drawn in red. 

Correspondingly, holding the right or 

middle mouse button lets the user draw 

the ref or the pol region. While drawing the different regions, the tool will automat-

ically enforce the business rules that apply to the boundaries of these regions, see 

Sections 5.3.3 and 5.3.5, thereby greatly reducing the risk for human error of the 

“failure to apply business rules”-type. When shifting the slider to different sections 

of the test, the defined regions are persisted on the canvas. This greatly simplifies 

the assessment process described above and furthermore eliminates sources of 

human error (applying wrong regions to images, accepting a sub-standard region 

definition for reduced effort). The tool then provides convenience functions for cap-

turing the coordinates of the defined regions and for submitting the definition to the 

server and start the evaluation process. Again, this reduces the possibility of hu-

man error that would be associated with a hypothetical manual process (error rates 

[96]: read 10-digit number wrongly: 0.6 %, type character wrongly: 1.0 %). 

When Atlas receives the information on the boundaries of the evaluation regions, 

it will execute the following workflow: 

 

Figure 50: Software tool provided by At-
las for determining TLA evalu-
ation regions (“segmentation”) 
and for starting the evaluation. 
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Load existing test data: The results of the overall processing of the image series 

ultimately needs to be persisted to a test data file. Therefore, the measurement 

data file is loaded. If it does not exist, the processing of the image series is aborted. 

Image series filename normalization: In order to accelerate image processing, the 

file name format of the image series is normalized. The default file name for any 

given individual image is based on the time at which it was recorded. This infor-

mation is extracted either from the metadata stored in the image (“EXIF”, Ex-

changeable Image File) or from its current file name (needs to be a timestamp). 

Synchronization: Either from the database or from the loaded test data file, a 

timestamp for the start of the wear test is obtained. Also, a timestamp for the re-

cording time of the first image of the image series is obtained. Then the time differ-

ence between the two is computed and the timestamps of all images of the image 

series are then tared. After this, any potential desynchronizations between rec-

orded sensor data and the image recording software are eliminated. If necessary, 

the images’ EXIF data and file names are update to reflect the changes. 

Compile image list, set up local variables: As synchronization potentially changes 

the names of the images on the server-side storage, a new list of image file names 

is compiled. Before the list of image file names is iterated, a set of local variables 

is computed which contains all information that is needed for processing the indi-

vidual images and for storing the results of the performed calculation. As they do 

not change in-between images, they are computed once before iteration is started. 

Process images: The images are processed by iterating over the list of image file 

names that was created previously. Single images are then processed using Im-

ageMagick [97]. Although this is done in a separate operating system process, the 

corresponding Ruby call for this is synchronous, i.e. it waits for the end of the exe-

cution of ImageMagick. Therefore, a simple iteration over the image series would 

result in sequential processing of the individual image. In order to enable concur-

rent processing, the calls for processing individual images must be parallelized, 

e.g. using threads. As CRuby is not inherently thread-safe, or more specifically, the 

concurrent access to its compound data types like arrays and hashes by threads 

of the same process is not thread-safe, the actual iteration over the data structure 

that holds references to the individual images of a series must be made thread-

safe using Ruby’s Mutex implementation, see Code listing 29. 
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Code listing 29: Concurrent processing of images using mutual thread exclusion. 

# initialize concurrency 

threads = [] 

mutex = Mutex.new 

# no of threads is dynamically computed from actual hardware configuration 

no_of_threads.times{ |j| 

  threads << Thread.new do 

    loop do 

      timestamp = nil; image = nil 

      mutex.synchronize{ timestamp, image = image_list.shift } 

      break if (image.blank? or timestamp.blank?) 

      # process image by system call to ImageMagick 

    end 

  end 

end             

When called, ImageMagick will convert the corresponding image to greyscale and 

then segment it into the four pre-defined evaluation regions. In each region, the 

pixel values are averaged in vertical direction as per equation (7). Data is them 

further averaged in horizontal direction in order to obtain scalar pixel values for 

each region according to equation (15). Using the 𝑥-resolved pixel values and the 

region averages, polishing detection signals according to equation (19) are com-

puted for each lateral pixel position of the region of interest. Using these, uncor-

rected and corrected relative luminance according to equations (16) and (20) are 

computed in 𝑥-resolved manner as well as an arithmetic average for the whole 

image. Also, the polishing ratio 𝑅 is computed according to equation (23). 

