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Introduction

Global warming presents an enormous and unprecedented challenge to humanity: The
changes made by mankind to the earth’s atmosphere endanger the stability of various
natural ecosystems and the health and well-being of the human population all over the
world. Greenhouse gases such as carbon dioxide (CO2), methane, or nitrous oxide keep
radiation energy within the atmosphere that would have otherwise escaped out to space.
In this way, they contribute to warming the earth’s surface. Industrial production and
various other human activities led to an increase in greenhouse gas concentrations in the
atmosphere, which in turn resulted in higher surface temperatures; by now the global
mean temperature is approximately 1°C higher than before the industrialization of the
economy. These higher temperatures have severe impacts: They increase the frequency
and intensity of weather extremes and they lead to rising sea levels and melting glaciers.
In the course of this century, temperatures are projected to increase further, which will
aggravate all these effects. However, the extent of future global warming strongly depends
on present and future greenhouse gas emissions. Hence emission reductions are crucial to
limit the impacts of global warming.

As greenhouse gas emissions take their effect globally, effective emission reductions
can only be achieved by international cooperation. The first international agreement to
address global warming was reached in form of the Kyoto Protocol, signed in 1997; it
has now been replaced by the more extensive Paris Agreement of 2015. These treaties
require signatory countries to reduce their emissions by a given amount. To achieve this,
many governments have resorted to market mechanisms, with the most prominent option
being the introduction of an Emission Trading System (ETS). In an ETS, the regulator
fixes the amount of emissions that is supposed to be allowed in a given time period. In
accordance with this amount, emission allowances are allocated to companies underlying
the system; allowances are tradeable, so that emission reductions take place where it is
the cheapest. To enforce compliance with the system, a penalty needs to be paid for any
emissions not covered by an allowance. In the European Union such a system (EU ETS)
is in operation already since 2005, making it one of the earliest and still one of the largest
ETS’ worldwide. Despite numerous problems and concerns, studies show that the EU
ETS has succeeded in achieving its goals at least partially; at the same time, it has been
reformed several times to improve its performance.

To analyze an ETS and to predict the behavior of companies underlying the system,
modeling approaches have proven to be an important tool. Early deterministic models
of an ETS are presented for example by Montgomery [Mon72] or Rubin [Rub96]. More
recently, stochastic models have been introduced to reflect the uncertainty in crucial quan-
tities such as the emissions in the absence of the ETS. At the core of essentially every ETS
model, a minimization problem needs to be solved; in a stochastic setting this can be done
by applying a stochastic control approach. Carmona, Fehr and Hinz [CFH09] follow this
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INTRODUCTION

strategy in a discrete-time setting, while Kollenberg and Taschini [KT16] as well as Seifert,
Uhrig-Homburg and Wagner [SUW08] proceed in a similar way in continuous time.

Extending the work of Seifert et al., in this thesis we apply a stochastic control ap-
proach to construct a model of the EU ETS. We provide the theoretical foundation of the
model; furthermore, we introduce an extension to a multi-period setting and incorporate
the auctioning of allowances in the model. In establishing an ETS, the regulator aims
to achieve a significant reduction of emissions, while providing a clear price signal to in-
centivize investments in clean technology. Therefore, our main focus is to study resulting
emissions and the allowance price development. In numerical simulations we vary several
regulatory settings and analyze their impact on the performance of the ETS.

This thesis is structured as follows. In Chapter 1 we present general background infor-
mation on global warming and explain the mechanism of an ETS, with a particular focus
on the EU ETS. Furthermore, we discuss the literature on various modeling approaches,
including all references mentioned above. In Chapter 2 we introduce a model of an ETS
with one compliance period, modeling the uncertainty of the emissions by a stochastic dif-
ferential equation (SDE). For a simple variant of the model we are able to show that the
Hamilton-Jacobi-Bellman (HJB) equation arising from the stochastic control approach
delivers the optimal emission reduction. Furthermore, we provide a theorem to ensure
existence and uniqueness of an SDE solution in a specific setting where the coefficient
functions of the SDE are not continuous at final time. Under similar assumptions, we
show that the Euler-Maruyama scheme converges to the solution. In our ETS model, we
describe the resulting emissions by an SDE with such a discontinuity; these theorems allow
us to conclude that this SDE has a solution, which can be approximated by the Euler-
Maruyama scheme. We then provide an extension of the model to several time periods
in Chapter 3. Here we introduce two different approaches: In a multi-period setting, the
allowance price of the next time period needs to be taken into account in the cost min-
imization problem. In the first approach, we make the simplifying assumption that the
value anticipated for this price is constant throughout each time period. This allows us to
proceed similarly as in the one-period case and, accordingly, we obtain similar theoretical
results. The second approach is to introduce an additional stochastic process enabling us
to model the anticipation of the allowance price in the next time period with more preci-
sion. In Chapter 4 we include the auctioning of allowances in our model and show that this
does not impact the resulting emissions and the allowance price. Chapter 5 discusses the
numerical methods applied to solve the model and the parameters chosen in simulations.
In Chapter 6 we present numerical results of both the one-period and the multi-period
model. We vary several model parameters to study their impact on the outcome in the
ETS. Finally, in Chapter 7 we discuss the findings of this thesis. An appendix provides
auxiliary computations and further numerical results.
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Chapter 1

Emission Trading Systems and
Modeling Approaches

The advancement of global warming and the dangers it poses to human societies and
the world’s ecosystems require a drastic reduction of greenhouse gas emissions all over
the world on a comparably short time scale. At the same time, in order to avoid welfare
losses, these reductions should be achieved at the lowest possible economic costs. Emission
trading systems have become a widely used policy tool to combine these two goals. One of
the first and at the same time one of the largest ETS’ is the EU ETS of the European Union.
While this system has proven to achieve its purpose to some extent, it has also suffered
from structural problems and inefficiencies. As a result, the EU ETS has seen several
revisions in the course of its existence. Thus the question of how to choose the regulatory
framework is still open to debate. ETS models are an important tool to study the impacts
of an ETS and to analyze design choices made by the regulator. Since emissions depend
on non-deterministic parameters, such as weather or the economy, it is natural to view
them as a stochastic quantity. This suggests to employ a stochastic approach in modeling
an ETS.

In this chapter, we first present some background information on global warming and
its consequences as well as the corresponding political implications. Then we introduce the
concept of an ETS; furthermore, we discuss the EU ETS and the evidence on its efficacy in
some detail. Finally, we provide an overview on various approaches to formulate a model
of an ETS. We specifically focus on models following a stochastic control approach.

1.1 The Advancement of Global Warming

The scientific evidence for global warming and its cause lying in human activity has been
strong for decades now. Nevertheless, recent years have seen an increasing public interest
in global warming and the need of countermeasures. On the one hand, weather extremes
and related catastrophes such as wildfires, heat waves, droughts, but also heavy rainfall and
flooding seem to become more and more frequent. On the other hand, especially young
people have acknowledged the threat of continuing global warming and have formed a
global protest movement demanding immediate action, strongly supported by scientists,
environmental organizations and various other social groups.

3



CHAPTER 1. EMISSION TRADING SYSTEMS AND MODELS

1.1.1 The Greenhouse Effect

Since the industrial revolution humanity has increasingly influenced the composition of the
earth’s atmosphere; in particular the concentration of carbon dioxide (CO2) has drastically
increased due to the burning of fossil fuels such as coal, oil, and gas. Since 1958 the CO2

concentrations have been measured at Mauna Loa in Hawaii, delivering the curve shown
in Figure 1.1. The crucial property of CO2 in this context is its ability to absorb infrared

Figure 1.1: CO2 concentrations measured at Mauna Loa in Hawaii. Source: Scripps Insti-
tution of Oceanography [Kee+01].

(IR) radiation. The general mechanism works as follows: Molecules absorb radiation of
IR wavelengths by initiating vibrations of the molecule’s bonds. This can only occur if
the vibration induces a change in the electrical polarization within the molecule, i.e. if
the spatial distribution of partial charges is changed. CO2 is formed by one carbon and
two oxygen atoms. Since the oxygen atoms are more electronegative than the carbon
atom, the electrons forming the bond between the carbon atom and each of the oxygen
atoms are closer to the oxygen atoms, thus they have a negative partial charge whereas
the partial charge of the carbon atom is positive. In its ground state the molecule is
symmetric, so the charges are equally distributed and thus it is not polar. But vibrations
may annihilate this symmetry, inducing a polarization; therefore CO2 may absorb IR
radiation. The main constituents of the atmosphere, oxygen and nitrogen molecules, both
cannot absorb IR radiation, since they each consist of two atoms of the same element,
thus charges are equally distributed. Other molecules present in the atmosphere that may
absorb IR radiation include methane, nitrous oxide, and halogenated gases. Absorption
of IR radiation is also the mechanism behind IR spectroscopy, hence this procedure is
usually described in physical chemistry textbooks such as [AD13].

Although the percentage of IR absorbing molecules in the atmosphere is comparably
low, they have a large impact. This can be seen by computing the theoretical temperature
for the earth’s surface from the radiation coming in from the sun, as described by Hites
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CHAPTER 1. EMISSION TRADING SYSTEMS AND MODELS

et al. [HRW17]1: We first need to take into account that a certain percentage of the
incoming radiation is directly reflected back to space, in particular from white surfaces
such as clouds and ice sheets. This percentage is usually called the albedo and is assumed
to be approximately 30% for the earth on average. If we assume that the remaining 70%
are absorbed by the earth’s surface, we may compute the theoretical temperature from
the energy coming from the sun as 255°K or -18°C. This is considerably colder than the
actual global mean temperature at about 280°K or 15°C and would have been too cold to
support the development of life2. The difference between the theoretical and the actual
temperature is due to the greenhouse effect: The radiation reaching the earth’s surface is
absorbed and in accordance with Planck’s law emitted largely as IR radiation. Gases like
CO2 then absorb this radiation and emit it again, usually also at IR wavelengths. But
this re-emission may occur in any direction; thus, partly this radiation is still directed to
space, but partly it is also directed back at the earth. In this way molecules that may
absorb IR radiation keep part of the energy that would otherwise have been emitted back
to space within the atmosphere, thus warming the earth’s surface. This resembles the
effect of a greenhouse, therefore this procedure is known as the greenhouse effect and the
gases causing it are called greenhouse gases.

1.1.2 Global Warming

While the greenhouse effect was crucial for the development of life in the first place, the
increasing concentrations of greenhouse gases such as CO2, but also methane and nitrous
oxide, now cause the global surface temperature to increase further, thus leading to global
warming. Since 1990 changes in the earth’s climate are reported by the Intergovernmen-
tal Panel on Climate Change (IPCC); they regularly assess the physical changes of the
climate system, their impacts on human societies and natural ecosystems, and how gov-
ernments and the public may respond. In their latest report on the physical science basis
of global warming [IPC21] they describe that the average CO2-concentration has reached
410 parts per million (ppm), compared to 280 ppm at pre-industrial levels [IPC92], while
the average global surface temperature in the last decade, i.e. between 2011 and 2020 was
1.09°C higher than in the period from 1850–1900, which is the usual temperature refer-
ence for pre-industrial levels; this is also illustrated in Figure 1.2. These numbers for the
CO2-concentration and the average surface temperature are unprecedented to the scale of
hundreds of thousands of years. The CO2-concentration is higher than at any time point
in the last two million years; the last warm-period of at least several centuries reaching
roughly the same temperatures was 125 000 years ago. Moreover, every single one of the
last four decades has been warmer than any decade before that since 1850. Additionally,
these changes occur at a speed as it possibly was not seen before in human history: Since
1970 the temperature has increased faster than in any comparable time period within the
last 2000 years. As a consequence, glaciers have been retreating globally since the 1990s
and the area of Arctic sea ice has decreased. The oceans have warmed since the 1970s,
they have seen an increase in acidity, and mean sea levels have risen by 0.2 m since 1901,
where the speed of sea level rise has drastically increased in the past decades.

These changes have led to more frequent and more intense weather extremes. The

1These computations can be found in [HRW17] on pages 77–82.
2To be more precise, the formation of life might still have been possible in much lower temperatures.

But the development of the species and ecosystems observed today strongly relies on the actual higher
temperatures.
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Figure 1.2: Global surface temperature relative to the average in 1850-1900, smoothed per
decade. Source: Intergovernmental Panel on Climate Change [Gil+21].

news has reported a large number of such events in the past few years; examples include
the wildfires in 2019 in Australia, the Amazonian rain forest, and Siberia, extreme heat
waves as this year (2022) in India and Pakistan, and droughts as in East Africa (e.g.
reported in [Hor22] and [Hof21]). Very recently, in July this year, Western Europe has
suffered from extreme heat, which has caused numerous wildfires [tag22]. Heavy rainfalls
and resulting floods have occurred this year in Brazil and in Australia (as reported e.g.
in [Bod22]). In Germany the summers have become notably hotter and drier; the most
predominant weather extreme in Germany has been the heavy rain and the following
flood in the Ahrtal in 2021, which has caused massive damages and claimed more than a
hundred lives [Wei22].

These events are in line with the IPCC report [IPC21]. It documents more frequent
hot extremes, such as heat waves, and claims that some recently occurring extreme events
would have been very unlikely without human influence. According to the report, the
frequency and intensity of heavy precipitation events have increased, but on the other
hand, some regions have seen an increase in droughts; tropical cyclones have become more
dangerous and wildfires more common. A second stream of IPCC reports on the impacts
and risks of global warming [IPC22] describes that global warming has already induced
severe damages to various ecosystems with more and more irreversible losses. Species have
been moving polewards and on land also upwards, the seasonal timing has shifted. Locally,
species are lost and in some cases go extinct. The previously seen growth in agricultural
productivity has slowed down and warming and acidification of the ocean impact fishery
productivity, which presents a threat to food security. Millions of people are already in
danger of acute food insecurity. At the same time, diseases transmitted by water, food, or
various vectors such as insects occur more often and heat-related mortality is increasing.
Moreover, extreme weather increasingly affects displacement and migration.

All these changes are predicted to be aggravated in the future; and the higher the
temperatures will rise, the more drastic these effects will be. The IPCC has modeled
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CHAPTER 1. EMISSION TRADING SYSTEMS AND MODELS

several future emission pathways and estimated the corresponding long-term3 temperature
increase. In case of further increasing CO2-emissions the temperature rise in comparison to
pre-industrial levels is predicted to be 4.4°C (if current emissions double by 2050) or 3.7°C
(if current emissions double by 2100). In an intermediate scenario of roughly constant
emissions until 2050 followed by a decrease the rise in temperature still reaches 2.7°C
above pre-industrial levels. If however emissions decrease from now on, global warming
can be limited to 1.8°C (if net zero emissions are reached around 2075) or to 1.5°C (if net
zero emissions are reached around 2050).

It is predicted that every increase in temperature of 0.5°C increases the intensity and
frequency of hot extremes, heavy precipitation, and regional droughts; a higher tempera-
ture will also lead to more severe tropical storms with higher wind speeds. Flood damages
are expected to be about three times higher at global warming of 3°C than at 1.5°C;
warming of more than 2°C will severely endanger food security. Diseases will probably
spread further and extend their seasons or their geographic range. Furthermore, cities
and infrastructure especially at the coast or in hot areas are threatened; approximately a
billion people are expected to be at risk from coastal hazards by 2100 and the continuing
rise in sea level is an existential danger to small islands and low-lying coasts. As a result
of extreme weather events, people will be forced to migrate.

In addition, tipping points of the climate system may result in greatly accelerated
global warming as soon as a certain point is reached. For example, the melting of the
large ice sheets in Antarctica would reduce the albedo of the earth, so that less radiation
from the sun is reflected, thereby increasing global warming. It is very difficult to predict
at which temperature levels these tipping points are reached. The IPCC denotes such a
scenario as a low-likelihood event but stresses that higher global warming makes these
events more probable. However, some scientists believe that some tipping points might
already be close: In a comment, Lenton et al. [Len+19] report that for instance the West
Antarctic ice sheet is already in grave danger of collapsing, and they see similar threats
to the East Antarctic and the Greenland ice sheet.

1.1.3 International Cooperation against Global Warming

The IPCC reports stress that a reduction of greenhouse gas emissions is of great impor-
tance. This can only be achieved by political intervention; however in political debates
global warming and possible countermeasures are often met by high controversy. More-
over, the reduction of greenhouse gas emissions requires a global response, thus worldwide
cooperation is indispensable.

Global warming became an increasing concern in international politics in the late
1980s. As a consequence, the United Nations Framework Convention on Climate Change
(UNFCCC) was initiated on the Earth Summit in 1992 in Rio de Janeiro and came into
force in 1994 [Jac07]. One year later, the parties to the convention met for their first
conference, the so-called conference of the parties (COP); these conferences have been
held yearly4 since then and are commonly known as the climate conferences. The third of
these conferences, COP3 in Kyoto, led to the agreement on the Kyoto Protocol [UN97].
Therein most industrialized countries committed to specific emission reductions for the
years 2008 to 2012 in comparison to their emissions in 1990; the parties to the protocol
were allowed to trade with their reduction commitments. The overall reduction goal was

3Long-term in this case refers to the time period from 2081 until 2100.
4with the exception of the year 2020, where the conference was postponed due to the Covid-19 pandemic
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satisfied and even over-accomplished [SMB16]; some of the reduction can be attributed
to the collapse of heavy industries in former Soviet-Union countries and the economic
recession in 2008 probably also had an impact, whereas meaningful efforts were accredited
for example to the European Union and Japan [Gru16]. Nevertheless, global emissions
have increased in the corresponding time period [WBb]. This might be caused by the fact
that the USA have never ratified the protocol and Canada has withdrawn before the end
of the commitment period; furthermore, all developing and newly industrialized countries
were not assigned a reduction target. The reduction targets for a second commitment
period from 2013 to 2020 were negotiated in 2012 at the COP in Doha [UN12]. This
agreement only entered into force on December 31, 2020, when finally sufficiently parties
to the Kyoto Protocol had accepted it.

As a successor to the Kyoto Protocol, at the COP21 in Paris a new agreement was
adopted, which came to be known as the Paris Agreement [UN15]. It formulated the
goal of “Holding the increase in the global average temperature to well below 2°C above
pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C above
pre-industrial levels”. In contrast to the Kyoto Protocol, the Paris Agreement requires
all parties to the agreement to comply with emission goals. These goals are set by the
countries themselves in so-called nationally determined contributions, which should “re-
flect its [the country’s] highest possible ambition”. The Paris Agreement entered into
force on November 4, 2016, when sufficiently many parties had ratified it. The progress
of parties within the agreement is evaluated at global stocktakes every five years; the first
such stocktake started in June 2022 [UN22].

The inclusion of almost all countries in the world in the Paris Agreement and the
resulting commitment to address global warming has been viewed as a milestone by many.
On the other hand, concerns have been raised that the reduction targets set by parties to
the Paris Agreement are not sufficient to achieve the goal of limiting global warming to
“well below 2°C”: Rogelj, den Elzen, Höhne, Fransen et al. [Rog+16] assess the nationally
determined contributions and find that, in compliance with these, global warming is likely
to reach about 3°C.

1.2 Emission Trading Systems

The controversy about mitigation measures to address global warming often arises from
adverse economic interests. At the same time, as many other environmental damages,
global warming can be seen as an externality and thus represents a market failure: Global
warming leads to costs through the effects described above, but these costs are not paid
by the agents causing them, i.e. by emitters of greenhouse gases. As a result, market
mechanisms as a tool to reduce greenhouse gas emissions have become increasingly pop-
ular. The overall idea of such mechanisms is to give emissions a price, thus resolving the
externality of unpaid costs. At the same time, the details of where and when emissions
are reduced are left to usual mechanisms of free markets. A particular simple approach to
this is the so called Pigou tax, as proposed already in 1920 by Pigou [Pig13]: The price
of an environmental good – such as CO2-storage capacities of the atmosphere – is simply
set by the government in form of a tax. As soon as emissions have a price, companies
have an incentive to reduce their emissions; the reduction of emissions is often referred
to as abatement. Of course, in this case the resulting emissions strongly depend on the
value chosen for this tax; already intuitively it should be clear that a higher tax leads to
less emissions, since companies will put more effort into the abatement of emissions. More
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precisely, companies will reduce emissions until their marginal costs of emission abatement
are equal to the tax. While this system provides a clear price signal, the resulting emis-
sions are difficult to predict. An alternative avoiding this problem is given by emission
trading systems.

1.2.1 Mechanism of an Emission Trading System

Instead of fixing the price of emissions, in an Emission Trading System (ETS) the desired
total emissions are fixed, whereas the price is left to develop on the market. The mechanism
of an ETS, described for instance by Sturm and Vogt [SV18] or by Siebert [Sie08], is as
follows: The government or the corresponding regulatory institution decides on the amount
of emissions to be allowed in the course of a certain time period, known as the emission cap.
Then, in accordance with this amount, emission allowances are handed out to companies
underlying the system; these can be given out for free or they can be sold at an auction.
Importantly, the allowances are transferable, so companies may trade with them. In this
way a market for emission allowances develops where the price of emissions forms. In
the course of the respective time period companies will produce emissions and trade with
allowances, where each company will abate emissions until their marginal abatement costs
equal the market price of emission allowances. If their allocated emission allowances are
insufficient to cover remaining emissions, they will buy additional allowances at the market,
whereas if they have allowances they do not need, they will sell at the market. In this
way, emission abatement will be shifted to companies where this can be done at lowest
costs. At the end of the predefined compliance period the regulator evaluates whether each
company holds enough allowances to cover their overall emissions. To enforce the need of
having an allowance for emitting CO2, a penalty needs to be paid for emissions for which
this does not hold. A crucial policy decision concerns the transferability of allowances
between compliance periods: The transfer of allowances to the subsequent time period
is known as banking, whereas transferring allowance from the subsequent period to the
current one is called borrowing.

The goal of a policy to address global warming is clearly to reduce greenhouse gas
emissions and usually governments set themselves fixed reduction targets as for example
given in the Kyoto Protocol but also in the Paris Agreement. Thus ETS’ have the definite
advantage that they fix the resulting total emissions; therefore the effect of an ETS is
easier to predict than of a Pigou tax. On the other hand, in this case it is the allowance
price that is not given in advance, resulting in a less clear price signal, which makes it
harder for companies to plan for instance their investment in low-carbon technologies.
Moreover, also in an ETS it is possible that the actual emissions surpass the predefined
amount: If the marginal abatement costs at the abatement level necessary to comply with
the emission cap exceed the penalty, then companies will pay the penalty instead.

1.2.2 The Emission Trading System of the European Union

The first ETS was introduced in 1995 in the USA; this was not yet intended to address
greenhouse gases but to reduce acid rain: For this purpose, allowances were distributed and
traded for the emissions of sulfur dioxide and nitrogen oxides. This system decreased sulfur
dioxide emissions in 2016 compared to 1990 by 90% as reported by the US Environmental
Protection Agency [EPA16]. A mechanism similar to an ETS applying to greenhouse
gases was in principle incorporated in the Kyoto Protocol, whose parties were allowed
to trade with the amount of emissions they were entitled to. The first fully operational
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ETS, covering CO2-emissions on the company level, was introduced 2005 in the European
Union; still today it is one of the largest ETS’ worldwide. As reported by the International
Carbon Action Partnership [ICA] there are now 25 ETS’ in operation including a fairly
recently introduced national ETS in China; in total these systems cover about 17% of the
world’s greenhouse gas emissions.

Structure of the EU ETS

The EU ETS has initially been established to ensure compliance of the EU member
states with the Kyoto Protocol, with its regulatory framework being set up by Direc-
tive 2003/87/EC of the European Parliament and of the Council [EU03]. As explained
by the Commission [ECa], it is structured in several phases: The first one from 2005 to
2007 served as a pilot phase to gain experience on price formation and set up the required
infrastructure to track emissions. At this point, the EU ETS only covered CO2-emissions
from the power sector and energy-intensive industries, amounting to approximately 40% to
50%5 of total CO2-emissions in the EU. In the first phase allowances were almost entirely
given out for free, following an allocation mechanism which was based on historical emis-
sion data of the companies underlying the system. The penalty for a ton of emissions not
covered by an allowance was set to 40 Euro. Importantly, in the case of non-compliance
companies were obliged to surrender the missing allowances in the subsequent phase. Un-
used allowances expired at the end of the first phase, thus banking or borrowing was not
allowed. A key challenge was to determine the amount of allowances to be handed out
such that companies could handle the required abatement, but the system would still lead
to a reduction in emissions.

The second phase from 2008 until 2012 was aligned with the first commitment period of
the Kyoto Protocol. Based on the experience from the first phase, the amount of emission
allowances was reduced; furthermore, the penalty was increased to 100 Euro and a small
share of 10% of the allowances was auctioned. At the same time, unused allowances could
be transferred to the next phase, so banking was allowed. The third phase lasted from 2013
until 2020 and thus was in line with the second commitment period of the Kyoto Protocol.
It saw an extension of the ETS to further sectors such as the chemical industry and the
inclusion of the greenhouse gases nitrous oxide and perfluorocarbons (as implemented by
Directive 2009/29/EC [EU09]). The fraction of auctioned allowances was increased to
57%. In addition, there was a structural change: In contrast to the previous phases, the
allowance cap was no longer set by each member state for itself; instead an EU-wide cap of
allowances applied. For the fourth and current phase from 2021 until 2030 the decrease of
the cap was accelerated and further adaptations were made to address several of the issues
we will discuss below. As a consequence of the EU’s commitment to reduce greenhouse gas
emissions by 55% in comparison to 1990 by the year 2030, a legislative proposal to further
strengthen the EU ETS is currently negotiated among EU institutions. The EU ETS
legislation might be again revised in accordance with the results of the global stocktake,
conducted in the course of the Paris Agreement [ECd] as mentioned above.

5This figure was estimated from total CO2-emissions in the EU in 2005 as given in [EEA07] and verified
emissions in the EU ETS, given by [EEA].
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Empirical Evidence on the EU ETS

Being the first fully operational ETS to cover greenhouse gas emissions and at the same
time being of remarkable size, the EU ETS naturally has attracted research interests from
various directions. Several authors, such as Laing et al. [Lai+14] and Egenhofer et al.
[Ege+11], provide a broad literature review to analyze the effects of the EU ETS, as
well as the initial issues and structural problems that were observed. One key question
surrounding the EU ETS is whether it has indeed led to the abatement of greenhouse gas
emissions. Typically, abatement is viewed as the difference between the actual emissions
within the EU ETS and the emissions that would have occurred without the EU ETS,
usually referred to as the counterfactual or the Business-As-Usual (BAU) emissions. This
already highlights the main challenge in assessing abatement: While the actual emissions
are verified by the EU and published, the BAU emissions cannot be observed and therefore
need to be estimated.

Ellerman and Buchner [EB08] make use of the historic emission baseline data that
was collected by member states prior to the start of the EU ETS; this data collection was
intended to help set up the initial cap by providing an estimate of emissions from sectors
underlying the EU ETS. Ellerman and Buchner remark that this data may be biased,
since it was mainly obtained from the greenhouse gas emitting installations themselves,
which had an incentive to inflate their actual emissions. From this data, Ellerman and
Buchner construct the BAU emissions for the years 2005 and 2006 by computing the
effect of economic growth, taking into account the estimated decrease in carbon intensity
of economic activity. They obtain an estimate of 50 to 100 mega tons (Mt) of yearly
abated emissions in 2005 and 2006, roughly corresponding to 2.5% to 5% of the emission
cap6.

Anderson and Di Maria [AD11] study the first phase of the EU ETS based on sector-
wise emission data provided by Eurostat. From this data set they obtain historical emission
data for the sectors underlying the EU ETS and fit a regression model describing CO2-
emissions as dependent on the economic activity of the EU ETS sectors, on energy prices
and weather factors. They then use this model to estimate the BAU emissions and compare
the results with the verified emissions, finding an estimated net abatement between 2005
and 2007 of 173.6 Mt of CO2. This amounts to 2.8% of the emission cap of the first phase7.

Again a different approach was taken by Delarue, Ellerman and D’haeseleer [DED10],
who restrict themselves to the power sector. They use a European electricity modeling
system called “E-Simulate”, which they adapt by computing emissions for each modeled
power plant based on fuel use and fuel type. Furthermore, they include the price of
emissions as additional costs. Then they simulate the electricity system for the years 2005
and 2006 with the actual allowances prices on the one hand and with an allowance price
of zero on the other hand, thus obtaining the BAU emissions. By comparing the results,
they conclude that the abatement in the power sector was 34 Mt in 2005 and 19 Mt in
2006, corresponding to 1.75% and 1.0% of the total cap and to 3% and 1.7% of emissions
in the power sector. They also compare the results from the simulation with verified
emissions from the power sector and find very high agreement, supporting the validity of
their model. These three early studies on abatement thus reach similar results by very
different methodologies.

6The cap of 2005 and 2006 amounts to roughly 2100 Mt as given in [AD11].
7The emission cap of the years 2005 to 2007 amounts to 6246.6 Mt in total as can be computed from

data provided by Anderson and Di Maria [AD11].
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For the second phase of the EU ETS an assessment of the abatement is even more
difficult, as the recession in the wake of the financial crisis further complicates the estima-
tion of the BAU emissions. Egenhofer et al. [Ege+11] extend the analysis of Ellerman and
Buchner [EB08] to the years 2008 and 2009. From a contribution by Ellerman, Convery
and Perthuis [ECP10] they take the projected rate of change in emission intensity8 and
compare this to the observed emission intensity, first for the years 2006 and 2007. The
difference is then attributed to abatement, amounting to a decrease of emission intensity
of 1.1% and 0.9% in 2006 and 2007. For the years 2008 and 2009 they take the rate of
change in emission intensity in 2006 and 2007 of about 2% as the projected rate of change
in emission intensity; they obtain emission intensity reductions, assumed to be caused by
abatement, of 1.3% in 2008 and of 5.4% in 2009.

Another study by Bel and Joseph [BJ15] builds on the work of Anderson and Di
Maria [AD11]: By applying a similar regression approach, they aim to separate the effect
of the EU ETS from the effects of the recession. They modify the model of Anderson
and Di Maria by introducing independent variables accounting for the presence of the
EU ETS and the gross domestic product (GDP) or alternatively the occurrence of a
crisis; they construct the value of the EU ETS variable from the difference in emissions
between EU ETS sectors and sectors not underlying the EU ETS. Based on this model
they compute different estimates, partly omitting either the EU ETS variable or the
GDP/crisis variable. By comparison they conclude that only a small fraction of total
abatement can be attributed to the EU ETS, whereas the remainder was caused by the
recession. Importantly, they define abatement as the difference in emissions between 2005
and 2012, thus considering the reduction in yearly emissions rather than the difference to
the BAU emissions. Following this definition, total abatement between 2005 and 2012 was
294.5 Mt, of which they only attribute 33 to 41 Mt to the EU ETS.

Next to direct emission reductions, a market based instrument, such as the EU ETS,
with a price on emissions aims to provide an incentive to invest in clean technologies, i.e.
technologies with low greenhouse gas emissions. As summarized by Laing et al. [Lai+14]
several survey-based studies have addressed this issue, typically finding that there is some
impact of the EU ETS on investment and innovation but not on a large scale. Rogge
and Hoffmann [RH10] analyze the effect of the EU ETS on innovation in the German
power sector by conducting 42 interviews with experts from power generators, technology
providers, authorities, and other relevant groups. They find that the EU ETS has acceler-
ated the innovation process and in case of coal-fired plants has a main impact on research
and development, with a focus on Carbon Capture and Storage technologies9 and efficiency
of energy use. Moreover, the EU ETS has caused companies to take climate policies more
seriously and has led to an involvement of the top management in emission-related issues.
On the other hand, the allowance price appears to be still too small to motivate large
investment decisions like switching to fuels which produce less emissions10. Another study
conducted by Anderson, Convery and Di Maria [ACD11] on companies in Ireland subject
to the EU ETS reports several actions undertaken to reduce emissions. Based on a ques-
tionnaire returned by 27 Irish companies with installations underlying the EU ETS and

8In this context, the emission intensity is given as the emissions relative to the gross domestic product
(GDP).

9This technology, which is not yet applied in practice, serves to capture emissions before they are
released into the atmosphere and afterwards transfers them to a suitable storage.

10Usually this switch is from coal to gas, as the latter causes less emissions for the same amount of
energy produced.
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interviews with seven of these, they report that 48% of responding companies state that
they are using new machinery or equipment that decreases their emissions. Furthermore,
74% claim that they have undertaken procedural or behavioral changes. Notably, the in-
terviewed companies reveal that these adaptions were mostly motivated by rising energy
prices, with the allowance price and the presence of the EU ETS playing only a minor
role. In addition, 41% of the companies report that they have reduced emissions by fuel
switching, contrary to the findings of Rogge and Hoffmann. Moreover, 46% of responses
report that the EU ETS has influenced the way investments are analyzed. It should be
noted that these studies only cover the early phases of the EU ETS; by now the impact
on investment might have increased.

In summary, these results document that the EU ETS has at least to some extent
succeeded in reaching its goals, with positive impacts already being observed for the pilot
phase from 2005 and 2007. In light of the criticism that the system has faced in particular
in its early days and the additional problems caused by the economic crisis, this is almost
surprising. As reported by Egenhofer et al. [Ege+11], the EU ETS suffered from initial
problems, partly caused by the short time scale in which it was set up, including issues
with monitoring and verifying emissions, but also a highly volatile allowance price. As

Figure 1.3: Prices of Allowance Futures (EUA) with different maturities. Source: European
Environment Agency [EEA11].

can be seen in Figure 1.3, after an increase until early 2006, there was a sharp price drop
in April 2006 and eventually a decline to a price of essentially zero for the allowances
of phase 1. Moreover, according to Egenhofer et al., the design of the EU ETS led to
over-allocation of emission allowances and windfall profits in the power sector. Over-
allocation is difficult to quantify: First of all, it is not a priori clear what is meant by
over-allocation. As pointed out by Ellerman and Buchner [EB08], this could either refer
to having more allowances in the system than BAU emissions; alternatively already the
case of an allocation of allowances that does not impose a sufficiently stringent cap can be
viewed as over-allocation. While the former definition again requires an estimate of the
BAU emissions, the latter would need to be formulated with more precision to be eligible
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for analysis. Ellerman and Buchner define over-allocation by considering country-wide net
and gross short or long positions of allowances and view over-allocation as the case of a
high ratio between the net long and the gross long position in a country. By applying this
methodology, they come to the conclusion that over-allocation to the extent of at most
125 million allowances occurred between 2005 and 2006.

Additional profits made by companies due to the presence of the EU ETS are referred
to as windfall profits, which are most commonly reported for the power sector. Usually,
they are assumed to be generated by passing on the price of allowances to consumers,
while the producer has received their allowances for free. The effect of the allowance
price on the electricity price has been studied for instance by Sijm, Neuhoff and Chen
[SNC06]. They estimate the cost pass-through of allowance prices onto electricity prices
by linear regression: They assume that the difference between power price and fuel price
depends linearly on the emission-induced costs, i.e. the allowance price multiplied with
the emission rate of the respective fuel. By fitting this model to data from the Dutch and
the German electricity markets, they obtain a cost pass-through between 60% and 100%.
Furthermore, they use a model simulating the behavior of large producers in the electricity
market called the COMPETES model to simulate profits with a price of 20 Euro per ton
on CO2-emissions compared to a price of zero. Thus they find additional profits from
free allocation of allowances in the range of 5.3 to 7.7 billion Euro generated in Belgium,
France, Germany, and the Netherlands. Importantly, the model suggests that companies
also make additional profits if all allowances are auctioned instead of allocating them for
free.

Lise, Sijm and Hobbs [LSH10] extend this work: They apply the COMPETES EU20
model, an extension of the COMPETES model to 20 EU member states, to various sce-
narios with either perfect or oligopolistic competition. They use the simulation results to
compare the case of no price on CO2-emissions to the setting with an allowance price of
either 20 or 40 Euro per ton. In this way, they obtain cost pass-through rates between 70%
and 90%. For an allowance price of 20 Euro per ton they compute that profits increase by
20 billion Euros if 90% of allowances are allocated for free, representing a 27.6% increase
compared to the scenario without a price on emissions. As in the previous study by Sijm et
al., they find an increase in profits also in case of the auctioning of allowances, amounting
to 16 billion Euro, which represents a 21.7% increase. These profits are mainly due to the
higher electricity price, which also applies to electricity generators with low emissions.

Revision of the EU ETS

The issues of over-allocation and windfall profits have been addressed in the revisions of
the EU ETS for its later phases by increasing the share of auctioned allowances and stricter
regulation on allocation. By the start of the third phase the union-wide cap facilitated
this; moreover, as pointed out by Egenhofer et al. [Ege+11], from then on the power sector
did not receive any allowances for free and had to acquire almost all of its allowances at
an auction instead. Nevertheless, also in the third phase some issues remained: Despite
the more stringent allocation of allowances in phase 2, the economic crisis has led to a
large oversupply of allowances, and since a transfer of these allowances to phase 3 was
possible, prices remained low much throughout the third phase, as shown in Figure 1.3;
this was also remarked by the European Commission [ECc]. To address this oversupply,
the auction of 900 million allowances scheduled for the years 2014 to 2016 was postponed
by five years; this procedure was termed “backloading”. Furthermore, a new tool called
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the Market Stability Reserve was introduced to be able to handle economic shocks to the
system also in the long term [EU15]. The idea is to assess the state of the allowance
market via the number of allowances in circulation. If this number is above a certain
threshold, allowances are withdrawn from the market and placed in the Reserve; if on the
other hand the number of allowances is below another threshold, allowances are released
from the Reserve. Thus both an oversupply and an insufficient supply can be addressed.
The Market Stability Reserve was revised by introducing a cancellation mechanism which
cancels allowances in the Reserve if the amount of allowances stored in the Reserve is
too large. Moreover, this revision included a further tightening of the emission cap by
increasing the annual reduction to 2.2% [EU18]. The recent price development shown in

Figure 1.4: Recent price development of an allowance future with maturity in 2022. Source:
EMBER [Em22].

Figure 1.4 indicates that these changes probably have been successful: Allowance future
prices have risen to a value of about 80 Euro per ton, despite the shocks to the economy
caused by the Covid-19 pandemic and the ongoing war of Russia against Ukraine. Due to
the resulting shifts in the energy market, the war might on the other hand have been a
factor in causing these high prices.

The rise of the allowance price might also be influenced by the ongoing legislative
procedure to further revise the EU ETS as a reaction to the EU’s raised climate ambitions
in course of the European Green Deal. In July 2021 the European Commission proposed
a revision of the EU ETS, including a yearly reduction of the cap by 4.2% [EC21]. The
European Parliament reached a decision on this proposal in June 2022; the Parliament
decided to further tighten the cap by setting a yearly reduction that rises to 4.6% by 2029
[Erb22]. In the next step, an agreement between the Parliament, the Commission, and
the Council needs to be found. But already the discussion on a further tightening of the
cap may raise the allowance price since it causes agents to expect a shortage of allowances
in the future.
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1.3 Modeling Approaches to Emission Trading

As explored above, empirical analysis of an ETS – and of many other policy instruments
– is challenging, since the case of not implementing the system cannot be observed. Fur-
thermore, before introducing such an influential policy measure, there is a demand for
predictions on the impacts that this measure will have. The same applies to any sub-
stantial changes in the regulatory framework of the system. Thus ETS models are an
important field of research and play a large role in their analysis. We will start by intro-
ducing the earliest ETS models; the more recent literature is largely based on this early
work. We will then consider three different directions of ETS modeling approaches: The
literature on recent developments and adaptations in the EU ETS and on allowance price
models will be discussed in brief. We will explain several models based on stochastic con-
trol methods in more detail, thus arriving at the work which forms the foundation of this
thesis.

1.3.1 Early Models

The first model of an ETS was introduced already in 1972 by Montgomery [Mon72], long
before such systems were implemented in practice. He proposes a static and deterministic
model of a general pollution control system, which aims to restrict pollution to a certain
level at several locations. He considers a finite number of firms and first formulates the
problem to minimize total costs of all firms to comply with the pollution constraint; he
assumes that the cost of emission abatement is convex. This problem, which he calls
the total joint cost minimum problem, can be seen as the minimization performed by
a representative agent with full information. He shows that a solution to this problem
exists. Then he explores two different approaches to introduce a system of tradeable
allowances, which are called licenses in his model: In the first, firms are allocated location-
specific licenses to pollute, meaning they are allowed to pollute the given location. Since
pollutants can spread, this does not necessarily coincide with producing emissions at that
location. Montgomery defines a market equilibrium as the distribution of emissions and
licenses among the firms that minimizes costs for each firm under the constraints imposed
by their licenses, with the additional condition that the market of licenses clears. He
shows that such an equilibrium exists and that it constitutes a solution to the total joint
cost minimum problem if the allocation of licenses is chosen in line with the pollution
restriction. The second approach is to construct a market of emission licenses, which
allow firms to emit pollutants at a given location. In this case the constraints on firms are
more complicated since the goal of the system is still to restrict pollution and not emissions.
Again an equilibrium is defined as the allocation of emissions and licenses minimizing the
cost of each firm individually subject to the constraints derived from the licenses the firm
holds, where this allocation is required to satisfy the market clearing condition of the
license market. Also in this case it is shown that an equilibrium exists. For appropriately
chosen allocation by the regulator, the equilibrium solves the total joint cost minimum
problem; but such a suitable allocation does not necessarily exist. In this model the
distinction between pollution and emission in order to be able to control pollution at
specific locations introduces a challenge. While such a distinction might be reasonable for
the examples mentioned by Montgomery, such as air quality or water quality in rivers,
this no longer applies in the case of greenhouse gases: They take their effect globally, thus
the location of emission is irrelevant.
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An extension of this model to a consideration of the development in time is given by
Cronshaw and Kruse [CK96]. They construct a very general model with discrete time
steps, taking into account also the production decisions of the firm. The time dimension
becomes relevant as in their model it is possible to save allowances for future use (i.e.
to bank them). This is described by a banking variable, which develops in accordance
with the allocation and usage of allowances. The banking variable (or bank for short)
represents the number of unused allowances which the corresponding firm holds. This
variable is required to be non-negative, thus forbidding the borrowing of allowances from
the future. In addition to the environmental constraint, Cronshaw and Kruse study the
effect of profit regulation on allowance prices and banking behavior of the firms.

Similarly, Rubin also formulates a model to study banking and borrowing in an ETS
[Rub96], but in contrast to Cronshaw and Kruse, his model is set up in continuous time.
Thus a firm’s bank evolves continuously in time as determined by its allocation rate and
its emission rate. Rubin’s general approach resembles Montgomery’s, with the addition
of the time dimension. He first considers a representative agent, who aims to minimize
the aggregated costs of all individual firms subject to the constraint that the bank on
aggregate cannot be negative. Costs are now given by the integral of the abatement costs
over the entire time period considered; as Montgomery, he assumes that the abatement
cost function is convex. He calls this problem the joint cost problem and refers to optimal
control theory to argue that a solution exists. He continues by formulating the cost
minimization problem of the individual firms, where costs now arise both from abatement
and from trading with emission allowances. By solving this problem he derives a relation
for the development of allowance prices in time: If there is a firm that would desire to
borrow emissions from the future, i.e. with a bank of zero allowances, but is not allowed
to do so, then the price of allowances grows more slowly than the interest rate; otherwise,
it grows with the interest rate. Furthermore, from the optimality conditions it follows
that the allowance price is equal to the marginal abatement costs of each firm. Rubin
defines an equilibrium as emission rates and trading rates, given as functions in time, that
minimize the costs of each firm over the entire time period, subject to the market clearing
condition. He then shows that an equilibrium exists under the assumption that there are
no binding constraints on the firms’ trading rates. Finally, he can show that the market
equilibrium is a solution to the joint cost problem. Furthermore, he concludes from his
model that if environmental standards are tightening in time, then allowing firms to bank
emissions may reduce pollution damage.

All models mentioned so far are purely deterministic. However, many variables influ-
encing emission trading should more realistically be viewed as stochastic. An early model
introducing uncertainty is given by Schennach [Sch00], extending on the work of Rubin.
In the first part she still considers a deterministic regime: She constructs a two-period
model in continuous time with a change in the emission cap between the two periods.
As justified by the results of Rubin, she only considers a representative agent instead of
individual firms; she assumes that this agent may bank allowances as necessary but is not
allowed to borrow. Since in her model setup in the second period the cap tightens, she
assumes that there is a banking period in which the bank takes positive values, starting
with the first period and ending at some time point in the second. She then formulates
the cost minimization problem of the representative agent, which is constrained by the
requirement that the bank remains non-negative. From this she derives expressions for
the price and the emissions path. In line with Rubin, she finds that the price increases
with the interest during the banking period; afterwards it changes in dependence on the
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BAU emissions. Moreover, the emissions increase with BAU emissions, whereas discount-
ing effects will eventually cause the emissions to be decreasing in time. In the second
part of her work, she introduces uncertainty in the BAU emissions and in the abatement
costs but does not specify a precise stochastic model. She reformulates the minimization
problem by considering expected costs and adding a risk premium to the interest rate. In
order to solve this, she discretizes the problem and makes use of the dynamic program-
ming approach; this is a first application of stochastic control in an ETS model. From the
results she concludes that when the bank is non-empty with probability one, the expected
allowance price rises with the interest rate plus the risk premium. If the probability of the
bank being empty is strictly between zero and one, then the expected price rises at less
than that; and if the bank is empty with probability one, the expected allowance price is
determined by the marginal abatement costs.

Another contribution with uncertainty in the emissions is given by Innes [Inn03]. He
considers a discrete-time model with two time periods and, correspondingly, three time
points: At time 0, firms decide on their abatement and production for the first time
period. Depending on these decisions and additionally on a random variable to model
uncertainty, each firm produces emissions, which are revealed at time 1. Then, at time
2, abatement and production decisions are made for the second time period. Since the
resulting emissions of this time period are not considered to be stochastic, they can be given
immediately. As a reference scenario, for each time period Innes introduces the problem
of a representative agent with perfect information who maximizes aggregate profits at the
deficit of expected damage caused by emissions; Innes calls this reference scenario the
first-best. The perfect information assumption is highly unlikely, therefore he compares
two possible approaches of the regulator to attain this theoretical first-best: The first is
to not allow banking or borrowing and impose a penalty on violations of the cap; this is
a setting very similar to the first phase of the EU ETS. The second is to allow banking
and possibly also borrowing of allowances. If there are no costs of imposing the penalty,
then already the first approach yields a first-best solution, even when no allowances are
allocated; then the system only consists of the penalty payment and thus corresponds to
the case of a Pigou tax. If on the other hand imposing the penalty leads to costs for
the regulator, the first approach cannot achieve a first-best solution as long as firms are
not assumed to be identical. On the contrary, by the second approach, i.e. with banking
and borrowing allowed, a first-best solution is possible if regulatory parameters are chosen
correctly; this also includes the adjustment of allowances for the second period based on
the observations gained up to that time point. Importantly, achieving the first-best hinges
on avoiding penalty payments; thus the penalty needs to be chosen high enough such that
firms do not prefer to pay the penalty instead of emission abatement.

Another early contribution to the emission trading literature is the work by Maeda
[Mae04]. His main focus is the influence of bankable allowances on spot and forward
allowance prices. He considers two points in time, namely time 0 and time 1. Thus he
can allow for three different trades: Spot market trades both at time 0 and time 1 and a
forward market trade at time 0 with maturity at time 1. Furthermore, he assumes that
there are two kinds of market participants: Regulated firms, which need allowances to
cover their emissions, and unregulated agents. As Schennach [Sch00] and Innes [Inn03],
he assumes that BAU emissions of a firm are uncertain, and he proposes to model them
via a normally distributed common risk factor and an idiosyncratic risk factor of the given
firm. Based on this, he develops pricing formulas for the forward market and for the time
0 spot price market and studies the effects of several factors, such as uncertainty about
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future prices and emissions, or the technological progress on the spot price.

1.3.2 Models to Analyze Recent EU ETS Revisions

The adaptations of the EU ETS in recent years have motivated the development of different
models to capture these changes. The Market Stability Reserve (MSR) of the EU ETS,
which was introduced in 2019, is studied by Perino and Willner [PW16]. Based on the
work by Rubin [Rub96], they construct a deterministic model in continuous time with a
continuum of firms, where banking is allowed. Furthermore, they assume that allowances
are auctioned continuously in time, with their number decreasing exponentially. Each
firm then aims to minimize costs from abatement and trading in allowances under the
constraint that their bank remains non-negative. First, Perino and Willner solve this
problem for a baseline case without the MSR. Then they introduce the dynamics of the
MSR to the model, which means that the aggregate bank now influences the number of
auctioned allowances. The optimization problem of the firms remains the same, since they
are assumed to be in perfect competition, but could only collectively have an impact on
the MSR; the equilibrium conditions on the other hand change. Perino and Willner show
that the price and emission paths only change in comparison to the baseline case if due to
the MSR there are not enough allowances available to cover the emissions in the baseline
emission path; this means that the MSR leads to a scarcity of allowances (in their notion,
the baseline emission path is unfeasible under the MSR). In that case, prices first rise
above those of the baseline case and then drop below; conversely, emissions first fall below
the baseline case and then rise above. This change in behavior is due to the fact that,
with the MSR, the aggregate bank is depleted earlier. Perino and Willner modify their
model by introducing uncertainty to the BAU emissions. From the work of Schennach
[Sch00] they obtain an expression for the expected price path. This allows them to show
that the price and emission paths in equilibrium are the same as without the MSR if
and only if all emission paths that occur with positive probability are feasible under the
MSR. This means that for these paths there are still sufficiently many allowances available
with the MSR in operation. Perino and Willner further explore the impact of uncertainty
by considering a Bernoulli-distributed shock at a specific time. They show that a shock
occurring in the medium term will lead to a smaller price shock with the MSR than in the
baseline case under the usual assumption that the abatement cost function is convex. On
the other hand, for a shock that occurs early, the presence of the MSR may increase the
price response.

Bocklet, Hintermayer, Schmidt and Wildgrube [Boc+19] also study the MSR but in
addition, they include further recent EU ETS adaptations in their model. They consider a
finite number of firms in a discrete-time deterministic setting, which minimize their costs
and may bank their allowances; as borrowing is not allowed, the bank always needs to be
non-negative. The volume of allowances issued decreases linearly in time. The equilibrium
allowance price is then determined from the optimality conditions of the individual firms
and the requirement that cumulated emissions have to be smaller or equal to cumulated
allowances. The MSR is modeled in accordance with EU legislation, where the intake
of the MSR and the reinjection depends on the allowances in circulation as given by the
aggregate bank; intake and reinjection in turn influence the volume of issued allowances.
Furthermore, the cancellation of allowances from the MSR is included in the model and
its impact analyzed; as a third recent modification to the EU ETS, Bocklet et al. study an
increase of the linear reduction factor which determines the number of issued allowances.
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From numerical results they obtain that the MSR alone (without cancellation and a higher
linear reduction factor) leads to higher allowances prices in the short term, when allowances
are withdrawn from auctions, whereas the reinjection at a later stage causes the prices to
be lower than without the MSR. The cancellation of allowances from the MSR amounts
to 2 billion allowances, which takes place in 2023. Thus the overall cap is reduced and
the depletion of the allowances in the MSR is accelerated. The price effects of this are
small in the short term but much higher in the long term when the canceled allowances
would have been released to the market if the cancellation mechanism had not existed.
The increase of the linear reduction factor causes a considerably larger reduction of the
cap amounting to 9 billion allowances and has thus a higher effect than the cancellation.
Bocklet et al. identify this as the main driver of the allowance price increase which their
model predicts due to the reform.

Based on the model by Bocklet et al., Hintermayer [Hin20] studies a further modifi-
cation of the ETS that is not yet implemented or officially proposed: He considers two
separate mechanisms to introduce a price floor for the allowance prices. One way to obtain
such a lower bound for the price is a buyback by the regulator, i.e. allowances can always
be sold back to the regulator for a fixed price so that the allowance price on the market
will not fall below this price. A second approach is a so-called top-up tax. This means
that firms need to pay an additional tax on their emissions, amounting to the difference
between the desired price floor and the actual market price of allowances. For the buyback
approach Hintermayer finds that in the short run it increases prices and decreases emis-
sions, which is reversed at a later stage but to a lesser extent. Since the increased scarcity
in the short term leads to a higher cancellation, emissions on aggregate are reduced. In
case of the top-up tax, the timing of the announcement to implement such a tax is rele-
vant, since the announcement itself will lead to an increase in emissions. As soon as the
tax is implemented, it reduces emissions; thus the overall effect is ambiguous.

1.3.3 Models on Emission Price Development

Another stream of literature has developed with the focus to model the development of
the allowance price. This is relevant for example in option pricing and to develop hedging
strategies. Hintermann constructs an ETS model with the intent to analyze the behavior
of allowance prices [Hin10]. In particular, he studies how well the allowance price is
explained by marginal abatement costs and which factors play an important role. In
his model he considers finitely many firms in one compliance period with discrete time
points. The BAU emissions of a firm are described as a function of a vector of common
risk factors and are additionally subject to idiosyncratic uncertainties. He assumes that
marginal abatement costs are linear and that they depend explicitly on coal and gas prices;
in this way, it is assumed that abatement is performed by switching the fuel used e.g. for
energy generation from coal to gas. Firms then choose optimal abatement by equating
their marginal abatement costs with the allowance price. In equilibrium, total abatement
of all firms needs to be equal to the difference between BAU emissions and the emission
cap. From this condition an expression of the allowance price in dependence on the BAU
emissions can be derived. Hintermann specifies several factors that may influence the BAU
emissions, namely temperature and precipitation, fuel prices, and economic performance.
He rewrites the allowance price by specifically using these factors as the common risk
factors in his model. Then he performs a regression analysis based on data corresponding
to the risk factors and data on the allowance price. He finds that his model cannot provide
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an adequate explanation of the allowance price before the price crash in April 2006, thus
marginal abatement costs probably were not equal to the allowance price at that time,
indicating an inefficient market. After the price crash, the model explains the prices well,
pointing to an efficient market. As important price drivers, he identifies the fuel prices,
summer temperatures, and precipitation.

Another contribution focusing on price development, but still rooted in an ETS model,
is given by Borovkov, Decrouez and Hinz [BDH11]. They construct an equilibrium model of
an ETS in discrete time, where they assume that BAU emissions are given by a stochastic
process. Firms in the system aim to minimize their costs; from the cost minimization
problem an expression for the equilibrium allowance price can be derived. From this result
Borovkov et al. conclude that they are looking for a Q-martingale under an equivalent
measure Q satisfying the expression derived before. They first assume that the price
process is a continuous diffusion process. They show that the price process can then be
obtained from a function solving a PDE that they derive. Additionally, they demonstrate
how this result can be applied in option pricing. Then they proceed in a similar way for
a price process that may exhibit jumps. In this case they derive an integro-differential
equation; its solution delivers the desired price process with jumps.

Benz and Trück follow a different approach [BT08]: They fit two time series models
to the logarithmic returns of allowance prices. Based on the observation that the variance
of the allowance price in the EU ETS seems to vary in time, they propose a Markov
switching model with two different regimes, allowing the process to switch between high
and low variance periods. As a second approach, they consider a so-called AR-GARCH
model, where both the variance and the mean of the process are modeled by autoregressive
processes. They compare both of these models to a normal distribution of the logarithmic
returns and to an AR model, where the mean is modeled by an autoregressive process
but the variance remains constant. They use maximum likelihood estimation to fit these
models to allowance price data. As a result, they find that the Markov switching model
and the AR-GARCH lead to a better fit than the two models with constant variance.
Moreover, they are able to show that the former also outperform the latter in forecasting
allowance prices.

A similar strategy is adopted by Cai and Pan [CP17]. They consider five different
SDEs and aim to analyze which ones model the allowance price best. By applying the
Euler-Maruyama scheme, they discretize each of the SDEs and thus obtain a multiple
linear regression model. Using least squares, they estimate the parameters in each of
the models from allowance price data. Furthermore, they use their estimation results to
forecast prices and compare them with observed actual prices. They obtain that a mean
reverting square root process provides the best fit and performs best in forecasting.

1.3.4 Stochastic Control Models

So far we have mainly discussed modeling approaches which are either deterministic or
do not provide a thorough stochastic model; instead, uncertainty has been modeled by a
single random variable or was not further specified. At the core of most ETS models, an
optimization problem needs to be solved. Hence with the introduction of uncertainty to
such a model, stochastic control theory provides a powerful tool to solve this optimiza-
tion problem. In the following, we will introduce three different approaches to applying
stochastic control to ETS modeling present in the literature.
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Discrete-Time Models

Carmona, Fehr and Hinz [CFH09] propose a discrete-time equilibrium model, intended to
represent the EU ETS in its first phase. Initially, they consider each agent i in the system
individually. In the case of no abatement, i.e. the BAU case, they introduce a random
variable Γi to model the emissions which are not covered by an allocated allowance. They
assume that allowances are traded in a forward market with prices given by a stochastic
process (At)t, according to the agent’s trading strategy denoted by θit. Carmona et al.
focus on the power sector and on a particular abatement measure, namely fuel switching
from coal to gas. This allows them to derive the abatement costs from fuel prices. More
precisely, they assume that each agent at each time point may decide to abate an amount
ξit ∈ [0, λi] by fuel switching, inducing costs of E it per unit; the parameter λi represents
the maximum fuel switching capacity. Importantly, since the abatement costs depend on
the fuel prices of coal and gas, they are stochastic and thus E it is a stochastic process. If
the agent’s emissions at final time given by Γi surpass the units abated and the number
of allowances held, the agent needs to pay a penalty given by π. Thus the total profit IA,i

(or loss if negative) of agent i is given by her net wealth from trading with allowances at
the deficit of abatement costs and penalty payments, resulting in

IA,i
(
θi, ξi

)
=

T−1∑
t=0

θit (At+1 −At)− θiT AT − π

(
Γi −

T−1∑
t=0

ξit − θiT

)+

−
T−1∑
t=0

ξitE it .

The term −θiT AT enters this equation since the expression to determine the net wealth
from trading implicitly assumes that the final position is liquidated, which is not the
case here, as the agent needs the allowances to cover emissions. Since the agent aims to
maximize her profits, her optimization problem is given by

sup
(θi,ξi)

E
[
IA,i

(
θi, ξi

)]
where the trading and abatement strategies θi and ξi are subject to admissibility con-
straints. Similar to the early equilibrium models, for a given abatement cost process Et
an equilibrium is defined as trading and abatement strategies θi and ξi such that profits
of all agents are maximized and the allowance market clears.

In the next step, Carmona et al. introduce the global optimization problem of a rep-
resentative agent. They define F (ξ) as the aggregate fuel switching costs in the course
of the entire time period and of all agents. Similarly, Π(ξ) represents the total emission
abatement and Γ the overall BAU emissions subtracted by the initial allowance alloca-
tions, i.e. the sum over all Γi. The representative agent aims to minimize total costs by
choosing the abatement strategy ξ. Thus she needs to solve

ξ∗ = arg sup
ξ

E
[
−π (Γ−Π(ξ))+ − F (ξ)

]
.

Carmona et al. show that there exists a solution to the global optimization problem.
Furthermore, they prove that when imposing a weak assumption on the distribution of Γ,
the optimal abatement strategy ξ∗ delivers the equilibrium price process as

A∗t = πE
[
1{Γ−Π(ξ∗)≥0}

∣∣Ft] .
For a numerical study, they formulate the model more specifically. The fuel switch price
E – corresponding to the abatement costs – is modeled by an Ornstein-Uhlenbeck process
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and a deterministic function to account for seasonality. The BAU emissions Γ are modeled
by a Brownian motion with drift. Since the basic model is in discrete time, both these
processes need to be discretized. The global optimization problem is then solved by
backward induction. Carmona et al. use their numerical results to study the effect of
modifying the penalty on the allowance price and the probability of complying with the
amount of allocated allowances, i.e. the probability P (Γ ≤ Π(ξ∗)). If only a low capacity
of fuel switching is expected to be required to comply with the emission constraint, an
increase in the penalty increases the compliance probability, but barely influences the
allowance price. If on the other hand a high level of fuel switching is needed for compliance,
increasing the penalty still increases the compliance probability but also leads to a strong
increase in the price.

This work is extended by Carmona, Fehr, Hinz and Porchet [Car+10] to a broad and
general model of an economy underlying an ETS. They consider the production of finitely
many goods, each with finitely many production technologies available, which differ in cost
and resulting emissions. Thus abatement is possible by switching to a different technology
with a lower emission level. The case of fuel switching in the power sector, as considered
above, thus corresponds to having only one good, namely electricity, and two different
technologies. In comparison to their previous work, Carmona et al. now include the profits
from selling the produced goods in the expression describing each firm’s profit. As a result,
they also need to model the prices S of all goods considered. An equilibrium in this market
is then defined as a tuple of price processes (A∗, S∗) satisfying similar conditions as before,
with the additional requirement that the supply of all goods meets the demand, which
is assumed to be independent of the price. In the global optimization problem Carmona
et al. now also include the overall production costs and then continue to show that a
solution to this problem exists. As in their previous contribution, this solution delivers
an equilibrium with the same expression for the allowance price; furthermore, they obtain
an expression for the equilibrium price of each good. In course of their analysis, they find
that whenever total emissions are below the number of allocated allowances, the allowance
price at final time will be zero, whereas it equals the penalty when the total emissions
surpass the number of allocated allowances. Carmona et al. modify the setup of the ETS
in their model by allowing a dynamic procedure to allocate allowances, which may depend
linearly on production. Furthermore, they include a carbon tax or subsidy in the model.
By numerical analysis, which is again conducted in the energy sector with fuel switching
as abatement measure, they study the effects of different modes of allocation on windfall
profits. They find that an allocation of allowances which is proportional to production
considerably reduces windfall profits and additionally slightly reduces emissions, while
only leading to a small increase in overall costs of emission reduction. A carbon tax high
enough to reach the same emission reduction as in the ETS with high probability is a lot
more expensive but may also lead to further emission reductions. Finally, they show that
there exists an allowance allocation scheme that reduces windfall profits to zero.

Another contribution that is in some aspects similar but also is influenced by the work
of Seifert et al. [SUW08], which we will present below, is given by Yu and Mallory [YM15].
They aim to model an ETS with a price ceiling for the allowance price, meaning that if the
price reaches a certain value, the regulator sells additional allowances to the market at this
price. Their model is also set in discrete time; but in this case, the separate time points
each represent one compliance period, so that banking of allowances can be included in
the model. Furthermore, the time horizon is chosen to be infinite. Yearly emissions are
assumed to be stochastic but bounded. Yu and Mallory first consider the optimization
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problem of the regulator, who needs to choose the optimal abatement level minimizing
total abatement costs and the damage caused by emissions. The firms underlying the ETS
are modeled by a representative agent. Her optimization problem is then to choose the
optimal abatement level minimizing her costs that originate from abatement and penalty
payment, while taking into account her bank of allowances. Both optimization problems
are reformulated as Bellman equations and solved analytically. The regulator then chooses
the price ceiling and the cap so that the optimal abatement of the regulator’s and of the
firm’s problem are equal. This delivers the optimal short-term policy; notably, this choice
is not unique. By considering average emissions, Yu and Mallory formulate equations
to describe the long-term development of the accumulated emissions and the allowances
in the bank. Thus they obtain the long-run optimization problem and solve it; again
by equating both solutions for the optimal abatement, the long-run optimal regulatory
solution can be determined. Their conclusion is that for the purpose of consistency the
regulator would usually choose a long-term optimum; but if the present situation makes
it necessary, for instance, because allowance prices are too high, the regulator may move
to a short-term optimal policy.

Models of the Bank of Allowances

Building on the work of Rubin [Rub96], Kollenberg and Taschini [KT16] follow a second
approach to make use of stochastic control in an ETS model. They construct a continuous
time model to study a mechanism which allows the regulator to adjust the allocation of
allowances based on the number of currently banked allowances; this is similar to the
Market Stability Reserve implemented in the EU ETS. Thus, the allowance bank of each
agent, as given by a process Bi, is a key feature of the model. Notably, Kollenberg
and Taschini assume that there is a continuum of agents in the system. For each agent,
the cumulated BAU emissions are modeled by a process (Ei(0, t))t and the cumulated
allowance allocation is modeled by a process (Ai(0, t))t. Furthermore, abatement and
trading are represented by the abatement rate αi and the trading rate βi. Then the bank
is given as

Bi
t = Bi

0 +Ai(0, t)− Ei(0, t) +

∫ t

0
αisds−

∫ t

0
βisds.

To enforce compliance with the overall emission cap as determined by aggregate allocation,
the bank needs to be zero at final time, i.e. BT = 0. In contrast to Rubin [Rub96],
borrowing is allowed, thus the bank may attain negative values before final time. Under
the assumption that abatement costs are given by a quadratic cost function C(t, α), each
agent’s optimization problem is then given by

min
αi,βi

E

[∫ T

0
e−rt

(
C(t, αit)− Ptβit + v

(
βit
)2)

dt

]
under the constraint that Bi

T = 0 and with the bank Bi evolving in time as given above. In
this expression Pt, denotes the allowance price and the term v(βit)

2 accounts for transaction
costs. Similarly to previously discussed models, a market equilibrium is given by a family
of abatement and trading rates (αit, β

i
t)t∈[0,T ] and a price process P such that all agents

minimize their costs and the market clearing condition holds. To determine an equilibrium,
Kollenberg and Taschini derive the HJB equation for an individual company and solve it.
They obtain explicit expressions for the equilibrium abatement and trading rate as well as
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for the price process, where the price process is mainly driven by the difference between
BAU emissions and allowance allocation.

In this framework, they introduce a responsive mechanism, which works as follows: If
the aggregate bank falls below a given level c, the allocation of allowances is increased by
δ|Bt − c|dt, whereas if the aggregate bank is above the level c, an amount of δ|Bt − c|dt
allowances is removed from the market; the parameter δ determines the sensitivity of the
mechanism. Then, with the allocation schedule prior to adjustment being given by ft, the
authors model the evolution of the bank as

dBt = ftdt+ δ (c−Bt) dt− E(t, t+ dt) + αtdt,

from which a closed-form expression for B is derived. Thus it can be observed that
increasing the sensitivity parameter δ leads to less variability in the bank. If δ = 0, the
resulting system corresponds to a standard ETS, whereas setting δ = 1 leads to a pure tax
system. In this way, the parameter δ introduces a spectrum of policy measures between a
Pigou tax and an ETS. Kollenberg and Taschini then formulate an optimization problem
to choose δ such that overall costs in the system are minimized. For a set of exemplary
parameters, they graphically show that the optimal value δ lies between the two extremes
of δ = 0 and δ = 1.

Kollenberg and Taschini [KT19] extend this work to align their model more closely
with the EU ETS and its Market Stability Reserve. They no longer allow borrowing, thus
requiring that the bank never becomes negative. To do this, they follow the approach
introduced by Schennach [Sch00]: They only consider the banking period, i.e. the time
until the bank is fully depleted; due to the stochastic setting, they model this via a stop-
ping time τ . In line with their previous result, they show that the aggregate abatement
rate and in turn also the price process are driven by the expected required aggregate
abatement. This quantity, denoted as Et[Y ], is given as the expectation of the difference
between BAU emissions and allowance allocation, conditional on the information available
at time t. By considering risk-averse firms, they argue that a supply management mecha-
nism (SMM, such as the Market Stability Reserve) imposes changes to the distribution of
Et[Y ], which may increase the probability that the firms on aggregate will instantaneously
fully deplete the bank. Since this entails lower abatement and low allowance prices, the
SMM may increase price volatility and the risk premium of risk-averse firms. Finally,
they conclude that the more recently implemented cancellation mechanism of the Market
Stability Reserve may increase prices and thus reduce the risk in low carbon investment.

Aid and Biagini model a regulator who aims to choose the allowance allocation in
order to minimize social costs in a system of cost minimizing firms with stochastic BAU
emissions [AB21]. They model the bank of allowances and formulate the cost minimization
problem of firms as in the model of Kollenberg and Taschini [KT16]; they describe the
BAU emissions as a Brownian motion with drift, including both idiosyncratic and systemic
sources of uncertainty. In contrast to Kollenberg and Taschini, they do not impose a
constraint on the final bank position; instead, a value deviating from zero is penalized
as part of the cost minimization problem. The regulator then chooses the instantaneous
allocation at each point in time and for every firm in order to minimize the aggregate
costs in the system. At the same time, the constraint that expected emissions comply
with a given reduction goal in comparison to the expected BAU emissions needs to be
satisfied. For this, the regulator assumes that the allowance market is in equilibrium. Aid
and Biagini determine the unique optimal trading and abatement strategies for each firm
and derive an expression for the equilibrium price. Based on this, they derive the optimal
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allocation process for the regulator. They show that the optimal allocation annihilates the
price volatility, so that in particular the resulting equilibrium price is constant; the same
holds for the optimal abatement rate. Notably, the optimal allocation is not unique. The
intuition behind this result is the following: The reduction target predefines the average
abatement requirement, which in turn determines the average allowance price. But due
to stochastically driven variations of the price, the abatement is no longer spread equally
in time. This increases the costs of abatement because of the quadratic nature of the
abatement cost function. The constant price points to a high similarity to a Pigou tax.
However, Aid and Biagini compare their optimal allocation scheme to that of a pure tax
and show that for a sufficiently high penalty parameter, the total costs of the optimal
allocation scheme are smaller than those of a tax. Furthermore, they conduct a numerical
study to compare the optimal allocation scheme to a standard ETS and to the EU ETS
with the Market Stability Reserve. They find that the optimal allocation scheme has the
lowest costs, while aggregate emissions are below those of the standard ETS and at the
same level as the EU ETS with the Market Stability Reserve.

Continuous-Time Models

Seifert, Uhrig-Homburg and Wagner [SUW08] follow a third approach to apply stochastic
control in an ETS model. In order to study properties of the allowance spot price, they
construct a model of a representative agent in continuous time, minimizing costs by ap-
propriately choosing abatement. Since our model builds on the work by Seifert et al., the
details of their modeling approach will be covered in Chapter 2 below. In the interest of
clarity and completeness, we will already describe their work here, while using the notation
applied throughout this thesis. Seifert et al. model BAU emissions by a diffusion process
Y and let u denote the abatement rate, which acts as the control. For a given time period
[0, T ], they define the total expected emissions X as

Xt = −
∫ t

0
usds+ Et

[∫ T

0
Ysds

]
,

thus representing the emissions expected for the entire time period at a given time t.
This construction implicitly allows for banking and borrowing throughout the time period
[0, T ]. From the definition, they derive an SDE describing X as

dXt = −utdt+G(t)dWt,

where G(t) denotes the volatility of X, which needs to be computed from the process
chosen for Y . In their online appendix, they perform the derivation of G(t) for a Brownian
motion with drift and state the result for a white noise and an Ornstein-Uhlenbeck process.
The cost minimization problem of the representative agent is formulated as the problem
to choose the abatement in order to maximize profits, which in this case only consist
of negative costs. These arise from abatement costs given by a quadratic cost function
C(ut) = −1

2 c u
2
t and potential penalty payments given as P (XT ) = min(0, p(e0 − XT )),

where c is a cost coefficient, e0 the initial allocation of allowances, and p the penalty. The
optimization problem can then be stated as

max
(ut)t∈[0,T ]

E0

[∫ T

0
e−rtC(t, ut)dt+ e−rT P (XT )

]
.
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Seifert et al. derive the corresponding HJB equation, from which they obtain an expression
for the optimal abatement rate and thus the characteristic PDE. By assuming that the
allowance price is given by the marginal abatement costs, they arrive at an expression
for the allowance price, which depends on the PDE solution. This result enables them to
show that the discounted spot price process e−rt S is a martingale.

For the particularly simple case of a constant volatility G(t) = σ, they derive an
analytical PDE solution with the help of a symbolic mathematics program and thus obtain
the price process as a function of Xt and of time. In the case that Y is a Brownian motion
with drift, they solve the PDE numerically. From the results, they observe that the price
is bounded in the interval (0, e−r(T−t) p). Furthermore, they study the influence of several
parameters on the allowance price at initial time; they find that it has an upper limit
even for an increasing value of the penalty p. In addition, they show that in their model
expected banking is positive at any point in time. To conduct a numerical sensitivity
analysis on the price volatility, they apply Itô’s formula to the price function, yielding

dSt =

(
−ut Sx + St +

1

2
G(t)2 Sxx

)
dt+G(t)SxdWt.

Their analysis delivers that the price volatility G(t)Sx increases with increasing penalty,
cost coefficient and volatility of the emission rate. Finally, they modify their approach to
study a risk averse representative agent. In this case, the spot price is no longer bounded.

An extension of the model by Seifert et al. is given by Liang and Huang. In two articles,
[LH20] and [LH22], they include auctioning and partly also banking and borrowing across
different time periods in the model. In [LH20], they first present a single-period model
with auctioning. They assume that the abatement rate u is bounded from above by a
constant ū and they fix the auction price S0. Furthermore, they only consider the case
where G(t) = σ, i.e. the volatility of the total expected emissions X is constant. By
denoting the amount of freely allocated allowances as N1 and the amount of allowances
acquired at the auction as N2, they formulate the expected costs as

U1(x;u,N2) = E

[∫ T

0
e−rsC(us)ds+ e−rT p (XT −N1 −N2)+ + S0N2

∣∣∣X0 = x

]
.

In comparison to the work by Seifert et al., they reformulate the maximization problem
to a minimization problem where the sign of the costs is reversed, i.e. the abatement
cost function is now given as C(ut) = 1

2 c u
2
t . Due to the inclusion of the auctioning of

allowances, the agent needs to solve two optimization problems: On the one hand, she
needs to choose her abatement rate in an optimal way; on the other, she also needs to
determine the optimal number of allowances N2 to buy at the auction. This can be done
in two different orders11. Liang and Huang first determine the optimal value for N2.
They assume that the auction price is higher than the penalty, i.e. S0 > p, and they fix
the abatement rate u. By computing the partial derivative of the cost function U1 with
respect to N2, they show that it is optimal not to purchase allowances at the auction.
The remaining problem to find the optimal abatement rate is then the same as the one
considered by Seifert et al. By omitting the terms involving N2, they formulate the value
function V1 and state the HJB equation. For the case that p < S0, the same procedure is

11In theory, a simultaneous optimization might also be a viable approach but this is not explored by
Liang and Huang.
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not applicable. Therefore they conduct the optimization in the other order: For fixed N2

and with the assumption that r = 0, they formulate the value function as

Ṽ1(x, t;N2) = inf
u

E

[∫ T

t
C(us)ds+ p (XT −N1 −N2)+

∣∣∣Xt = x

]
,

hence the term S0N2 reflecting the cost of auctioned allowances in the cost function U1 is
omitted as it is not influenced by u. From the value function, they derive the HJB equation,
which allows them to determine the optimal abatement rate and the characteristic PDE.
Similar as Seifert et al., they compute an analytical solution of the PDE. The next step is to
choose the optimal auctioned amount. For this, they compute the derivative with respect
to N2 of the cost function, now given by Ṽ1(x, 0;N2) + S0N2. In this way, they obtain an
implicit equation for the optimal value of N2, which needs to be solved numerically.

In a second model, Liang and Huang introduce a second time period, given by the
interval [T, T ∗], to allow for banking and borrowing between the two time periods; they
call this model the inheriting period model. They introduce a geometric Brownian motion
to model the auction price (St)t and they assume for its drift µ that r > µ. Furthermore,
they assume that the auction price and the total expected emissions are uncorrelated.
Then the cost function of the first time period is given as

U2(x, s;u,N2) = E

[∫ T

0
e−rtC(ut)dt+ e−rT min{p, ST } (XT −N1 −N2)+

− e−rT ST (XT −N1 −N2)− + S0N2

∣∣∣X0 = x, S0 = s

]
.

If the total emissions XT surpass the sum of auctioned and freely allocated allowances, the
agent needs to either pay the penalty or borrow allowances from the second period, which
is reflected in the term e−rT min{p, ST }(XT − N1 − N2)+. If, on the other hand, total
emissions are below the amount of available allowances, the agent has a benefit worth the
price of the additional allowances, given by the term e−rT ST (XT −N1−N2)−. Again, two
optimization problems need to be solved. In [LH22], Liang and Huang first determine the
optimal amount of allowances N2 to be purchased at the auction. As in the single period
model – but without the assumption that P < S0 – they compute the partial derivative
of the cost function U2 with respect to N2 and obtain that it is optimal not to purchase
allowances at the auction because the growth rate µ of the auction price is smaller than the
interest rate. Then they proceed with the optimization with respect to u by formulating
the value function V2 and deriving the HJB equation. The optimization in reversed order
is described in [LH20]. They formulate the value function as

Ṽ2(x, s, t;N2) = inf
0≤u≤ū

E

[∫ T

t
e−r(ξ−t)C(uξ)dξ + e−r(T−t) min{p, ST }(XT −N1 −N2)+

− e−r(T−t) ST (XT −N1 −N2)−
∣∣∣Xt = x, St = s

]
.

From the corresponding HJB equation, they derive an expression for the optimal abate-
ment rate and obtain the characteristic PDE, which is now two-dimensional in space.
They solve this PDE numerically; from the PDE solution, they determine the total costs
by adding the costs of the auction given by S0N2 and thus compute the optimal amount
to be purchased at the auction by minimizing this expression. In [LH22], Liang and Huang
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also provide a theoretical discussion of their models. For the case of no purchase of al-
lowances at the auction, they show that the value function of determining the optimal
abatement rate, given by V1 in the single period model and by V2 in the inheriting period
model, is a unique viscosity solution.

Both articles conclude with a numerical analysis of these models. In [LH20], they
compare the value functions obtained in the second optimization approach, i.e. when first
determining the optimal abatement rate, of the single period and the inheriting period
model given by Ṽ1 and Ṽ2. Additionally, they include a two-period model where only
banking is allowed with value function

Ṽ3(x, s, t;N2) = inf
0≤u≤ū

E

[∫ T

t
e−r(ξ−t)C(uξ)dξ + e−r(T−t) p(XT −N1 −N2)+

− e−r(T−t) ST (XT −N1 −N2)−
∣∣∣Xt = x, St = s

]
.

Numerical results show that for differing initial expectations on total emissions, the inher-
iting period model always leads to the lowest costs; this also holds for different amounts
of allowances purchased at the auction. Interestingly, in both cases the third model rep-
resented by Ṽ3 lies between the two other models: For low initially expected emissions,
the results for Ṽ3 are equal to those of the inheriting period model given by Ṽ2, whereas
for high initially expected emissions, they are equal to those of the single period model; a
similar behavior can be observed when varying the auctioned amount of allowances. Liang
and Huang also compare the emission reductions in the three models for varying penalties
and find that emission reductions are linearly increasing and the same in all three models
if the penalty is not too high, i.e. below 150 Euro. For higher penalties, the emission
reduction in the inheriting period model is lower and constant, whereas for the other two
models, it still increases linearly.

Contribution of the Present Thesis

The main interest of this thesis is to study the effects of various regulatory changes on
the outcome of an ETS. We focus on the ability of the ETS to achieve its goals, namely
to reduce emissions and provide an incentive for investment in clean technologies. To this
end, we extend the work of Seifert et al. [SUW08] in various ways. Since we are interested
in the realized outcome, we use the result for the optimal abatement rate to simulate the
process of total expected emissions X by solving the SDE

dXt = −u(t,Xt)dt+G(t)dWt.

In turn, this allows us to compute the corresponding price process S. Furthermore, by
applying a suitable verification theorem, we show that the PDE solution V and the abate-
ment rate u derived from the HJB equation indeed provide the optimal costs and the
optimal abatement rate. As Liang and Huang [LH20]/[LH22], we extend the model to
allow for banking and to introduce auctioning. In contrast to Liang and Huang, we do
this separately; moreover, our model allows for arbitrarily many time periods and follows
a different approach to reflect the banking of allowance.
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Chapter 2

One-Period Model

In this chapter we present our basic model of an Emission Trading System (ETS). This
model covers only one compliance period and may serve to represent the EU ETS in its
first phase from 2005 to 2007. We first model the development of emissions in the system.
To this end we introduce the quantity of total expected emissions, which we describe by a
stochastic differential equation (SDE). Then we formulate the cost minimization problem
of the companies underlying the system: Companies will try to abate emissions in such
a way that their expected costs from penalty payments and from emission abatement are
minimized. We apply a stochastic control approach to this problem and thus derive a
partial differential equation (PDE). In order to obtain the optimal abatement, we need to
solve this PDE; for one particularly simple model variant, this can be done analytically.
The optimal abatement enters the SDE, which we then aim to solve. Classical results on
existence and uniqueness of a solution as well as on convergence of numerical methods do
not apply in our case. Under suitable assumptions, we show that a unique solution exists
and that the Euler-Maruyama method converges to this solution.

2.1 Derivation of the Total Expected Emissions

In the formulation of a stochastic continuous-time model of an emission trading system
we closely follow the work by Seifert, Uhrig-Homburg and Wagner [SUW08].

We aim to model the development of an emission trading system in the course of a
time period from time 0 to some fixed terminal time T given by the interval [0, T ]. The
regulator fixes the amount of emissions in mega tons to be allowed during this time period,
which shall be given by the parameter e0. In accordance with this amount e0, allowances
are distributed to companies underlying the system. The regulator also determines the
value of the penalty payment that is due for any ton which is not covered by an allowance,
denoted by the parameter p. In order to simplify both notation and computations, we
gather all companies subject to the system in one representative agent. This simplification
was justified by Seifert et al. [SUW08]: They show that the joint cost problem, which
corresponds to considering a representative agent, is equivalent to the cost minimization
problem of individual agents1.

We introduce a stochastic process Y = (Yt)t∈[0,T ] to model the rate at which the
representative agent produces emissions prior to any reduction efforts. The agent may put
in an effort to abate emissions, which we model by the abatement rate u = (ut)t∈[0,T ].

1This result can be found in their online appendix of [SUW08].
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Let (Ω,A,P) be a probability space. Let furthermore W = (Wt)t∈[0,T ] be a standard
Brownian motion and let F = (Ft)t∈[0,T ] be the filtration generated by W and augmented
by the null sets, i.e. we have F0 = σ ({∅,Ω} ∪ NP), where NP denotes the set of all null
sets with respect to the probability measure P. Then we assume the emission rate Y to
be given by the SDE

dYt = µ(t, Yt)dt+ σ(t, Yt)dWt,

where µ and σ are real-valued and measurable functions. The volatility term σ(t, Yt)dWt

serves to introduce randomness to the evolution of the emission rate; note that this was
chosen as a general formulation which does not take into account the nature of realistic
sources of randomness for the emission rate. From the processes Y and u, we define the
total expected emissions, which will later allow us to determine whether a penalty needs
to be paid or not.

Definition 2.1. The total expected emissions for a time period [0, T ] are given by the
process X = (Xt)t∈[0,T ] defined as

Xt = −
∫ t

0
usds+ E

[∫ T

0
Ysds

∣∣∣Ft] .
The total expected emissions therefore represent the total amount of emissions we

expect for the entire time period from the perspective of time t, where we take into
account the emissions without abatement for the entire time period but we include the
abatement only until time t. Note that by this construction, X is adapted to F as long
as u is F-adapted.

Remark 2.2. The definition delivers two very important special cases:

� X0 = E
[∫ T

0 Ysds
]

represents the emissions expected at the beginning of the time

period without any abatement.

� XT =
∫ T

0 (−us + Ys) ds represents the total amount of emissions which are actually
produced in the course of the time period.

By specifying the functions µ and σ more explicitly, we rewrite the process X in the
form

dXt = −utdt+G(t)dWt;

we will proceed to do this for three special cases.

2.1.1 The Simple Model Variant

In order to obtain a very simple variant of our model, which in the following will be called
the simple model variant, we do not specify a formulation for Y and model the total
expected emissions X explicitly instead. We therefore assume X to be given by

dXt = −utdt+ σdWt

where σ > 0 is now a constant. Thus in the general expression above we have G(t) = σ.
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2.1.2 The Brownian Model Variant

A still rather simple approach is to assume µ and σ to be constant, i.e. µ(t, Yt) = µ ∈ R
and σ(t, Yt) = σ ∈ R+. Then the emission rate Y is given by

dYt = µdt+ σdWt.

With Y0 = y0 ∈ R, we rewrite this as Yt = y0 + µ t+ σWt. Now we can compute

E

[∫ T

0
Ysds

∣∣∣Ft] =

∫ T

0
(y0 + µ s)ds+ E

[∫ T

0
σWsds

∣∣∣Ft]
= y0 T +

T 2

2
µ+ σE

[
WT T −

∫ T

0
sdWs

∣∣∣Ft]
= y0T +

T 2

2
µ+ σ T E

[
WT

∣∣∣Ft]− σE

[∫ T

0
sdWs

∣∣∣Ft]
= y0 T +

T 2

2
µ+ σ T Wt − σ

∫ t

0
sdWs

by using Itô’s product rule as well as the martingale property of Brownian motion and of
the stochastic integral. We obtain

Xt = x0 −
∫ t

0
usds+ σ T Wt − σ

∫ t

0
sdWs

since

x0 := X0 = E

[∫ T

0
Ysds

]
= y0 T +

T 2

2
µ+ σE

[∫ T

0
Wsds

]
= y0 T +

T 2

2
µ

with the computation above. Finally, we arrive at the dynamics of X given by

dXt = −utdt+ σ TdWt − σ tdWt = −utdt+ σ (T − t)dWt.

Hence in this case we have G(t) = σ (T − t).

2.1.3 The Ornstein-Uhlenbeck Model Variant

We now assume that Y is an Ornstein-Uhlenbeck process, thus we have

dYt = θ (µ− Yt)dt+ σdWt

for constant parameters θ, µ, σ ∈ R. Since this SDE is linear, we may apply the variation
of constants method (as given e.g. by Korn [Kor14]) to obtain a closed-form expression as

Yt = e−θt
[
y0 +

∫ t

0
µ θ eθsds+

∫ t

0
σ eθsdWs

]
= y0 e−θt + µ

(
1− e−θt

)
+ σ

∫ t

0
e−θ(t−s)dWs.

Again we compute

E

[∫ T

0
Ysds

∣∣∣Ft] =

∫ T

0

[
y0 e−θv + µ

(
1− e−θv

)]
dv + σE

[∫ T

0

∫ v

0
e−θ(v−s)dWsdv

∣∣∣Ft] .
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The first term can easily be evaluated to result in∫ T

0

[
y0 e−θv + µ

(
1− e−θv

)]
dv = µT +

1

θ

(
1− e−θT

)
(y0 − µ) .

In order to rewrite the second term, let Zv =
∫ v

0 eθsdWs and Z̃v = e−θv. We compute
d(e−θv)

dv = −θe−θv and therefore we have∫ T

0
ZvdZ̃v =

∫ T

0

∫ v

0
eθsdWsd

(
e−θv

)
=

∫ T

0

∫ v

0
eθsdWs

d
(
e−θv

)
dv

dv

= −θ
∫ T

0
e−θv

∫ v

0
eθsdWsdv = −θ

∫ T

0

∫ v

0
e−θ(v−s)dWsdv.

In the next step we use this to apply the product rule; note that by definition Z0 = 0
and Z̃0 = 1, therefore Z0 Z̃0 = 0. Furthermore, since Z̃ is deterministic, we have for the
quadratic covariation that [Z, Z̃]T = 0. Thus, we compute∫ T

0

∫ v

0
e−θ(v−s)dWsdv = − 1

θ

∫ T

0
ZvdZ̃v = − 1

θ

(
ZT Z̃T −

∫ T

0
Z̃vdZv

)
= − 1

θ

(
e−θT

∫ T

0
eθsdWs −

∫ T

0
e−θvd

(∫ v

0
eθsdWs

))
= − 1

θ

(
e−θT

∫ T

0
eθsdWs −

∫ T

0
e−θv eθvdWv

)
= − 1

θ

(
e−θT

∫ T

0
eθsdWs −

∫ T

0
dWs

)
.

Now we compute the conditional expectation by applying the martingale property of the
stochastic integral as

E

[∫ T

0

∫ v

0
e−θ(v−s)dWsdv

∣∣∣Ft] = − 1

θ
e−θTE

[∫ T

0
eθsdWs

∣∣∣Ft]+
1

θ
E

[∫ T

0
dWs

∣∣∣Ft]
= − 1

θ
e−θT

∫ t

0
eθsdWs +

1

θ

∫ t

0
dWs

=

∫ t

0

1− e−θ(T−s)

θ
dWs.

Altogether we have

E

[∫ T

0
Ysds

∣∣∣Ft] = µT +
1

θ

(
1− e−θT

)
(y0 − µ) + σ

∫ t

0

1− e−θ(T−s)

θ
dWs

and therefore

Xt = −
∫ t

0
usds+ µT +

1

θ

(
1− e−θT

)
(y0 − µ) + σ

∫ t

0

1− e−θ(T−s)

θ
dWs.

With

x0 := X0 = µT +
1

θ

(
1− e−θT

)
(y0 − µ),
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we simplify this to

Xt = x0 −
∫ t

0
usds+ σ

∫ t

0

1− e−θ(T−s)

θ
dWs

and rewrite in differential form as

dXt = −utdt+ σ
1− e−θ(T−t)

θ
dWt.

Thus, we obtain

G(t) = σ
1− e−θ(T−t)

θ
.

It should be noted that
1− e−θ(T−t)

θ
≈ T − t,

therefore the volatility functions G of the Brownian and the Ornstein-Uhlenbeck model
variants are similar.

Summary

In this section, we introduced three different ways to model the emission rate Y and in
each case, we derived an SDE to describe the total expected emissions X.

2.2 Cost Minimization

The next step is to model the optimization problem of the representative agent. She aims
to choose her abatement rate in such a way that her total costs originating in the emission
trading system are minimized. There are two sources of costs in the system: If the total
amount of emissions surpasses the number of distributed allowances e0, the agent needs
to pay a penalty p for each surplus ton of emissions. We introduce a penalty function P
to represent this given by

P (x) =

{
p (x− e0) if x > e0,

0 if x ≤ e0.

Since the total emissions resulting in the system are given by XT , we obtain the penalty
payment as P (XT ). On the other hand, abatement of emissions also induces costs. We
assume that abatement costs are quadratic in the abatement rate and therefore define the
cost function as

C(u) =
1

2
c u2,

where c is a constant cost coefficient. Thus the overall costs of the agent for a fixed
abatement rate u, discounted to time 0, are given by

e−rT P (XT ) +

∫ T

0
e−rtC(ut)dt.

The agent now aims to minimize expected costs by choosing the abatement rate u. Since
a negative abatement rate would not be plausible both from a technical and from an
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economical perspective, we assume that u takes values in U = [0,∞). We furthermore
define all admissible abatement rates by the admissibility set

A(t) =

{
u = (us)s∈[t,T ] a progressively measurable process into U

with E

[∫ T

t
|us|2ds

]
<∞

}
.

Then the optimization problem of the agent can be stated as

inf
u∈A(0)

E

[
e−rT P (XT ) +

∫ T

0
e−rsC(us)ds

]
.

In order to solve this problem, we will follow a stochastic control approach. In the next
steps we will motivate the Hamilton-Jacobi-Bellman equation by applying the Bellman
principle; note that since we cannot ensure at this point that the Bellman principle holds,
the following derivation is only heuristic. We define the value function as

V (t, x) = inf
u∈A(t)

Et,x
[
e−rT P (XT ) +

∫ T

t
e−rsC(us)ds

]
.