Merge data: After all images are processed, time-resolved scalar results of the im-

age analysis are integrated into the measurement data file. These are 𝑥-averaged 

pixel values of roi and ref as well as the 𝑥-averaged versions of corrected und 

corrected luminance and the polishing ratio. As each segment of a wear test has 

its own data file, luminance analysis results are distributed across these files based 

on timestamps. Now, these data are part of the test’s data file(s) and can therefore 

be included in all subsequent evaluation operations. 

Save  data: Finally, the merged data files are saved to disk. Also, the 𝑥,𝑡-resolved 

data, which do not fit into the standard wear test data files (as they are no single 

scalars as a function of elapsed time) are written to separate data files which con-

tain 𝑥,𝑡-resolved data of 𝑁roi, 𝑁rel, 𝑙rel, 𝐿rel, ∆𝐿rel and 𝑃 and which thus have “xt” as 

file extension. One file is created per wear test segment. Such files are plotted by 

instances of XtPlotGraph, see the left side of Figure 41 for an example. 
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 6  Summary 

In tribology laboratories, a wide range of processes is carried out in order to inves-

tigate friction and wear. These include critical operations like identifying and storing 

test specimens, defining individual wear tests and aggregating them into test series 

and projects, parameterizing tribometers before test conduction, the transmission, 

evaluation and storage of recorded data files, test setup and test specimen photo-

graphs as well as of micrographs and profilometric data. Additionally, all of these 

processes yield large amounts of metadata, e.g. in the form of timestamps (when 

was a test done?) or relationships (on which tribometer was a test done?). Until 

today, these processes are mainly conducted manually. Some of them, like tribo-

meter configuration and data handling have however become highly complex, 

which gives rise to significant error rates.  

While other fields of science, e.g. clinical medicine or biomedical research have 

long-since developed Laboratory Information Management Systems for supporting 

their operations, to reduce human error and to improve data quality, no such sys-

tem currently exists for tribology laboratories beyond some narrow-focused propri-

etary solutions. This work therefore deals with the design and implementation of 

Atlas, a LIMS that is specifically designed for tribology laboratories. For this, an 

analysis of a typical workflow for such a laboratory yielded a collection of physical 

entities and processes that are crucial for the main workflow of tribology laborato-

ries: test specimens, tribometers, wear tests, tribometer parameterization, meas-

urement data files, the evaluation of wear tests and the visualization and classifi-

cation of test results. For the physical entities, data models have been formulated 

using object-relational data modeling. This included the formulation their respective 

attributes (including their data types) and the implementation of their respective 

domain-specific behavior using object-oriented programming. 

For test specimens, a novel three-tiered, hierarchical data model has been devel-

oped, which consists of test specimen classes, lots and of individual test speci-

mens. Its three layers closely reflect the different levels on which information is 

collected and stored either on the level of individual test specimens (like customer 

specific labels), on the level of a specimen lot (like surface roughness of rings after 

machining) or on the most abstract level, the test specimen class level (like the 

material that test specimens are made of). Atypical inverse property propagation 
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has been developed to reflect the business rule of subsidiarity: data from the level 

of individual test specimens supersedes data stored on the two higher levels, but 

if no individual data is available, higher-level data should replace the missing data 

on the fly. This gives users the ability to define the granularity of their data collection 

on a by-case basis, thereby contributing greatly to reducing effort when individual 

data collection is deemed unnecessary. 

For tribometers, a compound data model has been developed, that consists of the 

actual tribometer and a one-to-many relationship to testing positions. This enables 

the representation of multi-position tribometers while it still includes the single-po-

sition design as edge cases. Specifically, this data model enables a semantic rela-

tionship between wear tests and tribometers, that not only includes the exact 

mounting position of a tests’ specimens in a multi-station tribometer but also allows 

for the inclusion of additional information, like geometry-related conversion factors 

from raw sensor data to corrected physical quantities, into this relationship. 

For wear tests, a data model has been developed that reflects the many different 

types of wear tests that are done even in fundamental research. Specifically, the 

established OOP concepts of inheritance, specialization and single table inher-

itance have been used to reproduce this variability of the domain in the data models 

and for the implementation of type-specifics, e.g. the use of different types of test 

specimens for different types of wear tests. Furthermore, the data model reflects 

the requirement that wear tests may be done as sequences of individual wear test 

segments, which are test sections with stationary sets of test parameters. The data 

model for wear test segments also uses OOP techniques to define segment sub-

types for specific testing modes, like unidirectional sliding, oscillation, positioning 

or measurement of the static coefficient of friction. Combined with the different test 

subtypes, this provides the ability to create digital representations of virtually every 

test that is done today in a tribological laboratory. 