In this expression and in the remainder of the thesis, we use the notation Et,x[Z] to denote
the factorized conditional expectation

Et,x [Z] = E [Z |Xt = x]

for any random variable Z. We let τ ∈ R with τ > t and apply the Bellman principle to
yield

V (t, x) = inf
u∈A(t)

Et,x
[∫ τ

t
e−rsC(us)ds+ V (τ,Xτ )

]
.

Then we apply the Itô-formula to V (τ,Xτ ), using the relation dXt = −utdt+G(t)dWt as
derived above, to arrive at

V (t, x) = inf
u∈A(t)

Et,x
[∫ τ

t
e−rsC(us)ds+ V (t, x)−

∫ τ

t
G(s)Vx(s,Xs)dWs

+

∫ τ

t

(
Vt(s,Xs)− us Vx(s,Xs) +

1

2
G(t)2 Vxx(s,Xs)

)
ds

]
.

We assume that G(s)Vx(s,Xs) is integrable with respect to Brownian motion such that
the stochastic integral is a martingale. Then it follows that

E

[∫ τ

t
G(s)Vx(s,Xs)dWs

∣∣∣Ft]
= E

[∫ τ

0
G(s)Vx(s,Xs)dWs

∣∣∣Ft]− E

[∫ t

0
G(s)Vx(s,Xs)dWs

∣∣∣Ft]
=

∫ t

0
G(s)Vx(s,Xs)dWs −

∫ t

0
G(s)Vx(s,Xs)dWs = 0,
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thus we can omit the stochastic integral from the expression above. We subtract V (t, x),
divide by τ − t and let τ ↓ t, then

0 = inf
u∈A(t)

Et,x
[
lim
τ↓t

1

τ − t

∫ τ

t

(
e−rsC(us) + Vt(s,Xs)− us Vx(s,Xs)

+
1

2
G(t)2 Vxx(s,Xs)

)
ds

]
= inf

u∈A(t)
Et,x

[
e−rtC(ut)− ut Vx(t,Xt) + Vt(t,Xt) +

1

2
G(t)2 Vxx(t,Xt)

]
.

Since Xt is Ft-measurable and we may now choose u ∈ U , we eliminate the conditional
expectation and set Xt = x to result in the HJB equation

0 = inf
u∈U

{
e−rtC(u)− uVx(t, x) + Vt(t, x) +

1

2
G(t)2 Vxx(t, x)

}
.

We minimize with respect to u by computing the first order condition

e−rt
∂C

∂u
(t, u)− Vx(t, x) = e−rt c u− Vx(t, x)

!
= 0,

which delivers

u(t, x) =
Vx(t, x)

c
ert.

Note that since the second derivative is given by

e−rt c > 0,

we directly see that u as determined above is indeed a minimum. We therefore obtain the
characteristic PDE

Vt =
1

2c
ert (Vx)2 − 1

2
G(t)2 Vxx.

We then determine a final condition by setting t = T in the value function, which results
in

V (T, x) = inf
uT∈U

ET,x
[
e−rT P (XT )

]
= e−rT P (x).

We now require the verification theorem for the HJB equation to make sure that the
characteristic PDE provides us with the desired result.

Verification Theorem for the HJB Equation

We will introduce a slightly more general control problem to be able to state the result
more generally; the problem formulation and the theorem are largely taken from Pham
[Pha09]. We consider the SDE

dXt = b(t,Xt, u)dt+ σ(t,Xt, u)dWt

where u denotes the control, which maps into a set U ⊆ Rm, and b : [0, T ]×Rd ×U → Rd
and σ : [0, T ] × Rd × U → Rd are measurable functions. We assume that the coefficient
functions b and σ are Lipschitz continuous in x, uniformly in t and u, i.e. there exists a
constant L such that

‖b(t, x, u)− b(t, y, u)‖+ ‖σ(t, x, u)− σ(t, y, u)‖ ≤ L‖x− y‖
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for any t ∈ [0, T ], x ∈ Rd and u ∈ U . Furthermore we assume that the coefficient functions
satisfy a linear growth bound in x and in u, uniformly in t, i.e. there exists a constant K
such that

‖b(t, x, u)‖+ ‖σ(t, x, u)‖ ≤ K(1 + ‖x‖+ ‖u‖)

for any t ∈ [0, T ], x ∈ Rd and u ∈ U .

Let f : [0, T ] × Rd × U → R and g : Rd → R be measurable functions which satisfy a
quadratic growth condition, i.e. there exists a constant K such that

|f(t, x, u)|+ |g(x)| ≤ K(1 + ‖x‖2 + ‖u‖2)

for any t ∈ [0, T ], x ∈ Rd and u ∈ U . As above, we define the admissibility set for the
control u as

A(t) =

{
u = (us)s∈[t,T ] a progressively measurable process into U

with E

[∫ T

t
‖us‖2ds

]
<∞

}
.

Then we may state the generalized control problem by defining the value function

V (t, x) = inf
u∈A(t)

Et,x
[
g(XT ) +

∫ T

t
f(s,Xs, u)ds

]
;

we will discuss below why the assumptions made so far suffice to ensure the existence of
this conditional expectation. Finally, we define the infinitesimal generator of the process
X for a given control u as

LuV (t, x) = b(t, x, u)> Vx(t, x) +
1

2
Tr
(
σ(t, x, u)σ(t, x, u)>Vxx(t, x)

)
,

where Tr(·) denotes the trace of a square matrix, i.e. for A ∈ Rd×d we have

Tr(A) =
d∑
i=1

aii.

We now continue to formulate the verification theorem.

Proposition 2.3. Let V be the value function as defined above. Let V̂ be a function with
V̂ ∈ C1,2

(
[0, T )× Rd

)
and V̂ ∈ C

(
[0, T ]× Rd

)
satisfying a quadratic growth condition,

i.e. there exists a constant K such that

|V̂ (t, x)| ≤ K
(
1 + |x|2

)
for any (t, x) ∈ [0, T ]× Rd.

(i) Suppose that

−V̂t(t, x)− inf
u∈U

{
LuV̂ (t, x) + f(t, x, u)

}
≤ 0

for all (t, x) ∈ [0, T )× Rd and V̂ (T, x) ≤ g(x) for all x ∈ Rd. Then V̂ ≤ V .
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(ii) Suppose that V̂ (T, x) = g(x) for all x ∈ R and there exists a measurable function
û : [0, T )× Rd → Rd such that

0 = −V̂t(t, x)− inf
u∈U

{
LuV̂ (t, x) + f(t, x, u)

}
= −V̂t(t, x) + LûV̂ (t, x) + f(t, x, û).

In addition suppose that the SDE

dXs = b(s,Xs, û(s,Xs))ds+ σ(s,Xs, û(s,Xs))dWs

has a unique solution, which we denote by X̂t,x
s for a given initial condition Xt = x,

and suppose furthermore that
{
û
(
s, X̂t,x

s

)
: t ≤ s ≤ T

}
∈ A(t). Then

V̂ = V on [0, T ]× Rd

and û is an optimal control.

Proof. We will refer to the proof by Pham2 [Pha09] and argue why this applies to our
setting despite having modified assumptions and a slightly different formulation of the
result. First we note that by the linear growth bound on the coefficient functions we have

E

[∫ T

0

(
‖b(t, 0, ut)‖2 + ‖σ(t, 0, ut)‖2

)]
≤ E

[∫ T

0
K(1 + ‖0‖2 + ‖ut‖2)dt

]
≤ K +K E

[∫ T

0
‖ut‖2dt

]
<∞

for any control u ∈ A(0), which ensures that the first assumption in the work by Pham
that we did not make here also holds in our case. Pham uses this to conclude with the
Lipschitz continuity of the coefficient functions that for a given control u ∈ A(t), given
initial value x and starting time t the SDE has a unique solution, which we will denote by
Xt,x,u. Furthermore, the solution satisfies

E

[
sup
t≤s≤T

∥∥Xt,x,u
s

∥∥2

]
<∞.

With the quadratic growth condition on f this implies

E

[∫ T

t
|f(s,Xt,x,u

s , us)|ds
]
≤ E

[∫ T

t
K(1 + ‖Xt,x,u

s ‖2 + ‖u‖2)ds

]
≤ K T +K T E

[
sup
t≤s≤T

‖Xt,x,u
s ‖2

]
+ E

[∫ T

t
‖us‖2ds

]
<∞,

corresponding to the second assumption of Pham that is not contained in our assumptions
above. In a similar way, we have

E
[∣∣g(Xt,x,u

T )
∣∣] ≤ E

[
K
(

1 + ‖Xt,x,u
T ‖2

)]
≤ K +K E

[
sup
t≤s≤T

∥∥Xt,x,u
s

∥∥2

]
<∞,

2The theorem and the proof can be found as Theorem 3.5.2 on page 47 in [Pha09].
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which together with the above ensures existence of the conditional expectation

Et,x
[
g(XT ) +

∫ T

t
f(s,Xs, u)ds

]
.

Finally, note that although Pham works with a time-homogenous SDE, his results can still
be applied in our setting, since the structure of the SDE only plays a role in assuring the
existence of a solution, which also holds in the time-inhomogenous case.

(i) We consider −V̂ . By the assumptions on V̂ we have that −V̂ ∈ C1,2
(
[0, T )× Rd

)
,

−V̂ ∈ C
(
[0, T ]× Rd

)
and −V̂ satisfies a quadratic growth condition. By assumption and

by the duality of the supremum and the infimum3 we have for any (t, x) ∈ [0, T )×Rd that

−V̂t(t, x) + sup
u∈U

{
−LuV̂ (t, x)− f(t, x, u)

}
= −V̂t(t, x)− inf

u∈U

{
LuV̂ (t, x) + f(t, x, u)

}
≤ 0,

which is equivalent to

−
(
−V̂t(t, x)

)
− sup
u∈U

{
Lu
(
−V̂ (t, x)

)
− f(t, x, u)

}
≥ 0.

Furthermore, −V̂ (T, x) ≥ −g(x) for any x ∈ Rd. We define

v(t, x) = sup
u∈A(t)

Et,x
[
−g(XT )−

∫ T

t
f(s,Xs, u)ds

]
and by the verification theorem of Pham we obtain −V̂ ≥ v. Then again by the duality
of the supremum and the infimum, we have v = −V and therefore V̂ ≤ V .

(ii) In the computations in (i), we have equality if u = û, i.e.

−
(
−V̂t(t, x)

)
− Lû

(
−V̂ (t, x)

)
− f(t, x, û) = 0

for any (t, x) ∈ [0, T )×Rd and −V̂ (T, x) = −g(x) for all x ∈ Rd. Then by the verification
theorem of Pham we have that −V̂ = v and therefore V̂ = V . Furthermore, û is optimal.

We now embed our control problem in this general framework. Clearly the coefficient
functions satisfy the Lipschitz condition, since b(t, x, u) = −u does not depend on x and
the same holds for all volatility functions σ(t, x, u) = G(t) in the different model variants.
We also directly obtain the linear growth bound of b. Furthermore, the volatility functions
of the model variants are continuous in t and do not depend on x and the control u. Thus
they are bounded on the interval [0, T ] and therefore satisfy the linear growth bound.

In addition, the cost function C satisfies C(u) = 1
2 c u

2 ≤ K(1+ |u|2) for some constant
K and the terminal condition function is linear for x > e0 and constant for x ≤ e0 and
therefore clearly |e−rTP (x)| ≤ K(1+ |x|2), again for a constant K. Thus we conclude that
the verification theorem in Proposition 2.3 applies to our model. If we find a solution V̂ of
the PDE that satisfies the requirements of this theorem and if furthermore for û computed

as ût = û(t,Xt) = V̂x(t,Xt)
c ert we have that û ∈ A(t) and the SDE

dXt = −û(t,Xt)dt+G(t)dWt

3For any set B ⊂ R it holds that inf{B} = − sup{−B} where −B := {−b : b ∈ B}.
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has a unique solution, then the verification theorem delivers that V̂ indeed gives us the
minimum costs and that û represents the optimal control. We will assess these require-
ments once we have solved the PDE.

Remark 2.4. Note that although the set U into which all controls map is unbounded, in
our case the infimum in the HJB equation is always finite: The term in the infimum given
by

e−rtC(u)−uVx(t, x)+
1

2
G(t)2 Vxx(t, x) =

1

2
e−rt c u2−uVx(t, x)+Vt(t, x)+

1

2
G(t)2 Vxx(t, x)

is quadratic in u with positive coefficient for the term of second order and is thus for each
(t, x) ∈ [0, T )× R bounded from below.

Summary

We formulated the HJB equation for the cost minimization problem of the representative
agent and we derived the characteristic PDE. Furthermore, we stated a verification theo-
rem for the HJB equation, which will allow us to show that the solution of the characteristic
PDE delivers a solution to the cost minimization problem.

2.3 Solution of the PDE

In this section, we will derive an analytical solution in the simple model; we will prove
several properties of this solution. In the Brownian and in the Ornstein-Uhlenbeck model,
the PDE needs to be solved numerically. Importantly, the solution of the PDE also
supplies us with a function to compute the allowance price: By modeling individual agents
separately, Seifert et al. [SUW08] have shown4 that the price of an allowance, denoted by
S, is given by the marginal abatement costs, i.e.

S(t, x) =
∂C

∂u
= c u(t, x).

2.3.1 Analytical Solution in the Simple Model Variant

We consider the simple model, i.e. G(t) = σ. In addition, we impose that r = 0; note
that due to the currently very low interest rates, this is a realistic assumption. Then the
characteristic PDE simplifies to

Vt =
1

2c
(Vx)2 − 1

2
σ2 Vxx

with final condition

V (T, x) = P (x).

Thus the coefficients in the PDE are no longer time-dependent, which will enable us to
derive an analytical solution. First, we perform a time reversion to transform the problem
into an initial value problem. We substitute t = T − t̃ and define Ṽ (t̃, x) = V (T − t̃, x).
Then

Vt(t, x) = Vt(T − t̃, x) = −Vt̃(T − t̃, x) = −Ṽt̃(t̃, x)

4This result can be found in their online appendix.
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and Vxx(T − t̃, x) = Ṽxx(t̃, x) and Vx(T − t̃, x) = Ṽx(t̃, x). Therefore we obtain

Ṽt̃ = − 1

2c
(Ṽx)2 +

1

2
σ2 Ṽxx

V (T, x) = Ṽ (0, x) = P (x).

For ease of notation, we will in the following again write t and V instead of t̃ and Ṽ . Next,
we perform a Cole-Hopf transformation; this procedure is described for example by Evans
in [Eva10]5. We define

ν(t, x) = e−
V (t,x)

c σ2 .

Then V (t, x) = −c σ2 ln (ν(t, x)) and we have

Vt = −c σ2 1

ν
νt

Vx = −c σ2 1

ν
νx

Vxx = −c σ2 1

ν
νxx + c σ2 1

ν2
ν2
x.

Substitution in the PDE results in

−c σ2 1

ν
νt =

1

2c
c2 σ4 1

ν2
ν2
x +

1

2
σ2 c σ2 1

ν
νxx −

1

2
σ2 c σ2 1

ν2
ν2
x,

which simplifies to

νt =
1

2
σ2 νxx

with initial condition

ν(0, x) = e−
V (0,x)

cσ2 = e−
P (x)

cσ2 .

Thus, we have arrived at the standard heat equation with conductivity 1/2σ2. It is well
known (as given for instance also by Evans [Eva10]) that for a given continuous and
bounded initial value function g and conductivity a the standard heat equation is solved
by

ν(t, x) =
1√

4πat

∫ ∞
−∞

e−
(x−y)2

4at g(y)dy.

Remark 2.5. In Theorem 2.3.1 of Evans6, which provides the expression of the solution
given above, two further results on the solution ν are given:

(i) The solution ν is infinitely differentiable on (0,∞)× R.

(ii) For any ξ0 ∈ R, the solution ν converges to the initial value function g as (t, x) →
(0, ξ0), i.e. for t > 0 we have

lim
(t,x)→(0,ξ0)

ν(t, x) = g(ξ0),

which ensures that ν can be continuously extended to satisfy the initial value con-
dition.

5This is presented in section 4.4.1 on pages 206-207 in [Eva10].
6The theorem can be found on page 47 in [Eva10]; to be precise, it delivers the solution of the standard

heat equation with conductivity 1.
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In our case, we have ν(0, x) = g(x) = e−
P (x)

cσ2 , which is continuous and bounded since
the exponent is always non-positive. Therefore

ν(t, x) =
1√

2πσ2t

∫ ∞
−∞

e−
(x−y)2

2σ2t e−
P (y)

cσ2 dy

=
1√

2πσ2t

∫ e0

−∞
e−

(x−y)2

2σ2t dy +
1√

2πσ2t

∫ ∞
e0

e−
(x−y)2

2σ2t e−
p(y−e0)

cσ2 dy. (2.1)

In order to rewrite these integrals, we introduce the error function defined by

erf(x) =
2√
π

∫ x

0
e−z

2
dz

and state some of its properties, which will become important in the following.

Proposition 2.6. For the error function erf the following holds:

(i) The error function is odd, i.e. erf(−x) = − erf(x).

(ii) We have

erf(x) > 0 if and only if x > 0,

erf(x) < 0 if and only if x < 0,

erf(x) = 0 if and only if x = 0.

(iii) The limits are given by limx→−∞ erf(x) = −1 and limx→∞ erf(x) = 1.

(iv) The range of the error function is (−1, 1), i.e. −1 < erf(x) < 1 for any x ∈ R.

Proof. (i) By substituting y = −z, we have for x ∈ R

erf(−x) =
2√
π

∫ −x
0

e−z
2
dz = − 2√

π

∫ x

0
e−y

2
dy = − erf(x).

(ii) By computing the derivative erf ′(x) = 2√
π

e−x
2
> 0, we obtain that the error

function is strictly increasing. Moreover, we have by definition that erf(0) = 0, so the
claim follows.

(iii) The property limx→∞ erf(x) = 1 is for example given in the Handbook of Math-
ematical Functions [AS72]. Alternatively, we may observe that with the symmetry of the
integrand

lim
x→∞

erf(x) =
2√
π

∫ ∞
0

e−z
2
dz =

1

2

2√
π

∫ ∞
−∞

e−z
2
dz =

1√
π

∫ ∞
−∞

e−z
2
dz = 1

since 1√
π

e−z
2

is the density of the normal distribution with expectation 0 and variance 1
2 .

The property limx→−∞ erf(x) = −1 follows directly with property (i), i.e. that the error
function is odd.

(iv) We have seen that limx→−∞ erf(x) = −1 and limx→∞ erf(x) = 1 and that the error
function is strictly increasing, so for any x ∈ R it needs to hold that −1 < erf(x) < 1.
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Returning to the derivation of the analytical solution, we aim to rewrite the integrals
in expression (2.1), which we do separately. For the first integral, we introduce

z(y) =
y − x√

2σ2t

with derivative
dz

dy
=

1√
2σ2t

.

By substituting z in the integral we obtain

1√
2πσ2t

∫ e0

−∞
e−

(x−y)2

2σ2t dy =

√
2σ2t√

2πσ2t

∫ e0

−∞

dz

dy
e−z(y)2

dy

=
1√
π

∫ e0−x√
2σ2t

−∞
e−z

2
dz

=
1

2

(
2√
π

∫ 0

−∞
e−z

2
dz +

2√
π

∫ e0−x√
2σ2t

0
e−z

2
dz

)

=
1

2

(
1 + erf

(
e0 − x√

2σ2t

))
, (2.2)

where we have used that

2√
π

∫ 0

−∞
e−z

2
dz = − 2√

π

∫ −∞
0

e−z
2
dz = − lim

x→−∞
erf(x) = 1

by property (iii) of the error function.
In order to simplify the second integral, we first rearrange the exponent in the integrand

by completing the squares for y:

− (x− y)2

2σ2t
− p(y − e0)

cσ2
= −c(x− y)2 + 2tp(y − e0)

2cσ2t
= −cx

2 − 2cxy + cy2 + 2tpy − 2tpe0

2cσ2t

= −
cy2 + 2cy

(pt
c − x

)
+ c

(pt
c − x

)2 − p2t2

c + 2ptx− cx2 + cx2 − 2pte0

2cσ2t

= −
c
(
y + pt

c − x
)2

2cσ2t
+

2pt(e0 − x) + p2t2

c

2cσ2t
= −

(
y + pt

c − x
)2

2σ2t
+

2cp(e0 − x) + p2t

2c2σ2
.

(2.3)

Then we have

1√
2πσ2t

∫ ∞
e0

e−
(x−y)2

2σ2t e−
p(y−e0)

cσ2 dy =
1√

2πσ2t
e

2cp(e0−x)+p2t

2c2σ2

∫ ∞
e0

e−
(y+

pt
c −x)

2

2σ2t dy.

We now evaluate the integral by proceeding similarly as before: We define

z(y) =
y + pt

c − x√
2σ2t

and compute the derivative
dz

dy
=

1√
2σ2t

.
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Then we perform the substitution

1√
2πσ2t

∫ ∞
e0

e−
(y+

pt
c −x)

2

2σ2t dy =

√
2σ2t√

2πσ2t

∫ ∞
e0

dz

dy
e−z(y)2

dy

=
1√
π

∫ ∞
e0+

pt
c −x√

2σ2t

e−z
2
dz

=
1

2

 2√
π

∫ ∞
0

e−z
2
dz − 2√

π

∫ e0+
pt
c −x√

2σ2t

0
e−z

2
dz


=

1

2

(
1− erf

(
e0 + pt

c − x√
2σ2t

))

=
1

2

(
1− erf

(
c(e0 − x) + pt√

2cσ
√
t

))
,

using that limx→∞ erf(x) = 1. Combining these results, we obtain

ν(t, x) =

(
1 + erf

(
e0−x√
2σ
√
t

))
+
(

1− erf
(
c(e0−x)+pt√

2cσ
√
t

))
e

2cp(e0−x)+p2t

2c2σ2

2
.

We now apply the back transformation V (t, x) = −cσ2 ln(ν(t, x)) and revert time again
by replacing t by T − t. This delivers

V (t, x) = −cσ2 ln


(

1 + erf
(

e0−x√
2σ
√
T−t

))
+
(

1− erf
(
c(e0−x)+p(T−t)√

2cσ
√
T−t

))
e

2cp(e0−x)+p2(T−t)
2c2σ2

2

.
(2.4)

By computing the derivative with respect to x, we obtain

Vx(t, x) =
p

1 +
e
− 2cp(e0−x)+p2(T−t)

2c2σ2
(

1+erf
(

e0−x√
2σ
√
T−t

))
1−erf

(
c(e0−x)+p(T−t)√

2cσ
√
T−t

)
, (2.5)

the detailed computation can be found in section A.1.1 in the appendix7.

2.3.2 Properties of the Analytical Solution

From the explicit expressions for V and Vx derived in the previous section, we may derive
some useful properties, which will help us to verify the requirements of the verification
theorem for the HJB equation further below in this section. In addition, we will refer back
to these results in section 2.5 in order to show that the SDE in the simple model variant
satisfies the requirements of the theorems we will prove below.

Proposition 2.7. For the function V and its derivative Vx as given by equations (2.4) and
(2.5) and the derivatives Vxx and Vxt derived from these we have the following properties:

(i) V is infinitely differentiable on (−∞, T )× R, i.e. V ∈ C∞((−∞, T )× R).

7All these computations, starting with the reformulation of the integrals, were also conducted and thus
validated by using the symbolic mathematics Python package Sympy.
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(ii) 0 ≤ Vx(t, x) ≤ p for any (t, x) ∈ [0, T ]× R\{(T, e0)}.

(iii) For all t ∈ [0, T ] the limits of Vx are given by

lim
x→∞

Vx(t, x) = p and lim
x→−∞

Vx(t, x) = 0.

(iv) For any ε > 0 the derivatives Vxx and Vxt are bounded on [0, T − ε]× R.

Proof. To simplify the formulation of the proof, we first introduce some auxiliary functions
given by

F1(t, x) = 1− erf

(
ce0 − cx+ p(T − t)√

2cσ
√
T − t

)
F2(t, x) = 1 + erf

(
e0 − x√

2σ
√
T − t

)
E1(t, x) = e

(c(e0−x)+p(T−t))2

2c2σ2(T−t)

E2(t, x) = e
(e0−x)2

2σ2(T−t)

E3(t, x) = e
2cp(e0−x)+p2(T−t)

2c2σ2 .

By Proposition 2.6 (iv), we know that the range of the error function is (−1, 1). Therefore
we have

F1(t, x) > 0 and F2(t, x) > 0,

and since the exponential function is always positive,

E1(t, x) > 0, E2(t, x) > 0 and E3(t, x) > 0.

Additionally, we remark that all auxiliary functions are well defined as long as t ∈ (−∞, T ).

(i) As stated above in Remark 2.5, ν is infinitely differentiable on (0,∞)×R. We now
perform the time reversion on ν by replacing t with T − t. Then

ν̃(t, x) =

(
1 + erf

(
e0−x√

2σ
√
T−t

))
+
(

1− erf
(
c(e0−x)+p(T−t)√

2cσ
√
T−t

))
e

2cp(e0−x)+p2(T−t)
2c2σ2

2

and we have that ν̃ is infinitely differentiable on (−∞, T )×R. Furthermore, if we write ν̃
in terms of the auxiliary functions, we obtain

ν̃(t, x) =
F2(t, x) + E3(t, x)F1(t, x)

2
.

Since all auxiliary functions are positive, we directly have that ν̃ > 0 for all t ∈ (−∞, T )
and all x ∈ R. From the time-reversed function ν̃, we can compute the function V as

V (t, x) = −cσ2 ln(ν̃(t, x)).

Thus V is essentially given as the composition of ν̃ and the natural logarithm. But ν̃ is
infinitely differentiable on (−∞, T )× R and its range on this set is (0,∞). Furthermore,
the natural logarithm is infinitely differentiable on (0,∞). Hence it follows that V is
infinitely differentiable on (−∞, T )× R.
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(ii) We first let t ∈ [0, T ), x ∈ R arbitrary and consider Vx as given in equation (2.5).
With the help of the auxiliary functions, we may rewrite Vx as

Vx(t, x) =
p

1 + F2(t,x)
E3(t,x)F1(t,x)

.

Since all auxiliary functions are positive, we have that

F2(t, x)

E3(t, x)F1(t, x)
> 0,

which implies

1 +
F2(t, x)

E3(t, x)F1(t, x)
> 1,

so it follows that Vx(t, x) < p. In particular, we have for the denominator

1 +
F2(t, x)

E3(t, x)F1(t, x)
> 0;

with the assumption that p > 0, this delivers the lower bound Vx(t, x) > 0.

For t = T and x ∈ R\{e0} arbitrary, Vx is given by the terminal condition of the PDE
with

Vx(T, x) =

{
p if x > e0

0 if x < e0,

which clearly satisfies the bounds in the claim.

(iii) For t = T , this can be seen directly from the expression for Vx(T, x) given above,
so we assume that t ∈ [0, T ). We first consider the limit x→∞. We have that

lim
x→∞

erf

(
e0 − x√

2σ
√
T − t

)
= −1

since limz→−∞ erf(z) = −1 by Proposition 2.6 (iii), and therefore

lim
x→∞

F2(t, x) = lim
x→∞

(
1 + erf

(
e0 − x√

2σ
√
T − t

))
= 0.

Furthermore,

lim
x→∞

E3(t, x) = lim
x→∞

e
2cp(e0−x)+p2(T−t)

2c2σ2 = 0.

Therefore we may apply l’Hôpital’s rule to determine

lim
x→∞

F2(t, x)

E3(t, x)
= lim

x→∞

1 + erf
(

e0−x√
2σ
√
T−t

)
e

2cp(e0−x)+p2(T−t)
2c2σ2

= lim
x→∞

d
dx

(
1 + erf

(
e0−x√

2σ
√
T−t

))
d

dx e
2cp(e0−x)+p2(T−t)

2c2σ2

= lim
x→∞

− 2√
2πσ
√
T−t e

− (e0−x)2

2σ2(T−t)

− p
cσ2 e

2cp(e0−x)+p2(T−t)
2c2σ2

= lim
x→∞

√
2cσ

√
πp
√
T − t

e
− c

2(e0−x)2+2cp(e0−x)(T−t)+p2(T−t)2

2c2σ2(T−t) = 0,
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since the coefficient of the term with the highest order in the polynomial in the exponential
function is negative. With

lim
x→∞

F1(t, x) = lim
x→∞

(
1− erf

(
c(e0 − x) + p(T − t)√

2cσ
√
T − t

))
= 2,

we obtain that

lim
x→∞

F2(t, x)

E3(t, x)F1(t, x)
= 0

and therefore

lim
x→∞

Vx(t, x) = lim
x→∞

p

1 + F2(t,x)
E3(t,x)F1(t,x)

=
p

1 + 0
= p.

We proceed similarly for x→ −∞. Here we observe that

lim
x→−∞

erf

(
c(e0 − x) + p(T − t)√

2cσ
√
T − t

)
= 1

and thus

lim
x→−∞

F1(t, x) = lim
x→−∞

(
1− erf

(
c(e0 − x) + p(T − t)√

2cσ
√
T − t

))
= 0.

In addition, we have

lim
x→−∞

1

E3(t, x)
= lim

x→−∞
e−

2cp(e0−x)+p2(T−t)
2c2σ2 = 0.

Again we may apply l’Hôpital’s rule to compute

lim
x→−∞

1

E3(t, x)F1(t, x)
= lim

x→−∞

e−
2cp(e0−x)+p2(T−t)

2c2σ2

1− erf
(
c(e0−x)+p(T−t)√

2cσ
√
T−t

)
= lim

x→−∞

d
dx e−

2cp(e0−x)+p2(T−t)
2c2σ2

d
dx

(
1− erf

(
c(e0−x)+p(T−t)√

2cσ
√
T−t

))
= lim

x→−∞

p
cσ2 e−

2cp(e0−x)+p2(T−t)
2c2σ2

2√
2πσ
√
T−t e

− (c(e0−x)+p(T−t))2
2c2σ2(T−t)

= lim
x→−∞

p
√
π(T − t)√

2cσ
e

(c(e0−x)+p(T−t))2−2cp(e0−x)(T−t)−p2(T−t)2

2c2σ2(T−t)

=∞

because in this case the coefficient of the term with highest order in the polynomial in
the exponential function is positive and additionally the corresponding exponent is even.
Since

lim
x→−∞

F2(t, x) = lim
x→−∞

(
1 + erf

(
e0 − x√

2σ
√
T − t

))
= 2,

we have

lim
x→∞

F2(t, x)

E3(t, x)F1(t, x)
=∞,
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so the denominator in the expression for Vx tends to infinity and therefore we may conclude
that

lim
x→−∞

Vx(t, x) = lim
x→−∞

p

1 + F2(t,x)
E3(t,x)F1(t,x)

= 0.

(iv) Let ε > 0 arbitrary and let t ∈ [0, T − ε]. We first consider the derivative Vxx. In
section A.1.2 in the appendix, we derive Vxx expressed in terms of the auxiliary functions
as

Vxx(t, x) =
p
√

2
√
πσ
√
T − t (E2(t, x)F2(t, x) + E1(t, x)F1(t, x))

− p2

cσ2
(

F2(t,x)
E3(t,x)F1(t,x) + 2 + E3(t,x)F1(t,x)

F2(t,x)

)
=: Axx +Bxx.

We look at the two terms Axx and Bxx separately. For the second term Bxx, we use that
all auxiliary functions are positive and therefore

F2(t, x)

E3(t, x)F1(t, x)
+ 2 +

E3(t, x)F1(t, x)

F2(t, x)
> 2.

Thus we have a lower bound given by

Bxx = − p2

cσ2
(

F2(t,x)
E3(t,x)F1(t,x) + 2 + E3(t,x)F1(t,x)

F2(t,x)

) ≥ − p2

2cσ2
.

In particular, we have

F2(t, x)

E3(t, x)F1(t, x)
+ 2 +

E3(t, x)F1(t, x)

F2(t, x)
> 0,

which delivers the upper bound as

Bxx = − p2

cσ2
(

F2(t,x)
E3(t,x)F1(t,x) + 2 + E3(t,x)F1(t,x)

F2(t,x)

) < 0.

For the first term Axx, we have by the positivity of the auxiliary functions that

E2(t, x)F2(t, x) + E1(t, x)F1(t, x) > 0

and obtain the lower bound

Axx =
p
√

2
√
πσ
√
T − t (E2(t, x)F2(t, x) + E1(t, x)F1(t, x))

> 0.

For the upper bound, we observe that

E1(t, x) = e
(c(e0−x)+p(T−t))2

2c2σ2(T−t) ≥ 1 and E2(t, x) = e
(e0−x)2

2σ2(T−t) ≥ 1
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since with t < T both exponents are non-negative. We now perform a case distinction.
Let us first assume that x ≤ e0. Then we have

e0 − x√
2σ
√
T − t

≥ 0

and by property (ii) of the error function, we obtain the bound

erf

(
e0 − x√

2σ
√
T − t

)
≥ 0,

which implies that

F2(t, x) = 1 + erf

(
e0 − x√

2σ
√
T − t

)
≥ 1.

Then E2(t, x)F2(t, x) ≥ 1 and since all auxiliary functions are positive, we obtain

E2(t, x)F2(t, x) + E1(t, x)F1(t, x) > 1.

Now we consider the case that x ≥ e0 + pT/c. Then we have

ce0 − cx+ p(T − t) ≤ ce0 − c
(
e0 +

pT

c

)
+ p(T − t) = −pt ≤ 0

and therefore

erf

(
ce0 − cx+ p(T − t)√

2cσ
√
T − t

)
≤ 0.

This implies

F1(t, x) = 1− erf

(
ce0 − cx+ p(T − t)√

2cσ
√
T − t

)
≥ 1,

so E1(t, x)F1(t, x) ≥ 1 and we obtain

E2(t, x)F2(t, x) + E1(t, x)F1(t, x) > 1

as in the first case. We now combine these results: If x ≤ e0 or x ≥ e0 + pT/c, we have

Axx =
p
√

2
√
πσ
√
T − t (E2(t, x)F2(t, x) + E1(t, x)F1(t, x))

≤ p
√

2
√
πσ
√
T − t

.

This bound is increasing in t, thus we obtain a global bound if we insert the maximum
value for t given by t = T − ε, which delivers

Axx =
p
√

2
√
πσ
√
T − t (F2(t, x)E2(t, x) + F1(t, x)E1(t, x))

≤ p
√

2√
πσ
√
ε
.

By taking the sum of the bounds of the two terms Axx and Bxx, we obtain an upper
bound for any x with x ≤ e0 or x ≥ e0 + pT/c and a lower bound for any x ∈ R.

It remains to show8 that there is also an upper bound for x ∈ [e0, e0 + pT/c]. With part
(i) of this proposition, we know that Vxx is continuous. We then apply the extreme value
theorem (or the boundedness theorem) to Vxx on the bounded and closed set [0, T − ε]×

8More precisely, we only still need the upper bound for the first term Axx if x ∈ (e0, e0 + pT/c) but in
this case it is easier to show boundedness on the closed interval for the complete function Vxx.
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[e0, e0 + pT/c] and obtain that Vxx is indeed bounded on this set. By taking the maximum
of the thus obtained upper bound and the upper bound determined in the computations
above, we can conclude that Vxx is bounded on [0, T − ε]× R.

We now consider the mixed derivative Vxt. This is computed in section A.1.3 in the
appendix; in terms of the auxiliary functions it can be expressed as

Vxt(t, x) =
p2

√
2πcσ

√
T − t (E2(t, x)F2(t, x) + E1(t, x)F1(t, x))

− p3

2c2σ2
(

F2(t,x)
E3(t,x)F1(t,x) + 2 + E3(t,x)F1(t,x)

F2(t,x)

)
− p2

√
2πcσ

√
T − t

(
E2(t,x)F2(t,x)2

E3(t,x)F1(t,x) + 2E2(t, x)F2(t, x) + E1(t, x)F1(t, x)
)

− p(e0 − x)
√

2πσ(T − t)
3
2 (E2(t, x)F2(t, x) + E1(t, x)F1(t, x))

=: Axt +Bxt + Cxt +Dxt.

We first note that the first and the second fraction, Axt and Bxt, strongly resemble the
terms Axx and Bxx in the expression of Vxx. Indeed, we have that Axt = p

2 A
xx and

Bxt = p
2 B

xx and therefore

Vxt(t, x) =
p

2
Vxx(t, x)

− p2

√
2πcσ

√
T − t

(
E2(t,x)F2(t,x)2

E3(t,x)F1(t,x) + 2E2(t, x)F2(t, x) + E1(t, x)F1(t, x)
)

− p(e0 − x)
√

2πcσ(T − t)
3
2 (E2(t, x)F2(t, x) + E1(t, x)F1(t, x))

.

Since we have already shown that Vxx(t, x) is bounded, we only need to consider the
remaining two terms. We start with Cxt. As all auxiliary functions are positive, we have

E2(t, x)F2(t, x)2

E3(t, x)F1(t, x)
+ 2E2(t, x)F2(t, x) + E1(t, x)F1(t, x) > 0

and obtain the upper bound as

Cxt = − p2

√
2πcσ

√
T − t

(
E2(t,x)F2(t,x)2

E3(t,x)F1(t,x) + 2E2(t, x)F2(t, x) + E1(t, x)F1(t, x)
) < 0.

With the auxiliary functions being positive, we also have

E2(t, x)F2(t, x)2

E3(t, x)F1(t, x)
+2E2(t, x)F2(t, x)+E1(t, x)F1(t, x) > E2(t, x)F2(t, x)+E1(t, x)F1(t, x)

which implies that

Cxt = − p2

√
2πcσ

√
T − t

(
E2(t,x)F2(t,x)2

E3(t,x)F1(t,x) + 2E2(t, x)F2(t, x) + E1(t, x)F1(t, x)
)

> − p2

√
2πcσ

√
T − t (E2(t, x)F2(t, x) + E1(t, x)F1(t, x))

= −Axt = −p
2
Axx.
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Thus the upper bound of Axx provides a lower bound for Cxt.

It remains to consider the term Dxt. As in our considerations for Vxx, we will perform
a case distinction. We first assume that x < e0; in contrast to the above, we now require
strict inequality. Then p(e0 − x) > 0 and as we already know that the denominator is
positive, we have

Dxt = − p(e0 − x)
√

2πσ(T − t)
3
2 (E2(t, x)F2(t, x) + E1(t, x)F1(t, x))

< 0.

For the lower bound, we first observe that

e0 − x√
2σ
√
T − t

> 0

and thus by Proposition 2.6 (ii)

F2(t, x) = 1 + erf

(
e0 − x√

2σ
√
T − t

)
> 1.

By recalling that E1(t, x)F1(t, x) > 0, we have

Dxt = − p(e0 − x)
√

2πσ(T − t)
3
2 (E2(t, x)F2(t, x) + E1(t, x)F1(t, x))

> − p(e0 − x)
√

2πσ(T − t)
3
2E2(t, x)

=: g(t, x).

We aim to determine the limit of g(t, x) for x→ −∞ and show that this delivers a bound
which is uniform in t. We have that

lim
x→−∞

p(e0 − x) =∞

and

lim
x→−∞

√
2πσ(T − t)

3
2 E2(t, x) = lim

x→−∞

√
2πσ(T − t)

3
2 e

(e0−x)2

2σ2(T−t) =∞.

Therefore we may apply l’Hôpital’s rule. We first compute the partial derivative of E2

with respect to x as

∂E2(t, x)

∂x
= e

(e0−x)2

2σ2(T−t)
2(e0 − x)

2σ2(T − t)
· (−1) = −e

(e0−x)2

2σ2(T−t)
e0 − x

σ2(T − t)
= − e0 − x

σ2(T − t)
E2(t, x).

Then we can compute the limit of g as

lim
x→−∞

g(t, x) = − lim
x→−∞

p(e0 − x)
√

2πσ(T − t)
3
2 E2(t, x)

= − lim
x→−∞

∂
∂x (p(e0 − x))

∂
∂x

(√
2πσ(T − t)

3
2 E2(t, x)

)
= − lim

x→−∞

−p
−
√

2πσ(T − t)
3
2

e0−x
σ2(T−t) E2(t, x)

= − lim
x→−∞

p
√

2π
σ

√
T − t (e0 − x)E2(t, x)

= 0

52



CHAPTER 2. ONE-PERIOD MODEL

since the denominator tends to infinity. Next we determine t such that g is minimized for
all sufficiently small x. We compute the partial derivative of E2 with respect to t given by

∂E2(t, x)

∂t
= e

(e0−x)2

2σ2(T−t)
(e0 − x)2

2σ2
· (−1) · (T − t)−2 · (−1)

= e
(e0−x)2

2σ2(T−t)
(e0 − x)2

2σ2(T − t)2
=

(e0 − x)2

2σ2(T − t)2
E2(t, x)

and with this we have

∂g(t, x)

∂t
= −
−p(e0 − x)

√
2πσ

(
3
2(T − t)

1
2 · (−1) · E2(t, x) + (T − t)

3
2

(e0−x)2

2σ2(T−t)2 E2(t, x)
)

2πσ2(T − t)3E2(t, x)2

=
p(e0 − x)

(
−3

2

√
T − t+ (e0−x)2

2σ2
√
T−t

)
√

2πσ(T − t)3E2(t, x)
.

With e0 − x > 0 and E2(t, x) > 0, this is positive as long as

(e0 − x)2

2σ2
√
T − t

>
3

2

√
T − t,

which is equivalent to

(e0 − x)2 > 3σ2(T − t)

and this holds if

x < e0 −
√

3σ
√
T − t.

In other words, for x < e0 −
√

3σ
√
T , which ensures that x < e0 −

√
3σ
√
T − t for any

t ∈ [0, T − ε], we have that ∂
∂tg(t, x) > 0, so g is strictly increasing in t. By inserting the

minimum value for t, we obtain a lower bound independent of t as

g(t, x) ≥ g(0, x) = − p(e0 − x)
√

2πσT
3
2 E2(0, x)

.

As shown above, we have that limx→−∞ g(0, x) = 0. In addition, g(0, ·) is clearly continu-
ous. Then we apply Lemma 2.8, which is stated and proven below this proof: It allows us
to choose K > 0 and delivers that there exists x̃1 such that |g(0, x)| < K for all x ≤ x̃1.
We now set

x1 = min
{
x̃1, e0 −

√
3σ
√
T
}
.

Then we have for all x < x1 and for any t ∈ [0, T − ε] that g(t, x) ≥ g(0, x) > −K and
have thus obtained a lower bound of the term Dxt on [0, T − ε]× (−∞, x1) since

Dxt > g(t, x) > −K.

Next we consider the case that x > e0 + pT/c. Then we have p(e0 − x) < −p2T/c < 0
and therefore we obtain the lower bound as

Dxt = − p(e0 − x)
√

2πσ(T − t)
3
2 (E2(t, x)F2(t, x) + E1(t, x)F1(t, x))

> 0.
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For the upper bound, we proceed similarly as in the first case. As seen in our considerations
on Vxx, we know that since c(e0 − x) + pT < 0, we now have F1(t, x) > 1 by property (ii)
of the error function. With E2(t, x)F2(t, x) > 0, we then have

Dxt = − p(e0 − x)
√

2πσ(T − t)
3
2 (E2(t, x)F2(t, x) + E1(t, x)F1(t, x))

< − p(e0 − x)
√

2πσ(T − t)
3
2E1(t, x)

=: h(t, x).

For this case, we need to determine the limit of h(t, x) for x→∞ and again we show that
this delivers a bound which is uniform in t. We clearly have

lim
x→∞

(−p(e0 − x)) =∞

and

lim
x→∞

√
2πσ(T − t)

3
2 E1(t, x) = lim

x→∞

√
2πσ(T − t)

3
2 e

(c(e0−x)+p(T−t))2

2c2σ2(T−t) =∞,

so we may apply l’Hôpital’s rule. We compute the partial derivative of E1 with respect to
x as

∂E1(t, x)

∂x
= e

(c(e0−x)+p(T−t))2

2c2σ2(T−t)
2(c(e0 − x) + p(T − t))

2c2σ2(T − t)
· (−c)

= −e
(c(e0−x)+p(T−t))2

2c2σ2(T−t)
c(e0 − x) + p(T − t)

cσ2(T − t)
= −c(e0 − x) + p(T − t)

cσ2(T − t)
E1(t, x)

and then determine the limit

lim
x→∞

h(t, x) = lim
x→∞

−p(e0 − x)
√

2πcσ(T − t)
3
2 E1(t, x)

= lim
x→∞

∂
∂x (−p(e0 − x))

∂
∂x

(√
2πσ(T − t)

3
2 E1(t, x)

)
= lim

x→∞

p
√

2πσ(T − t)
3
2

(
− c(e0−x)+p(T−t)

cσ2(T−t)

)
E1(t, x)

= 0

since limx→∞E1(t, x) =∞ and with c(e0 − x) + p(T − t) < 0, we have

lim
x→∞

(
−c(e0 − x) + p(T − t)

cσ2(T − t)

)
=∞.

Next, we aim to find t which minimizes h(t, x) for sufficiently large x. We compute the
partial derivative of E1 with respect to t as

∂E1(t, x)

∂t
= e

(c(e0−x)+p(T−t))2

2c2σ2(T−t)

(
2
(
c(e0 − x) + p(T − t)

)
· (−p) · 2c2σ2(T − t)

4c4σ4(T − t)2

−
(
c(e0 − x) + p(T − t)

)2 · (−2c2σ2)

4c4σ4(T − t)2

)

= E1(t, x)

(
c(e0 − x) + p(T − t)

)(
− 2p(T − t) + c(e0 − x) + p(T − t)

)
2c2σ2(T − t)2

=

(
c(e0 − x) + p(T − t)

)(
c(e0 − x)− p(T − t)

)
2c2σ2(T − t)2

E1(t, x).
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Then we have for the partial derivative of h

∂h(t, x)

∂t
= − −p(e0 − x)

√
2πσ

2πσ2(T − t)3E1(t, x)2

(
3

2
(T − t)

1
2 · (−1) · E1(t, x)

+ (T − t)
3
2 E1(t, x)

(
c(e0 − x) + p(T − t)

)(
c(e0 − x)− p(T − t)

)
2c2σ2(T − t)2

)

=
p(e0 − x)√

2πσ(T − t)3E1(t, x)

(
−3

2

√
T − t+

c2(e0 − x)2 − p2(T − t)2

2c2σ2
√
T − t

)
.

Since e0 − x < 0, this expression is strictly negative if

c2(e0 − x)2 − p2(T − t)2

2c2σ2
√
T − t

>
3

2

√
T − t

or, equivalently, if
c2(e0 − x)2 > 3c2σ2(T − t) + p2(T − t)2.

As e0−x < 0, we consider the negative of the term under the square and therefore require

−(e0 − x) >

√
3σ2(T − t) +

p2

c2
(T − t)2,

which is equivalent to

x > e0 +

√
3σ2(T − t) +

p2

c2
(T − t)2.

For t ∈ [0, T − ε], this is decreasing in t, so if

x > e0 +

√
3σ2 T +

p2

c2
T 2,

the inequality above is satisfied for any t ∈ [0, T − ε]. Hence we then have ∂
∂th(t, x) < 0

for any t ∈ [0, T − ε] and therefore h is decreasing in t. Thus it attains its maximum value
on [0, T − ε] for t = 0, implying that

h(t, x) ≤ h(0, x) = − p(e0 − x)
√

2πσT
3
2E1(0, x)

for all t ∈ [0, T − ε].

We have shown above that limx→∞ h(0, x) = 0 and furthermore h(0, ·) is continuous.
Therefore we again apply Lemma 2.8: We choose K > 0. Then there exists x̃2 such that
|h(0, x)| < K and in particular h(0, x) < K for all x ≥ x̃2. Now we set

x2 = max

{
x̃2, e0 +

√
3σ2 T +

p2

c2
T 2

}
.

Then for any x > x2 and for all t ∈ [0, T − ε] we have that h(t, x) ≤ h(0, x) < K and
therefore

Dxt < h(t, x) < K.

Thus we have found an upper bound for the term Dxt on [0, T − ε]× (x2,∞).

With the results from above, we now have that Vxt is bounded on

[0, T − ε]×
(
(−∞, x1) ∪ (x2,∞)

)
.
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It remains to consider the set [0, T − ε] × [x1, x2]. But this is again bounded and closed.
Since in addition Vxt is continuous, we may apply the extreme value theorem and obtain
that Vxt is bounded on [0, T − ε] × [x1, x2]. By combining this bound with the ones
determined above, we may conclude that Vxt is bounded on [0, T − ε]× R.

To complete the proof of Proposition 2.7 (iv), it remains to prove the following Lemma.

Lemma 2.8. Let g : R→ R be a continuous function.

(i) If limx→∞ g(x) = 0, then for any κ > 0 there exists x0 ∈ R such that |g(x)| < κ for
all x ≥ x0.

(ii) If limx→−∞ g(x) = 0, then for any κ > 0 there exists x0 ∈ R such that |g(x)| < κ
for all x ≤ x0.

Proof. We only show part (i); part (ii) can be shown analogously. From limx→∞ g(x) = 0,
we know that for any sequence (yn)n∈N with limn→∞ yn =∞ we have limn→∞ g(yn) = 0.
Since g is continuous, we have by the extreme value theorem that it attains its maximum
on any closed and bounded subset. Thus we may define

yn := arg max
x∈[n,n+1]

{|g(x)|} .

Then clearly limn→∞ yn = ∞ and therefore limn→∞ g(yn) = 0. This implies for κ > 0
arbitrary that there exists N0 ∈ N such that

|g(yn)| < κ

for all n > N0. We define x0 := yN0 and observe that x0 ≥ N0. For any x ≥ x0, we then
know that there exists n ≥ N0 such that x ∈ [n, n+ 1]. By definition of (yn)n∈N, we have

|g(x)| ≤ |g(yn)| < κ

as desired.

These results will now help us to verify the requirements of the verification theorem
for the HJB equation.

Proposition 2.9. The function V as given by equation (2.4) for t ∈ [0, T ) and by the
terminal condition of the PDE for t = T satisfies the requirements of the verification
theorem for the HJB equation, i.e. it holds that

(i) V is continuously differentiable in t and twice continuously differentiable in x on
[0, T )× R, i.e. V ∈ C1,2([0, T ),R),

(ii) V is continuous on [0, T ]× R, i.e. V ∈ C([0, T ],R),

(iii) V satisfies a quadratic growth condition, uniformly in t, i.e. there exists a constant
K > 0 such that

|V (t, x)| ≤ K(1 + |x|2) for all t ∈ [0, T ].

Proof. (i) This follows directly from part (i) of Proposition 2.7.
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(ii) First we note that the terminal condition given by the penalty function P is
continuous in x and that V is continuous on [0, T )×R by Proposition 2.7 (i). In Remark
2.5 (ii), we have stated the result from Evans that ν converges to the initial value function
as (t, x)→ (0, ξ0), i.e.

lim
(t,x)→(0,ξ0)

ν(t, x) = e−
P (ξ0)

cσ2 .

We perform the time reversion and define the time reversed solution ν̃ as in the proof of
Proposition 2.7 (i). For any ξT ∈ R, we then have

lim
(t,x)→(T,ξT )

ν̃(t, x) = e−
P (ξT )

cσ2 .

In addition, we have seen in the proof of Proposition 2.7 (i) that the transformation
function −cσ2 ln(·) is continuous on the image of (0,∞) × R under ν̃, therefore also the
transformed function V converges, i.e.

lim
(t,x)→(T,ξT )

V (t, x) = P (ξT )

for any ξT ∈ R. As V is continuous on [0, T )×R and P is continuous on R, it follows that
continuity holds on [0, T ]× R.

(iii) We first consider the case that t ∈ [0, T ). By Proposition 2.7 (ii), we then have
for any x ∈ R that 0 ≤ Vx(t, x) ≤ p. For fixed t and arbitrary x0 ∈ R, we apply the
fundamental theorem of calculus to obtain a linear growth bound for V as

|V (t, x)| =
∣∣∣∣∫ x

x0

Vx(t, y)dy + V (t, x0)

∣∣∣∣ ≤ ∫ x

x0

|Vx(t, x)|dy+ |V (t, x0)| ≤ p|x−x0|+ |V (t, x0)|.

It remains to show that this bound is uniform in t. As we may choose x0 arbitrarily, we
set x0 = e0. For t ∈ [0, T ), we then have

V (t, e0) = −cσ2 ln

1 +
(

1− erf
(
p
√
T−t√
2cσ

))
e
p2(T−t)
2c2σ2

2

.
Since the argument of the error function is non-negative and the range of the error function
is (−1, 1), we have

1 > erf

(
p
√
T − t√
2cσ

)
≥ 0

and therefore

0 < 1− erf

(
p
√
T − t√
2cσ

)
≤ 1.

By using that the exponential function is positive, this implies

1

2
≤

1 +
(

1− erf
(
p
√
T−t√
2cσ

))
e
p2(T−t)
2c2σ2

2
≤ 1 + e

p2T

2c2σ2

2
.

But as the logarithm is monotone, we have

−cσ2 ln

(
1

2

)
≥ −cσ2 ln

1 +
(

1− erf
(
p
√
T−t√
2cσ

))
e
p2(T−t)
2c2σ2

2

 ≥ −cσ2 ln

1 + e
p2T

2c2σ2

2

 ,
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so V (t, e0) is bounded by the constant

K := max


∣∣∣∣cσ2 ln

(
1

2

)∣∣∣∣ ,
∣∣∣∣∣∣cσ2 ln

1 + e
p2T

2c2σ2

2

∣∣∣∣∣∣
 .

Together with the above, we therefore obtain a linear bound of V in x, uniformly for all
t ∈ [0, T ). Now we consider V (T, x), which is given by the terminal condition of the PDE.
By the definition of the penalty function, this is linear for x ≥ e0 and constant for x ≤ e0

and therefore in particular linearly bounded in x. Hence by choosing the maximum slope
and the maximum constant of the two bounds, we have a linear bound of V in x, which
is uniform for all t ∈ [0, T ].

Proposition 2.10. Let X be a continuous stochastic process which is adapted to F . Then
for any t ∈ [0, T ], the control process given by u = (us)s∈[t,T ] = (u(s,Xs))s∈[t,T ] where

u(s, x) =
Vx(s, x)

c

satisfies u ∈ A(t).

Proof. For s ∈ [t, T ), u is continuous as a function in x by Proposition 2.7 (i). Since X is
adapted to F , it follows that the composition us = u(s,Xs) is Fs-measurable. For s = T ,
the function u(T, ·) is piecewise constant and thus measurable, so again the composition
u(T,XT ) is measurable with respect to FT . Therefore u is F-adapted; furthermore, X is
continuous and u is right-continuous as a function in t by Proposition 2.7 (i). Hence u is
progressively measurable.

From Proposition 2.7 (ii), we have that Vx is bounded and in particular Vx ≥ 0. Then
also u ≥ 0, so the image of u lies in U . Moreover, u is also bounded, i.e. for some constant
K we have |u(s, x)| ≤ K for any s ∈ [t, T ] and any x ∈ R. Thus

E

[∫ T

t
|us|2ds

]
= E

[∫ T

t
|u(s,Xs)|2ds

]
≤ T K2 <∞

and therefore u ∈ A(t).

For the simple model variant, we may conclude that the verification theorem holds
and the characteristic PDE indeed delivers the minimum costs and an optimal abatement
rate, as long as the SDE

dXt = −u(t,Xt)dt+G(t)dWt

has a unique solution which is continuous and adapted.

Remark 2.11. In the motivational heuristic derivation of the HJB equation above, we
have also assumed that G(s)Vx(s,Xs) is integrable with respect to Brownian motion such
that the integral is a martingale. This follows directly from boundedness of Vx as we have

E

[∫ T

0
(G(s)Vx(s,Xs))

2 d [W ]s

]
= E

[∫ T

0
G(s)2 Vx(s,Xs)

2ds

]
≤ p2

∫ T

0
G(s)2ds <∞,

by observing that G is continuous on [0, T ] for all model variants and thus Lebesgue
integrable.
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2.3.3 Time Reversion in the Brownian and Ornstein-Uhlenbeck Variant

In the Brownian model variant, we need to solve

Vt =
1

2c
ert (Vx)2 − 1

2
σ2 (T − t)2 Vxx

V (T, x) = e−rT P (x).

Again we perform a time reversion to turn the terminal condition into an initial condition.
We proceed as for the simple model variant: We set t = T − t̃ and define Ṽ (t̃, x) =
V (T − t̃, x). Then we have

Vt(t, x) = Vt(T − t̃, x) = −Vt̃(T − t̃, x) = −Ṽt̃(t̃, x)

and Vxx(T − t̃, x) = Ṽxx(t̃, x) and Vx(T − t̃, x) = Ṽx(t̃, x). The PDE therefore becomes

Ṽt̃ = − 1

2c
er(T−t̃)

(
Ṽx

)2
+

1

2
σ2 t̃2 Ṽxx

V (T, x) = Ṽ (0, x) = e−rT P (x).

We proceed similarly for the Ornstein-Uhlenbeck model: The characteristic PDE takes
the form

Vt =
1

2c
ert (Vx)2 − 1

2
σ2

(
1− e−θ(T−t)

)2
θ2

Vxx

V (T, x) = e−rT P (x),

which after time reversion becomes

Ṽt̃ = − 1

2c
er(T−t̃)

(
Ṽx

)2
+

1

2
σ2

(
1− e−θt̃

)2

θ2
Ṽxx

V (T, x) = Ṽ (0, x) = e−rT P (x).

Since in both cases we have time-dependent coefficients, we cannot apply the Cole-Hopf
transformation and therefore have to solve the PDE numerically. The method used for
this and the challenges arising are described in section 5.1.

With no analytical solution available, it is not possible to rigorously verify the re-
quirements of the verification theorem for the HJB equation. Instead, we will study the
numerical solution in section 6.1.

Summary

At the beginning of this section, we derived an analytical solution to the characteristic
PDE for the simple model variant. For this solution, we showed that some useful properties
hold, which we will apply below. Moreover, we showed that the analytical PDE solution
and the candidate optimal abatement rate derived from it satisfy the requirements of the
verification theorem for the HJB equation. It therefore only remains to show that the
SDE describing X has a unique continuous and adapted solution.

In case of the Brownian and Ornstein-Uhlenbeck model variants, it was not possible
to determine an analytical solution to the characteristic PDE; to prepare the PDE for a
numerical solution, we already performed a time reversion.
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2.4 Solution of the SDE

We are interested in the behavior of the emission trading system, in particular in the
resulting emissions and the development of allowance prices. By solving the SDE

dXt = −u(t,Xt)dt+G(t)dWt

we are able to simulate the process X and thus obtain the resulting emissions XT . Fur-
thermore we may then compute the allowance prices S(t,Xt) = c u(t,Xt). Additionally,
to verify the HJB equation by applying the verification theorem in Proposition 2.3, we
require that a unique solution to the SDE exists, as mentioned above. In this section we
will therefore derive results on existence and uniqueness of a solution to the SDE as well
as on the convergence of a simple numerical solution method.

2.4.1 Existence and Uniqueness of a Solution

We will restrict our considerations to the notion of a strong solution: This will allow us
to obtain a process X solving the SDE for a given Brownian motion W such that X is
adapted to the corresponding filtration F . In contrast to this, the existence of a weak
solution only guarantees that there exist processes (X̃, W̃ ) and a filtration F̃ such that X̃
is adapted to F̃ , W̃ is a Brownian motion with respect to F̃ and (X̃, W̃ ) solves the SDE.
Furthermore, we will work with the concept of strong uniqueness, meaning that any two
solutions of the SDE are indistinguishable.

For the remainder of this section we will consider an SDE of the form

dXt = b(t,Xt)dt+ σ(t,Xt)dWt,

where W denotes a standard Brownian motion. The standard result on strong existence
and uniqueness of a solution to an SDE requires the following assumption:

Assumption 2.12. Let T > 0 and let b : [0, T ] × Rd → Rd and σ : [0, T ] × Rd → Rd be
measurable functions. We assume that

‖b(t, x)‖2 + ‖σ(t, x)‖2 ≤ C2
(
1 + ‖x‖2

)
for x ∈ Rd, t ∈ [0, T ]

for some constant C and

‖b(t, x)− b(t, y)‖+ ‖σ(t, x)− σ(t, y)‖ ≤ D‖x− y‖ for all t ∈ [0, T ]

for a constant D.

The statement we give here is provided for instance by Øksendal [Øks98] and by
Karatzas and Shreve [KS98]9:

Theorem 2.13. Suppose that b and σ satisfy Assumption 2.12 and let Z be an Rd-valued
random variable, independent of W , with

E
[
‖Z‖2

]
<∞.

Then the stochastic differential equation

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, 0 ≤ t ≤ T, X0 = Z

9This can be found in Theorem 5.2.1 on page 66 in [Øks98] and in Theorem 2.9 on page 289 in [KS98].
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has a unique t-continuous solution X = (Xt)t∈[0,T ] which is adapted to the filtration FZ,W
generated by Z and W . Furthermore there exists a constant K such that

E
[
‖Xt‖2

]
≤ K(1 + E

[
‖Z‖2

]
) eKt for 0 ≤ t ≤ T. (2.6)

and in particular we have

E

[∫ T

0
‖Xt‖2dt

]
<∞.

Note on the Proof. For the proof we mainly refer to Øksendal [Øks98]. Since the relation
(2.6) is not given by Øksendal and its proof is only sketched by Karatzas and Shreve, we
will give a detailed proof of this further below in Lemma 2.24, where we will require this
part of the result.

As can be seen in Assumption 2.12, the above theorem on existence and uniqueness
requires Lipschitz continuity both for the drift and volatility term. In our case this is not
satisfied: The drift is not even continuous everywhere. More precisely, u is not continuous
in x for t = T . We may see this by looking at the final condition of the PDE given by

V (T, x) =

{
p (x− e0) if x > e0

0 if x ≤ e0

with derivative

Vx(T, x) =

{
p if x > e0

0 if x ≤ e0

and we obtain that

u(T, x) =

{
p
c erT if x > e0

0 if x ≤ e0.

As long as p > 0, this is clearly not continuous in x = e0.
Various authors have studied the existence and uniqueness of strong solutions under

weaker assumptions. Zvonkin [Zvo74] introduces a transformation that removes the drift
coefficient and thus shows that in one dimension, it suffices for the drift to be measurable
and bounded to obtain a unique strong solution. For this, he imposes stronger requirements
on the volatility, in particular, the volatility needs to be bounded away from zero uniformly
in both its arguments.

The approach of Zvonkin has been extended to multiple dimensions for example by
Veretennikov [Ver81] and Zhang [Zha05]. Both only make weak assumptions on the drift,
but stronger assumptions on the volatility, one of which is the requirement that the volatil-
ity is uniformly non-degenerate, i.e. they impose that there exists a constant C > 0 such
that

σ(t, x)σ(t, x)T ≥ C Id for any t ∈ R+ and any x ∈ Rd,

where σ denotes the volatility and Id is the identity matrix in d dimensions. Veretennikov
extends his results further by loosening the non-degeneracy condition [Ver84]: He splits
the SDE into two possibly multi-dimensional SDEs, where the volatility is allowed to be
degenerate for one of these SDEs as long as the corresponding drift is Lipschitz continuous
and all coefficient functions are Lipschitz continuous in the corresponding variables.

A similar approach is presented by Leobacher, Szölgyenyi and Thonhauser [LST15].
They allow the drift to be discontinuous in the first variable on the hyperplane {x1 = 0}
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and impose a differentiability condition elsewhere. The non-degeneracy condition for the
volatility then reduces to the requirement that

(
σ σT

)
11

needs to be bounded away from
zero uniformly. Under some further assumptions Leobacher et al. show that a unique strong
solution exists by following a similar transformation approach as Zvonkin. Notably, they
only allow for time-homogeneous SDEs of the form

dXt = b(Xt)dt+ σ(Xt)dWt.

They further extend this result by allowing the discontinuity to occur on a hypersurface.
In that case the non-degeneracy condition is replaced by the requirement that in each
point the volatility is not parallel to the discontinuity surface. Shardin and Szölgyenyi
[SS16] transfer this result to time-inhomogeneous SDEs by introducing a transformation
method that allows them to transform a time-inhomogeneous SDE to a time-homogeneous
SDE.

Halidias and Kloeden [HK06] also study time-homogeneous SDEs, but take an entirely
different approach: They introduce the notion of an upper and a lower solution of the
SDE and show that if such solutions exist and if furthermore the drift is increasing, the
volatility is Lipschitz continuous and both satisfy a linear growth bound, then a strong
solution exists. They do not prove uniqueness.

For the SDE we consider here, the drift is bounded and measurable, which allows
us to apply the result of Zvonkin [Zvo74] in case of the simple model but not for the
Brownian and the Ornstein-Uhlenbeck variant since σ(t, x) → 0 for t → T in both these
model variants. The extensions to multiple dimensions and in particular the result of
Zhang [Zha05] might be of interest in section 3.2, where we will encounter a volatility with
σ : R+ × R2 → R2: In contrast to Vetennikov [Ver81], Zhang allows the volatility matrix
to be non-quadratic. Again, this will only work for the simple model. The results of
Leobacher et al. [LST15] and Shardin and Szölgyenyi [SS16] also cannot easily be applied
to the Brownian and Ornstein-Uhlenbeck model variant, as a straightforward choice to
describe the discontinuity surface violated the non-parallelity requirement. The approach
of Halidias and Kloeden [HK06] clearly cannot be applied here, as it only allows for time-
homogeneous SDEs. In addition, the requirement that an upper and a lower solution
exists at first glance seems to be challenging to verify. Interestingly, the example they
consider, the Heaviside function as the drift, is very similar to the drift of our SDE at final
time, where the discontinuity occurs. Thus if the drift was constant in time and given by
the drift at final time, we could easily find an upper and lower solution as Halidias and
Kloeden do for their example.

Notably, the discontinuity that prevents us from using standard results only occurs at
final time. In our approach, we therefore exploit this specific structure and thus are able
to obtain an existence and uniqueness results that may apply to all model variants. We
refer back to the standard result as e.g. presented by Øksendal [Øks98] and formulate a
slightly modified assumption that requires Lipschitz-continuity only on [0, T ); at the same
time we require boundedness by a constant instead of a linear growth bound as present in
the standard result. Since we will formulate our result in a multi-dimensional setting, we
will work with the Euclidean norm, which in the following will be denoted by ‖ · ‖.

Assumption 2.14. Let T > 0 and let b : [0, T ] × Rd → Rd and σ : [0, T ] × Rd → Rd be
measurable functions. We assume that

‖b(t, x)‖+ ‖σ(t, x)‖ ≤ C for x ∈ Rd, t ∈ [0, T ] (2.7)
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for some constant C. Furthermore we require: For all ε > 0 there exists a constant Dε

such that

‖b(t, x)− b(t, y)‖+ ‖σ(t, x)− σ(t, y)‖ ≤ Dε‖x− y‖ for all t ∈ [0, T − ε]. (2.8)

Under these assumptions we may show that the SDE

dXt = b(t,Xt)dt+ σ(t,Xt)dWt

has a unique solution. Note that although b and σ are d-dimensional, W is still assumed to
be one-dimensional. The SDE above is therefore an equation of Rd-valued vectors, which
we could rewrite as a system of SDEs as

dXt,1 = b1(t,Xt,1, Xt,2, . . . , Xt,d)dt+ σ1(t,Xt,1, Xt,2, . . . , Xt,d)dWt

dXt,2 = b2(t,Xt,1, Xt,2, . . . , Xt,d)dt+ σ2(t,Xt,1, Xt,2, . . . , Xt,d)dWt

...
...

...

dXt,d = bd(t,Xt,1, Xt,2, . . . , Xt,d)dt+ σd(t,Xt,1, Xt,2, . . . , Xt,d)dWt.

To simplify notation, in the following we will only use the vector equation and work with
the Rd-valued functions b, σ and with the Rd-valued process X.

Theorem 2.15. Suppose that b and σ satisfy Assumption 2.14 and let Z be an Rd-valued
random variable, independent of W , such that

E
[
‖Z‖2

]
<∞.

Then the stochastic differential equation

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, 0 ≤ t ≤ T, X0 = Z (2.9)

has a unique t-continuous solution X = (Xt)t∈[0,T ] which is adapted to the filtration FZ,W
generated by Z and W and we have

E

[∫ T

0
‖Xt‖2dt

]
<∞. (2.10)

Before we may prove this, we state two lemmata, which we will apply in this proof as
well as in the proofs of section 2.4.2.

Lemma 2.16. For N ∈ N and xi ∈ Rd with i = 1, . . . , N we have that

∥∥∥ N∑
i=1

xi

∥∥∥2
≤ N

N∑
i=1

‖xi‖2.

Proof. We first show the claim in the one-dimensional case, i.e. we assume that xi ∈ R.
From 0 ≤ (xi − xj)2 = x2

i − 2xixj + x2
j we have 2xixj ≤ x2

i + x2
j for any i and j and
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therefore(
N∑
i=1

xi

)2

=
N∑
i=1

x2
i +

N−1∑
i=1

N∑
j=i+1

2xixj

≤
N∑
i=1

x2
i +

N−1∑
i=1

N∑
j=i+1

(
x2
i + x2

j

)
=

N∑
i=1

x2
i +

N−1∑
i=1

N∑
j=i+1

x2
i +

N∑
j=2

j−1∑
i=1

x2
j

=

N∑
i=1

x2
i +

N−1∑
i=1

(N − i)x2
i +

N∑
j=2

(j − 1)x2
j

=
N∑
i=1

x2
i +

N−1∑
i=2

(N − i)x2
i +

N−1∑
i=2

(i− 1)x2
i + (N − 1)x2

1 + (N − 1)x2
N

= N

N∑
i=1

x2
i .

Then for xi ∈ Rd we directly obtain∥∥∥ N∑
i=1

xi

∥∥∥2
=

d∑
j=1

(
N∑
i=1

xi,j

)2

≤
d∑
j=1

N
N∑
i=1

x2
i,j = N

N∑
i=1

d∑
j=1

x2
i,j = N

N∑
i=1

‖xi‖2.

Lemma 2.17. Let f : R→ R be an integrable function. Then(∫ t

s
f(r)dr

)2

≤ (t− s)
∫ t

s
f(r)2dr.

Furthermore, for an integrable function g : R→ Rd we have∥∥∥∫ t

s
g(r)dr

∥∥∥ ≤ (t− s)
∫ t

s
‖g(r)‖2dr.

Proof. By applying Jensen’s inequality on the probability space ([s, t],B([s, t]), 1
t−sλ) to

the function f we have (
1

t− s

∫ t

s
f(r)dr

)2

≤ 1

t− s

∫ t

s

(
f(r)

)2
dr.

Therefore it follows that(∫ t

s
f(r)dr

)2

=

(
1

t− s

∫ t

s
(t− s) · f(r)dr

)2

≤ 1

t− s

∫ t

s
(t− s)2 · f(r)2dr = (t− s)

∫ t

s
f(r)2dr.

We apply this to show the second part of the claim:∥∥∥∫ t

s
g(r)dr

∥∥∥2
=

d∑
j=1

(∫ t

s
gj(r)dr

)2

≤
d∑
j=1

(t− s)
∫ t

s
gj(r)

2dr = (t− s)
∫ t

s

d∑
j=1

gj(r)
2dr

= (t− s)
∫ t

s
‖g(r)‖2dr.
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Remark 2.18. In a similar manner we show that the Itô-Isometry also can be applied to
the square of the Euclidean norm:

E

[∥∥∥ ∫ t

s
g(r)dWr

∥∥∥2
]

= E

 d∑
j=1

(∫ t

s
gj(r)dWr

)2
 =

d∑
j=1

E

[(∫ t

s
gj(r)dWr

)2
]

=
d∑
j=1

E

[∫ t

s
gj(r)

2dr

]
= E

∫ t

s

d∑
j=1

gj(r)
2dr

 = E

[∫ t

s
‖g(r)‖2dr

]
.

We will mainly use this formulation of the Itô-Isometry in the proofs below.

In the proof of the theorem we apply the standard result for existence and uniqueness
of a solution to an SDE as stated in Theorem 2.13. Some arguments in this proof are
closely aligned to the proof by Øksendal in [Øks98]10 and we will therefore also make use
of some results contained in his proof.

Proof of Theorem 2.15. Let ε > 0 and fix T ′ = T − ε. Then due to the boundedness and
Lipschitz continuity of b and σ on [0, T ′] as given by Assumption 2.14, we obtain a unique
solution Xt on [0, T ′] by applying the standard result in Theorem 2.13. This solution does
not depend on Dε and therefore not on the choice of ε, hence if we consider ε > ε̃ and the
corresponding solutions Xε

t and X ε̃
t , we have with uniqueness of the solution that Xε

t = X ε̃
t

almost surely for all t ∈ [0, T − ε]. We then let ε→ 0 and obtain a unique solution Xt on
[0, T ). It remains to consider t = T .

We apply the iterative formula as in Øksendal, i.e. we define Y
(0)
t = X0 and

Y
(k+1)
t = X0 +

∫ t

0
b
(
s, Y (k)

s

)
ds+

∫ t

0
σ
(
s, Y (k)

s

)
dWs. (2.11)

By the proof of Øksendal, we know that on any interval of the form [0, T − δ], the process
Y (k+1) converges uniformly and in L2 to a process X which satisfies the SDE in equation

(2.9). We aim to show that also for t = T we have convergence of Y
(k+1)
T in L2 such

that the limit satisfies the SDE. Furthermore, we will show that the resulting process
X = (Xt)t∈[0,T ] is continuous in T and that this solution is unique.

(i) Show convergence in L2: Let δ > 0. Then by applying Lemma 2.17, the Itô-
Isometry and the relation ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2 given by Lemma 2.16, we have:

E
[∥∥Y (n)

T − Y (n)
T−δ
∥∥2
]

= E

[∥∥∥ ∫ T

T−δ
b
(
s, Y (n−1)

s

)
ds+

∫ T

T−δ
σ
(
s, Y (n−1)

s

)
dWs

∥∥∥2
]

≤ 2 δ E

[∫ T

T−δ

∥∥b(s, Y (n−1)
s

)∥∥2
ds

]
+ 2 E

[∫ T

T−δ

∥∥σ (s, Y (n−1)
s

)∥∥2
ds

]
≤ 2 δ E

[∫ T

T−δ
C2ds

]
+ 2 E

[∫ T

T−δ
C2ds

]
= 2 δ2C2 + 2 δ C2 = 2 δ C2 (1 + δ) < 4C2 δ

by using the boundedness as given by equation (2.7) in Assumption 2.14 and assuming
δ < 1.

10This can be found on pages 67–70 of [Øks98].
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Now let ε > 0 arbitrary and set δ = ε/36C2. Since Y
(n)
T−δ converges in L2, we know that

it is also a Cauchy sequence in L2. Therefore there exists an N ∈ N such that

E
[∥∥Y (m)

T−δ − Y
(n)
T−δ
∥∥2
]
<
ε

9
∀m,n > N.

Thus with ‖a+ b+ c‖2 ≤ 3‖a‖2 + 3‖b‖2 + 3‖c‖2 as given by Lemma 2.16 and the results
from above we obtain

E
[∥∥Y (m)

T − Y (n)
T

∥∥2
]

= E
[∥∥Y (m)

T − Y (m)
T−δ + Y

(m)
T−δ − Y

(n)
T−δ + Y

(n)
T−δ − Y

(n)
T

∥∥2
]

≤ 3 E
[∥∥Y (m)

T − Y (m)
T−δ
∥∥2
]

+ 3 E
[∥∥Y (m)

T−δ − Y
(n)
T−δ
∥∥2
]

+ 3 E
[∥∥Y (n)

T−δ − Y
(n)
T

∥∥2
]

< 12C2 δ +
ε

3
+ 12C2 δ

=
ε

3
+
ε

3
+
ε

3
= ε.

Hence Y
(n)
T also is a Cauchy sequence in L2 and thus converges in L2 to a limit XT .

From L2-convergence, we obtain convergence in probability and therefore the existence

of a subsequence Y
(nk)
T that converges P-a.s. to XT . As we know that Y

(n)
T is FZ,WT -

measurable, this implies that also XT is FZ,WT -measurable since the a.s.-limit of a sequence
of measurable random variables is again measurable.

(ii) We proceed to show that X satisfies the SDE as given by equation (2.9) on [0, T ]
and again we only need to consider t = T . First we look at the integral of the drift term
b. Let ε > 0 arbitrary. We set δ =

√
ε/3C and again apply the inequalities in Lemma 2.16

and Lemma 2.17. Furthermore, we use the boundedness and Lipschitz continuity of b on
[0, T − δ] given by Assumption 2.14 to compute

E

[∥∥∥ ∫ T

0
b
(
s, Y (n)

s

)
ds−

∫ T

0
b (s,Xs) ds

∥∥∥2
]

= E

[∥∥∥ ∫ T−δ

0

(
b
(
s, Y (n)

s

)
− b (s,Xs)

)
ds+

∫ T

T−δ
b
(
s, Y (n)

s

)
ds−

∫ T

T−δ
b (s,Xs) ds

∥∥∥2
]

≤ 3 E

[∥∥∥ ∫ T−δ

0

(
b
(
s, Y (n)

s

)
− b (s,Xs)

)
ds
∥∥∥2
]

+ 3 E

[∥∥∥ ∫ T

T−δ
b
(
s, Y (n)

s

)
ds
∥∥∥2
]

+ 3 E

[∥∥∥ ∫ T

T−δ
b (s,Xs) ds

∥∥∥2
]

≤ 3 E

[
(T − δ)

∫ T−δ

0

∥∥b(s, Y (n)
s

)
− b (s,Xs)

∥∥2
ds

]
+ 3 E

[
δ

∫ T

T−δ

∥∥b(s, Y (n)
s

)∥∥2
ds

]
+ 3 E

[
δ

∫ T

T−δ

∥∥b (s,Xs)
∥∥2

ds

]
≤ 3 (T − δ)D2

δ E

[∫ T−δ

0

∥∥Y (n)
s −Xs

∥∥2
ds

]
+ 3 δ2C2 + 3 δ2C2.

From L2-convergence of Y
(n)
s on [0, T − δ], we know that we have E

[
‖Y (n)

s −Xs‖2
]
→ 0

as n→∞. Furthermore, by definition of Y
(n)
t (see equation 2.11) and with boundedness
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of b and σ we have

E
[∥∥Y (n)

t

∥∥2
]
≤ 3 E

[
‖X0‖2

]
+ 3 E

[∥∥∥ ∫ t

0
b
(
s, Y (n−1)

s

)
ds
∥∥∥2
]

+ 3 E

[∥∥∥ ∫ t

0
σ
(
s, Y (n−1)

s

)
dWs

∥∥∥2
]

≤ 3 E
[
‖X0‖2

]
+ 3 tE

[∫ t

0

∥∥b(s, Y (n−1)
s

)∥∥2
ds

]
+ 3 E

[∫ t

0

∥∥σ (s, Y (n−1)
s

)∥∥2
ds

]
≤ 3 E

[
‖X0‖2

]
+ 3 t2C2 + 3 t C2 (2.12)

and therefore

E
[∥∥Y (n)

t −Xt

∥∥2
]
≤ 2 E

[∥∥Y (n)
t

∥∥2
]

+ 2 E
[∥∥Xt

∥∥2
]

≤ 6 E
[
‖X0‖2

]
+ 6 t2C2 + 6 t C2 + 2 E

[
‖Xt‖2

]
.

The right hand-side is integrable with respect to the Lebesgue measure on [0, T − δ]: By

assumption, E
[
‖X0‖2

]
< ∞ and since this is constant in t, also

∫ T−δ
0 E

[
‖X0‖2

]
dt < ∞.

Moreover, with Tonelli’s theorem

∫ T−δ

0
E
[
‖Xt‖2

]
dt = E

[∫ T−δ

0
‖Xt‖2dt

]
<∞

by the existence and uniqueness result of Theorem 2.13. Thus we have found a dominating
function and apply the dominated convergence theorem to obtain

lim
n→∞

E

[∫ T−δ

0

∥∥Y (n)
s −Xs

∥∥2
ds

]
= lim

n→∞

∫ T−δ

0
E
[∥∥Y (n)

s −Xs

∥∥2
]

ds

=

∫ T−δ

0
lim
n→∞

E
[∥∥Y (n)

s −Xs

∥∥2
]

ds = 0.

Hence there exists N ∈ N such that

E

[∫ T−δ

0

∥∥Y (n)
s −Xs

∥∥2
ds

]
<

ε

9D2
δ (T − δ)

for all n > N.

This delivers

E

[∥∥∥ ∫ T

0
b
(
s, Y (n)

s

)
ds−

∫ T

0
b (s,Xs) ds

∥∥∥2
]
≤ ε

3
+
ε

3
+
ε

3
= ε for all n > N.

We now turn to the stochastic integral of the SDE. Again we choose ε > 0 arbitrary and
this time we set δ = ε/9C2. Then again with Lemma 2.16 as well as boundedness and

67



CHAPTER 2. ONE-PERIOD MODEL

Lipschitz continuity of σ given by Assumption 2.14

E

[∥∥∥ ∫ T

0
σ
(
s, Y (n)

s

)
dWs −

∫ T

0
σ (s,Xs) dWs

∥∥∥2
]

= E

[∥∥∥ ∫ T−δ

0

(
σ
(
s, Y (n)

s

)
− σ (s,Xs)

)
dWs

+

∫ T

T−δ
σ
(
s, Y (n)

s

)
dWs −

∫ T

T−δ
σ (s,Xs) dWs

∥∥∥2
]

≤ 3 E

[∥∥∥ ∫ T−δ

0

(
σ
(
s, Y (n)

s

)
− σ (s,Xs)

)
dWs

∥∥∥2
]

+ 3 E

[∥∥∥ ∫ T

T−δ
σ
(
s, Y (n)

s

)
dWs

∥∥∥2
]

+ 3 E

[∥∥∥ ∫ T

T−δ
σ (s,Xs) dWs

∥∥∥2
]

= 3 E

[∫ T−δ

0

∥∥σ (s, Y (n)
s

)
− σ (s,Xs)

∥∥2
ds

]
+ 3 E

[∫ T

T−δ

∥∥σ (s, Y (n)
s

)∥∥2
ds

]
+ 3 E

[∫ T

T−δ

∥∥σ (s,Xs)
∥∥2

ds

]
≤ 3D2

δ E

[∫ T−δ

0

∥∥Y (n)
s −Xs

∥∥2
ds

]
+ 3 δ C2 + 3 δ C2.

We choose N ∈ N such that we have

E

[∫ T−δ

0

∥∥Y (n)
s −Xs

∥∥2
ds

]
<

ε

9D2
δ

for all n > N

and obtain

E

[∥∥∥ ∫ T

0
σ
(
s, Y (n)

s

)
dWs −

∫ T

0
σ (s,Xs) dWs

∥∥∥2
]
<
ε

3
+
ε

3
+
ε

3
= ε for all n > N.

Thus we have shown that

X0 +

∫ T

0
b
(
s, Y (n)

s

)
ds+

∫ T

0
σ
(
s, Y (n)

s

)
dWs −→ X0 +

∫ T

0
b (s,Xs) ds+

∫ T

0
σ (s,Xs) dWs

in L2. As we also have Y
(n)
T −→ XT in L2, it follows from the iterative formula (2.11) and

the uniqueness of the L2-limit that

XT = X0 +

∫ T

0
b(s,Xs)ds+

∫ T

0
σ(s,Xs)dWs

and therefore XT satisfies the SDE in equation (2.9).

(iii) It still remains to show that Xt is continuous on [0, T ]. We have that∫ t

0
σ(s,Xs)dWs

has continuous paths by definition of the stochastic integral. To obtain continuity of the
drift term we view the integrator s as a continuous process of finite variation; then the
continuity of the integral follows from the corresponding property of the Lebesgue-Stieltjes
integral. As the right-hand side of the integral equation for X is continuous, continuity of
X on [0, T ] follows.
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(iv) We now derive the uniqueness of the solution from continuity: As argued at the
beginning of this proof, the solution Xt on [0, T ) is unique. We now fix ω ∈ Ω. As Xt(ω)
is continuous in [0, T ], we have

XT (ω) = lim
t→T

Xt(ω)

and since Xt on [0, T ) is a unique solution, XT also needs to be unique.

(v) Finally, we show that X is square integrable, i.e. that

E

[∫ T

0

∥∥Xt

∥∥2
dt

]
<∞.

From equation (2.12), we know that Y
(n)
t is bounded uniformly in t on [0, T ] since

E
[∥∥Y (n)

t

∥∥2
]
≤ 3 E

[
‖X0‖2

]
+ 3T 2C2 + 3T C2 =: K,

where we have by assumption that E
[
‖X0‖2

]
<∞. Furthermore, we know that a subse-

quence
(
Y

(nk)
t

)
k∈N

converges almost surely to Xt. Then by Fatou’s Lemma

E
[∥∥Xt

∥∥2
]

= E

[
lim
k→∞

∥∥Y (nk)
t

∥∥2
]
≤ lim inf

k→∞
E
[∥∥Y (nk)

t

∥∥2
]
≤ K.

Thus E
[
‖Xt‖2

]
is bounded uniformly in t, so with Tonelli’s Theorem, in particular we

have

E

[∫ T

0
‖Xt‖2dt

]
=

∫ T

0
E
[
‖Xt‖2

]
dt <∞.

2.4.2 Convergence of the Euler-Maruyama-Scheme

The complex dependency of the SDE on X, which is in particular not linear, does not
allow for the application of common analytical solution approaches. Hence, we will need
to apply a numerical method to solve the SDE. To this end, we introduce the Euler-
Maruyama scheme, named after Gisiro Maruyama, who was one of the first to analyze
this method [Mar55]. It provides an extension to SDEs of the well-known Euler scheme
for ordinary differential equations and is explained in detail e.g. by Kloeden and Platen
[KP92].

Definition 2.19. We consider a process X = (Xt)t∈[0,T ] satisfying the SDE

dXt = b(t,Xt)dt+ σ(t,Xt)dWt

and a partition 0 = t0 < t1 < . . . < tN = T of the interval [0, T ]. Then the Euler-
Maruyama scheme is given by

Y0 = X0 and Yn+1 = Yn + b(tn, Yn)∆n + σ(tn, Yn)∆Wn, (2.13)

where ∆n = tn+1− tn denotes the size of the n-th time step and ∆Wn = Wtn+1 −Wtn the
corresponding increment of Brownian motion.

In order to judge how well the Euler-Maruyama scheme approximates the solution of
an SDE, we use the notion of strong convergence.
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Definition 2.20. For a given partition, let δ = maxn ∆n be its maximum step size and let
Y δ(T ) denote the approximation result of the Euler-Maruyama scheme at time T . Then
we say that the Euler-Maruyama scheme converges strongly to X at time T if

lim
δ→0

E
[∥∥XT − Y δ(T )

∥∥] = 0.

Under the same assumptions as for the standard results on existence and uniqueness
of a solution, it is well known that the Euler-Maruyama scheme converges strongly, as can
be seen for example in [KP92] by Kloeden and Platen for time-homogeneous SDEs. Again
the discontinuity of the drift in the SDE we consider prevents us from applying this result.
As in the case of existence and uniqueness of a solution, more general results are available,
which relax the requirement of the drift being Lipschitz continuous. Gyöngy and Krylov
[GK96] assume that either the drift and the volatility are continuous or the volatility is
non-degenerate and locally Hölder continuous: A function f is Hölder continuous if there
exists a constant C and α ∈ (0, 1] such that

‖f(x)− f(y)‖ ≤ C‖x− y‖α for all x, y ∈ Rd.

Under some further assumptions, Gyöngy and Krylov show that the Euler-Maruyama
scheme then converges in probability. Gyöngy [Gyö98] extends this result: He additionally
assumes that the drift b locally satisfies a one-sided Lipschitz condition, as given by

〈x− y, b(t, x)− b(t, y)〉 ≤ K‖x− y‖2 for any t ∈ R+ and any x, y ∈ Rd,

and shows that under otherwise similar assumptions the Euler-Maruyama scheme also
converges almost surely. However, neither of these modes of convergence, in probability
or almost surely, suffices to guarantee strong convergence in the sense of Definition 2.20.

Marion, Mao and Renshaw [MMR02] obtain a similar result for time-homogeneous
SDEs. They assume that both the drift and the volatility are locally Lipschitz continuous
and make a further assumption similar to that of Gyöngy and Krylov to show conver-
gence in probability. Higham, Mao and Stuart [HMS03] also assume that the drift and
the volatility are locally Lipschitz continuous and furthermore assume that both are p-
integrable for some p > 2. In this setting, they prove that the Euler-Maruyama scheme
converges strongly.

Ngo and Taguchi [NT16] assume that the drift is one-sided Lipschitz in space and
that each component belongs to a class of bounded functions satisfying quite technical
assumptions. Furthermore, they assume that the volatility is non-degenerate and that
both coefficient functions are Hölder continuous in time. These assumptions allow them
to derive the strong convergence rate, separately for one dimension and for multiple di-
mensions, thus in particular proving strong convergence. In a subsequent work [NT17]
they focus on one-dimensional time-homogeneous SDEs, which allows them to drop the
requirement of one-sided Lipschitz continuity.

Similar to their result on existence of a solution, Halidias and Kloeden [HK08] again
assume that the SDE has an upper and a lower solution. Furthermore, they still assume
that the drift is increasing, the volatility is Lipschitz continuous and both satisfy a linear
growth bound. Additionally, they now require the drift to be continuous from below.
Under these assumptions, they prove strong convergence of the Euler-Maruyama scheme
to the solution of a time-homogeneous SDE.

Leobacher and Szölgyenyi [LS18] also consider a time-homogeneous SDE and as for
their existence and uniqueness result, they aim to relax the requirement of non-degeneracy.
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They introduce the notion of a piecewise Lipschitz function in multiple dimensions and
require the drift only to be piecewise Lipschitz and bounded. The volatility needs to be
Lipschitz continuous and bounded. Under some further very technical assumptions, they
show that the SDE has a unique strong solution and that the Euler-Maruyama scheme
converges strongly.

In the case of the SDE considered here, many of these results are not applicable, as they
only apply to time-homogeneous SDEs (Marion et al. [MMR02], Higham et al. [HMS03],
Halidias and Kloeden [HK08] and Leobacher and Szölgyenyi [LS18]). Also for several
results, the drift of our SDE is still not regular enough, as it is not even locally Lipschitz
continuous, as required in the work by Marion et al. and Higham et al., and in particular
not continuous, as needed for some results by Gyöngy [Gyö98] and Gyöngy and Krylov
[GK96]. However, the drift satisfies the one-sided Lipschitz condition, since this requires
the drift to be Lipschitz continuous only where it is increasing, but the discontinuity is in
fact a downward jump. Therefore, if we manage to verify the other conditions of Gyöngy
and Ngo and Taguchi, we may apply their results to the simple model variant of our SDE.
Again in case of the Brownian and Ornstein-Uhlenbeck model variant, this is no longer
possible.

In order to show convergence under the conditions of our model variants, we will again
make use of the fact that the discontinuity only occurs at final time. We will refer back to
the standard result by Kloeden and Platen [KP92] and adapt it to our setting. However,
their proof only covers the case of a time-homogeneous SDE. Therefore we will first modify
their approach slightly to show that their result also holds for time-inhomogeneous SDEs.
To this end we need to introduce the assumption that both coefficient functions are Hölder
continuous in time with α = 1

2 in addition to the standard assumptions, namely a linear
growth condition and Lipschitz continuity in x.