While machine-to-machine communication is an established technology, its use in 

tribology for the parametrization of tribometers is so far limited to a few proprietary 

solutions. However, this process is highly prone to error when done manually. 

Here, the machine-readable storage of all relevant test parameters inside Atlas has 

proven to be the perfect basis for the generation of machine-readable documents 

that describe the parameterization that is required to execute a given test. Depend-
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ing on support by the tribometer control software, three different workflows are pre-

sented: test parameterization data can either be pushed from Atlas to the tribo-

meter or pulled from the tribometer software via an HTTP request that includes the 

test(s) IDs. Additionally, for the case of network failures or tribometers that are 

operated offline, parameterization data can be downloaded from Atlas through a 

web browser. The use of either of these procedures eliminates the high rate of 

error that is typically observed for manual parameterization of tribometers. At IVW’s 

tribology laborartory, this has been so successful that manual parameterization has 

been disabled on most its tribometers. 

For measurement data files, a standardized data format has been defined. How-

ever, tribometers typically produce a wide variety of data format. Ruby’s singleton 

methods have been presented as a viable solution for transforming non-standard 

compliant data files in standard compliant versions. Using life cycle hooks defined 

by Ruby on Rails, these are dynamically generated from database-persisted code 

via metaprogramming. Based on the assertion of only storing standardized data 

files, which include machine-readable column descriptors, the procedure on how 

to implement an automated evaluation of tests in general and specifically of data 

files is presented. Here, the reduction of complexity while still maintaining a high 

degree of specialization by the use of the OOP concepts of inheritance, duck typing 

and (partial) method overriding have been presented. 

Another benefit of standardized data files that has been presented, is the possibility 

of automating the visualization of measured data series, like COF versus sliding 

distance (“recorded data graphs”), and of aggregated data like average COF in 

steady state versus sliding speed (“aggregate data graphs”). Here, Atlas again 

uses object inheritance to produce a hierarchical data model whose individual com-

ponents reflect different types of graphs that are typically used in tribology. 

As this thesis does not simply provide ready-made solutions but describes the ra-

tionale and tools of modeling wear tests, in combination with its exclusive use of 

open and free technologies, it lays the foundation for the extension of the sample 

implementation in order to enable users to implement missing features and meet 

demands that arise from future developments in the field of tribological testing. It 

demonstrates this by the example of Transfer Film Luminance Analysis (TLA) 

which is a novel method for detecting and quantifying the formation of transfer films 

and their impact on friction and wear and which has been newly invented within 
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the scope of this work. Transfer films form by the transfer and adhesion of wear 

debris during virtually all types of tribological contacts and operation modes, mainly 

however in sliding and rolling. For dry sliding pairings, they critically define friction 

and wear. However, until today, no method exists for investigating the build-up and 

the stability of such films and their impact of friction and wear that is universally 

applicable, laterally extensive, quantitative, in-situ and time-resolved. While TLA, 

solves all of these problems, its evaluation procedure is highly complex. Specifi-

cally, it requires the retrieval and transmission of test parameters and other input 

data, specific programming techniques for concurrent image processing and it 

yields a large amount of data that needs to be handled. Here, the implementation 

of an automated evaluation in Atlas has resolved all these issues and has made 

TLA easy to use. Actually, while TLA and its automated evaluation are presented 

in a closed manner in this thesis, its development was tightly coupled with its im-

plementation in Atlas. 

Overall, using the techniques used in this work and the implementation of Atlas as 

an exemplary LIMS that is highly specific to tribology laboratories, many processes 

that have so far been executed manually can now be fully replaced by automated 

processes (like the transmission, standardization and storage of measurement 

data files) or at least by supported by highly-specialized software tools (like the 

generation of test specimen identifiers. As a result, these processes significantly 

become less error-prone and faster, which – in turn – greatly improves their effi-

ciency. This frees up researchers’ time by reducing time spent on repetitive, lowly 

standardized, complicated, demanding and therefore error-prone operations. Spe-

cifically, this has enabled the development of TLA, which is one of the few methods 

that can produce time resolved and quantitative data on the important topic of 

transfer film formation and that is the only method that, in doing so, is not subject 

to severe restrictions on the selection of materials, testing conditions and that does 

not require expensive testing equipment and extensive personnel training. 
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Figure 51: Example of an automatically generated report, page 1. 
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Figure 52: Example of an automatically generated report, page 2. 
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Figure 53: Example of an automatically generated report, page 3.  
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