Assumption 2.21. Let T > 0 and let b : [0, T ] × Rd → Rd and σ : [0, T ] × Rd → Rd be
measurable functions. We assume that

‖b(t, x)‖2 + ‖σ(t, x)‖2 ≤ C2
(
1 + ‖x‖2

)
for x ∈ Rd, t ∈ [0, T ] (2.14)

for some constant C. Furthermore, we require

‖b(t, x)− b(t, y)‖+ ‖σ(t, x)− σ(t, y)‖ ≤ D1‖x− y‖ for all t ∈ [0, T ] (2.15)

and

‖b(t, x)− b(s, x)‖+ ‖σ(t, x)− σ(s, x)‖ ≤ D2|t− s|
1
2 for all x ∈ Rd (2.16)

for constants D1 and D2.

Based on these assumptions we now show that strong convergence holds for the Euler-
Maruyama scheme as defined above; this result is well-known but rarely proven for a
time-inhomogeneous SDE.

Theorem 2.22. Let T > 0 and suppose that b and σ satisfy Assumption 2.21. Let
(Xt)t∈[0,T ] denote the solution of

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, 0 ≤ t ≤ T, (2.17)

where X0 is F0-measurable and integrable. Then the Euler-Maruyama scheme converges
strongly to X.
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For the proof we require a specific version of Grönwall’s inequality, for which we will
also provide a proof, since a detailed proof of similar variants is to the best of our knowledge
rarely given.

Lemma 2.23. Let Z be a Borel-measurable function which is bounded on bounded intervals
and let a, b ∈ R+ be positive constants. If the integral inequality

Z(t) ≤ a+ b

∫ t

0
Z(s)ds

is satisfied for any t ≥ 0, then it holds that

Z(t) ≤ a ebt.

Proof. This proof is motivated by the proof given by Ethier and Kurtz [EK86] but provides
more details and includes a rigorous treatment of the remainder Rn introduced below. We
define s0 = t and claim that we have

Z(t) ≤ a+ a

n−1∑
k=0

bk+1

∫ s0

0
· · ·
∫ sk

0
dsk+1 · · · ds1 +Rn, (2.18)

where we define the remainder Rn as

Rn := bn+1

∫ s0

0
· · ·
∫ sn

0
Z(sn+1)dsn+1 · · · ds1.

We show this by induction: For n = 0, we obtain

Z(t) ≤ a+ b

∫ s0

0
Z(s1)ds1,

which is simply the assumed integral inequality since t = s0. We now pass from n to n+1.
We apply the integral inequality to Rn:

Rn = bn+1

∫ s0

0
· · ·
∫ sn

0
Z(sn+1)dsn+1 · · · ds1

≤ bn+1

∫ s0

0
· · ·
∫ sn

0

(
a+ b

∫ sn+1

0
Z(sn+2)dsn+2

)
dsn+1 · · · ds1

= a bn+1

∫ s0

0
· · ·
∫ sn

0
dsn+1 · · · ds1 + bn+2

∫ s0

0
· · ·
∫ sn+1

0
Z(sn+2)dsn+2 · · · ds1

= a bn+1

∫ s0

0
· · ·
∫ sn

0
dsn+1 · · · ds1 +Rn+1.

With the induction hypothesis we have

Z(t) ≤ a+ a
n−1∑
k=0

bk+1

∫ s0

0
· · ·
∫ sk

0
dsk+1 · · · ds1 +Rn

≤ a+ a

n−1∑
k=0

bk+1

∫ s0

0
· · ·
∫ sk

0
dsk+1 · · · ds1 + a bn+1

∫ s0

0
· · ·
∫ sn

0
dsn+1 · · · ds1 +Rn+1

= a+ a

n∑
k=0

bk+1

∫ s0

0
· · ·
∫ sk

0
dsk+1 · · · ds1 +Rn+1,
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which proves that the inequality (2.18) holds.
Next, we aim to evaluate the multiple integral in the inequality above and claim that∫ s0

0
· · ·
∫ sk

0
dsk+1 · · · ds1 =

1

(k + 1)!
sk+1

0 . (2.19)

Again we show this by induction, this time over the number of integralsK (thus K = k+1).
For K = 1, we have ∫ s0

0
ds1 = s0,

which clearly holds. To pass from K to K + 1, we consider∫ s0

0
· · ·
∫ sk+1

0
dsk+2 · · · ds1 =

∫ s0

0

(∫ s1

0
· · ·
∫ sk+1

0
dsk+2 · · · ds2

)
ds1.

The term ∫ s1

0
· · ·
∫ sk+1

0
dsk+2 · · · ds2

consists of K integrals, therefore we may apply the induction hypothesis and obtain∫ s0

0
· · ·
∫ sk+1

0
dsk+2 · · · ds1 =

∫ s0

0

1

(k + 1)!
dsk+1

1

=

[
1

(k + 2)(k + 1)!
sk+2

1

]s0
0

=
1

(k + 2)!
sk+2

0 ,

which proves the claim. Then we have

a
n−1∑
k=0

bk+1

∫ s0

0
· · ·
∫ sk

0
dsk+1ds1 = a

n−1∑
k=0

bk+1 1

(k + 1)!
sk+1

0 = a
n∑
k=1

bk
1

k!
sk0.

Furthermore, note that by boundedness of Z on the interval [0, t], we have

Rn(t) = bn+1

∫ s0

0
· · ·
∫ sn

0
Z(sn+1)dsn+1 · · · ds1

≤ C bn+1

∫ s0

0
· · ·
∫ sn

0
dsn+1 · · · ds1 = C bn+1 1

(n+ 1)!
sn+1

0

for some constant C, where we used the result in equation (2.19).
Combining our results so far yields

Z(t) ≤ a+ a

n∑
k=1

bk
1

k!
sk0 +Rn

≤ a
n∑
k=0

bk
1

k!
tk + C bn+1 1

(n+ 1)!
tn+1 −→ a ebt as n→∞

by the series representation of the exponential function and since bn+1 1
(n+1)! t

n+1 converges
to zero.

Furthermore, we will now require the square integrability of the SDE solution as stated
already in the standard result on existence and uniqueness in Theorem 2.13.
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Lemma 2.24. Let X be the solution of the SDE as given by Theorem 2.13 and X0 = Z
with E

[
‖Z‖2

]
< ∞. Then there exists a constant K̃ depending only on the constants D

and T such that

E
[
‖Xt‖2

]
≤ K(1 + E

[
‖Z‖2

]
) eKt for 0 ≤ t ≤ T.

Proof. As in the proof of Theorem 2.15, we apply the iterative formula defined by Y
(0)
t =

X0 and

Y
(k+1)
t = X0 +

∫ t

0
b
(
s, Y (k)

s

)
ds+

∫ t

0
σ
(
s, Y (k)

s

)
dWs.

Then with the Lemmata 2.16, 2.17 and the Itô-Isometry and by applying the growth
bound in Assumption 2.12, we compute

E
[∥∥Y (k+1)

t

∥∥] ≤ 3

(
E
[
‖Z‖2

]
+ tE

[∫ t

0

∥∥b(s, Y (k)
s

)∥∥2
ds

]
+ E

[∫ t

0

∥∥σ (s, Y (k)
s

)∥∥2
ds

])
≤ 3

(
E
[
‖Z‖2

]
+ tD2 E

[∫ t

0

(
1 +

∥∥Y (k)
s

∥∥2
)

ds

]
+ D2 E

[∫ t

0

(
1 +

∥∥Y (k)
s

∥∥2
)

ds

])
= 3

(
E
[
‖Z‖2

]
+D2(t+ 1)

∫ t

0
ds+D2(t+ 1)

∫ t

0
E
[∥∥Y (k)

s

∥∥2
]

ds

)
≤ K̃

(
E
[
‖Z‖2

]
+D2

∫ t

0
ds+D2

∫ t

0
E
[∥∥Y (k)

s

∥∥2
]

ds

)
, (2.20)

where K̃ is chosen so that K̃ ≥ 3(1 + T ). In particular, we then have

E
[
‖Y (1)

t ‖
]
≤ K̃

(
E
[
‖Z‖2

]
+D2

∫ t

0
ds+D2

∫ t

0
E
[
‖Z‖2

]
ds

)
.

We set s0 := t and claim that for k ≥ 1, it holds that

E
[∥∥Y (k)

t

∥∥2
]
≤ K̃ E

[
‖Z‖2

]
+
k−1∑
j=0

K̃j+1D2(j+1)

∫ s0

0
· · ·
∫ sj

0

(
1 + K̃ E

[
‖Z‖2

])
dsj+1 · · · ds1.

We show this by induction. With the result from above, we have for k = 1

E
[∥∥Y (1)

t

∥∥2
]
≤ K̃

[
‖Z‖2

]
+ K̃ D2

∫ s0

0

(
1 + K̃ E

[
‖Z‖2

])
ds1

since K̃ > 1. In order to pass from k to k + 1, we reformulate the induction hypothesis
by an index shift and by renaming the integration variables as

E
[∥∥Y (k)

s1

∥∥2
]
≤ K̃ E

[
‖Z‖2

]
+

k∑
j=1

K̃j D2j

∫ s1

0
· · ·
∫ sj

0

(
1 + K̃ E

[
‖Z‖2

])
dsj+1 · · · ds2
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and apply this to the relation (2.20) from above to obtain

E
[
‖Y (k+1)

t ‖
]
≤ K̃

(
E
[
‖Z‖2

]
+D2

∫ s0

0
ds1 +D2

∫ s0

0
E
[∥∥Y (k)

s1

∥∥2
]

ds1

)
≤ K̃

(
E
[
‖Z‖2

]
+D2

∫ s0

0
ds1 +D2

∫ s0

0
K̃ E

[
‖Z‖2

]
ds1

+ D2

∫ s0

0

k∑
j=1

K̃j D2j

∫ s1

0
· · ·
∫ sj

0

(
1 + K̃ E

[
‖Z‖2

])
dsj+1 · · · ds2ds1


≤ K̃ E

[
‖Z‖2

]
+ K̃ D2

∫ s0

0

(
1 + E

[
‖Z‖2

])
ds1

+
k∑
j=1

K̃j+1D2(j+1)

∫ s0

0
· · ·
∫ sj

0

(
1 + K̃ E

[
‖Z‖2

])
dsj+1 · · · ds1

≤ K̃ E
[
‖Z‖2

]
+

k∑
j=0

K̃j+1D2(j+1)

∫ s0

0
· · ·
(

1 + K̃ E
[
‖Z‖2

])
dsj+1 · · · ds1,

which concludes the induction. With the result (2.19) from the proof of the previous
Lemma 2.23 we have

E
[∥∥Y (k)

t

∥∥2
]
≤ K̃ E

[
‖Z‖2

]
+
(

1 + K̃ E
[
‖Z‖2

]) k−1∑
j=0

K̃j+1D2(j+1)

∫ s0

0
· · ·
∫ sj

0
dsj+1 · · · ds1

= K̃ E
[
‖Z‖2

]
+
(

1 + K̃ E
[
‖Z‖2

]) k−1∑
j=0

(
K̃ D2 s0

)j+1

(j + 1)!

≤ K̃
(
1 + E

[
‖Z‖2

])
+ K̃

(
1 + E

[
‖Z‖2

]) k∑
j=1

(
K̃ D2 t

)j
j!

≤ K̃
(
1 + E

[
‖Z‖2

]) k∑
j=0

(
K̃ D2 t

)j
j!

.

Then we have for the limit that

lim
k→∞

E
[∥∥Y (k)

t

∥∥2
]
≤ lim

k→∞
K̃
(
1 + E

[
‖Z‖2

]) k∑
j=0

(
K̃ D2 t

)j
j!

= K̃
(
1 + E

[
‖Z‖2

])
eK̃D

2t.

From the proof of Øksendal for the existence and uniqueness result in Theorem 2.13, we
know that there exists a subsequence (nk)k∈N such that Y (nk) converges to X almost
surely. Therefore we have with Fatou’s Lemma

E
[
‖Xt‖2

]
= E

[
lim
k→∞

‖Y (nk)
t ‖2

]
≤ lim inf

k→∞
E
[
‖Y (nk)

t ‖2
]
≤ lim

k→∞
E
[∥∥Y (nk)

t

∥∥2
]
≤ K̃

(
1 + E

[
‖Z‖2

])
eK̃D

2t.

Choosing K = max{K̃, K̃ D2} concludes the proof.
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Proof of Theorem 2.22. We proceed similarly as Kloeden and Platen11. We fix a partition
of [0, T ] with N steps of maximum size δ, denoted by 0 = t0 < t1 < . . . < tN = T . We
define

Z(t) = sup
0≤s≤t

E
[
‖Yns −Xs‖2

]
,

where ns denotes the iteration index corresponding to time s, i.e. ns = max{n|tn ≤ s}.

(i) We first show that Z satisfies an integral equality as required for the application of
Grönwall’s inequality. With the SDE in (2.17) and the definition of the Euler-Maruyama
scheme in (2.13), we have

Z(t) = sup
0≤s≤t

E

[∥∥∥ ns−1∑
n=0

(Yn+1 − Yn)−
∫ s

0
b(r,Xr)dr −

∫ s

0
σ(r,Xr)dWr

∥∥∥2
]

= sup
0≤s≤t

E

[∥∥∥ ns−1∑
n=0

b(tn, Yn)∆n +

ns−1∑
n=0

σ(tn, Yn)∆Wn

−
∫ s

0
b(r,Xr)dr −

∫ s

0
σ(r,Xr)dWr

∥∥∥2
]
.

Next, we aim to write the sums as integrals. We let r ∈ [0, tns). Then similar to the
above, we have that nr = max{n|tn ≤ r}, so in particular r ∈ [tnr , tnr+1) and furthermore
nr ∈ {0, 1, . . . , ns − 1}. We can therefore write

b(tnr , Ynr) =

ns−1∑
n=0

b(tn, Yn) 1[tn,tn+1)(r)

and we then have∫ tns

0
b(tnr , Ynr)dr =

∫ tns

0

ns−1∑
n=0

b(tn, Yn) 1[tn,tn+1)(r)dr

=

ns−1∑
n=0

b(tn, Yn)

∫ tn+1

tn

dr =

ns−1∑
n=0

b(tn, Yn)∆n,

which delivers an integral to replace the sum in the expression above. Furthermore, we
write

σ(tnr , Ynr) =

ns−1∑
n=0

σ(tn, Yn) 1[tn,tn+1)(r)

and by definition of the stochastic integral, we then have∫ tns

0
σ(tnr , Ynr)dWr =

ns−1∑
n=0

σ(tn, Yn)
(
Wtn+1 −Wtn

)
=

ns−1∑
n=0

σ(tn, Yn)∆Wn,

so we can now rewrite Z as

Z(t) = sup
0≤s≤t

E

[∥∥∥ ∫ tns

0
b(tnr , Ynr)dr +

∫ tns

0
σ(tnr , Ynr)dWr

−
∫ s

0
b(r,Xr)dr −

∫ s

0
σ(r,Xr)dWr

∥∥∥2
]
.

11Proof of Theorem 9.6.2, pp. 324 in [KP92].
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We then add zero, rearrange and separate the expectation operator by using the inequality
relation in Lemma 2.16 for N = 6, resulting in

Z(t) = sup
0≤s≤t

E

[∥∥∥ ∫ tns

0
b(tnr , Ynr)dr +

∫ tns

0
σ(tnr , Ynr)dWr

−
∫ tns

0
b(r, Ynr)dr −

∫ tns

0
σ(r, Ynr)dWr +

∫ tns

0
b(r, Ynr)dr +

∫ tns

0
σ(r, Ynr)dWr

−
∫ s

0
b(r,Xr)dr −

∫ s

0
σ(r,Xr)dWr

∥∥∥2
]

≤ 6 sup
0≤s≤t

{
E

[∥∥∥ ∫ tns

0

(
b(tnr , Ynr)− b(r, Ynr)

)
dr
∥∥∥2
]

+ E

[∥∥∥ ∫ tns

0

(
σ(tnr , Ynr)− σ(r, Ynr)

)
dWr

∥∥∥2
]

+ E

[∥∥∥ ∫ tns

0

(
b(r, Ynr)− b(r,Xr)

)
dr
∥∥∥2
]

+ E

[∥∥∥ ∫ tns

0

(
σ(r, Ynr)− σ(r,Xr)

)
dWr

∥∥∥2
]

+ E

[∥∥∥∫ s

tns

b(r,Xr)dr
∥∥∥2
]

+ E

[∥∥∥∫ s

tns

σ(r,Xr)dWr

∥∥∥2
]}

.

We apply Lemma 2.17 and the Itô-Isometry to obtain

Z(t) ≤ 6 sup
0≤s≤t

{
T E

[∫ tns

0
‖b(tnr , Ynr)− b(r, Ynr)‖2dr

]
+ E

[∫ tns

0
‖σ(tnr , Ynr)− σ(r, Ynr)‖2dr

]
+ T E

[∫ tns

0
‖b(r, Ynr)− b(r,Xr)‖2dr

]
+ E

[∫ tns

0
‖σ(r, Ynr)− σ(r,Xr)‖2dr

]
+ T E

[∫ s

tns

‖b(r,Xr)‖2dr

]
+ E

[∫ s

tns

‖σ(r,Xr)‖2dr

]}
.

By the Hölder condition in time given by (2.16) in Assumption 2.21 and with |tnr − r| ≤
∆nr ≤ δ, we have∫ tns

0
‖b(tnr , Ynr)− b(r, Ynr)‖2dr ≤

∫ tns

0
D2

2 |tnr − r|dr ≤
∫ tns

0
D2

2 δdr ≤ D2
2 tns δ

and by the Lipschitz condition in x as given by (2.15) in Assumption 2.21∫ tns

0
‖b(r, Ynr)− b(r,Xr)‖2dr ≤ D2

1

∫ tns

0
‖Ynr −Xr‖2dr.

In the standard existence and uniqueness result for SDEs in Theorem 2.13, we have stated
and in Lemma 2.24 we have shown that there exists a constant K such that

E
[
‖Xt‖2

]
≤ K(1 + E

[
‖Z‖2

]
) eKt for 0 ≤ t ≤ T.

So in particular there exists a constant K2 such that

E
[
‖Xt‖2

]
≤ K2 for any t ∈ [0, T ].
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With the linear growth condition in (2.14) in Assumption 2.21 and Tonelli’s theorem, this
yields

E

[∫ s

tns

‖b(r,Xr)‖2dr

]
≤ E

[∫ s

tns

C2
(
1 + ‖Xr‖2

)
dr

]

≤ C2

(
(s− tns) + E

[∫ s

tns

‖Xr‖2dr

])

≤ C2

(
δ +

∫ s

tns

E
[
‖Xr‖2

]
dr

)
≤ C2 δ (1 +K2).

We proceed similarly for the terms with the volatility σ and apply these estimates to our
considerations on Z(t) above:

Z(t) ≤ 6 sup
0≤s≤t

{
(T + 1)T D2

2 δ + (T + 1)D2
1 E

[∫ tns

0
‖Ynr −Xr‖2dr

]
+ (T + 1)C2 δ(1 +K2)

}
.

To simplify notation, we introduce constants K3 and K4 such that

K3 ≥ 6D2
1 (T + 1)

K4 ≥ 6
(
(T + 1)T D2

2 + C2(T + 1)(1 +K2)
)
.

Then by using again Tonelli’s theorem and the definition of Z we have

Z(t) ≤ K3 sup
0≤s≤t

E

[∫ tns

0
‖Ynr −Xr‖2dr

]
+K4 δ

≤ K3 sup
0≤s≤t

∫ tns

0
E
[
‖Ynr −Xr‖2

]
dr +K4 δ

≤ K3

∫ t

0
sup

0≤v≤r
E
[
‖Ynv −Xv‖2

]
dr +K4 δ

≤ K3

∫ t

0
Z(r)dr +K4 δ.

(ii) Next we aim to apply Grönwall’s inequality as given in Lemma 2.23 and therefore
we need to show that Z is bounded on the interval [0, T ]. We recall that

Z(t) = sup
0≤s≤t

E
[
‖Yns −Xs‖2

]
and note that if E

[
‖Yns −Xs‖2

]
is bounded on [0, T ] uniformly in s, then this also holds

for the supremum. Further, we have

E
[
‖Yns −Xs‖2

]
≤ 2

(
E
[
‖Yns‖2

]
+ E

[
‖Xs‖2

])
.
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We have already shown above that E
[
‖Xs‖2

]
is bounded, therefore it remains to consider

E
[
‖Yns‖2

]
. First, by applying the iteration procedure of the Euler-Maruyama scheme and

with Lemma 2.16, we compute

E
[
‖Yn+1‖2

]
= E

[
‖Yn + b(tn, Yn) ∆n + σ(tn, Yn) ∆Wn‖2

]
≤ 3

(
E
[
‖Yn‖2

]
+ ∆2

n E
[
‖b(tn, Yn)‖2

]
+ E

[
‖σ(tn, Yn)‖2 · |∆Wn|2

])
.

By definition of Brownian motion, the increment ∆Wn and Yn are independent and thus
also ∆Wn and ‖σ(tn, Yn)‖2. In addition, we have E

[
|∆Wn|2

]
= ∆n, therefore

E
[
‖σ(tn, Yn)‖2 · |∆Wn|2

]
= E

[
‖σ(tn, Yn)‖2

]
· E
[
|∆Wn|2

]
= ∆n E

[
‖σ(tn, Yn)‖2

]
.

We use this and apply the linear growth condition (2.14) in Assumption 2.21 to result in

E
[
‖Yn+1‖2

]
≤ 3

(
E
[
‖Yn‖2

]
+ ∆2

n E
[
‖b(tn, Yn)‖2

]
+ ∆n E

[
‖σ(tn, Yn)‖2

])
≤ 3

(
E
[
‖Yn‖2

]
+ δ2 E

[
C2
(
1 + ‖Yn‖2

)]
+ δ E

[
C2
(
1 + ‖Yn‖2

)])
≤ 3

(
E
[
‖Yn‖2

]
+ δ (1 + δ)C2

(
1 + E

[
‖Yn‖2

]))
= 3

(
δ (1 + δ)C2 +

(
1 + δ (1 + δ)C2

)
E
[
‖Yn‖2

])
= 3

(
K̃1 + K̃2 E

[
‖Yn‖2

])
, (2.21)

where we define K̃1 := δ(1 + δ)C2 and K̃2 := 1 + δ(1 + δ)C2. Now we show by induction
that for any n ∈ N, we have

E
[
‖Yn‖2

]
≤ 3 K̃1 +

n−1∑
i=1

3i+1 K̃1 K̃
i
2 + 3n K̃n

2 E
[
‖Y0‖2

]
. (2.22)

For n = 1, this follows directly from the inequality above in equation (2.21). We now
assume that the claim in equation (2.22) holds for n and pass to n+ 1. With the relation
(2.21) we have

E
[
‖Yn+1‖2

]
≤ 3

(
K̃1 + K̃2 E

[
‖Yn‖2

])
≤ 3

(
K̃1 + K̃2

(
3 K̃1 +

n−1∑
i=1

3i+1 K̃1 K̃
i
2 + 3n K̃n

2 E
[
‖Y0‖2

]))

= 3 K̃1 + 32 K̃1 K̃2 +
n−1∑
i=1

3i+2 K̃1 K̃
i+1
2 + 3n+1 K̃n+1

2 E
[
‖Y0‖2

]
= 3 K̃1 + 32 K̃1 K̃2 +

n∑
i=2

3i+1 K̃1 K̃
i
2 + 3n+1 K̃n+1

2 E
[
‖Y0‖2

]
= 3 K̃1 +

n∑
i=1

3i+1 K̃1 K̃
i
2 + 3n+1 K̃n+1

2 E
[
‖Y0‖2

]
and thus we have shown the claim (2.22). By definition of the Euler-Maruyama scheme
and the assumption that X0 ∈ L2, we have E

[
‖Y0‖2

]
= E

[
‖X0‖2

]
< ∞. Hence the

inequality (2.22) provides us with a bound of E
[
‖Yn‖2

]
for each n. Since this bound is

increasing in n, we obtain a global bound of E
[
‖Yns‖2

]
for any s in the interval [0, T ] by

inserting the number of steps N of the partition we consider.
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(iii) Finally, we now apply Grönwall’s inequality and obtain

Z(t) ≤ δ K4 eK3 t ≤ δ K4 eK3 T .

We choose K5 such that K5 ≥ K4 e
K3 T . Then by the Hölder inequality, we arrive at

E
[∥∥Y δ(T )−XT

∥∥] ≤ (E
[∥∥Y δ(T )−XT

∥∥2
]) 1

2 ≤
√
Z(T ) ≤

√
K5 δ −→ 0 as δ → 0

which delivers the convergence of the Euler-Maruyama scheme.

This theorem cannot be applied to the SDE we consider, as we again face the challenge
that the drift coefficient does not satisfy Assumption 2.21. Therefore, we can only impose
Assumption 2.14 and in addition, we formulate a similar requirement regarding Hölder
continuity in time:

Assumption 2.25. Let T > 0 and b : [0, T ] × Rd → Rd and σ : [0, T ] × Rd → Rd be
measurable functions. We assume that for all ε > 0 there exists Dε,2 such that

‖b(t, x)− b(s, x)‖+ ‖σ(t, x)− σ(s, x)‖ ≤ Dε,2 |t− s|
1
2 for t, s ∈ [0, T − ε] and for x ∈ Rd.

By using Theorem 2.22 we now can show that the Euler-Maruyama scheme converges
also if we only have the Assumptions 2.14 and 2.25.

Theorem 2.26. Let T > 0 and suppose that b and σ satisfy Assumptions 2.14 and 2.25.
Let X = (Xt)t∈[0,T ] denote the solution of

dXt = b(t,Xt)dt+ σ(t,Xt)dWt for 0 ≤ t ≤ T, (2.23)

where X0 is a F0-measurable and integrable Rd-valued random variable. Then the Euler-
Maruyama scheme converges strongly to X.

Proof. We let κ ∈ [0, T ] arbitrary and define T κ = T −κ. Then by Theorem 2.22, we have
that the Euler-Maruyama scheme converges strongly on [0, T κ] and therefore

lim
δ→0

E
[∥∥XTκ − Y δ(T κ)

∥∥] = 0. (2.24)

We fix δ > 0 arbitrary and write

E
[∥∥XT − Y δ(T )

∥∥] ≤ E
[∥∥XTκ − Y δ(T κ)

∥∥]+ E
[∥∥Y δ(T )− Y δ(T κ)

∥∥]+ E
[∥∥XT −XTκ

∥∥].
For notational purposes, we choose an arbitrary partition with maximum step size δ and
we choose n ∈ N such that tn = T κ. Further, we choose k ∈ N such that tn+k = T . Then
by applying the Euler-Maruyama scheme in (2.13) we have

E
[∥∥Y δ(T )− Y δ(T κ)

∥∥] = E
[∥∥Yn+k − Yn

∥∥] = E

[∥∥∥ k−1∑
i=0

(Yn+i+1 − Yn+i)
∥∥∥]

= E

[∥∥∥ k−1∑
i=0

(
b(tn+i, Yn+i) ∆n+i + σ(tn+i, Yn+i) ∆Wn+i

)∥∥∥]

≤ E

[∥∥∥ k−1∑
i=0

b(tn+i, Yn+i) ∆n+i

∥∥∥]+ E

[∥∥∥ k−1∑
i=0

σ(tn+i, Yn+i) ∆Wn+i

∥∥∥]
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and we use boundedness as given in (2.7) of Assumption 2.14 to yield

E

[∥∥∥ k−1∑
i=0

b(tn+i, Yn+i) ∆n+i

∥∥∥] ≤ E

[
k−1∑
i=0

∥∥b(tn+i, Yn+i)
∥∥(tn+i+1 − tn+i)

]
≤ E [C (tn+k − tn)]

= C (T − T κ)

= C κ.

We set ξi = σ(tn+i, Yn+i). Then σ̃(t) := ξ01{0}(t) +
∑k−1

i=0 ξi1(ti,ti+1] is an Rd-valued
simple process with ‖σ̃(t)‖ < C by the boundedness condition (2.7). By the definition of
stochastic integrals for simple processes, we have

E

[∥∥∥ k−1∑
i=0

σ(tn+i, Yn+i)(Wtn+i+1 −Wtn+i)
∥∥∥] = E

[∥∥∥ ∫ T

Tκ
σ̃(t) dWt

∥∥∥] .
We apply Hölder’s inequality and the Itô-Isometry and use that σ is bounded to obtain

E

[∥∥∥ ∫ T

Tκ
σ̃(t) dWt

∥∥∥] = E

[∥∥∥ ∫ T

Tκ
σ̃(t) dWt

∥∥∥]2· 1
2

≤ E

[∥∥∥ ∫ T

Tκ
σ̃(t) dWt

∥∥∥2
] 1

2

≤ E

[∫ T

Tκ
‖σ̃(t)‖2 dt

] 1
2

≤ C E [T − T κ]
1
2 ≤ C

√
κ.

Thus we have
E
[∥∥∥Y δ(T )− Y δ(T κ)

∥∥∥] ≤ C κ+ C
√
κ.

On the other hand, we apply the integral form of the SDE in (2.23) and again Hölder’s
inequality to compute

E
[∥∥XT −XTκ

∥∥] ≤ E

[∥∥∥ ∫ T

Tκ
b(t,Xt) dt

∥∥∥]+ E

[∥∥∥ ∫ T

Tκ
σ(t,Xt) dWt

∥∥∥]
≤ E

[∥∥∥ ∫ T

Tκ
b(t,Xt) dt

∥∥∥2
] 1

2

+ E

[∥∥∥ ∫ T

Tκ
σ(t,Xt) dWt

∥∥∥2
] 1

2

≤ E

[
κ

∫ T

Tκ
‖b(t,Xt)‖2dt

] 1
2

+ E

[∫ T

Tκ
‖σ(t,Xt)‖2dt

] 1
2

≤ C E [κ (T − T κ)]
1
2 + C E [T − T κ]

1
2

= C κ+ C
√
κ

by applying again Lemma 2.17 and the Itô-Isometry. Taking everything together we have

E
[∥∥XT − Y δ(T )

∥∥] ≤ E
[∥∥XTκ − Y δ(T κ)

∥∥]+ 2C (κ+
√
κ).

Now we let ε > 0 arbitrary. Then there exists κ > 0 such that

2C (κ+
√
κ) <

ε

2
.

Since the Euler-Maruyama scheme converges strongly on [0, T κ], as stated in (2.24), we
have that there exists δ0(κ) such that

E
[∥∥XTκ − Y δ(T κ)

∥∥] < ε

2
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for any δ ≤ δ0. Hence we have

E
[∥∥XT − Y δ(T )

∥∥] < ε

for all δ ≤ δ0, i.e. the Euler-Maruyama scheme converges strongly on [0, T ].

Summary

This section served to provide the theoretical foundation of the SDE solution: Under
assumptions adapted to the SDE in our model, we showed that a unique solution to the
SDE exists. Moreover, we first provided a proof on convergence of the Euler-Maruyama
scheme for a time-inhomogeneous SDE with standard assumptions. We then used this
result to show that the Euler-Maruyama scheme also converges under assumptions suitable
to our setting.

2.5 Application of Results to the SDE in the ETS Model

It now remains to verify that the assumptions of Theorems 2.15 and 2.26 hold in case of
the SDE in our model. For the simple model variant presented in Section 2.1.1, we may
do this rigorously; for the Brownian and Ornstein-Uhlenbeck model, this is not possible
due to the lack of a closed-form expression of the drift term. Existence and uniqueness
of the SDE solution then enable us to fully confirm the requirements of the verification
theorem for the HJB equation.

Corollary 2.27. The SDE of the simple model variant given by

dXt = −u(t,Xt)dt+ σdWt

with u(t, x) = Vx(t,x)
c and Vx as given in equation (2.5) has a unique strong solution which

is continuous and adapted to the filtration F .

Proof. We need to verify the conditions of Assumption 2.14.

(i) Show boundedness: The volatility σ is constant and therefore clearly bounded. In
Proposition 2.7 (ii), we have seen that Vx is bounded with 0 ≤ Vx(t, x) ≤ p for any t and
x, which directly implies that the drift −u is also bounded.

(ii) Show Lipschitz continuity on intervals of the form [0, T−ε]: The constant volatility
σ is trivially Lipschitz continuous on [0, T ] and therefore in particular on any interval of
the form [0, T −ε]. It remains to consider the drift term −u: Let ε > 0 be arbitrary. Then
we know from Proposition 2.7 (iv) that Vxx is bounded on [0, T − ε] × R, which implies
that Vx and therefore −u is Lipschitz continuous in x on [0, T − ε]× R.

With Theorem 2.15 we then obtain the desired result. In particular, we also obtain that
the solution X is adapted to the filtration F : Theorem 2.15 delivers that X is adapted
to FZ,W , where Z is the initial value of the process X. But since we have that X0 = x0

is a constant, it follows that FZ,W = FW . Furthermore, we defined F as the filtration
generated by Brownian motion and augmented with the null sets. Therefore FWt ⊆ Ft for
any t ∈ [0, T ] and thus X is also adapted to F .
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Corollary 2.28. Let X be the solution of the SDE of the simple model variant. Then the
Euler-Marayma scheme converges strongly to X.

Proof. We have already shown boundedness and Lipschitz continuity in x on [0, T −ε]×R
in the preceding proof. Thus it only remains to show 1

2 -Hölder continuity in time on
[0, T − ε] × R. For the constant volatility σ, this is again trivial. Furthermore, for ε > 0
arbitrary, we have with Proposition 2.7 (iv) that Vxt is bounded on [0, T−ε]×R. Therefore
it follows that Vx is Lipschitz continuous in t on [0, T − ε]×R, which implies that this also
holds for the drift −u. Since Lipschitz continuity implies Hölder continuity for α ∈ (0, 1],
Theorem 2.26 then delivers the strong convergence of the Euler-Maruyama scheme.

Corollary 2.29. The function V as given by equation (2.4) delivers the minimum costs
and the abatement rate ut = u(t,Xt) given by

u(t, x) =
Vx(t, x)

c
,

with Vx as given in equation (2.5), is optimal.

Proof. By Proposition 2.9 and by construction, we know that V satisfies the requirements
of the verification theorem in Proposition 2.3 and solves the HJB equation when the control
is given by u. With Corollary 2.27, we now have that the SDE

dXs = −u(s,Xs)ds+G(s)dWs

has a unique solution for any given initial condition Xt = x. Furthermore, since the
solution X is continuous and F-adapted, we know that u = (u(s,Xs))s∈[t,T ] ∈ A(t) by
Proposition 2.10. Thus we apply the verification theorem and obtain that V represents
the minimum costs and u is an optimal control.

For the Brownian and Ornstein-Uhlenbeck model variant we may verify the require-
ments of Theorems 2.15 and 2.26 only for the volatility.

Lemma 2.30. The volatility functions of

(i) the Brownian model variant given by GB(t) = σ(T − t) and

(ii) the Ornstein-Uhlenbeck model variant given by GOU(t) = σ 1−eθ(t−T )

θ

satisfy the requirements of Assumptions 2.14 and 2.25.

Proof. (i) On [0, T ], the function GB(t) = σ(T − t) is bounded from above by σT and
from below by 0. In addition, since it is constant in x, it is clearly Lipschitz continuous in
x. Thus Assumption 2.14 is satisfied. Furthermore, the function is linear in t and therefore
Lipschitz continuous in t (with constant σ), so Assumption 2.25 also holds.

(ii) We can see directly for t ∈ [0, T ] that

0 ≤ σ 1− e−θ(T−t)

θ
≤ σ 1− e−θT

θ

and GOU(t) = σ 1−eθ(t−T )

θ is constant in x, thus Lipschitz continuous in x. Therefore

Assumption 2.14 holds. We now compute the derivative G′OU(t) = −σe−θ(T−t) and observe
that this is also bounded on [0, T ], so GOU is Lipschitz continuous in t on [0, T ] and
Assumption 2.25 is thus satisfied.
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Remark 2.31. As mentioned above, we cannot provide any rigorous arguments to show
that the drift term in the Brownian and Ornstein-Uhlenbeck model variant satisfies the
assumptions of the theorems in the preceding sections. We may only study the numerical
PDE solution, which is presented in Section 6.1.1.

Summary

This section assures that the simple variant of our ETS model has a solution as desired:
By using the theorems of the previous section and the properties of the PDE solution,
we showed that the SDE has a unique solution and that the Euler-Maruyama scheme
converges to this solution. Moreover, we showed that the PDE solution indeed delivers
the minimum costs and the optimal abatement rate. Such an extensive theoretical result
could not be obtained for the Brownian and Ornstein-Uhlenbeck model variant.
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Chapter 3

Multi-Period Model

In the one-period model of Chapter 2, we implicitly assumed that all allowances which are
not needed to account for emissions become invalid at the end of the respective time period.
However, already since 2008 it is possible in the EU ETS to exchange such allowances for
valid ones; by now, the allowances do not expire anymore. Hence they can freely be
transferred to later time periods, i.e. unrestricted banking is possible. Banking – and
partly also borrowing – of allowances was studied already in early models for instance
by Rubin [Rub96] or Schennach [Sch00]. Also the models of Kollenberg and Taschini in
[KT16] and [KT19] allow for banking; here the bank of allowances plays a major role in the
model formulation. Liang and Huang [LH20]/[LH22] provide an extension to the approach
of Seifert et al. that combines banking and borrowing with the auctioning of allowances.
In order to incorporate the transfer of allowances to the subsequent time period in an
ETS model, we need to determine the value of an unused allowance at the end of the time
period. Since such an allowance can be used or sold in the next time period, its value
is given by its price at the beginning of the next period. Liang and Huang essentially
assume that this price is exogeneously given; in contrast, our strategy is to model several
subsequent time periods to be able to compute this price from the results of later time
periods.

There are two different approaches to proceed: On the one hand, we may assume
that the price of an allowance in the next period enters the optimization procedure as
an exogenous parameter, which remains unchanged during the time period considered.
This allows for a rather simple extension of the previous model, which will be explored
in Section 3.1. In the following we will refer to this model as multi-period model I. The
price of an allowance at the beginning of the next time period can be determined from the
initial value of the total expected emissions Xi

0 of that time period. As we will see below,
this value depends on the development of the emission rate, which we may observe in the
course of the time period. Therefore, it is more realistic that the price of an allowance we
anticipate for the next period changes as we proceed in time in the current time period.
To capture this effect, a second approach introducing an additional dimension to the value
function is presented in Section 3.2; we will refer to this model by multi-period model II.

3.1 Multi-Period Model with Constant Price Parameter

In this section, we assume that the allowance price that we expect in period i for the
beginning of the next time period is given by the constant parameter si. We will elaborate
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on how to determine this parameter in Section 3.1.5. To construct the model, we will
proceed similarly as we did for the one-period model in Chapter 2; this model will be
referred to as multi-period model I.

3.1.1 Derivation of the SDE

We consider a time interval [0, T ] partitioned into 0 = T0 < T1 < . . . < Ti < . . . < TN = T ,
i.e. we split the interval into N smaller time periods 0, 1, . . . , N − 1. We assume that
the emission rate develops continuously over the whole time horizon [0, T ], whereas the
representative agent only takes into account the sub-period for her cost minimization
problem.

As before, let (Yt)t∈[0,T ] denote the emission rate and assume that the dynamics are
given as

dYt = µ(t, Yt)dt+ σ(t, Yt)dWt,

where again µ and σ are real-valued functions and W is a Brownian motion. We now
introduce the total expected emissions X by defining it piecewise on each time period
(Ti, Ti+1].

Definition 3.1. The total expected emissions for the time period [0, T ] are given by the
process X = (Xt)t∈[0,T ] defined as

X0 = E

[∫ T1

0
Ysds

]
and

Xt = −
∫ t

Ti

usds+ E

[∫ Ti+1

Ti

Ysds
∣∣∣Ft] for t ∈ (Ti, Ti+1].

Note that X is not continuous in Ti for any i. As in the one-period model we now
rewrite the process X as an SDE; however, we have to specify the SDEs separately for
each time period (Ti, Ti+1]. As a result, we obtain an SDE of the form

dXi
t = −uitdt+Gi(t)dW i

t ,

where we define the processes Xi, ui and W i by shifting the original processes as will be
detailed further below for each of the model variants.

Brownian Model Variant

In the Brownian model variant we have that µ and σ are constant, therefore we can rewrite
Yt as

Yt = y0 + µt+ σWt.
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We consider t ∈ (Ti, Ti+1] and define ∆Ti := Ti+1 − Ti. In accordance with Definition 3.1,
we need to compute

E

[∫ Ti+1

Ti

Ysds
∣∣∣Ft] =

∫ Ti+1

Ti

(y0 + µs) ds+ E

[∫ Ti+1

Ti

σWsds
∣∣∣Ft]

= y0 (Ti+1 − Ti) +
T 2
i+1 − T 2

i

2
µ+ σE

[∫ Ti+1

0
Wsds−

∫ Ti

0
Wsds

∣∣∣Ft]
= y0 ∆Ti +

T 2
i+1 − T 2

i

2
µ

+ σE

[
WTi+1 Ti+1 −

∫ Ti+1

0
sdWs −WTi Ti +

∫ Ti

0
sdWs

∣∣∣Ft]
= y0 ∆Ti +

T 2
i+1 − T 2

i

2
µ+ σ Ti+1 E

[
WTi+1

∣∣Ft]− σ Ti E
[
WTi

∣∣Ft]
− σE

[∫ Ti+1

0
sdWs

∣∣∣Ft]+ σE

[∫ Ti

0
sdWs

∣∣∣Ft] ,
where we have applied the product rule to both integrals. We then use the martingale
property and adaptedness of Brownian motion and the stochastic integral:

E

[∫ Ti+1

Ti

Ysds
∣∣∣Ft] = y0 ∆Ti +

T 2
i+1 − T 2

i

2
µ+ σ Ti+1Wt − σ TiWTi

− σ
∫ t

0
sdWs + σ

∫ Ti

0
sdWs + σ Ti+1WTi − σ Ti+1WTi

= y0 ∆Ti +
T 2
i+1 − T 2

i

2
µ+ σ

∫ t

0
Ti+1dWs − σ

∫ Ti

0
Ti+1dWs

+ σ∆TiWTi − σ
∫ t

Ti

sdWs

= y0 ∆Ti +
T 2
i+1 − T 2

i

2
µ+ σ∆TiWTi + σ

∫ t

Ti

(Ti+1 − s)dWs.

By setting t = Ti, we obtain the right-sided limit, i.e. the limit of X for t ↓ Ti, as

X+
Ti

= E

[∫ Ti+1

Ti

Ysds
∣∣∣FTi] = y0 ∆Ti +

T 2
i+1 − T 2

i

2
µ+ σ∆TiWTi = xi0 + σ∆TiWTi ,

where xi0 := y0 ∆Ti +
T 2
i+1−T 2

i

2 µ similar to the definition of x0 in the one-period model. If
the partition of [0, T ] is equidistant, i.e. if ∆Ti = ∆Tj for any i and j, we set ∆T = ∆Ti
and with Ti = i∆T rewrite

xi0 = y0 ∆T +
(Ti+1 − Ti) (Ti+1 + Ti)

2
µ = y0 ∆T +

∆T ((i+ 1) ∆T + i∆T )

2
µ

= y0 ∆T +
1

2
∆T 2 µ+ i∆T 2 µ = x0

0 + i∆T 2 µ.

Returning to the more general case, we use the result for X+
Ti

to write

Xt = X+
Ti
−
∫ t

Ti

usds+ σ

∫ t

Ti

(Ti+1 − s)dWs.
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Hence we have an expression for Xt, where t is a time point on [0, T ]. In order to rewrite
this in differential form and also to be able to perform the optimization on the smaller
time period, we will now transform our expression for Xt to the sub-period (Ti, Ti+1].

To that end, we define t̂ = t − Ti as the time relative to the corresponding sub-
period (Ti, Ti+1]. For t̂ ∈ (0,∆Ti], we define ui

t̂
= uTi+t̂, X

i
t̂

= XTi+t̂
and W i

t̂
= WTi+t̂

.

Furthermore, we set Xi
0 = X+

Ti
and W i

0 = WTi . By substituting ŝ = s− Ti, we obtain

Xi
t̂

= Xi
0 −

∫ t̂

0
uTi+ŝ dŝ+ σ

∫ t̂

0
(Ti+1 − Ti − ŝ)dWTi+ŝ

= Xi
0 −

∫ t̂

0
uiŝdŝ+ σ

∫ t̂

0
(∆Ti − ŝ)dW i

ŝ .

We rewrite this in differential form as

dXi
t̂

= −ui
t̂
dt̂+ σ(∆Ti − t̂)dW i

t̂

with Xi
0 = xi0 + σ∆TiWTi .

Ornstein-Uhlenbeck Model Variant

Here we have that the emission rate Y is modeled by

dYt = θ (µ− Yt) + σdWt.

As in Section 2.1.3, we rewrite this as

Yt = y0 e−θt + µ
(

1− e−θt
)

+ σ

∫ t

0
e−θ(t−s)dWs.

We now proceed as we did for the Brownian model. We consider t ∈ (Ti, Ti+1] and recall
the definition ∆Ti := Ti+1−Ti. In order to obtain the total expected emissions as defined
by Definition 3.1, we aim to compute

E

[∫ Ti+1

Ti

Ysds
∣∣∣Ft] =

∫ Ti+1

Ti

[
y0 e−θv + µ

(
1− e−θv

)]
dv

+ E

[∫ Ti+1

Ti

∫ v

0
e−θ(v−s)dWsdv

∣∣∣Ft] .
We directly compute the integral in the first term to result in∫ Ti+1

Ti

[
y0 e−θv + µ

(
1− e−θv

)]
dv =

[
−y0

θ
e−θv + µ

(
v +

1

θ
e−θv

)]Ti+1

Ti

=
1

θ
(µ− y0)

(
e−θTi+1 − e−θTi

)
+ µ (Ti+1 − Ti)

=
1

θ
(µ− y0)

(
e−θTi+1 − e−θTi

)
+ µ∆Ti. (3.1)

For the second term, we again define Zv =
∫ v

0 eθsdWs and Z̃v = e−θv. With our computa-
tions in Section 2.1.3, we then know that∫ Ti+1

0
ZvdZ̃v −

∫ Ti

0
ZvdZ̃v = −θ

∫ Ti+1

0

∫ v

0
e−θ(v−s)dWsdv + θ

∫ Ti

0

∫ v

0
e−θ(v−s)dWsdv

= −θ
∫ Ti+1

Ti

∫ v

0
e−θ(v−s)dWsdv
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and again with results from Section 2.1.3, we have∫ Ti+1

Ti

∫ v

0
e−θ(v−s)dWsdv = −1

θ

(∫ Ti+1

0
ZvdZ̃v −

∫ Ti

0
ZvdZ̃v

)
= −1

θ

(
e−θTi+1

∫ Ti+1

0
eθsdWs −

∫ Ti+1

0
dWs

− e−θTi
∫ Ti

0
eθsdWs +

∫ Ti

0
dWs

)
.

Now we compute

E

[∫ Ti+1

Ti

∫ v

0
e−θ(v−s)dWs

∣∣∣Ft]
= E

[
−1

θ

(
e−θTi+1

∫ Ti+1

0
eθsdWs −

∫ Ti+1

0
dWs − e−θTi

∫ Ti

0
eθsdWs +

∫ Ti

0
dWs

) ∣∣∣Ft]
= −1

θ

(
e−θTi+1 E

[∫ Ti+1

0
eθsdWs

∣∣∣Ft]− E

[∫ Ti+1

0
dWs

∣∣∣Ft]
− e−θTi E

[∫ Ti

0
eθsdWs

∣∣∣Ft]+ E

[∫ Ti

0
dWs

∣∣∣Ft]) .
We make use of the martingale property of the stochastic integral and the measurability
with respect to Ft and add zero to obtain

E

[∫ Ti+1

Ti

∫ v

0
e−θ(v−s)dWs

∣∣∣Ft]
= −1

θ

(
e−θTi+1

∫ t

0
eθsdWs −

∫ t

0
dWs − e−θTi

∫ Ti

0
eθsdWs +

∫ Ti

0
dWs

)
= −1

θ

(
e−θTi+1

∫ t

0
eθsdWs − e−θTi+1

∫ Ti

0
eθsdWs + e−θTi+1

∫ Ti

0
eθsdWs

− e−θTi
∫ Ti

0
eθsdWs −

∫ t

Ti

dWs

)
= −1

θ

(
e−θTi+1

∫ t

Ti

eθsdWs −
∫ t

Ti

dWs +
(

e−θTi+1 − e−θTi
)∫ Ti

0
eθsdWs

)
=

∫ t

Ti

1− e−θ(Ti+1−s)

θ
dWs −

e−θTi+1 − e−θTi

θ

∫ Ti

0
eθsdWs. (3.2)

Next we aim to determine the right-sided limit X+
Ti

of X on the interval (Ti, Ti+1]. By
the definition of the total expected emissions, i.e. Definition 3.1, we insert t = Ti in the
previous computations of equations (3.1), (3.2) and obtain

X+
Ti

= E

[∫ Ti+1

Ti

Ysds
∣∣∣FTi]

=
1

θ
(µ− y0)

(
e−θTi+1 − e−θTi

)
+ µ∆Ti − σ

e−θTi+1 − e−θTi

θ

∫ Ti

0
eθsdWs

= xi0 − σ
e−θTi+1 − e−θTi

θ

∫ Ti

0
eθsdWs,
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where we have collected all constants by defining

xi0 :=
1

θ
(µ− y0)

(
e−θTi+1 − e−θTi

)
+ µ∆Ti.

If we have an equidistant partition, i.e. with ∆Ti = ∆T for all i, then Ti = i∆T and with

x0
0 =

1

θ
(µ− y0)

(
e−θ∆T − 1

)
+ µ∆T

we rewrite

xi0 =
1

θ
(µ− y0)

(
e−θ(i+1)∆T − e−θi∆T

)
+ µ∆T

= e−θi∆T
(
x0

0 − µ∆T
)

+ µ∆T = e−θi∆T x0
0 +

(
1− e−θi∆T

)
µ∆T.

Furthermore, for an equidistant partition, we have

X+
Ti

= xi0 − σ e−θi∆T
e−θ∆T − 1

θ

∫ Ti

0
eθsdWs.

We return to the more general case. For the total expected emissions, we combine the
results in equations (3.1) and (3.2) and arrive at the integral equation

Xt = −
∫ t

Ti

usds+ xi0 − σ
e−θTi+1 − e−θTi

θ

∫ Ti

0
eθsdWs + σ

∫ t

Ti

1− e−θ(Ti+1−s)

θ
dWs

= X+
Ti
−
∫ t

Ti

usds+ σ

∫ t

Ti

1− e−θ(Ti+1−s)

θ
dWs.

As for the Brownian model, we now perform a shift in time. We again define t̂ = t − Ti
to obtain time relative to the sub-period (Ti, Ti+1]. Further, for t̂ ∈ (0,∆Ti] we define
as above ui

t̂
= uTi+t̂, X

i
t̂

= XTi+t̂
and W i

t̂
= WTi+t̂

, additionally we set Xi
0 = X+

Ti
and

W i
0 = WTi . Again we substitute ŝ = s− Ti, which gives us

Xi
t̂

= Xi
0 −

∫ t̂

0
uTi+ŝdŝ+ σ

∫ t̂

0

1− e−θ(Ti+1−ŝ−Ti)

θ
dWTi+ŝ

= Xi
0 −

∫ t̂

0
uiŝdŝ+ σ

∫ t̂

0

1− e−θ(∆Ti−ŝ)

θ
dW i

ŝ .

We may rewrite this in differential form and arrive at the desired SDE

dXi
t̂

= −ui
t̂
dt̂+ σ

1− e−θ(∆Ti−t̂)

θ
dW i

t̂
,

where we have

Xi
0 = xi0 − σ

e−θTi+1 − e−θTi

θ

∫ Ti

0
eθsdWs.
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Simple Model Variant

In the simple model variant, we do not have an explicit understanding of the emission rate
Y itself. Therefore, in the one-period model, we modeled the total expected emissions
directly as

Xt = x0 −
∫ t

0
usds+ σ

∫ t

0
dWs,

which translates to

Xt = X+
Ti
−
∫ t

Ti

usds+ σ

∫ t

Ti

dWs

in the multi-period model. We define t̂ = t − Ti and ui
t̂
, Xi

t̂
and W i

t̂
as for the previous

model variants and apply the substitution ŝ = s− Ti to result in

Xi
t̂

= Xi
0 −

∫ t̂

0
uiŝdŝ+ σ

∫ t̂

0
dW i

ŝ .

In this case, we cannot compute the right-sided limit X+
Ti

= Xi
0. Therefore, we define

X+
Ti

= Xi
0 = xi0 + σWTi for xi0 ∈ R, which is consistent with the one-period model. Note

that we now may freely assign a value to xi0 for all i; it cannot be computed from other
parameters as in the Brownian or Ornstein-Uhlenbeck model. In differential form, we then
have

dXi
t̂

= −ui
t̂
dt̂+ σdW i

t̂
.

Summary

In this section, we defined the total expected emissions X in a multi-period setting. For
each of the model variants, we derived an SDE to describe the total expected emissions
Xi in every time period i.

3.1.2 Cost Minimization

The next step is to solve the cost minimization problem of the representative agent. We
consider this optimization separately for each time period. Let si be the price parameter in
the i-th time period. This parameter represents the price of an allowance at the beginning
of the next time period; we assume that it is exogenous to the optimization, so we will
assume that this parameter is given. Note that we cannot compute the actual allowance
price of the next time period as we will explain in Section 3.1.5.

The key idea to incorporate the value of an unused allowance at the end of the time
period is now to modify the penalty function as follows:

P i
(
XTi+1

)
=

{(
p+ si

) (
XTi+1 − ei0

)
if XTi+1 > ei0,

si
(
XTi+1 − ei0

)
else.

Here the second case reflects that any surplus allowances have value si at the end of the
current time period. In the first case we incorporate the following mechanism of the EU
ETS: In addition to a penalty payment, emissions exceeding the number of allowances
also have to be balanced out by the corresponding number of allowances in the next time
period. Hence each additional ton of emissions incurs costs of p + si. Furthermore, we
allow the cap ei0 to change for each time period.
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As before, we assume the cost of abatement to be given as

Ci(u) =
1

2
ci u2,

where the control takes on values in U = [0,∞); the cost coefficient ci may differ for
different time periods. Similarly to before, we define the admissibility set for t ∈ [Ti, Ti+1]
as

Ai1(t) =

{
u = (us)s∈[t,Ti+1] an F-progressively measurable process into U

with E

[∫ Ti+1

t
|us|2ds

]
<∞

}
.

Now we derive the HJB equation based on the dynamics of Xi as obtained in the
previous section. We define the value function for the i-th time period as

V i(t, x) = inf
u∈Ai1(t)

Et,x
[
e−rTi+1 P i

(
XTi+1

)
+

∫ Ti+1

t
Ci (us) e−rsds

]
.

In order to apply the SDE describing Xi, we need to shift time again, i.e. we consider the
time t̂ = t − Ti relative to the current time period i. In analogy to the shifted processes
defined above, we introduce the shifted filtration F i as

F i
t̂

= FTi+t̂.

For any t̂ ∈ [0,∆Ti], we define the admissibility set of the shifted control ui as

Ai(t̂) =

{
ui =

(
uis
)
s∈[t̂,∆Ti]

an F i-progressively measurable process into U

with E

[∫ ∆Ti

t̂
|uis|2ds

]
<∞

}
.

Note that we have (us)s∈[t,Ti+1] ∈ Ai1(t) if and only if ui =
(
uiŝ
)
ŝ∈[t̂,∆Ti]

∈ Ai(t̂) by definition

of ui. Then we apply the substitution ŝ = s− Ti to the value function, delivering

V i(t̂, x) = inf
ui∈Ai(t̂)

Et,x
[
e−rTi+1 P i

(
Xi

∆Ti

)
+

∫ ∆Ti

t̂
Ci
(
uiŝ
)

e−r(Ti+ŝ)dŝ

]
.

We motivate the HJB equation by applying the Bellman principle; for ease of notation
we again write s and t instead of ŝ and t̂. Then for τ ∈ R with τ > t we have

V i(t, x) = inf
ui∈Ai(t)

Et,x
[∫ τ

t
Ci
(
uis
)

e−r(Ti+s)ds+ V i
(
τ,Xi

τ

)]
.

We apply the Itô-formula and use that dXi
t = −uitdt + Gi(t)dW i

t ; we note that since
W i

0 = WTi 6= 0, the process W i is not a Brownian motion according to the usual definition.
However, we can still show for the quadratic covariation that [W i]t = t and therefore
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[Xi]t =
∫ t

0 G
i(s)2ds as before (see Section A.4.1 in the appendix), so we have

V i(t, x) = inf
ui∈Ai(t)

Et,x
[∫ τ

t
Ci
(
uis
)

e−r(Ti+s)ds+ V i
(
t,Xi

t

)
+

∫ τ

t
V i
t

(
x,Xi

s

)
ds

−
∫ τ

t
uisV

i
x

(
s,Xi

s

)
ds+

∫ τ

t
Gi(s)V i

x(s,Xs)dW
i
s +

1

2

∫ τ

t
Gi(s)2 V i

xx

(
s,Xi

s

)
ds

]
= inf

ui∈Ai(t)
Et,x

[∫ τ

t
Ci
(
uis
)

e−r(Ti+s)ds+ V i
(
t,Xi

t

)
+

∫ τ

t

(
V i
t

(
s,Xi

s

)
− uis V i

x

(
s,Xi

s

)
+

1

2
Gi(s)2 V i

xx

(
s,Xi

s

))
ds

]
,

by assuming that the integral of Gi(s)V i
x(s,Xs) with respect to W i exists and is a mar-

tingale. We then subtract V i(t,Xi
t), divide by τ − t and let τ → t to obtain

0 = inf
ui∈Ai(t)

Et,x
[
lim
τ↓t

1

τ − t

∫ τ

t

(
Ci
(
uis
)

e−r(Ti+s)ds

+ V i
t

(
s,Xi

s

)
− uis V i

x

(
s,Xi

s

)
+

1

2
Gi(s)2 V i

xx

(
s,Xi

s

))
ds

]
= inf

ui∈Ai(t)
Et,x

[
Ci
(
uit
)

e−r(Ti+t) + V i
t

(
t,Xi

t

)
− uit V i

x

(
t,Xi

t

)
+

1

2
Gi(s)2 V i

xx

(
t,Xi

t

)]
.

By setting Xi
t = x and omitting the conditional expectation, we arrive at the HJB equation

0 = inf
ui∈U

{
Ci(ui) e−r(Ti+t) + V i

t (t, x)− ui V i
x(t, x) +

1

2
Gi(t)2 V i

xx(t, x)

}
.

Minimization with respect to ui yields

ui(t, x) =
V i
x(t, x)

ci
er(Ti+t)

and we obtain the characteristic PDE as

V i
t =

1

2

(
V i
x(t, x)

)2
ci

er(Ti+t) − 1

2
Gi(t)2 V i

xx(t, x)

with final condition
V i(∆Ti, x) = e−rTi+1P i(x).

Recall that Gi(t) is given by the following functions for the different model variants:

� Simple model: Gi(t) = σ

� Brownian model: Gi(t) = σ(∆Ti − t)

� Ornstein-Uhlenbeck model: Gi(t) = σ 1−e−θ(∆Ti−t)

θ .

Summary

This section discussed the cost minimization problem of the agent in a multi-period setting:
We defined the value function and formulated the corresponding HJB equation, from which
we derived the characteristic PDE.
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3.1.3 Solution of the PDE

In this section, we aim to solve the characteristic PDE in order to obtain a solution for the
value function and thus for the abatement rate ui; for notational convenience, we assume
that both ci and ei0 do not depend on the corresponding time period and therefore write
c and e0 instead. Again we may find an analytical solution in a special case of the simple
model variant. We will study its properties and show that it satisfies the requirements of
the verification theorem of the HJB equation. For the Brownian and Ornstein-Uhlenbeck
model variants, we need to solve the PDE numerically.

Analytical Solution in the Simple Model

We take the PDE derived in the previous section and as for the one-period model, we
perform a time reversion. We substitute t = ∆Ti − t̃ and define Ṽ i(t̃, x) = V i(∆Ti − t̃, x).
Then

V i
t (t, x) = V i

t (∆Ti − t̃, x) = −V i
t̃
(∆Ti − t̃, x) = −Ṽ i

t̃
(t̃, x)

and we obtain

Ṽ i
t̃

= −

(
Ṽ i
x

)2

2c
er(Ti+1−t̃) +

1

2
σ2 Ṽ i

xx

with initial condition Ṽ i(0, x) = e−r(Ti+1) P i(x). In the following we will again write V
and t instead of Ṽ and t̃.

The analytical solution is only available for the case r = 0, i.e. we consider the PDE

V i
t = −

(
V i
x

)2
2c

+
1

2
σ2 V i

xx

with initial condition

V i(0, x) = P i(x) =

{(
p+ si

)
(x− e0) if x > e0,

si(x− e0) else.

We again apply the Cole-Hopf transformation V i(t, x) = −c σ2 ln
(
νi(t, x)

)
. Since the

PDE is identical to the one-period case, we directly obtain the transformed PDE

νit =
1

2
σ2 νixx,

which is the standard heat equation. The initial condition is transformed as follows:

g(x) := νi(0, x) = e−
V i(0,x)

cσ2 = e−
Pi(x)

cσ2 =

e−
(p+si)(x−e0)

cσ2 if x > e0,

e−
si(x−e0)

cσ2 else.
(3.3)

This function is continuous, but in contrast to the one-period case no longer bounded
as the exponent may now take on positive values. Nevertheless we again refer to Evans
[Eva10]: As can be seen from the proof of Theorem 2.3.11, we still obtain an analytical
solution of the PDE as

νi(t, x) =
1√

2πσ2t

∫ ∞
−∞

νi(0, y) e−
(x−y)2

2σ2t dy.

1The theorem and the proof can be found on pages 47-48 in [Eva10].
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We also again have the property that νi is infinitely differentiable on (0,∞)×R. However,
we do not get directly that the solution νi converges to the initial value, i.e. the property
that νi(t, x) → g(x0) as (t, x) → (0, x0) for arbitrary x0 ∈ R. We will therefore need to
prove this explicitly further below.

We rewrite the expression for the solution νi as

νi(t, x) =
1√

2πσ2t

∫ e0

−∞
e−

si(y−e0)

cσ2 e−
(x−y)2

2σ2t dy +
1√

2πσ2t

∫ ∞
e0

e−
(p+si)(y−e0)

cσ2 e−
(x−y)2

2σ2t dy.

In Section 2.3.1 in equation (2.2), we have seen that

1√
2πσ2t

∫ ∞
e0

e−
(x−y)2

2σ2t e−
p(y−e0)

cσ2 dy =
1√

2πσ2t
e

2cp(e0−x)+p2t

2c2σ2

∫ ∞
e0

e−
(y+

pt
c −x)

2

2σ2t dy

=
1

2
e

2cp(e0−x)+p2t

2c2σ2

(
1− erf

(
c(e0 − x) + pt

cσ
√

2t

))
.

In this expression, p can be replaced by any other constant; thus we directly obtain the
second integral of νi as

1√
2πσ2 t

∫ ∞
e0

e−
(p+si)(y−e0)

cσ2 e−
(x−y)2

2σ2t dy

=
1

2
e

2c(p+si)(e0−x)+(p+si)
2
t

2c2σ2

(
1− erf

(
c(e0 − x) +

(
p+ si

)
t

cσ
√

2t

))
.

Furthermore, we know from Section 2.3.1 in equation (2.3) that

−(x− y)2

2σ2t
− si(y − e0)

cσ2
= −

(
y + sit

c − x
)2

2σ2t
+

2csi(e0 − x) +
(
si
)2
t

2c2σ2
.

For the first integral, we therefore need to compute

1√
2πσ2t

∫ e0

−∞
e−

si(y−e0)

cσ2 e−
(x−y)2

2σ2t dy =
1√

2πσ2t
e

2csi(e0−x)+(si)
2
t

2c2σ2

∫ e0

−∞
e−

(
y+ sit

c −x
)2

2σ2t dy.

We set

z(y) =
y + sit

c − x√
2σ2t

with derivative

dz

dy
=

1√
2σ2t
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and substitute this in the integral, as we did in Section 2.3.1, to compute

1√
2πσ2t

∫ e0

−∞
e−

(
y+ sit

c −x
)2

2σ2t dy =

√
2σ2t√

2πσ2t

∫ e0

−∞

dz

dy
e−z(y)2

dy

=
1√
π

∫ e0+ sit
c −x√

2σ2t

−∞
e−z

2
dz

=
1

2

 2√
π

∫ 0

−∞
e−z

2
dz +

2√
π

∫ e0+ sit
c −x√

2σ2t

0
e−z

2
dz


=

1

2

(
1 + erf

(
e0 + sit

c − x√
2σ2t

))

by using that limz→−∞ erf(z) = −1 as given in Proposition 2.6 (iii). Thus we obtain the
solution as

vi(t, x) =
1

2

(
1 + erf

(
c(e0 − x) + sit√

2cσ
√
t

))
e

2csi(e0−x)+(si)
2
t

2c2σ2

+
1

2

(
1− erf

(
c(e0 − x) +

(
p+ si

)
t

√
2cσ
√
t

))
e

2c(p+si)(e0−x)+(p+si)
2
t

2c2σ2 . (3.4)

By applying the transformation function, we may compute Ṽ i as

Ṽ i(t, x) = −cσ2 ln

[
1

2

(
1 + erf

(
c(e0 − x) + sit√

2cσ
√
t

))
e

2csi(e0−x)+(si)
2
t

2c2σ2

+
1

2

(
1− erf

(
c(e0 − x) +

(
p+ si

)
t

√
2cσ
√
t

))
e

2c(p+si)(e0−x)+(p+si)
2
t

2c2σ2

]
.

We still need to revert back time by substituting ∆Ti − t for t. Then we have

V i(t, x) = −cσ2 ln

[
1

2

(
1 + erf

(
c(e0 − x) + si(∆Ti − t)√

2cσ
√

∆Ti − t

))
e

2csi(e0−x)+(si)
2
(∆Ti−t)

2c2σ2

+
1

2

(
1− erf

(
c(e0 − x) +

(
p+ si

)
(∆Ti − t)√

2cσ
√

∆Ti − t

))
e

2c(p+si)(e0−x)+(p+si)
2
(∆Ti−t)

2c2σ2

]
.

(3.5)

In Section A.2.1 in the appendix, we compute the derivative of this expression, resulting
in

V i
x(t, x) = si +

p

1 +
e
− 2cp(e0−x)+p(p+2si)(∆Ti−t)

2c2σ2

(
1+erf

(
c(e0−x)+si(∆Ti−t)√

2cσ
√

∆Ti−t

))
1−erf

(
c(e0−x)+(p+si)(∆Ti−t)√

2cσ
√

∆Ti−t

)
. (3.6)

This is consistent with the analytical solution for the one-period model: If we set s = 0
and ∆Ti = T , we obtain the same result as we had in equation (2.5) for the one-period
model.
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Properties of the Analytical Solution

It remains to show that the solution νi of the transformed PDE converges to the initial
value function as time tends to zero. Furthermore, we again need to show that the solution
V i of the characteristic PDE satisfies the requirements of the verification theorem for the
HJB equation. We will also prove some properties of V i and its derivatives, which will be
useful further below. The two latter proofs work similarly to the one-period case discussed
in Section 2.3.2 and are therefore not repeated here (these proofs can be found in Section
B.1 of the appendix). We first consider the convergence of the PDE solution to the initial
value function.

Proposition 3.2. For the solution νi of the transformed PDE as given in equation (3.4)
and the initial value function g as defined in equation (3.3), we have for any ξ0 ∈ R that

lim
(t,x)→(0,ξ0)

νi(t, x) = g(ξ0).

Proof. We again make use of auxiliary functions to simplify notation. These are defined
in a similar way as in the one-period model; but since in this case we consider the time-
reversed PDE, we introduce auxiliary functions in reversed time as

F̃ i1(t, x) = 1− erf

(
c(e0 − x) +

(
p+ si

)
t

√
2cσ
√
t

)

F̃ i2(t, x) = 1 + erf

(
c(e0 − x) + sit√

2cσ
√
t

)
Ẽi3(t, x) = e

2c(p+si)(e0−x)+(p+si)
2
t

2c2σ2

Ẽi4(t, x) = e
2csi(e0−x)+(si)

2
t

2c2σ2 .

By the properties of the error function and the exponential function, these auxiliary func-
tions are well-defined and positive on R × (0,∞). With the help of these functions, we
write νi as

νi(t, x) =
1

2
F̃ i2(t, x) Ẽi4(t, x) +

1

2
F̃ i1(t, x) Ẽi3(t, x).

We perform a case distinction and analyze the auxiliary functions separately.

(i) We first consider ξ0 < e0. Let (tn, xn) be an arbitrary sequence with (tn, xn) →
(0, ξ0) for n→∞. We now define

yn :=
c(e0 − xn) + (p+ si)tn√

2cσ
√
tn

.

Since ξ0 < e0 and in particular limn→∞ xn = ξ0, there exists κ > 0 and N ∈ N such that
e0 − xn > κ for all n ≥ N . But then we have

yn =
c(e0 − xn) + (p+ si)tn√

2cσ
√
tn

=
e0 − xn√

2σ
√
tn

+
p+ si√

2cσ

√
tn

>
κ√

2σ
√
tn

+
p+ si√

2cσ

√
tn −→∞ as tn → 0,
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which implies that limn→∞ yn =∞. By definition, we have F̃ i1(tn, xn) = 1+erf (yn). Since
the limit of the error function is limx→∞ erf (x) = 1 by Proposition 2.6 (iii), we then have

lim
n→∞

F̃ i1(tn, xn) = lim
n→∞

(1 + erf (yn)) = 1 + lim
n→∞

erf(yn) = 1 + 1 = 2.

By defining zn as

zn :=
c(e0 − x) + sitn√

2cσ
√
tn

,

we proceed in the same way to again show that limn→∞ zn = ∞. By definition, we have
F̃ i2(tn, xn) = 1− erf(zn) and therefore

lim
n→∞

F̃ i2(tn, xn) = lim
n→∞

(1− erf(zn)) = 1− lim
n→∞

erf(zn) = 1− 1 = 0.

The exponential functions Ẽi3 and Ẽi4 are continuous in t and x on [0,∞) × R and we
obtain directly

lim
n→∞

Ẽi3(tn, xn) = Ẽi3(0, ξ0) = e
2c(p+si)(e0−ξ0)

2c2σ2 = e−
(p+si)(ξ0−e0)

cσ2

lim
n→∞

Ẽi4(tn, xn) = Ẽi4(0, ξ0) = e
2csi(e0−ξ0)

2c2σ2 = e−
si(ξ0−e0)

cσ2 .

Combining these results delivers

lim
n→∞

νi(tn, xn) = lim
n→∞

(
1

2
F̃ i2(tn, xn) Ẽi4(tn, xn) +

1

2
F̃ i1(tn, xn) Ẽi3(tn, xn)

)
=

1

2
· 2 · e−

si(ξ0−e0)

cσ2 +
1

2
· 0 · e−

(p+si)(ξ0−e0)

cσ2 = e−
si(ξ0−e0)

cσ2 = g(ξ0).

(ii) Next, we consider the case that ξ0 > e0. We first determine the limit for F̃ i1. Since
ξ0 − e0 > 0, we may find κ > 0 such that(

2 +
p+ si

c

)
κ = ξ0 − e0.

Again let (tn, xn) be an arbitrary sequence with (tn, xn)→ (0, ξ0) as n→∞. Then there
exists N ∈ N such that ‖(tn, xn) − (0, ξ0)‖ < κ for all n ≥ N and in particular we have
|tn| < κ and |xn − ξ0| < κ. We therefore compute

e0 − xn +
p+ si

c
tn = e0 − ξ0 + ξ0 − xn +

p+ si

c
tn

≤ −
(

2 +
p+ si

c

)
κ+ |ξ0 − xn|+

p+ si

c
|tn|

< −
(

2 +
p+ si

c

)
κ+ κ+

p+ si

c
κ = −κ.

We again define yn as above and we then have for all n > N

yn =
c(e0 − xn) + (p+ si)tn√

2cσ
√
tn

=
e0 − xn + p+si

c tn√
2σ
√
tn

< − κ√
2σ
√
tn
→ −∞ as tn → 0,
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which shows that limn→∞ yn = −∞. As limx→−∞ erf(x) = −1 and we know by definition
that F̃ i1(tn, xn) = 1 + erf(yn), we obtain

lim
n→∞

F̃ i1(tn, xn) = lim
n→∞

(1 + erf(yn)) = 1 + lim
n→∞

erf(yn) = 1− 1 = 0.

In the same way we show for zn defined as

zn :=
c(e0 − x) + sitn√

2cσ
√
tn

that limn→∞ zn = −∞. With F̃ i2(tn, xn) = 1− erf(zn), we have

lim
n→∞

F̃ i2(tn, xn) = lim
n→∞

(1− erf(zn)) = 1− lim
n→∞

erf(zn) = 1 + 1 = 2.

We now use the results from above for Ẽi3 and Ẽi4 to result in

lim
n→∞

νi(tn, xn) = lim
n→∞

(
1

2
F̃ i2(tn, xn) Ẽi4(tn, xn) +

1

2
F̃ i1(tn, xn) Ẽi3(tn, xn)

)
=

1

2
· 0 · e−

si(ξ0−e0)

cσ2 +
1

2
· 2 · e−

(p+si)(ξ0−e0)

cσ2 = e−
(p+si)(ξ0−e0)

cσ2 = g(ξ0).

(iii) The only case we have left is when ξ0 = e0. Let (tn, xn) be an arbitrary sequence
with (tn, xn)→ (0, e0) as n→∞. We again define

yn :=
c(e0 − xn) + (p+ si)tn√

2cσ
√
tn

and

zn :=
c(e0 − xn) + sitn√

2cσ
√
tn

.

Then we have

lim
n→∞

|yn − zn| = lim
n→∞

∣∣∣∣c(e0 − xn) + (p+ si)tn√
2cσ
√
tn

− c(e0 − xn) + sitn√
2cσ
√
tn

∣∣∣∣
= lim

n→∞

∣∣∣∣ptn + sitn − sitn√
2cσ
√
tn

∣∣∣∣ = lim
n→∞

∣∣∣∣ p√
2cσ

√
tn

∣∣∣∣ = 0.

Since the derivative of the error function given by erf(x)′ = 2/
√
π e−x

2
is clearly bounded,

the error function is Lipschitz continuous and we have

| erf(yn)− erf(zn)| ≤ L|yn − zn|

for some constant L > 0. Then it follows that

lim
n→∞

| erf(yn)− erf(zn)| = 0.

We again use the continuity of the functions Ẽi3 and Ẽi4 to compute

lim
n→∞

Ẽi3(tn, xn) = e
2c(p+si)(e0−e0)+(p+si)·0

2c2σ2 = 1

lim
n→∞

Ẽi4(tn, xn) = e
2csi(e0−e0)+(si)

2
·0

2c2σ2 = 1.
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From this we obtain

lim
n→∞

∣∣∣Ẽi3(tn, xn)− Ẽi4(tn, xn)
∣∣∣ = |1− 1| = 0

which implies that∣∣∣Ẽi3(tn, xn) erf(yn)− Ẽi4(tn, xn) erf(zn)
∣∣∣

=
∣∣∣Ẽi3(tn, xn) erf(yn)− Ẽi3(tn, xn) erf(zn) + Ẽi3(tn, xn) erf(zn)− Ẽi4(tn, xn) erf(zn)

∣∣∣
≤ Ẽi3(tn, xn) | erf(yn)− erf(zn)|+

∣∣∣Ẽi3(tn, xn)− Ẽi4(tn, xn)
∣∣∣ | erf(zn)|

≤ Ẽi3(tn, xn) | erf(yn)− erf(zn)|+
∣∣∣Ẽi3(tn, xn)− Ẽi4(tn, xn)

∣∣∣→ 0 as n→∞

since | erf(zn)| ≤ 1. Then also

lim
n→∞

(
Ẽi3(tn, xn) erf(yn)− Ẽi4(tn, xn) erf(zn)

)
= 0.

We now use this and obtain

lim
n→∞

νi(tn, xn) = lim
n→∞

(
1

2
F̃ i2(tn, xn) Ẽi4(tn, xn) +

1

2
F̃ i1(tn, xn) Ẽi3(tn, xn)

)
= lim

n→∞

(
1

2
(1− erf(zn)) Ẽi4(tn, xn) +

1

2
(1 + erf(yn)) Ẽi3(tn, xn)

)
= lim

n→∞

(
1

2

(
Ẽi4(tn, xn) + Ẽi3(tn, xn)

)
+

1

2

(
Ẽi3(tn, xn) erf(yn)− Ẽi4(tn, xn) erf(zn)

))
=

1

2
· (1 + 1) +

1

2
· 0 = 1 = g(ξ0).

Thus we have shown that the solution νi converges to the initial value function g as
required.

In the following, we will proceed as we did for the one-period model: We first establish
some properties of the solution V i and use these to show that it indeed satisfies the
requirements of the verification theorem for the HJB equation.

Proposition 3.3. The function V i as given by (3.5) and its derivative V i
x given by (3.6)

satisfy the following properties:

(i) V i is infinitely differentiable on (−∞,∆Ti)× R, i.e. V i ∈ C∞ ((−∞,∆Ti)× R).

(ii) V i
x satisfies si ≤ V i

x(t, x) ≤ p+ si for all (t, x) ∈ [0,∆Ti]× R\{(∆Ti, e0)}, i.e. V i
x is

bounded.

(iii) For any t ∈ [0,∆Ti] we have

lim
x→∞

V i
x(t, x) = p+ si and lim

x→−∞
V i
x(t, x) = si.

(iv) Let ε > 0 arbitrary. Then the derivatives V i
xx and V i

xt are bounded on [0,∆Ti−ε]×R.

100



CHAPTER 3. MULTI-PERIOD MODEL

Proof. The proof is very similar to the proof of the corresponding result in the one-period
model in Proposition 2.7; therefore it is omitted here and instead provided in Section B.1
in the appendix.

These results now help us to establish the requirements of the verification theorem for
the HJB equation and to show that the corresponding control is admissible.

Proposition 3.4. The functions V i given by equation (3.5) for t ∈ [0,∆Ti) and by the
terminal condition of the PDE for t = ∆Ti satisfy the requirements of the verification
theorem for the HJB equation, i.e. we have

(i) V i is continuously differentiable in t and twice continuously differentiable in x on
[0,∆Ti)× R,

(ii) V i is continuous on [0,∆Ti]× R,

(iii) V i satisfies a quadratic growth condition, uniformly in t, i.e. there exists K > 0 such
that

|V i(t, x)| ≤ K
(
1 + |x|2

)
for all t ∈ [0,∆Ti].

Proof. The proof is again along the same lines as the corresponding result in the one-period
model given by Proposition 2.9; the proof can be found in Section B.1 of the appendix.

Proposition 3.5. Fix a time period i and let X be a continuous R-valued stochastic
process on [0,∆Ti] which is F i-adapted. Then for any t ∈ [0,∆Ti] the control process ui

given by

ui =
(
uis
)
s∈[t,∆Ti]

=
(
ui(s,Xs)

)
s∈[t,∆Ti]

where ui(s, x) =
V i
x(s, x)

c

lies in Ai(t).

Proof. Since the function ui has similar properties as u in the one-period model, the proof
is analogous to the one of Proposition 2.10 and can be found in Section B.1 of the appendix.

In conclusion, we see that also for the multi-period model I, we obtain an analytical
solution of the characteristic PDE in the simple model variant. By the verification theorem
of the HJB equation in Proposition 2.3, this solution allows us to determine an optimal
abatement rate as long as the SDE has a unique solution which is continuous and adapted.

Time Reversion in the Brownian and Ornstein-Uhlenbeck Model Variant

For the Brownian model variant, we have the PDE

V i
t (t, x) =

1

2

(
V i
x(t, x)

)2
c

er(Ti+t) − 1

2
σ2 (∆Ti − t)2 V i

xx(t, x)

with final condition
V i(∆Ti, x) = e−rTi+1P i(x).

We reverse time by substituting t = ∆Ti − t̃ and defining Ṽ i(t̃, x) = V i(∆Ti − t̃, x) as
before. Then

V i
t (t, x) = V i

t (∆Ti − t̃, x) = −V i
t̃
(∆Ti − t̃, x) = −Ṽ i

t̃
(t̃, x)
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and we obtain

Ṽt̃ = −1

2

(
Ṽ i
x

)2

c
er(Ti+∆Ti−t̃) +

1

2
σ2 (∆Ti −∆Ti + t̃)2Ṽ i

xx

= −1

2

(
Ṽ i
x

)2

c
er(Ti+1−t̃) +

1

2
σ2 t̃2 Ṽ i

xx.

The final condition is turned into an initial condition given by

Ṽ i(0, x) = e−rTi+1 P i(x).

The PDE of the Ornstein-Uhlenbeck model variant is given by

V i
t (t, x) =

1

2

(
V i
x(t, x)

)2
c

er(Ti+t) − 1

2
σ2

(
1− e−θ(∆Ti−t)

)2
θ2

V i
xx(t, x)

with final condition

V i(∆Ti, x) = e−rTi+1P i(x).

After time reversion this becomes

Ṽt̃ = −1

2

(
Ṽ i
x

)2

c
er(Ti+∆Ti−t̃) +

1

2
σ2 (1− e−θ(∆Ti−∆Ti+t̃))2

θ2
Ṽ i
xx

= −1

2

(
Ṽ i
x

)2

c
er(Ti+1−t̃) +

1

2
σ2

(
1− e−θt̃

)2

θ2
Ṽ i
xx

and the final condition becomes the initial condition

V i(∆Ti, x) = e−rTi+1P i(x),

identical to the one in the Brownian model variant. Again for both of these model variants
an analytical solution is not available, hence we will have to solve the PDE numerically,
as explained in Section 5.1. Thus we cannot show that the verification theorem for the
HJB equation holds in case of these model variants.

Summary

In this section, we derived an analytical solution of the characteristic PDE in the simple
model variant of multi-period model I; in contrast to the one-period model we needed to
show explicitly that this solution converges to the initial value function. For the remainder
of the section, we proceeded as in the one-period model: We derived useful properties of the
PDE solution and showed that it satisfies the requirements of the verification theorem for
the HJB equation. Furthermore, we showed that the corresponding control is admissible.
To apply the verification theorem, it only remains to show that the SDE describing X has
a unique solution which is continuous and adapted.

As in the one-period model, the analytical solution is only available in the simple
model variant; in the Brownian and Ornstein-Uhlenbeck model variant, we prepared the
numerical solution by conducting the necessary time reversion.
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3.1.4 Solution of the SDE

Again the motivation to analyze the solution of the SDE is two-fold: Firstly, we are
interested in the quantities that such a solution may deliver, namely the process of total
expected emissions X and the allowance prices we may compute from it. And secondly,
we again require the existence of a unique solution to be able to apply the verification
theorem of the HJB equation in Proposition 2.3. In this section, we will refer to our
results in Sections 2.4.1 and 2.4.2 and discuss how they apply to multi-period model I.

Remark 3.6. We have to keep in mind that W i
0 6= 0 and thus W i is not a standard

Brownian motion. By definition of W i we can view it as a shifted Brownian motion, so all
other properties of Brownian motion are preserved. Moreover, W i enters the statements
below only as an increment, i.e. as W i

t − W i
s for some s < t, or as the integrator of a

stochastic integral, i.e. as
∫ t

0 ZsdW
i
s for some process Z. Therefore the shift does not

impact any of the results and the theorems of Section 2.4 still apply.

Corollary 3.7. Let i be an arbitrary time period of multi-period model I and furthermore

let ui(t, x) = V ix(t,x)
c with V i

x as given in equation (3.6). Then the SDE of the simple model
variant given by

dXi
t = −ui(t,Xi

t)dt+ σdW i
t ,

has a unique strong solution which is continuous in t. In addition, the solution Xi is
adapted to the shifted filtration F i and the process X defined by

Xt =

N∑
i=1

Xi
t−Ti1(Ti,Ti+1](t) for t ∈ [0, T ]

is adapted to the filtration F .

Proof. As for Corollary 2.27, we need to verify Assumption 2.14 and may then apply The-
orem 2.15. As the volatility σ is constant, it is clearly bounded and Lipschitz continuous
and thus satisfies the assumption. The drift term is bounded, since by Proposition 3.3 (ii)
the derivative of the value function V i

x is bounded. Moreover, in Proposition 3.3 (iv) we
have seen for any ε > 0 that V i

xx is bounded on [0, T − ε] × R, which implies that V i
x is

Lipschitz continuous in x on [0, T − ε] × R. Hence Lipschitz continuity of ui follows and
thus the drift also satisfies Assumption 2.14.

Theorem 2.15 then delivers the existence of a unique t-continuous solution, which is
adapted to FXi

0,W
i
. By definition we know that Xi

0 is FTi-measurable. Furthermore, W i

is defined as W i
t = WTi+t and therefore W i

t is FTi+t-measurable. Thus

FX
i
0,W

i

t ⊆ FTi+t = F it

and the claim follows.

Corollary 3.8. For an arbitrary time period i of multi-period model I with ui(t, x) =
V ix(t,x)

c and V i
x as given in equation (3.6) let Xi denote the solution of the SDE

dXi
t = −ui(t,Xi

t)dt+ σdW i
t .

Then the Euler-Maruyama scheme as given in Definition 2.19 converges strongly to Xi.
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Proof. Assumption 2.14 holds as seen above, thus it remains to show 1
2 -Hölder continuity

on [0,∆Ti−ε] with respect to t as required in Assumption 2.25. For the constant volatility
this is again trivial. We now let ε > 0 arbitrary. Then we know from Proposition 3.3 (iv)
that V i

xt is bounded on [0, T − ε]×R, thus V i
x and therefore also ui is Lipschitz continuous

in t on [0, T − ε]×R, which in particular implies 1
2 -Hölder continuity. With Theorem 2.26

convergence of the Euler-Maruyama scheme follows.

Corollary 3.9. Let i be an arbitrary time period in multi-period model I. Further, let V i

be given by equation (3.5) and let the abatement rate be given by uit = ui(t,Xi
t), where

ui(t, x) = V ix(t,x)
c and V i

x is given by equation (3.6). Then, for the simple model variant,
V i delivers the minimum costs and the abatement rate ui is optimal.

Proof. Since the drift and the volatility of the SDE are essentially unchanged in compar-
ison to the one-period model, they satisfy the assumptions stated in the prequel of the
verification theorem. Also the cost function still satisfies a quadratic growth bound. The
terminal condition is still piecewise linear, but no longer partly constant. This suffices for
a quadratic growth condition to hold. Thus the verification theorem in Proposition 2.3
can be applied also to multi-period model I.

With Proposition 3.4, we know that V i ∈ C1,2 ([0,∆Ti)× R) and V i ∈ C ([0,∆Ti]× R)
as well as that V i grows at most quadratically. By construction, V i solves the HJB
equation with ui as the control. Furthermore, with Corollary 3.7, we know that the SDE

dXi
t = −ui(t,Xi

t)dt+ σdW i
t

has a unique solution and by Proposition 3.5 we have ui ∈ A(t) since the solution of the
SDE Xi is continuous and F i-adapted. Then, with the verification theorem in Proposition
2.3, the claim follows.

As in the one-period model, we cannot rigorously analyze the drift term of the Brow-
nian and Ornstein-Uhlenbeck model variant due to the lack of a closed-form expression.
Thus we may only provide a theoretical result concerning the volatility term.

Lemma 3.10. The volatility functions in multi-period model I of

(i) the Brownian model variant given by GiB(t) = σ(∆Ti − t) and

(ii) the Ornstein-Uhlenbeck model variant given by GiOU (t) = σ 1−e−θ(∆Ti−t)

θ

satisfy Assumptions 2.14 and 2.25.

Proof. (i) The volatility of the Brownian model variantGiB is linear in t and constant in
x and thus clearly Lipschitz continuous in t and x and in particular 1

2 -Hölder continuous
in t. Furthermore it also directly follows that GiB is bounded on the bounded interval
[0,∆Ti].

(ii) The volatility of the Ornstein-Uhlenbeck model variant is also constant in x and
therefore in particular Lipschitz continuous in x. In addition it is continuous in t, so
boundedness on [0,∆Ti] follows. We now compute the derivative GiOU (t)′ = −σe−θ(∆Ti−t).
This is clearly bounded for t ≤ ∆Ti, hence GiOU is Lipschitz continuous in t and therefore
1
2 -Hölder continuous in t on [0,∆Ti].

Remark 3.11. Since in the Brownian and in the Ornstein-Uhlenbeck model variant we
cannot study the drift term analytically, we will analyze the numerical solution in Sec-
tion 6.2.1.
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Summary

With the help of the theorems of Section 2.4 and the results of Section 3.1.3, we showed
that the SDE in the simple variant of our model has a unique solution, which can be ap-
proximated by the Euler-Maruyama scheme. Furthermore, we concluded that the solution
of the characteristic PDE delivers the minimum costs and that the corresponding control
is optimal. In the Brownian and Ornstein-Uhlenbeck model variant, comparable results
could not be obtained.

3.1.5 Procedure to Combine the Time Periods

So far we have derived SDEs and solved the minimization problem for each time period
separately. Now we need to combine these results. As in the one-period model, our aim
is to determine the price path and the path of total expected emissions and in particular
the resulting emissions as given by XTi . Therefore, we need to solve the SDE for all
time periods. To determine the drift functions ui, we first need to solve the PDE for the
corresponding time period i. Here we require the price of an allowance at the beginning
of the subsequent period since this enters the penalty function. In the approach presented
in this section, we assume this price to be exogenous to the optimization procedure, i.e.
the price as given by si enters the PDE as a constant parameter.

The price function in the model is given by Si(t, x) = c ui(t, x), so it depends on the
drift ui. Therefore, the PDE solutions are computed in reversed order: We first determine
the drift of the last time period uN−1, then uN−2 and so forth until we reach u0. For
the last time period N − 1, the parameter sN−1 needs to be given in advance. For all
remaining time periods, we compute the input parameter si from the price function of the
next time period Si+1 by using the previously computed function ui+1. The actual price
of an allowance at the beginning of time period i+ 1 is given by Si+1(0, Xi+1

0 ). However,
since Xi+1

0 is not available, we need to estimate this value. Two approaches are possible:
Firstly, we may use the expectation of the price given by

si = E
[
Si+1(0, Xi+1

0 )
]

= E
[
c ui+1

(
0, Xi+1

0

)]
.

In Section 3.1.1, we determined Xi+1
0 = X+

Ti+1
for each model. In the simple model variant,

we then have
si = E

[
c ui+1

(
0, xi+1

0 + σWTi+1

)]
and similarly in the Brownian model variant

si = E
[
c ui+1

(
0, xi+1

0 + σ∆Ti+1WTi+1

)]
.

In the Ornstein-Uhlenbeck model variant, this becomes

si = E

[
c ui+1

(
0, xi+1

0 − σ e−θTi+2 − e−θTi+1

θ

∫ Ti+1

0
eθsdWs

)]
.

Since we know the distribution of WTi+1 as well as of
∫ Ti+1

0 eθsdWs, we can compute these
expressions by Monte Carlo methods.

We may simplify these computations if we instead estimate the price by applying the
price function to the expectation of Xi+1

0 . We then obtain

si = Si+1
(
0,E

[
Xi+1

0

])
= Si+1

(
0, xi+1

0

)
,
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since in the simple model variant we have

E
[
Xi+1

0

]
= E

[
xi+1

0 + σWTi+1

]
= xi+1

0

and in the Brownian model variant

E
[
Xi+1

0

]
= E

[
xi+1

0 + σ∆Ti+1WTi+1

]
= xi+1

0 .

In the Ornstein-Uhlenbeck model variant, we use that
∫ Ti+1

0 eθsdWs ∼ N
(

0,
∫ Ti+1

0 e2θsds
)

and therefore

E
[
X
Ti+1

0

]
= E

[
xi+1

0 − σ e−θTi+2 − e−θTi+1

θ

∫ Ti+1

0
eθsdWs

]
= xi+1

0 .

We already remark that we will use this more simple approach to compute si in numerical
simulations.

When we have solved the PDEs, we can start to solve the SDEs. This is done forward
in time: We first solve the SDE on [0, T1] which also delivers the path of W on [0, T1] and
in particular a realization of WT1 . Therefore, we can compute2 X1

0 = X+
T1

and solve the
SDE on [T1, T2]. We continue in this way until we reach TN . In summary, the procedure
works as follows:

1. Choose a constant sN−1 as input for the last time period.

2. Solve the PDEs in reversed order

uN−1 → uN−2 → . . .→ ui+1 → ui → . . .→ u1 → u0.

In each time period we compute si from the subsequent time period i + 1 as si =
c ui+1(0, xi+1

0 ) or si = c ui+1
(
0,E

[
Xi+1

0

])
.

3. Solve the SDEs forward in time

X0 → X1 → . . .→ Xi → Xi+1 → . . .→ XN−2 → XN−1

by computing Xi
0 from (Wt)t∈[0,Ti]

.

Remark 3.12. We argued above that Xi+1
0 is not available when solving the PDEs. This

is due to the fact that Xi+1
0 depends on WTi+1 in case of the simple and Brownian model

variants and on the entire path (Wt)t∈[0,Ti+1] in case of the Ornstein-Uhlenbeck model. The
Brownian motion W is usually simulated when solving the SDEs and therefore after solving
the PDEs as explained above. Of course, it would be possible to simulate the Brownian
motion in advance. Then we would have to compute the solution of the PDE separately
for each run, which would entail a very high computational effort. More importantly,
this approach is questionable with regards to its interpretation: The results of the PDE
solution for the period [Ti, Ti+1] are applied from the beginning of this period on; therefore
all the information required to compute the PDE solution should be available at time Ti.
This certainly does not hold for the realization of the Brownian motion WTi+1 at time

Ti+1 which is required to compute Xi+1
0 and hence Si+1(0, Xi+1

0 ). Moreover, for the
computation of ui+1 we require WTi+2 and so on. Hence both in theory and in practice

Xi+1
0 is not available when computing the PDE solution.
2For the simple and Brownian model we only require WT1 , for the Ornstein-Uhlenbeck model we need

the entire path.
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Remark 3.13. From a theoretical point of view, the estimates given above may corre-
spond to the situation that we perform the optimization for all time periods before the
beginning of the first time period: By simply computing the expectation, we do not include
any further information we might acquire in the course of time. Possibly it is more realistic
to assume that the cost optimization is in each case done right before the corresponding
time period, so for solving the PDE on [Ti, Ti+1] the information of time Ti is available.
Then the expression for the parameter si is given by

si = E
[
Si+1

(
0, Xi+1

0

) ∣∣FTi] .
However, as mentioned above, the function ui+1 and thus also Si+1 is dependent on si+1.
We therefore consider Si+1(0, x, s) as a function of x and the price parameter si. For the
last period, sN−1 has to be given in advance. We then have

sN−2 = E
[
SN−1

(
0, XN−1

0 , sN−1
) ∣∣∣FTN−2

]
as input price parameter for the second last period. For the period before that, we obtain

sN−3 = E
[
SN−2

(
0, XN−2

0 ,E
[
SN−1

(
0, XN−1

0 , sN−1
) ∣∣∣FTN−2

]) ∣∣∣FTN−3

]
,

which continues in a similar manner for the remaining time periods. Already this ex-
pression is complicated to handle both in theory and in numerical computations. More
importantly, the parameter sN−3 (and sN−2, sN−4, . . .) is now a random variable. This
contradicts our assumption of a constant parameter and such a random variable cannot
be processed by the optimization procedure described in Section 3.1.2.

If we again take the price function of the expectation of Xi
0, we have

sN−2 = SN−1
(

0,E
[
XN−1

0

∣∣∣FTN−2

]
, sN−1

)
.

As an example, we compute in the Brownian model

sN−2 = SN−1
(

0,E
[
xN−1

0 + σ∆TN−1WTN−1

∣∣FTN−2

]
, sN−1

)
= SN−1

(
0, xN−1

0 + σ∆TN−1WTN−2
, sN−1

)
and similarly

sN−3 = SN−2
(

0,E
[
XN−2

0

∣∣∣FTN−3

]
, sN−2

)
= SN−2

(
0, xN−2

0 + σ∆TN−2WTN−3
, sN−2

)
.

However, sN−2 still depends on WTN−2
which is not available at time WTN−3

. Hence we
would have to consider the conditional expectation E

[
sN−2

∣∣FTN−3

]
, imposing the same

complications as above. Moreover, sN−2, sN−3, sN−4 . . . are again random variables and
therefore cannot be used in this model.

A more realistic but also more complex approach to the multi-period model, which
evades the difficulties explored here, will be described in Section 3.2.
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Summary

We described how we proceed to combine the PDE and SDE solutions of the different time
periods: We solve the PDEs of all time periods in reversed order and use the solution of
the subsequent time period to estimate the price parameter si. Then we solve the SDEs
forward in time by using the simulated realization of Brownian motion to determine the
initial value of the SDE in each time period.

3.1.6 Multi-Period Model with Expiring Allowances

In order to evaluate the impact of allowing for the transfer of allowances, we need to
compare the results we obtain in the multi-period model with a setting where allowances
expire after one time period. However, the multi-period model presented above should
not directly be compared to the one-period model. One important reason is that we also
use the parameter si to account for the costs of the missing allowances in the case of
non-compliance in addition to the penalty payment, which we could not do in the one-
period model. In addition, constructing a multi-period model with expiring allowances
also enables us to compare more than the first time period. To obtain such a model we
only need to apply one simple change in the penalty function.

The SDE is derived directly from the emission rate process, which is not influenced
by the validity of the allowances. Therefore, also in this case we model the total expected
emissions as

dXi
t = −uitdt+Gi(t)dW i

t .

For the cost minimization, we modify the penalty function to

P i
(
XTi+1

)
=

{(
p+ si

) (
XTi+1 − e0

)
if XTi+1 > e0,

0 else.

In case of surpassing the emission threshold, we still account for both the penalty payment
and the requirement to hand over the missing allowances in the next period. But in case
of compliance with the emission goal, surplus allowances now have a value of 0, since they
expire and cannot be transferred to the next period.

The remainder of the optimization procedure can be applied as before, so that we
obtain the same PDE, only with a modified final condition as given by the penalty function
above:

V i
t (t, x) =

1

2

(
V i
x(t, x)

)2
c

er(Ti+t) − 1

2
Gi(t)2 V i

xx(t, x)

with final condition

V i(∆Ti, x) =

{
e−rTi+1

(
p+ si

)
(x− e0) if x > e0,

0 else.

Hence for all model variants, we may proceed similarly as in the multi-period model I
presented above to solve the PDE; we only need to adapt the final condition.

Analytical Solution of the PDE in the Simple Model Variant

We may also in this setting derive an analytical solution in the simple model variant if we
set r = 0. We consider the PDE

V i
t =

(
V i
x

)2
2c

− 1

2
σ2 V i

xx
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with final condition

V i(∆Ti, x) = P i(x) =

{(
p+ si

)
(x− e0) if x > e0,

0 else.

This is identical to the one-period model with p replaced by p+si and T replaced by ∆Ti.
Therefore, we obtain the solution directly from the one-period model as

V i
x(t, x) =

p+ si

1 +
e
−

2c(p+si)(e0−x)+(p+si)2
(∆Ti−t)

2c2σ2

(
1+erf

(
e0−x√

2σ
√

∆Ti−t

))
1−erf

(
c(e0−x)+(p+si)(∆Ti−t)√

2cσ
√

∆Ti−t

)
.

3.2 Multi-Period Model with Varying Price Parameter

In this section, we introduce a more realistic approach to the multi-period model, as we
now allow the price parameter to vary throughout the sub-period considered. This means
that during the optimization procedure, the agent takes into account the changes in her
expectation of the initial allowance price for the next time period. To this end, we need
to introduce an additional process Z driven solely by Brownian motion that simulates the
initial value of X in the next time period. From this process, we may therefore compute
the anticipated price. Based on this approach, we will construct the multi-period model II.

3.2.1 Derivation of the SDE

As before in Section 3.1, we consider a time period [0, T ] partitioned into 0 = T0 < T1 <
. . . < Ti < . . . < TN = T . We define the emission rate (Yt)t∈[0,T ] for the three different
model variants as before and the total expected emissions (Xt)t∈[Ti,Ti+1] are still defined
as given in Definition 3.1. For each model we now present the derivation of the SDEs and
the definition of the newly introduced process Z separately. In each case we will obtain
SDEs of the form

dXi
t = −uitdt+Gi(t)dW i

t

dZit = H i(t)dW i
t .

Brownian Model Variant

In the Brownian model variant with Y given by

dYt = µdt+ σdWt

we compute X as in Section 3.1 and obtain

Xt = X+
Ti
−
∫ t

Ti

usds+ σ

∫ t

Ti

(Ti+1 − s)dWs

where X+
Ti

is again

X+
Ti

= E

[∫ Ti+1

Ti

Ysds
∣∣∣FTi] = y0 ∆Ti +

T 2
i+1 − T 2

i

2
µ+ σ∆TiWTi = xi0 + σ∆TiWTi
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with ∆Ti defined as ∆Ti = Ti+1 − Ti. Note that we then have

X+
Ti+1

= y0 ∆Ti+1 +
T 2
i+2 − T 2

i+1

2
µ+ σ∆Ti+1WTi+1.

Now we assume that the partition considered here is equidistant, i.e. ∆Ti = ∆Tj for any
i and j, and define ∆T := ∆Ti. By noting that Ti = i∆T , we rewrite the expression as

X+
Ti+1

= y0 ∆Ti+1 +
(Ti+2 − Ti+1) (Ti+2 + Ti+1)

2
µ+ σ∆Ti+1WTi+1

= y0 ∆T +
∆T ((i+ 2)∆T + (i+ 1)∆T )

2
µ+ σ∆T WTi+1

= y0 ∆T +
∆T ((i+ 1)∆T + i∆T )

2
µ+

∆T (∆T + ∆T )

2
µ+ σ∆T WTi+1

= y0 ∆T +
(Ti+1 − Ti) (Ti+1 + Ti)

2
µ+ ∆T 2 µ+ σ∆T

(
WTi+1 −WTi +WTi

)
= y0 ∆T +

T 2
i+1 − T 2

i

2
µ+ σ∆T WTi + ∆T 2 µ+ σ∆T

(
WTi+1 −WTi

)
= X+

Ti
+ ∆T 2 µ+ σ∆T

(
WTi+1 −WTi

)
.

We therefore define another stochastic process Z = (Zt)t∈[0,T ] as Z0 = X0 + ∆T 2 µ and

Zt = Z+
Ti

+ σ∆T

∫ t

Ti

dWs for t ∈ (Ti, Ti+1],

with Z+
Ti

= X+
Ti

+ ∆T 2 µ. Then it follows that

ZTi+1 = Z+
Ti

+ σ∆T

∫ Ti+1

Ti

dWs = X+
Ti

+ ∆T 2 µ+ σ∆T
(
WTi+1 −WTi

)
= X+

Ti+1
.

Therefore, we may use the process Z to predict the initial value of the total expected
emissions X in the next time period. Furthermore, by definition, Z satisfies the martingale
property within each time period, i.e. for s, t ∈ (Ti, Ti+1] and s < t it holds that Zs =
E [Zt | Fs]. In particular, we have Zt = E

[
ZTi+1 |Ft

]
for t ∈ (Ti, Ti+1]. Hence for each

t ∈ (Ti, Ti+1], we have that Zt indeed represents the agents expectation at time t on the
total expected emissions at the beginning of time period i+ 1 given by X+

Ti+1
.

Remark 3.14. Alternatively, we could define Z as

Zt = Z+
Ti

+ µ∆T

∫ t

Ti

ds+ σ∆T

∫ t

Ti

dWs

with Z+
Ti

= X+
Ti

. In this case ZTi+1 = X+
Ti+1

still holds but Z would no longer be a
martingale.

We now proceed similarly to Section 3.1.1: We transform our time horizon from [0, T ]
to the respective sub-period (Ti, Ti+1] by setting t̂ = t − Ti. We define ui

t̂
= uTi+t̂,

Xi
t̂

= XTi+t̂
, Zi

t̂
= ZTi+t̂ and W i

t̂
= WTi+t̂

. Furthermore, we set Xi
0 = X+

Ti
, Zi0 = Z+

Ti
and

W i
0 = WTi . By substituting ŝ = s− Ti in the integral equations for X and Z, we obtain

Xi
t̂

= Xi
0 −

∫ t̂

0
uiŝdŝ+ σ

∫ t̂

0
(∆T − ŝ)dW i

ŝ

Zi
t̂

= Zi0 + σ∆T

∫ t̂

0
dW i

ŝ ,
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from which we derive the stochastic differential equations

dXi
t̂

= −ui
t̂
dt̂+ σ

(
∆T − t̂

)
dW i

t̂
, Xi

0 = xi0 + σ∆T WTi

dZi
t̂

= σ∆T dW i
t̂
, Zi0 = xi0 + σ∆T WTi + ∆T 2 µ.

These deliver the functions Gi and H i as Gi(t) = σ (∆T − t) and H i(t) = σ∆T .

Ornstein-Uhlenbeck Model Variant

We now have Y given as
dYt = θ (µ− Yt) + σdWt,

which implies as shown in Section 3.1.1 that for X we have

Xt = X+
Ti
−
∫ t

Ti

usds+ σ

∫ t

Ti

1− e−θ(Ti+1−s)

θ
dWs

for t ∈ (Ti, Ti+1]. Furthermore, we have seen that X+
Ti

can be expressed as

X+
Ti

= xi0 − σ
e−θTi+1 − e−θTi

θ

∫ Ti

0
eθsdWs,

where

xi0 = (µ− y0)
e−θTi+1 − e−θTi

θ
+ µ∆Ti.

Then clearly we have

X+
Ti+1

= xi+1
0 − σ e−θTi+2 − e−θTi+1

θ

∫ Ti+1

0
eθsdWs

with

xi+1
0 = (µ− y0)

e−θTi+2 − e−θTi+1

θ
+ µ∆Ti+1.

We now again assume that all time periods are equidistant, i.e. we assume that ∆Ti = ∆Tj
for any i 6= j. We define ∆T := ∆Ti, thus we have Ti = i∆T and rewrite

e−θTi+1 − e−θTi = e−θ(i+1)∆T − e−θi∆T = e−θi∆T
(

e−θ∆T − 1
)
.

With this we have

X+
Ti

= (µ− y0)
e−θTi+1 − e−θTi

θ
+ µ∆Ti − σ

e−θTi+1 − e−θTi

θ

∫ Ti

0
eθsdWs

= (µ− y0) e−θi∆T
e−θ∆T − 1

θ
+ µ∆T − σ e−θi∆T

e−θ∆T − 1

θ

∫ Ti

0
eθsdWs

and compute

X+
Ti+1

= (µ− y0) e−θ(i+1)∆T e−θ∆T − 1

θ
+ µ∆T − σ e−θ(i+1)∆T e−θ∆T − 1

θ

∫ Ti+1

0
eθsdWs

= e−θ∆T
(

(µ− y0) e−θi∆T
e−θ∆T − 1

θ
+ µ∆T − σ e−θi∆T

e−θ∆T − 1

θ

∫ Ti

0
eθsdWs

)
− e−θ∆T µ∆T + µ∆T − σ e−θ(i+1)∆T e−θ∆T − 1

θ

∫ Ti+1

Ti

eθsdWs

= e−θ∆TX+
Ti

+ µ∆T
(

1− e−θ∆T
)

+ σ e−θ(i+1)∆T 1− e−θ∆T

θ

∫ Ti+1

Ti

eθsdWs.
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We therefore define the process Z on (Ti, Ti+1] as

Zt = Z+
Ti

+ σ e−θ(i+1)∆T 1− e−θ∆T

θ

∫ t

Ti

eθsdWs,

where Z+
Ti

is defined as

Z+
Ti

= e−θ∆TX+
Ti

+ µ∆T
(

1− e−θ∆T
)
.

Then we have again

ZTi+1 = Z+
Ti

+ σ e−θ(i+1)∆T 1− e−θ∆T

θ

∫ Ti+1

Ti

eθsdWs = X+
Ti+1

.

So again we have defined Z in such a way that it can be used to predict the initial value
of the total expected emissions of the next time period as given by X+

Ti+1
; in particular,

also here Z satisfies the martingale property within each time period (Ti, Ti+1].

As for the Brownian model, the next step is to perform the shift in time: We set
t̂ = t − Ti and define ui

t̂
= uTi+t̂, X

i
t̂

= XTi+t̂
, Zi

t̂
= ZTi+t̂ and W i

t̂
= WTi+t̂

. In addition,

we define Xi
0 = X+

Ti
, Zi0 = Z+

Ti
and W i

0 = WTi . In order to derive the corresponding SDEs,
we substitute ŝ = s− Ti in the integral equations as

Xi
t̂

= Xi
0 −

∫ t̂

0
uiŝdŝ+ σ

∫ t̂

0

1− e−θ(∆T−ŝ)

θ
dW i

ŝ

Zi
t̂

= Zi0 + σ e−θ(i+1)∆T 1− e−θ∆T

θ

∫ t̂

0
eθ(Ti+ŝ)dW i

ŝ

= Zi0 + σ e−θ(i+1)∆T 1− e−θ∆T

θ

∫ t̂

0
eθ(i∆T+ŝ)dW i

ŝ

= Zi0 + σ e−θ∆T
1− e−θ∆T

θ

∫ t̂

0
eθŝdW i

ŝ

= Zi0 + σ
1− e−θ∆T

θ

∫ t̂

0
e−θ(∆T−ŝ)dW i

ŝ

and obtain

dXi
t̂

= −ui
t̂
dt̂+ σ

1− e−θ(∆T−t̂)

θ
dW i

t̂
Xi

0 = xi0 + σ e−θi∆T
1− e−θ∆T

θ

∫ Ti

0
eθsdWs

dZi
t̂

= σ
1− e−θ∆T

θ
e−θ(∆T−t̂) dW i

t̂
Zi0 = e−θ∆TXi

0 + µ∆T
(

1− e−θ∆T
)
.

Thus for the Ornstein-Uhlenbeck model, Gi and H i are given by

Gi(t) = σ
1− e−θ(∆T−t)

θ
,

H i(t) = σ
1− e−θ∆T

θ
e−θ(∆T−t).
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Simple Model Variant

In analogy to Section 3.1.1, we have

Xt = X+
Ti
−
∫ t

Ti

usds+ σ

∫ t

Ti

dWs.

Since we cannot compute X+
Ti

in this case, we define it as

X+
Ti

= xi0 + σWTi ,

where xi0 ∈ R. In the following we assume that xi0 = xj0 =: x0, so we can simplify to

X+
Ti

= x0 + σWTi .

Then it holds that

X+
Ti+1

= x0 + σWTi+1

= x0 + σWTi + σ(WTi+1 −WTi)

= X+
Ti

+ σ(WTi+1 −WTi).

Therefore, we define Z as Z0 = X0 and

Zt = Z+
Ti

+ σ

∫ t

Ti

dWs for t ∈ (Ti, Ti+1]

with Z+
Ti

= X+
Ti

. Then it follows that ZTi+1 = X+
Ti+1

and Z satisfies the martingale

property on (Ti, Ti+1]. Moreover, this implies ZTi+1 = Z+
Ti+1

, thus Z is continuous. We

define t̂ = t− Ti and substitute ŝ = s− Ti as above to result in

Xi
t̂

= Xi
0 −

∫ t̂

0
uiŝdŝ+ σ

∫ t̂

0
dW i

ŝ

Zi
t̂

= Zi0 + σ

∫ t̂

0
dW i

ŝ

and obtain the differential equations

dXi
t̂

= −ui
t̂
dt̂+ σdW i

t̂
, Xi

0 = x0 + σ∆T WTi

dZi
t̂

= σdW i
t̂
, Zi0 = x0 + σ∆T WTi .

Thus we have for the functions Gi and H i that Gi(t) = H i(t) = σ.

Summary

For each of the model variants, we defined a process Z which represents the agent’s expec-
tation on X+

Ti+1
in the course of time period i. This is useful since the initially expected

BAU emissions of the next time period X+
Ti+1

are needed to compute the allowance price
at the beginning of the next time period; the thus computed price in turn is required to
assess the value of an unused allowance. We then derived an SDE to describe Zi in each
time period.
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3.2.2 Cost Minimization

We consider the minimization of costs on the time period i given by the interval [Ti, Ti+1].
In the previous model we have seen that there exists a function Si : [0,∆Ti] × R → R
which allows us to compute the price of an allowance in time period i for a given time
and a given value of x. We now assume that also in this model there exists a function
S̃i0 : R → R representing the price of an allowance at the beginning of time period i for
a given value of x; we will ascertain that this holds in Section 3.2.5 below. Then S̃i+1

0 is
the function describing the price at the beginning of the subsequent period and we may
compute the price as S̃i+1

0

(
X+
Ti+1

)
. Therefore we formulate the penalty function as

P i
(
XTi+1 , X

+
Ti+1

)
=


(
p+ S̃i+1

0

(
X+
Ti+1

)) (
XTi+1 − ei0

)
if XTi+1 > ei0,

S̃i+1
0

(
X+
Ti+1

) (
XTi+1 − ei0

)
else.

In comparison to multi-period model I, the price parameter si has now been replaced by
S̃i+1

0

(
X+
Ti+1

)
. Since ZTi+1 = X+

Ti+1
, we rewrite this as

P i
(
XTi+1 , ZTi+1

)
=

{(
p+ S̃i+1

0

(
ZTi+1

)) (
XTi+1 − ei0

)
if XTi+1 > ei0,

S̃i+1
0

(
ZTi+1

) (
XTi+1 − ei0

)
else.

Hence Z enters the penalty function as a second variable and is therefore also a variable
of the value function, which is now defined by

V i(t, x, z) = inf
u∈Ai1(t)

Et,x,z
[
e−rTi+1P i

(
XTi+1 , ZTi+1

)
+

∫ Ti+1

t
C(us) e−rsds

]
.

In this expression, the admissibility set is defined as in the previous model as

Ai1(t) =

{
u = (us)s∈[t,Ti+1] an F-progressively measurable process into U

with E

[∫ Ti+1

t
|us|2ds

]
<∞

}
with U = [0,∞), and the costs are modeled by the cost function

Ci(u) =
1

2
ci u2.

We perform the shift in time t̂ = t− Ti again and substitute ŝ = s− Ti to result in

V i(t̂, x, z) = inf
ui∈Ai(t̂)

Et̂,x,z
[
e−rTi+1P i

(
Xi

∆T , Z
i
∆T

)
+

∫ ∆T

t̂
Ci(uiŝ) e−r(Ti+ŝ)dŝ

]
,

where again

Ai(t) =

{
ui =

(
uis
)
s∈[0,∆Ti]

an F i-progressively measurable process into U

with E

[∫ ∆Ti

0
|uis|2ds

]
<∞

}
.
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As before, we apply the Bellman principle to heuristically derive the HJB equation (for
ease of notation we write s and t instead of ŝ and t̂ in the following). For τ ∈ R with τ > t
we compute

V i(t, x, z) = inf
ui∈Ai(t)

Et,x,z
[∫ τ

t
Ci(uis) e−r(Ti+s)ds+ V i

(
τ,Xi

τ , Z
i
τ

)]
= inf

ui∈Ai(t)
Et,x,z

[∫ τ

t
Ci(uis) e−r(Ti+s)ds+ V i

(
t,Xi

t , Z
i
t

)
+

∫ τ

t
V i
t

(
s,Xi

s, Z
i
s

)
ds

+

∫ τ

t
V i
x

(
s,Xi

s, Z
i
s

)
dXi

s +

∫ τ

t
V i
z

(
s,Xi

s, Z
i
s

)
dZis

+
1

2

∫ τ

t
V i
xx

(
s,Xi

s, Z
i
s

)
d[Xi]s +

1

2

∫ τ

t
V i
xz

(
s,Xi

s, Z
i
s

)
d[Xi, Zi]s

+
1

2

∫ τ

t
V i
zx

(
s,Xi

s, Z
i
s

)
d[Zi, Xi]s +

1

2

∫ τ

t
V i
zz

(
s,Xi

s, Z
i
s

)
d[Zi]s

]
.

We note that although W i
0 6= 0, we still have [W i]t = t, as can be seen in appendix A.4.1,

and therefore

[Xi]t =

∫ t

0
Gi(s)2ds,

[Xi, Zi]t = [Zi, Xi]t =

∫ t

0
Gi(s)H i(s)ds,

[Zi]t =

∫ t

0
H i(s)2ds.

Furthermore, we assume that Vxz = Vzx. Then, by assuming that the stochastic integral
is a martingale, we rewrite

V i(t, x, z) = inf
ui∈Ai(t)

Et,x,z
[∫ τ

t
Ci(uis) e−r(Ti+s)ds+ V i(t,Xi

t , Z
i
t) +

∫ τ

t
V i
t

(
s,Xi

s, Z
i
s

)
ds

−
∫ τ

t
V i
x

(
s,Xi

s, Z
i
s

)
uisds+

∫ τ

t
V i
x

(
s,Xi

s, Z
i
s

)
Gi(s)dW i

s

+

∫ τ

t
V i
z

(
s,Xi

s, Z
i
s

)
H i(s)dW i

s +
1

2

∫ τ

t
V i
xx

(
s,Xi

s, Z
i
s

)
Gi(s)2ds

+

∫ τ

t
V i
xz

(
s,Xi

s, Z
i
s

)
Gi(s)H i(s)ds+

1

2

∫ τ

t
V i
zz

(
s,Xi

s, Z
i
s

)
H i(s)2ds

]
= inf

ui∈Ai(t)
Et,x,z

[
V i
(
t,Xi

t , Z
i
t

)
+

∫ τ

t

(
Ci(uis) e−r(Ti+s) + Vt

(
s,Xi

s, Z
i
s

)
− uis V i

x

(
s,Xi

s, Z
i
s

)
+

1

2
Gi(s)2 V i

xx

(
s,Xi

s, Z
i
s

)
+ Gi(s)H i(s)V i

xz

(
s,Xi

s, Z
i
s

)
+

1

2
H i(s)2 V i

zz

(
s,Xi

s, Z
i
s

))
ds

]
.
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Again we eliminate V i(t, x, z) on both sides, divide by τ − t and let τ → t:

0 = inf
ui∈Ai(t)

Et,x,z
[
lim
τ↓t

1

τ − t

∫ τ

t

(
Ci(uis) e−r(Ti+s) + Vt

(
s,Xi

s, Z
i
s

)
− uis V i

x

(
s,Xi

s, Z
i
s

)
+

1

2
Gi(s)2 V i

xx

(
s,Xi

s, Z
i
s

)
+ Gi(s)H i(s)V i

xz

(
s,Xi

s, Z
i
s

)
+

1

2
H i(s)2 V i

zz

(
s,Xi

s, Z
i
s

)
ds

)]
= inf

ui∈Ai(t)
Et,x,z

[
Ci(uit) e−r(Ti+t) + V i

t

(
t,Xi

t , Z
i
t

)
− uit V i

x

(
t,Xi

t , Z
i
t

)
+

1

2
Gi(t)2 V i

xx

(
t,Xi

t , Z
i
t

)
+Gi(t)H i(t)V i

xz

(
t,Xi

t , Z
i
t

)
+

1

2
H i(t)2 V i

zz

(
t,Xi

t , Z
i
t

)]
= inf

ui∈U

{
Ci(ui) e−r(Ti+t) + V i

t (t, x, z)− ui V i
x(t, x, z) +

1

2
Gi(t)2 V i

xx(t, x, z)

+ Gi(t)H i(t)V i
xz(t, x, z) +

1

2
H i(t)2 V i

zz(t, x, z)

}
.

Thus we have arrived at the HJB equation. Minimizing with respect to ui yields as before

ui(t, x, z) =
V i
x(t, x, z)

ci
er(Ti+t).

We insert this in the HJB equation above and obtain the characteristic PDE

V i
t =

1

2

(
V i
x

)2
ci

er(Ti+t̂) − 1

2
Gi(t)2 V i

xx −Gi(t)H i(t)V i
xz −

1

2
H i(t)2 V i

zz.

This differs from the PDE of multi-period model I in Section 3.1.2 by the two final terms
only; the remainder of the PDE remains unchanged. We compute the final condition by
inserting t = ∆T in the value function as follows:

V i(∆T, x, z) = inf
u∆T

E
[
e−rTi+1 P i

(
Xi

∆T , Z
i
∆T

) ∣∣∣Xi
∆T = x, Zi∆T = z

]
= e−rTi+1P i(x, z)

=

{
e−rTi+1

(
p+ S̃i+1

0 (z)
)

(x− ei0) if x > ei0,

e−rTi+1S̃i+1
0 (z)(x− ei0) else.

Again the solution of the PDE allows us to compute the allowance price by introducing
the price function Si for each period i, which is given as

Si(t, x, z) = ci ui(t, x, z).

Note that in contrast to the price function S̃i0 we assumed to exist above, this depends
also on z. We will explain how this can be handled in Section 3.2.5.

Summary

We formulated the cost minimization problem of the agent and derived the corresponding
HJB equation, from which we obtained the characteristic PDE. Due to the additional
stochastic process Z in this model, both the value function and the PDE depend on a
second spatial variable; the same holds for the allowance price function.
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3.2.3 Solution of the PDE

The next step is again to solve the characteristic PDE; to simplify notation, we again
write c and e0 instead of ci and ei0. In the present model, we will need to solve the PDE
numerically for each of the model variants; we will argue why also for the simple model
variant no analytical solution is available. Hence we cannot apply the verification theorem
in Proposition 2.3 to show that ui as obtained from the numerical PDE solution is indeed
the optimal abatement rate.

Simple Model Variant

Since in the simple model we have Gi(t) = H i(t) = σ, we need to consider the PDE

V i
t =

1

2

(
V i
x

)2
c

er(Ti+t) − 1

2
σ2 V i

xx − σ2 V i
xz −

1

2
σ2 V i

zz

with final condition
V i(∆T, x, z) = e−rTi+1P i(x, z).

We again perform a time reversion by substituting t = ∆T − t̃ and defining Ṽ i(t, x, z) =
V i(∆T − t̃, x, z). As before, V i

t (t, x, z) = −Ṽ i
t̃
(t̃, x, z) and therefore

Ṽ i
t = −1

2

(
Ṽ i
x

)2

c
er(Ti+1−t̃) +

1

2
σ2 Ṽ i

xx + σ2 Ṽ i
xz +

1

2
σ2 Ṽ i

zz

with initial value
Ṽ i(0, x, z) = e−rTi+1P i(x, z).

If we now set r = 0 as we did in the simple variant of previous models, we need to consider

Ṽ i
t = −1

2

(
Ṽ i
x

)2

c
+

1

2
σ2 Ṽ i

xx + σ2 Ṽ i
xz +

1

2
σ2 Ṽ i

zz

with
Ṽ i(0, x, z) = P i(x, z),

where we again have time-independent coefficient functions. The Cole-Hopf transform is
also available for multi-dimensional PDEs; as explored by Evans [Eva10], it can be applied
to PDEs of the form

vt − a∆v + b|Dv|2 = 0 in (0,∞)× Rd (3.7)

v = g on {0} × Rd,

where ∆ is the Laplace operator, D the differential operator, g is a function on Rd and
a > 0, b are constants. Let us assume that we have a smooth solution v of this PDE.
Evans then shows that if v solves the PDE above, then

w = e
−bv
a

solves the PDE

wt − a∆w = 0 in (0,∞)× Rd

w = e
−bg
a on {0} × Rd.
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Thus we see that w = e
−bv
a is the Cole-Hopf transformation in d dimensions.

However, this does not apply in our particular case: The PDE in equation (3.7) does not
contain any mixed derivatives, whereas in our PDE we have the term Vxz. Furthermore,
we have different coefficients for the terms Vxx and Vzz as well as for the terms V 2

x and V 2
z

(with the latter being zero). In the PDE given by equation (3.7), these are identically a
and b, respectively. Thus the approach via the Cole-Hopf transformation cannot trivially
be extended to the PDE in our model, so we will need to compute the solution of the PDE
numerically also for the simple model variant.

Brownian Model Variant

By combining our results for Gi and H i and the PDE derived above, we obtain as the
PDE for the Brownian model variant

V i
t =

1

2

(
V i
x

)2
c

er(Ti+t) − 1

2
σ2 (∆T − t)2 V i

xx − σ2 (∆T − t) ∆T V i
xz −

1

2
σ2 ∆T 2 V i

zz

with final condition

V i(∆T, x, z) = e−rTi+1P i(x, z).

Time reversion then yields

Ṽ i
t = −

(
Ṽ i
x

)2

2c
er(Ti+∆T−t̃) +

1

2
σ2
(
∆T −∆T + t̃

)2
Ṽ i
xx

+ σ2
(
∆T −∆T + t̃

)
∆T Ṽ i

xz +
1

2
σ2 ∆T 2 Ṽ i

zz

= −

(
Ṽ i
x

)2

2c
er(Ti+1−t̃) +

1

2
σ2 t̃2 Ṽ i

xx + σ2 t̃∆T Ṽ i
xz +

1

2
σ2 ∆T 2 Ṽ i

zz.

As initial condition we obtain

Ṽ i(0, x, z) = e−rTi+1P i(x, z).

Ornstein-Uhlenbeck Model Variant

With the results from above, the PDE in the Ornstein-Uhlenbeck model variant is given
as

V i
t =

1

2

(
V i
x

)2
c

er(Ti+t) − 1

2
σ2

(
1− e−θ(∆T−t)

)2
θ2

V i
xx

− σ2

(
1− e−θ(∆T−t)

) (
1− e−θ∆T

)
θ2

e−θ(∆T−t) V i
xz −

1

2
σ2

(
1− e−θ∆T

)2
θ2

e−2θ(∆T−t) V i
zz

with terminal condition

V i(∆T, x, z) = e−rTi+1P i(x, z).
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By performing the time reversion as above, we obtain

Ṽ i
t = −1

2

(
Ṽ i
x

)2

c
er(Ti+∆T−t̃) +

1

2
σ2

(
1− e−θ(∆T−∆T+t̃)

)2

θ2
Ṽ i
xx

+ σ2

(
1− e−θ(∆T−∆T+t̃)

) (
1− e−θ∆T

)
θ2

e−θ(∆T−∆T+t̃) Ṽ i
xz

+
1

2
σ2

(
1− e−θ∆T

)2
θ2

e−2θ(∆T−∆T+t̃) Ṽ i
zz

= −1

2

(
Ṽ i
x

)2

c
er(Ti+1−t̃) +

1

2
σ2

(
1− e−θt̃

)2

θ2
Ṽ i
xx

+ σ2

(
1− e−θt̃

) (
1− e−θ∆T

)
θ2

e−θt̃ Ṽ i
xz +

1

2
σ2

(
1− e−θ∆T

)2
θ2

e−2θt̃ Ṽ i
zz

with initial condition

Ṽ i(0, x, z) = e−rTi+1P i(x, z).

Summary

We discussed why the Cole-Hopf transformation cannot be applied in multi-period model
II, so that the PDE needs to be solved numerically in all model variants. In preparation
of the numerical PDE solution, we performed the time reversion for all model variants.

3.2.4 Solution of the SDE

For each time period i, we aim to study the resulting emissions Xi
∆Ti

and the price process

given by Si(t,Xi
t , Z

i
t). Thus, we need to solve the system of SDEs describing Xi and Zi.

Furthermore, we again require a unique solution for the verification of the HJB equation
to work. We therefore again aim to apply the results in Section 2.4 to the current model;
note that in this case we have a two-dimensional SDE, so we need to make use of the
multi-dimensional formulation of the results.

However, in the present model we do not have an explicit solution of the characteristic
PDE for any of our model variants and in turn we also do not know the drift function
−ui explicitly. Therefore we may only study the volatility functions of all model variants
analytically.

Lemma 3.15. In multi-period model II the volatility functions of

(i) the simple model variant given by(
GiS(t)
H i
S(t)

)
=

(
σ
σ

)
,

(ii) the Brownian model variant given by(
GiB(t)
H i
B(t)

)
=

(
σ(∆T − t)
σ∆T

)
,
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(iii) and the Ornstein-Uhlenbeck model variant given by(
GiOU (t)
H i
OU (t)

)
=

(
σ 1−e−θ(∆T−t)

θ

σ 1−e−θ∆T

θ e−θ(∆T−t)

)

satisfy Assumptions 2.14 and 2.25.

Proof. We first note that the volatility functions for all model variants are constant in
(x, z) and therefore also clearly Lipschitz continuous in (x, z).

(i) In the simple model variant, the volatility function is constant and thus bounded
and 1

2 -Hölder continuous in t.

(ii) In the Brownian model variant, both components are bounded on [0,∆T ], therefore
also the norm is bounded. For Lipschitz continuity in t, we use that the second component
does not depend on t, and for arbitrary s, t ∈ [0,∆T ] we compute∥∥∥(σ(∆T − t)− σ(∆T − s)

σ∆T − σ∆T

)∥∥∥ =
∥∥∥(−σ(t− s)

0

)∥∥∥ = σ|t− s|.

Thus the volatility is Lipschitz continuous in t, which implies 1
2 -Hölder continuity.

(iii) In the Ornstein-Uhlenbeck model variant, both components are continuous in t.
Then also (

σ
1− e−θ(∆T−t)

θ

)2

and

(
σ

1− e−θ∆T

θ
e−θ(∆T−t)

)2

are continuous and by the maximum value theorem bounded on [0,∆T ]. Thus for some
suitable constants C1 and C2, we have

∥∥∥( σ 1−e−θ(∆T−t)

θ

σ 1−e−θ∆T

θ e−θ(∆T−t)

)∥∥∥ =

√(
σ

1− e−θ(∆T−t)

θ

)2

+

(
σ

1− e−θ∆T

θ
e−θ(∆T−t)

)2

≤
√
C1 + C2,

which provides the desired bound of the norm. To show Lipschitz continuity, we again
look at both components separately. For the derivative of the first component, we have

GiOU (t)′ = −σ e−θ(∆T−t).

Since this is continuous, we again obtain a bound on [0,∆T ], which implies that GiOU is
Lipschitz continuous, i.e. there exists a constant KG such that

|GiOU (t)−GiOU (s)| ≤ KG |t− s| for all s, t ∈ [0,∆T ].

The derivative of the second component is given by

H i
OU (t)′ = σ (1− e−θ∆T ) e−θ(∆T−t),

which is also continuous and therefore bounded on [0,∆T ], so there exists a constant KH

such that
|H i

OU (t)−H i
OU (t)| ≤ KH |t− s| for all s, t ∈ [0,∆T ].
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Then we have∥∥∥(GiOU (t)−GiOU (s)
H i
OU (t)−H i

OU (s)

)∥∥∥ =

√(
GiOU (t)−GiOU (s)

)2
+
(
H i
OU (t)−H i

OU (s)
)2

≤
√
K2
G |t− s|2 +K2

H |t− s|2 =
√
K2
G +K2

H |t− s|,

which delivers Lipschitz continuity in t, and 1
2 -Hölder continuity follows.

Remark 3.16. As we cannot study the drift functions analytically, we will analyze the nu-
merical solutions of the characteristic PDE and the drift derived from this in Section 6.3.1.
We will aim to find an indication that also the drift does not violate Assumptions 2.14
and 2.25.

Remark 3.17. Since we do not have an explicit expression for the solution of the HJB
equation, we cannot apply the verification theorem as given by Proposition 2.3. However,
we may still try to check if the theorem applies to the setting of the present model by
verifying the assumptions in the prequel of the theorem. The drift b as a function of t, x
and u given by

b(t, x, u) =

(
−u
0

)
is clearly Lipschitz continuous in x, and ‖b‖ = |u|, thus also the linear growth bound
is satisfied. As argued in the proof above, both of these properties also hold for any of
the volatility functions of the model variants. The cost function remains unchanged in
comparison to multi-period model I; thus it remains to consider the terminal condition
given by

g
(

(x, z)>
)

:= erT P i(x, z) =

{
erT

(
p+ S̃i+1

0 (z)
)

(x− e0) if x > e0

erT S̃i+1
0 (z)(x− e0) else.

Under the assumption that the price function S̃i+1
0 is bounded, the terminal condition

again satisfies a linear growth bound and therefore in particular a quadratic growth bound.
In Section 3.2.5 we will see that we obtain S̃i+1

0 from ui+1; therefore, since we do not know
ui+1 explicitly, we cannot verify whether S̃i+1

0 is bounded or satisfies some suitable growth
condition. Hence we do not know if the terminal condition satisfies a quadratic growth
bound and thus cannot ensure that the verification theorem applies to the general setting
of the model.

Summary

In this section, we showed that the volatility of all model variants satisfies the assumptions
of the theorems of Section 2.4. As a closed-form expression for the drift is not available
in any of the model variants, it was not possible to verify these assumptions for the drift.
Thus in multi-period model II, we cannot show that the SDE has a unique solution and
that the Euler-Maruyama scheme converges; also a verification of the HJB equation cannot
be given.
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3.2.5 Procedure to Combine the Time Periods

Again we need to combine the results from solving the PDEs and SDEs of the separate
time periods in order to simulate the process X. The procedure is similar as in multi-
period model I of Section 3.1. We start by specifying a price function S̃N0 and use this
to solve the PDE for the last time period N − 1. Then we solve the PDEs backwards in
time. In each time period i, we need to determine the corresponding initial price function
S̃i+1

0 . From the PDE solution of the subsequent time period, we obtain the price function
Si+1 : [Ti+1, Ti+2]×R×R→ R, which depends both on x and z. But in all model variants
the initial value of Z is a linear function of X; i.e. we have Zi0 = aXi

0+b for some constants
a and b. More specifically, in the simple model variant we have Zi0 = Xi

0 and therefore

S̃i+1
0 (x) = Si+1(0, x, x),

in the Brownian model variant we have Zi0 = Xi
0 + ∆T 2 µ, thus

S̃i+1
0 (x) = Si+1(0, x, x+ ∆T 2 µ) = c ui+1(0, x, x+ ∆T 2 µ),

and in the Ornstein-Uhlenbeck model we have Zi0 = e−θ∆T Xi
0 + µ∆T

(
1− e−θ∆T

)
, deliv-

ering

S̃i+1
0 (x) = Si+1

(
0, x, e−θ∆T x+ µ∆T

(
1− e−θ∆T

))
= c ui+1

(
0, x, e−θ∆T x+ µ∆T

(
1− e−θ∆T

))
.

We recall that the abatement function ui+1 can be computed from the PDE solution of
period i+ 1 as

ui+1(t, x, z) =
V i+1
x (t, x, z)

c
erTi+1+t.

The price function then enters the penalty function and thus allows us to solve the PDE
for time period i. We proceed in this way until we reach time period 0.

Then we start solving the SDEs forward in time. For each time period i, we compute
the initial values of X and Z from the realization of the Brownian motion W up to time
Ti. As shown in the derivation of the respective SDEs, we need to compute for the simple
model variant

Xi
0 = xi0 + σ∆T WTi , Zi0 = xi0 + σ∆T WTi ,

for the Brownian model variant we have

Xi
0 = xi0 + σ∆T WTi , Zi0 = xi0 + σ∆T WTi + ∆T 2 µ,

and for the Ornstein-Uhlenbeck model we compute

Xi
0 = xi0 + σ e−θi∆T

1− e−θ∆T

θ

∫ Ti

0
e−θsdWs, Zi0 = e−θ∆TXi

0 + µ∆T
(

1− e−θ∆T
)
.

The procedure can again be summarized as follows:

1. Choose a function S̃N0 (x) as input for the last time period.

2. Solve the PDEs in reversed order

uN−1 → uN−2 → . . .→ ui+1 → ui → . . .→ u1 → u0.

In each time period, we apply the price function S̃i+1
0 (x) = c ui+1(0, x, ax+ b).
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3. Solve the SDEs forward in time

X0 → X1 → . . .→ Xi → Xi+1 → . . .→ XN−2 → XN−1

Z0 → Z1 → . . .→ Zi → Zi+1 → . . .→ ZN−2 → ZN−1

by computing Xi
0 and Zi0 from (Wt)t∈[0,Ti]

.

Summary

We demonstrated that the approach to combine the PDE and SDE solutions of all time
periods is the same as in multi-period model I: We first solve the PDEs backwards in time.
For each time period, we obtain the function to describe the initial price S̃i0 from the price
function Si by using the linear relation between the initial values of Xi and Zi. The SDEs
are then again solved forward in time.

3.2.6 Multi-Period Model with Allowances Becoming Invalid

If we want to analyze the effect of being able to transfer allowances to the subsequent
period, we again need to formulate a multi-period model where this is not possible. Again
this leaves the SDEs unchanged. We only need to modify the penalty function to

P i
(
XTi+1 , ZTi+1

)
=

{(
p+ S̃i+1

0

(
ZTi+1

)) (
XTi+1 − e0

)
if XTi+1 > e0,

0 else.

Then we obtain the PDE of time period i as

V i
t =

1

2

(
V i
x

)2
c

er(Ti+t) − 1

2
Gi(t)2 V i

xx −Gi(t)H i(t)V i
xz −

1

2
H i(t)2 V i

zz

with terminal condition

V i(∆T, x, z) = e−rTi+1 P i(x, z)

=

{
e−rTi+1

(
p+ S̃i+1

0 (z)
)

(x− e0) if x > e0

0 else.

Also this PDE needs to be solved numerically in all model variants; we may proceed to
solve the PDEs and SDEs of all time periods as presented above.
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Chapter 4

Auctioning

In contrast to the free allocation of allowances during the early phases of the EU ETS,
since 2013 an increasingly large share of allowances has been auctioned. Therefore, in this
chapter we will present an approach to model an ETS, where allowances are auctioned.
We still allow for free allocation of allowances in addition. If allowances are auctioned,
the costs of purchasing allowances at the auction enter the cost function as an additional
term. Moreover, also at the auction an optimization problem needs to be solved, as the
agent aims to choose her demand so that her total costs are minimized. This raises the
question in which order the two optimization problems should be solved. We follow the
approach taken in the work by Haita [Hai14]: In her static two-step model, she first solves
the minimization problem of determining optimal abatement and trading strategies and
then solves the optimization problem at the auction. We adapt this procedure to our
dynamic continuous-time setting. Liang and Huang proceed in a similar way in [LH20]
and [LH22]; in the latter they also work with the opposite order.

4.1 Model Formulation

As in the one-period model introduced in Chapter 2, we assume that the emission rate Y
is described by

dYt = µ(t, Yt)dt+ σ(t, Yt)dWt.

We again define the total expected emissions X as

Xt = −
∫ t

0
usds+ Et

[∫ T

0
Ysds

]
and derive the corresponding SDE

dXt = −utdt+G(t)dWt,

where G differs between the model variants as presented in the previous chapters.

In the EU ETS, allowances are auctioned in a uniform price sealed-bid auction, as
established in [EU10], therefore all allowances are given out for the same price. Let SA
be this uniform price. Further, let eA be the total amount of allowances distributed by
auctioning and let DA be the demand for allowances at the auction. We first consider
the optimization problem during the trading period, i.e. the time period [0, T ], in which
allowances are traded and emissions occur. Since this happens after the auction was
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completed, we assume that the parameters SA, eA and DA are fixed. Afterwards we will
consider the optimization problem at the auction. The reasoning behind this is that the
companies involved in the system will have already made some considerations on what they
expect to happen during the trading period in order to place their bids at the auction.
Thus it is plausible to model these beforehand-considerations by solving the optimization
problem of the trading period first.

4.1.1 Cost Minimization in the Trading Period

The allowances obtained at the auction given by DA can be used to cover emissions and
thus avoid paying the penalty. If we let eF denote the number of allowances allocated to
the agent for free, the penalty function therefore needs to be modified to

PA(x) = max(0, p(x− eF −DA)) = P (x; eF +DA),

i.e. in the definition of the penalty function for the one-period model, we set the amount
of allowances available to the agent e0 to eF +DA. Note that in numerical computations
we will set eF = 0.

We again assume that the abatement costs are given by

C(u) =
1

2
c u2,

where the abatement rate u takes values in U = [0,∞). Additionally, the auction induces
costs of SADA, so the overall costs in the system are given by

e−rT PA(XT ) +

∫ T

0
e−rsC(us)ds+ SADA.

We assume that the admissible abatement rates are given by the set

A(t) =

{
u = (us)s∈[t,T ] a progressively measurable U-valued process

with E

[∫ T

t
|us|2ds

]
<∞

}
.

The optimization problem we aim to solve is therefore

inf
u∈A(0)

E

[
e−rT PA(XT ) +

∫ T

0
e−rsC(us)ds+ SADA

]
.

We write the corresponding value function as

V A(t, x) = inf
u∈A(t)

Et,x
[
e−rT PA(XT ) +

∫ T

t
e−rsC(us)ds+ SADA

]
= inf

u∈A(t)
Et,x

[
e−rT P (XT ; eF +DA) +

∫ T

t
e−rsC(us)ds

]
+ SADA.

The first term in this expression is almost identical to the value function of the one-period
model defined in Section 2.2; we only have P (XT ; eF +DA) instead of P (XT ). We therefore
define

V (t, x; eF +DA) = inf
u∈A(t)

Et,x
[
e−rT P (XT ; eF +DA) +

∫ T

t
e−rsC(us)ds

]
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as the value function in the one-period model with e0 replaced by eF + DA. Then the
value function with auctioning can be written as

V A(t, x) = V (t, x; eF +DA) + SADA.

Thus we obtain the corresponding HJB equation and its solution directly from the results
in the one-period model. In particular, we have

V A
x (t, x) = Vx(t, x; eF +DA);

this implies that the function describing the abatement rate u given as

u(t, x; eF +DA) = e−rt
Vx(t, x; eF +DA)

c

is independent of SA. As we can compute the allowance price as

S(t, x; eF +DA) = c u(t, x; eF +DA) = e−rt Vx(t, x; eF +DA),

also the price function in the trading period is independent of the price at the auction. In
particular, both the abatement rate u and the price function S can be obtained from the
results in the one-period model by replacing e0 with eF +DA.

Summary

We formulated the cost minimization problem of the trading period, i.e. the problem to
choose the optimal abatement in order to minimize expected costs. We observed that this
problem is almost identical to the one considered in the one-period model, therefore we
obtain the HJB equation and its solution directly from the results of the one-period model
given in Chapter 2.

4.1.2 Cost Minimization Problem at the Auction

We assume that the representative agent is a price-taker of the auction. She therefore
chooses her demand for a given price to minimize her overall costs as expected at the time
of the auction. We assume that the PDE was already solved and we have a solution uDA

as a function of t and x. Importantly, as can be seen above, the solution depends on the
constant – yet unknown – parameter DA. Furthermore, we assume that the solution uDA

is indeed an optimal control for the minimization problem of the trading period. Note
that we need to apply the verification theorem of Proposition 2.3 to make sure that this
holds1. Having an optimal control uDA greatly simplifies the formulation of this problem;
the idea of the strategy we adopt below was taken from Liang and Huang [LH22].

We now write down the optimization problem at the auction as

inf
DA

E

[
e−rTP (XT ) +

∫ T

0
e−rsC

(
uDA(s,Xs)

)
ds+ SADA

]
.

1As can be seen in the one-period model, the verification of the HJB equation can only be conducted
in the simple model variant.
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Since we have assumed above that
(
uDAt

)
t∈[0,T ]

given by uDAt = uDA(t,Xt) is a minimizer

for the optimization problem of the trading period, we have

V (0, x; eF +DA) = inf
u∈A(1)

E

[
e−rTP (XT ) +

∫ T

0
e−rsC(us)ds

]
= E

[
e−rTP (XT ) +

∫ T

0
e−rsC

(
uDAs

)
ds

]
.

As DA and SA are deterministic, we rewrite the optimization problem as

inf
DA

E

[
e−rTP (XT ) +

∫ T

0
e−rsC

(
uDAs

)
ds+ SADA

]
= inf

DA

{
E

[
e−rTP (XT ) +

∫ T

0
e−rsC

(
uDAs

)
ds

]
+ SADA

}
= inf

DA
{V (0, x; eF +DA) + SADA} .

Now we can formulate the first order condition

Vd(0, x; eF +DA) + SA
!

= 0.

Thus any solution for the optimal allowance demand at the auction D∗A needs to satisfy
this equation. Furthermore, such a solution will be dependent on SA and we may write
this as D∗A(SA), representing the demand schedule of the representative agent. We assume
that the market at the auction clears, so we have eA = D∗A(SA). By solving this for SA,
we therefore obtain the price at the auction. Indeed, since V (0, x; eF + DA) and thus
Vd(0, x; eF +DA) do not depend on SA, we directly have

SA = −Vd(0, x; eF + eA).

The second order condition to ensure that D∗A is a minimum is given by

Vdd(0, x; eF +DA) > 0;

the validity of this condition cannot be established in general.

Summary

In this section, we formulated the optimization problem at the auction. We derived the
first and second order condition. Under the assumption that the market at the auction
clears, we obtained an expression for the allowance price at the auction.

4.1.3 Computation of the Auction Price

We now aim to compute Vd(0, x; eF+eA) in order to obtain the auction price SA. Strikingly,
the variable x enters the cost minimization problem of the trading period only in the
expression x − eF − DA. We will exploit this structure to derive a relation between the
derivatives Vd and Vx.
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Proposition 4.1. Let V (·, ·; eF + d) be the value function of the one-period model, i.e.

V (t, x; eF + d) = inf
u∈A(t)

Et,x
[
e−rT P (XT ; ef + d) +

∫ T

t
C(us)ds

]
.

Then there exists a function U : [0, T ]× R→ R such that

V (t, x; eF + d) = U(t, x− eF − d)

for any t ∈ [0, T ] and any x, d ∈ R.

Proof. We define a process Z as Zt = Xt − eF − d. Then we have

Zt = X0 −
∫ t

0
usds+

∫ t

0
G(s)dWs − eF − d = Z0 −

∫ t

0
usds+

∫ t

0
G(s)dWs

with Z0 = X0 − eF − d. Furthermore, we define a penalty function

PZ(z) =

{
p z if z > 0,

0 else.

Thus we obtain a transformed minimization problem with value function

U(t, z) = inf
u∈A(t)

Et,z
[
e−rT PZ(ZT ) +

∫ T

t
e−rsC(us)ds

]
.

We now consider U(t, x− eF − d). We have

ZT = Zt −
∫ T

t
usds+

∫ t

0
G(s)dWs

= Xt − eF − d−
∫ T

t
usds+

∫ t

0
G(s)dWs = XT − eF − d

and

PZ(x− eF − d) =

{
p(x− eF − d) if x− eF − d > 0

0 else

= P (x; eF + d).

Therefore we rewrite

U(t, x− eF − d) = inf
u∈A(t)

E

[
e−rT PZ(ZT ) +

∫ T

t
C(us)ds

∣∣∣Zt = x− eF − d
]

= inf
u∈A(t)

E

[
e−rT PZ(XT − eF − d) +

∫ T

t
C(us)ds

∣∣∣Xt = x

]
= inf

u∈A(t)
Et,x

[
e−rT P (XT ; eF + d) +

∫ T

t
C(us)ds

]
= V (t, x; eF + d)

and thus U is the desired function.
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With this Proposition at hand, we compute the derivative Vd as

Vd(t, x; eF + d) = Ud(t, x− eF − d) = −Uz(t, x− eF − d) = −Ux(t, x− eF − d)

= −Vx(t, x; eF + d)

and obtain for the auction price that

SA = −Vd(0, x; eF + eA) = Vx(0, x; eF + eA) = S(0, x; eF + eA).

Thus the auction price is equal to the price at the beginning of the trading period as
long as the assumptions made above hold. More specifically, we need that there exists an
optimal control u and that V is sufficiently differentiable. Both of these requirements can
only be proven in the simple model variant.

Summary

Under the assumption that an optimal abatement rate exists, we showed that the auction
price is equal to the allowance price on the market at the beginning of the trading period.

4.1.4 Relation to the One-Period Model

With the results from Section 4.1.1, we will now show that we do not need to consider
the case of auctioned allowances separately in our model, as this does not change the
quantities of interest.

Proposition 4.2. We assume that the market at the auction clears, i.e. eA = DA and fix
the total number of distributed allowances etot = eF + eA. Furthermore, we assume that
u as computed above indeed is an optimal abatement rate. Then in the present model the
number of allowances which are auctioned eA and the auction price SA do not have an
impact on the resulting emissions and the allowance price.

Proof. From the computations above we have that the optimal abatement rate is given by
u(t, x; eF +DA), i.e. by the optimal abatement rate obtained in the one-period model with
e0 replaced by eF +DA. Under the assumption that the market at the auction clears, we
have

u(t, x; eF +DA) = u(t, x; eF + eA) = u(t, x; etot).

Therefore the SDE describing the total expected emissions

dXt = −u(t,Xt; etot)dt+G(t)dWt

remains unchanged regardless how many of the total allowances etot are auctioned, i.e.
how large eA is. Hence with etot fixed, X is not impacted by eA. The same holds for the
path of the allowance price since this is given by

S(t,Xt; etot) = e−rT Vx(t,Xt; etot),

which is again independent of eA as long as etot remains constant.

Furthermore we have seen above that SA does not enter the abatement rate u, therefore
the SDE and thus the process X as well as the price process S do not depend on SA.
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Remark 4.3. The total costs arising in the system of course do depend on both the frac-
tion of auctioned allowances and the auction price. If we assume that V indeed represents
the minimum costs from abatement and penalty payments, and that the market at the
auction clears, we have from the results above

V A(0, x0) = V (0, x0; etot) + SA eA

for the total costs.

Summary

In this section, we showed that the introduction of the auctioning of allowances does not
impact the process of total expected emissions X and the allowance price process S, which
are the quantities we mainly study in this thesis. On the other hand, the auctioning of
allowances does have an impact on the total costs.

4.2 The Auction Model in the Simple Model Variant

We have seen in Section 4.1.1 that the value function in the auction model is given as

V A(t, x) = V (t, x; eF +DA) + SADA.

Then with the results in the one-period model of equation (2.4), we obtain

V A(t, x) = −cσ2 ln

(
1

2

(
1 + erf

(
eF +DA − x√

2σ
√
T − t

))
+

1

2

(
1− erf

(
c(eF +DA − x) + p(T − t)√

2cσ
√
T − t

))
e

2cp(eF+DA−x)+p2(T−t)
2c2σ2

)
+ SADA.

Furthermore, we have seen for the first derivative that V A
x (t, x) = Vx(t, x; eF + DA) and

therefore again with the result in the one-period model, given in equation (2.5), we have

V A
x (t, x) =

p

1 +
e
− 2cp(eF+DA−x)+p2(T−t)

2c2σ2

(
1+erf

(
eF+DA−x
(
√

2σ
√
T−t)

))
1−erf

(
c(eF+DA−x)+p(T−t)√

2cσ
√
T−t

)
.

Since the results in the auction model are directly derived from the one-period model, also
the verification results carry over.

Proposition 4.4. The value function V A of the auction model in the simple model variant
satisfies the requirements of the verification theorem in Proposition 2.3. Furthermore, the
SDE

dXt = −u(t,Xt; eF +DA)dt+ σdWt,

where u(t, x; eF +DA) = V Ax (t,x)
c ert, has a unique solution and (u(s,Xs))s∈[t,T ] ∈ A(t) for

any t ∈ [0, T ]. In particular, V A delivers the minimum costs and u is an optimal control.

Proof. From Proposition 2.9, we know that V (·, ·; eF +DA) satisfies the requirements on
the (candidate) value function of the verification theorem in Proposition 2.3, i.e. we have
that V (·, ·; eF +DA) is continuously differentiable in t, twice continuously differentiable in

131



CHAPTER 4. AUCTIONING

x on [0, T )×R, continuous on [0, T ]×R and quadratically bounded. But since V A differs
from V (·, ·; eF +DA) only by a constant, these properties directly follow for V A.

Furthermore, with V A
x (t, x) = Vx(t, x; eF+DA) we have that the result of Corollary 2.27

also holds in the auction model: In the drift term, we only replace e0 by eF+DA, which does
not affect the proof of the Corollary or any of the preceding propositions; the volatility
remains unchanged in comparison to the one-period model. Thus the requirements of
Assumption 2.14 are satisfied and the existence of a unique solution for SDE follows by
Theorem 2.15.

With Proposition 2.10, we have that (u(s, Zs; eF +DA))s∈[t,T ] ∈ A(t) for any contin-
uous and adapted process Z and any t ∈ [0, T ]. In particular, this also holds for the
solution of the SDE given by X since X is continuous and adapted by Theorem 2.15. By
the verification theorem in Proposition 2.3, we obtain that V (·, ·; eF + DA) delivers the
minimum costs if we neglect the costs of the auction, and that u(·, ·; eF +DA) is an optimal
control. But since the costs of the auction do not depend on the control u, we only need
to add them to the costs V (·, ·; eF +DA) and therefore V A represents the minimum costs
of the trading period, including auction costs.

Next we aim to compute the price at the auction. With Proposition 4.1, we obtain

Vd(t, x; eF +DA) = −Vx(t, x; eF +DA) = − p

1 +
e
− 2cp(eF+DA−x)+p2(T−t)

2c2σ2

(
1+erf

(
eF+DA−x
(
√

2σ
√
T−t)

))
1−erf

(
c(eF+DA−x)+p(T−t)√

2cσ
√
T−t

)
.

In the particular case of the simple model variant, we may alternatively also compute the
derivative Vd directly; this was done in Section A.3.2 in the appendix to deliver

Vd(t, x; eF +DA) = − p

1 +
e
− 2cp(eF+DA−x)+p2(T−t)

2c2σ2
(

1+erf
(
eF+DA−x√

2σ
√
T−t

))
1−erf

(
c(eF+DA)−cx+p(T−t)√

2cσ
√
T−t

)
= −Vx(t, x; eF +DA).

We now compute the second derivative with the aim to validate the second order condition.
By Proposition 4.1, we have

Vdd(t, x; eF +DA) = −Vxd(t, x; eF +DA) = −Uxd(t, x− eF −DA)

= Uxz(t, x− eF −DA) = Uxx(t, x− eF −DA) = Vxx(t, x; eF +DA),

so we obtain Vdd from the expression for Vxx of the one-period model, as given in A.3.3
in the appendix. This expression does not easily allow to determine its sign for DA =
eA as would be required for verifying the second order condition. Therefore, a detailed
verification of the second order condition is omitted.

With the results from above, the auction price is then given as

SA = S(0, x; eF +DA) = Vx(0, x; eF +DA) =
p

1 +
e
− 2cp(eF+DA−x)+p2T

2c2σ2

(
1+erf

(
eF+DA−x
(
√

2σ
√
T)

))
1−erf

(
c(eF+DA−x)+pT√

2cσ
√
T

)
.

Finally, we consider the model with fixed total number of distributed allowances etot =
eA+eF but possibly varying number of auctioned allowances eA, meaning that the number
of freely allocated allowances eF needs to change accordingly. Under the assumption that
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the market at the auction clears so that we have DA = eA, we may rewrite the results for
V A and V A

x as

V A(t, x) = −cσ2 ln

(
1

2

(
1 + erf

(
etot − x√
2σ
√
T − t

))
+

1

2

(
1− erf

(
c(etot − x) + p(T − t)√

2cσ
√
T − t

))
e

2cp(etot−x)+p2(T−t)
2c2σ2

)
+ SA eA

and
V A
x (t, x) =

p

1 +
e
− 2cp(etot−x)+p2(T−t)

2c2σ2

(
1+erf

(
etot−x

(
√

2σ
√
T−t)

))
1−erf

(
c(etot−x)+p(T−t)√

2cσ
√
T−t

)
.

Then clearly V A still depends on eA, whereas V A
x does not. Thus as long as we keep etot

fixed, varying eA does not affect V A
x . Therefore, also X and the price process S are not

impacted, which is in line with the results of Proposition 4.2.

Summary

This section serves to apply the general results obtained for the model with auctioning to
the particular case of the simple model variant. We provided the verification of the HJB
equation and showed that the SDE has a unique solution. Furthermore, we computed
the auction price explicitly and obtained that it indeed equals the allowance price on the
market at the beginning of the trading period. However, the verification of the second
order condition to ensure that the optimum characterizing the auction price is a minimum
was omitted. Finally, we verified explicitly that the derivative of the value function V A

x

and therefore the abatement rate u do not depend on the number of auctioned allowances
eA as long as the total number of allowances distributed etot is fixed.
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Chapter 5

Implementation of the Models

To find a solution to the model, we need numerical methods both for solving the PDE in
all model variants, except for the simple model variant, and for solving the SDE. In this
chapter we describe the methods and strategies we apply and the challenges arising. The
implementation of these methods was done in Python, with frequent use of the packages
NumPy [Har+20], SciPy [Vir+20] and Matplotlib [Hun07]; we do not discuss the details
of the implementation.

Furthermore, the model heavily depends on numerous parameters describing the ETS
and the economy it regulates. Therefore, this chapter concludes with an explanation of
our parameter choices.

5.1 Numerical Solution of the PDE

We consider the time-reversed PDE as obtained in Sections 2.3.3, 3.1.3 and 3.2.3 since we
need to have an initial condition instead of a terminal condition. The numerical solution of
the PDE requires its reformulation in a way that can be handled by a computer. A straight-
forward idea is to evaluate the functions and derivatives involved only at discrete points
both on the t-axis and the x-axis and replace all derivatives by difference quotients; then
we could proceed to solve the resulting equation. We follow a slightly different approach
which is known as the method of lines, explained for example by Schiesser [Sch91]: In a first
step, we fix discrete points on the x-axis and approximate all derivatives with respect to
x by suitable difference quotients. As a result, we obtain an ordinary differential equation
(ODE), which we solve in a second step by using a well-known ODE solving method.

While leading in general to decent results, this procedure introduced several numerical
errors and therefore required adaptations in the choice of grid points to improve numerical
results. Furthermore, in multi-period model II the PDE we need to solve has an additional
dimension. As a consequence, some further adjustments need to be made to solve this
PDE as well.

5.1.1 Discretization of the PDE

We consider the PDE

Vt(t, x) = −R̃(t)
V 2
x (t, x)

2c
+

1

2
G̃2(t)Vxx(t, x) (5.1)

with initial value
V (0, x) = R̃(0)−1 P (x).
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Here we let G̃(t) denote the time-reversed volatility of the process X and P the penalty
function. Furthermore, by R̃(t) we denote the (time-reversed) discount factor for the
corresponding model. With R̃(t) = er(T−t), we obtain the PDE in the one-period model,
whereas with R̃(t) = er(Ti+1−t), this is the PDE of multi-period I (i.e. with constant price
parameter, as described in Section 3.1) for period i. In Section 5.1.4 we will explain how
we can handle the PDE of multi-period model II, i.e. with varying price parameter as
presented in Section 3.2.

The first step is to turn the PDE into an ODE. For this purpose, we define a grid
covering a given interval [a, b], which represents the range of possible values for x. For the
time being, we assume that the grid is equidistant. We let h denote the step size and N
the number of grid points. Then we denote the grid by xh ∈ RN , and we have

xh = [a, a+ h, . . . , a+ ih, . . . , a+ (N − 1)h].

Each grid point is therefore given as xhi = a+ ih. Now we can approximate the derivatives
with respect to x in equation (5.1) by corresponding difference quotients, where we use
the centered difference quotient for the first derivative, i.e.

Vx(t, xhi ) ≈
V (t, xhi+1)− V (t, xhi−1)

2h
=: V h

x (t, xhi )

Vxx(t, xhi ) ≈
V (t, xhi−1)− 2V (t, xhi ) + V (t, xhi+1)

h2
=: V h

xx(t, xhi ).

Then we obtain an ODE

Vt(t, x
h
i ) = − 1

2c
R̃(t)

(
V (t, xhi+1)− V (t, xhi−1)

2h

)2

+
1

2
G̃(t)2 V (t, xhi−1)− 2V (t, xhi ) + V (t, xhi+1)

h2

with initial value V (0, xhi ) = R̃(0)−1 P (xhi ).

The setting of our problem does not deliver any natural boundary conditions for the
boundaries on the x-axis; hence we cannot yet compute the difference quotients for xh0 and
xhN−1. Since boundary conditions have a strong impact on the resulting solution, we aim
to avoid the need for them by applying modified difference quotients at the boundary: If
we use a left-sided difference quotient instead of the centered difference quotient above,
we have

Vx(t, xhN−1) ≈
V (t, xhN−1)− V (t, xhN−2)

h
=: V h,l

x (t, xhN−1).

By again applying a left-sided difference quotient to the thus approximated first derivative
we obtain for the second derivative

Vxx(t, xhN−1) ≈
V h,l
x (t, xhN−1)− V h,l

x (t, xhN−2)

h
=
V (t, xhN−1)− 2V (t, xhN−2) + V (t, xhN−3)

h2
.

Note that in this way we obtain the difference quotient of the grid point before; so implicitly
we assume that near the boundary Vxx is constant1. For the simple model variant, we

1In contrast to setting an explicit boundary condition, by this construction we do not need to know the
constant value of Vxx at the boundary.
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have seen in Propositions 2.7 (iii) and 3.3 (iii) that Vx converges for x→∞ and x→ −∞.
Thus if we choose the grid large enough, we might expect that even Vx is constant, thus
approximating the second derivative at the boundary as indicated above should not impact
the solution much. At the right-hand side boundary, we therefore have

Vt(t, x
h
N−1) = − 1

2c
R̃(t)

(
V (t, xhN−1)− V (t, xhN−2)

h

)2

+
1

2
G̃(t)2 V (t, xhN−1)− 2V (t, xhN−2) + V (t, xhN−3)

h2

and thus do not require a boundary condition. In analogy, on the left-hand side boundary
we use a right-sided difference quotient

Vx(t, xh0) ≈ V (t, xh1)− V (t, xh0)

h

and for the second derivative

Vxx(t, xh0) ≈ V (t, xh2)− 2V (t, xh1) + V (t, xh0)

h2

to obtain the ODE

Vt(t, x
h
0) = − 1

2c
R̃(t)

(
V (t, xh1)− V (t, xh0)

h

)2

+
1

2
G̃(t)2 V (t, xh2)− 2V (t, xh1) + V (t, xh0)

h2
.

The resulting system of ODEs can now be solved for instance by an implicit Runge-
Kutta method, as described in Section 5.1.3.

5.1.2 Adaptation of the Grid in x-Direction

It remains to choose an appropriate grid. First computations were conducted on a grid with
step size h = 10 ranging from 2000 to 10 000. This range was chosen since the endowment
of allowances e0 was set to e0 = 6000, with initially expected emissions x0 = 6240. We
discuss the parameter choices for e0 and x0 in detail in Section 5.3. With these choices, the
total expected emissions X would reasonably take values in [2000, 10 000]. Furthermore,
from analytical results in the simple model, as shown in Figure 5.1, we observe that the
PDE solution is of interest mostly on the interval [4000, 8000] since it is almost constant
elsewhere. We also obtain from the numerical SDE solution that X indeed remains in
[2000, 10 000] in most runs.

However, first numerical PDE results, conducted in the Brownian model variant, show
an interesting phenomenon occurring close to time zero (i.e. close to the initial condition
since we are considering the time-reversed PDE): For small values of t, the first derivative
Vx of the PDE solution takes negative values for certain values of x, as can be seen in
Figure 5.2. This results in a negative abatement rate u and thus leads to negative allowance
prices S; both is not plausible from a practical point of view. Moreover, we have shown
in Proposition 2.7 (ii) that Vx is non-negative in the simple model variant, so we might
expect a similar behavior also in the Brownian variant. As the volatility G̃(t) = σ t of the
Brownian model variant (in its time reversed form) is small at the beginning of the time
period, the PDE is mostly driven by the term − 1

2c R̃(t)V 2
x (t, x), i.e. by the first derivative

of V . From the initial condition, we have for x > e0 that Vx is strictly positive and almost
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Figure 5.1: Analytical solution Vx of the time-reversed PDE in the simple model variant.

constant. On the other hand we know that V is zero for x < e0 and continuous at time
t = 0, so if we assume that V is continuous also for t > 0, it will be small for x > e0 and
x close to e0. This means that even close to an x-value of e0 we still get a large value
for Vx, whereas V is already very small. Hence as we proceed in time, V will decrease.
However, if we move even closer to e0 on the x-axis, at some point Vx will decrease fast
if we assume that Vx is continuous for t > 0. This might prevent that we obtain negative
values in the analytical solution. On the other hand, when approximating this solution
numerically, depending on the step size used for discretizing the x-axis, we might fail to
capture the decrease in Vx and therefore V might move to negative values for some x̃ close
to e0. But since for x < e0 and x small enough, V is zero and thus larger than for x̃, we

Figure 5.2: Trajectory of Vx for x = 5990 and t ∈ [0, 0.5] in the Brownian model variant. Vx
clearly takes negative values for t close to 0.
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also obtain negative values for Vx.
We aim to avoid this numerical error by using a smaller step size. Furthermore, this will

in general reduce the error of the numerical solution as can be observed when comparing
the analytical solution in the simple model variant with the numerical solution: This can
be seen in Figure 5.3, which shows the error of the numerical solution as the absolute
value of the difference to the analytical solution for two different step sizes. A smaller step

(a) h = 10 (b) h = 5

Figure 5.3: Comparison between the numerical and the analytical solution in the simple
model variant on two different grids.

size entails a higher computational effort, which we attempt to limit by using the small
step size only where we need it: The undesired negative values only occur close to e0 and
in Figure 5.3 we can see that the error in general is largest for x around e0. Therefore,
we apply a grid which is not equidistant. We denote such a grid by two vectors h and k,
where h contains all step sizes and k the number of steps taken with the respective step
size. We then construct the grid in the following way: We start in e0 and then use the
smallest step size h1 for k1 steps in both directions. Then we change the step size to h2,
which we now apply for k2 steps and so on. In this way we obtain a grid with the following
structure:

[. . . , e0 − k1 h1 − h2, e0 − k1 h1, . . . , e0 − h1, e0, e0 + h1, . . . , e0 + k1 h1, e0 + k1 h1 + h2, . . .].

Furthermore, we need to introduce modified difference quotients to approximate the deriva-
tives at the points where the step sizes change. Let xhi be such a grid point, i.e. with step
size hm on the left-hand side and step size hn on the right-hand side, where m 6= n. We
then have xhi −xhi−1 = hm and xhi+1−xhi = hn. The centered difference quotient introduced
above can be derived by taking the average of the left- and right-sided difference quotient.
In analogy to this procedure, we approximate the first derivative at the points of step size
change as

Vx(t, xhi ) ≈ 1

2

(
V (t, xhi )− V (t, xhi−1)

hm
+
V (t, xhi+1)− V (t, xhi )

hn

)
.

We derive the difference quotient for the second derivative again in analogy to the deriva-
tion of the difference quotient given above. First we approximate the first derivative by a
one-sided difference quotient, e.g. a left-sided difference quotient given by

V h,l
x (t, xhi ) :=

V (t, xhi )− V (t, xhi−1)

hm
and V h,l

x (t, xhi+1) :=
V (t, xhi+1)− V (t, xhi )

hn
.
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Then we apply the right-sided quotient on these approximations, where we need to use
the average of the two step sizes as the denominator, to obtain an approximation for the
second derivative as

Vxx(t, xhi ) ≈
V h,l
x (t, xhi+1)− V h,l

x (t, xhi )
hm+hn

2

=

V (t,xhi+1)−V (t,xhi )

hn
− V (t,xhi )−V (t,xhi−1)

hm
hm+hn

2

.

Both of these expressions were shown to produce good results; nevertheless, this approach
still introduces an additional error, as we show by conduction several trial runs with varying
grids. We tested grids where the step size changes by a factor 10, e.g. with step sizes
varying between 100, 10, 1, . . ., or by a factor 2, e.g. with steps sizes of 64, 32, 16, 8, . . .. To
reduce this error, the area covering the finest grid was enlarged. Furthermore, we observe

(a) h = (0.1, 1, 10, 100) (b) h = (0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16)

Figure 5.4: Comparison between the numerical and the analytical solution in the simple
model variant on two different grids with varying step size.

that the error is smaller when changing step sizes only with factor 2, which spreads the
error over several steps; thus the maximum error is reduced. The error as computed in
the simple model variant by comparing the numerical solution with the analytical solution
for two different grids of varying step size - one with factor 10, the other with factor 2 -
can be seen in Figure 5.4, showing that the maximum error is smaller in the latter case.
For our simulations we therefore choose the grid

h = (0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16)

k = (1024, 512, 512, 512, 512, 512, 128, 64, 96) ,

which spans the range [1392, 10 608] and delivers a maximum error of 0.0073.
Whereas this grid indeed reduces the negative values in the PDE solution to a tolerable

extent, in particular the very fine grids seem to impact the stability of the PDE solution,
as illustrated by Figure 5.5. We observe large fluctuations which change in position and
amplitude for different grids. Moreover, they are no longer present on coarse grids. There-
fore, these fluctuations are most likely numerical artifacts. It should be noted that such
instabilities of large amplitudes as seen in Figure 5.5 strongly affect the results of the SDE
solution. The core problem seems to be the computation of difference quotients: This
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Figure 5.5: Trajectories of Vx for fixed values of x close to e0 in the Brownian model variant.
The solution was computed on a grid with step sizes h = (0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16).

is an ill-conditioned problem since it involves taking the difference of two similar values,
which results in cancellation effects. Remarkably, the problem of instability occurs most
notably at the end of the time period and is not present at the very beginning. In contrast
to the discussion above, we now have the second derivative term as the main driver of
the PDE for time range, which leads to the assumption that this term introduces the
instability. This assumption can be supported by solving the PDE for smaller values of
σ, thus reducing the impact of the second derivative term; for small σ the instabilities are
no longer observed (this result is not shown).

So there are two computational problems arising in computing a solution to the PDE:
At the beginning of the time period, unwanted negative values occur if the step size of
the grid is too large. Towards the end of the time period, the solution becomes unstable
if the step size is too small. Therefore, to tackle both of these problems, it is a natural
approach to change the step size at some point in time.

We introduce the following procedure: We start with the grid chosen above, i.e.

h = (0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16)

k = (1024, 512, 512, 512, 512, 512, 128, 64, 96) ,

and recall that the smallest step size is used around e0, and that the step size gets larger
as we proceed in both directions along the x-axis. We then solve the PDE on this grid by
applying the usual initial condition. As soon as the first instability occurs, we construct
a new grid: We omit the smallest step size and use the second smallest (0.125 in the grid
given above) instead. In case of the grid given above, we then have

h = (0.125, 0.25, 0.5, 1, 2, 4, 8, 16)

k = (1024, 512, 512, 512, 512, 128, 64, 96) .

Note that we now take 1024 steps of size 0.125 in both directions, as 512 of these are
required to cover the range where we formerly applied the step size 0.0625. The rest of
the grid remains unchanged. We take the result of the previous calculations on the finer
grid as initial value and again proceed to solve the PDE. This pattern is repeated until we
reach the grid that only uses the largest step size of the grid we started with (16 in this
case). On this grid we complete the computation until final time.
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Crucial in this approach is the detection of instabilities in the PDE solution. It is dif-
ficult to observe the occurrence of instabilities during the computation: Firstly because a
pre-implemented ODE-solver is used but also since the behavior of the solution at several
time points needs to be analyzed to find an instability. Therefore, we examine the com-
putation results: On each grid, the solution of the PDE is computed up to a previously
fixed time point. Then we test for instabilities and determine which part of these results is
saved for later use. In choosing the time point, we try to make sure that the time interval
on which computations are done is significantly longer than necessary, while we do not
want to cover the entire time axis to avoid unnecessary computational effort.

Instabilities are then identified in the following way: We consider the PDE solution
along the time axis for all grid points around e0 up to a certain point and analyze all these
trajectories separately. We assume that after a short irregular period in the beginning
they are increasing, as long as no instabilities occur. For each point in time we proceed
as follows:

1. If so far the trajectory has not been increasing, check if in the next step it increases.
If so, save this.

2. If the trajectory has been increasing before, check if in the next step it is decreasing
and surpasses a given threshold. This might be caused by an instability.

3. To verify if we indeed found an instability, check if for one of the following three
steps we obtain a peak-like structure, which is typical for an instability. This is char-
acterized as two consecutive steps, where the trajectory moves in opposite directions
with similar amplitude. If a peak-like structure is found, return the index of the
detected decreasing step as the beginning of an instability.

4. If such a peak is not found, reset the status of being increasing. This means that
before a new peak can be identified, we first need to find a decreasing step.

This procedure may seem rather complicated and a definite downside is that upward
peaks in single trajectories cannot be identified. As usually an instability affects multiple
trajectories, in practice we can assume that we will still find the corresponding instability.
In fact, by this approach, peaks are identified quite reliably and continuous movements
are not falsely declared an instability; this is illustrated in Figure 5.6.

This approach was tested on several grids of the structure h = (. . . , 2, 4, 8, 16) with
differing smallest step size. By using the simple model again and comparing with the
analytical solution, it was found that the error on the final grid is in all cases of similar
size whereas the error on the finest grid for the beginning of the time interval is smallest for
the grid with smallest step size. In this case, the overall maximum error was approximately
0.007, which is of similar order of magnitude as the threshold used for peak detection at
0.01. Moreover, negative values only occur at one time point, reaching no more than 0.23
for Vx. Hence this grid was chosen to solve the PDE in computations of the SDE solution.

In multi-period model I (the multi-period model with constant price parameter, i.e.
as described in Section 3.1), we can apply the same technique to solve the PDE. The
main difference lies in the more complex overall procedure presented in Section 3.1.5.
Importantly, in all simulations we compute si by the formula si = Si+1(0, xi+1

0 ), which is
the more simple approach introduced in Section 3.1.5.

However, when applying the peak detection method described above to multi-period
model I, it failed to find some irregularities in the PDE solution. This is shown in Fig-
ure 5.7a, where it can clearly be seen that although the solution fluctuates, the peak
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(a) On the sub-grid with smallest minimum step
size.

(b) On all sub-grids, only trajectories of com-
mon grid points are considered.

Figure 5.6: Trajectories of Vx in the Brownian model variant for fixed values of x close to
e0. Vx was computed numerically on a grid with varying step size, starting with step sizes
h = (0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16).

detection method does not initiate a grid change. Therefore, an additional peak detection
method searching for irregular behavior on the x-axis was introduced. For each time point
of the given solution, this method studies the x-trajectory on a certain interval around e0

and aims to classify each step on the trajectory as increasing, decreasing or approximately
constant. If this classification changes too often on a short interval, this is interpreted as
unstable behavior. In detail, the method proceeds in the following way:

1. By comparing with a tolerance level, check if the first step on the given trajectory is
increasing, decreasing or approximately constant; if the difference between the first
values is greater than the tolerance, the trajectory at this point is classified as being
increasing, if it is smaller than the negative tolerance, it is classified as decreasing,
and else it is classified as approximately constant.

2. Proceed along the trajectory, i.e. study the PDE solution at the given time point for
increasing values of x. In each step:

(a) Compare with the tolerance level and conduct the classification as described
above.

(b) If the classification changes, save the index of the current point on the x-axis.

(c) Delete saved indices if they are further away from the current point than some
given value limit.

(d) Check if the currently saved indices amount to more than a given maximum
value denoted by max val. If so, return the currently studied time point as an
instability.

Several values for limit and max val were tested; the most coherent results were obtained
by setting limit = 2 and max val = 2, i.e. by requiring two consecutive changes in the
classification. Furthermore, some limitations on the search for instabilities were introduced
to make sure that the grid does not get coarser too quickly, which would again lead to
false negative values and additionally cause errors in the peak detection methods. The
resulting behavior of the trajectories of Vx can be found in Figure 5.7b; we now observe
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that although the peak detection method still misses some smaller fluctuations, it does
react when they get larger.

(a) Peak detection only in t-direction. (b) Peak detection in t- and in x-direction.

Figure 5.7: Trajectories of Vx for fixed values of x close to e0 on one sub-grid of the fourth
time period computed numerically in the Brownian variant of multi-period model I. The point
in time chosen by the peak detection method for the grid point change is indicated by the
“+”.

With regard to both peak detection methods, it should be noted that these approaches
are strongly heuristic; a priori it is impossible to know which elements of the numerical
solution are correct and which are corrupted by numerical errors. As argued above, we are
fairly confident that the instabilities observed for instance in Figure 5.5 are not features
of a correct solution. However, it is debatable which structures we aim to exclude. But
since the measure we take to avoid unwanted features is to merely change the grid, we
expect that this strategy does not introduce further errors to the solution. Additionally,
we remark that, whereas the instabilities observed without any peak detection may have
a strong impact on the quality of the overall solution, the second peak detection method
probably is not strictly necessary. The fluctuations we observed in multi-period model I
with the first peak detection method applied are by far not as severe and probably do not
impact the solution much.

5.1.3 Implicit Runge-Kutta Method to Solve the ODE

By discretizing the x-axis as discussed above, we have obtained a system of ODEs, which
we solve by applying an implicit Runge-Kutta method. To illustrate how such a method
works, we consider a general initial value problem of an ODE given as

y′ = f(t, y) y(0) = y0

where f : [0, T ]×Rd → Rd and y : [0, T ]→ Rd. A simple method to solve such a problem
is the explicit Euler method given by

yn+1 = yn + h f(tn, yn)

for a given partition 0 = t0 < t1 < . . . < tn < . . . < tN = T . As explained by Hairer
and Wanner in [HNW93], this method only converges slowly, therefore further methods
were studied. The Runge-Kutta methods, which were first introduced by Runge [Run95]
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and formulated more generally by Kutta [Kut01], apply numerical integration schemes to
differential equations: From the ODE given above, we know that

y(t1) = y0 +

∫ t1

t0

y′(t)dt.

The idea is now to apply a quadrature rule given by nodes c1, . . . , cs and weights b1, . . . , bs
to the integral resulting in the approximation

y(t1) ≈ y0 +
s∑
i=1

bi y
′(t0 + ci h)

where we know that

y′(t0 + ci h) = f(t0 + ci h, y(t0 + ci h)).

In this expression we still need to compute y(t0 + ci h). We do this by again applying a
quadrature rule, with the same nodes but potentially different weights ai1, . . . , ais, deliv-
ering

y(t0 + ci h) = y0 +

∫ tn+ci h

t0

y′(t)dt ≈ y0 + h
s∑
j=1

aij y
′(t0 + cj h).

We denote the approximated value of y′(t0 + ci h) by zi. Then this procedure can by
summarized in the general formulation of an s-staged Runge-Kutta method given by

zi = f
(
x0 + ci h, y0 + h

s∑
j=1

aij zj

)
for i = 1, . . . , s,

y1 = y0 + h

s∑
i=1

bi zi.

Such a scheme can be computed directly as long as aij = 0 for all j ≥ i, making it an
explicit Runge-Kutta method. We work with an implicit Runge-Kutta method, where this
does not hold. Therefore, Newton’s method needs to be applied to solve the non-linear
equations arising in the scheme.

In our setting, the dimension of the ODE corresponds to the number of grid points
and y is the discretization of the function V evaluated on all grid points, which we denote
by V h. Then the function f : [0, T ]× RN → RN is given by

fi(t, V
h) = − 1

2c
R̃(t)

(
V h
i+1 − V h

i−1

2h

)2

+
1

2
G̃(t)2 V

h
i−1 − 2V h

i + V h
i+1

h2

for i = 1, . . . , N − 1 and by

f0(t, V h) = − 1

2c
R̃(t)

(
V h

1 − V h
0

h

)2

+
1

2
G̃(t)2 V

h
2 − 2V h

1 + V h
0

h2

fN−1(t, V h) = − 1

2c
R̃(t)

(
V h
N−1 − V h

N−2

h

)2

+
1

2
G̃(t)2 V

h
N−1 − 2V h

N−2 + V h
N−3

h2
.
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For grids with varying step sizes, the former expression needs to be modified accordingly at
the points where the step size changes. To facilitate the application of Newton’s method,
we also compute the Jacobian J of f as

Ji,i−1 =
∂fi

∂V h
i−1

=
R̃(t)

2c

V h
i+1 − V h

i

2h2
+
G̃(t)2

2h2

Ji,i =
∂fi

∂V h
i

= −G̃(t)2

h2

Ji,i+1 =
∂fi

∂V h
i+1

= −R̃(t)

2c

V h
i+1 − V h

i

2h2
+
G̃(t)2

2h2

for i = 1, . . . , N − 1, with Jij = 0 if j < i − 1 or j > i + 1. We again need to treat the
boundary cases J0,j and JN−1,j separately, which for the sake of brevity we do not do
explicitly here.

The Runge-Kutta method we apply is the so-called Radau IIA method, which was first
introduced by Ehle [Ehl69] and independently by Axelsson [Axe69]. In the implementa-
tion, we make use of the scipy method solve ivp in the integrate package [Com], where
we set the integration method to ’Radau’. The implementation of this method including
an adaptive step size selection (on the t-axis) to control the error is described in detail by
Hairer and Wanner in Section IV.8 of [HW96].

5.1.4 Modifications for Multi-Period Model II

Whereas the procedure described above works in the same way for multi-period model I,
i.e. with constant price parameter, we need to introduce some adjustments when we turn
to multi-period model II, where the price parameter is allowed to vary (i.e. the model
presented in Section 3.2). We now consider the PDE

Vt = −R̃(t)
(Vx)2

2c
+

1

2
G̃(t)2 Vxx + G̃(t) H̃(t)Vxz +

1

2
H̃(t)2 Vzz

with initial value
V (0, x, z) = R̃(0)−1 P (x, z),

where R̃(t) = er(Ti+1−t) is the discount factor, P the penalty function and G̃ and H̃ denote
the time-reversed volatility functions of X and Z, respectively. We only consider one fixed
time period, therefore in contrast to the notation of Section 3.2, we omit the index i. To
solve this PDE numerically, we introduce two equidistant grids xh ∈ RN and zh ∈ RM ,
each on a given interval [ax, bx] and [az, bz]. If we let hx denote the step size of the grid
for x and hz the step size of the grid for z, we have xhi = ax + ihx and zhj = az + jhz.
In practice we always use the same step size for both grids, therefore we assume that
h := hx = hz.

Then we approximate the derivatives Vx and Vxx as described above, where the ad-
ditional variable z is fixed at z = zhj . Similarly to the difference quotient for Vxx we
introduce

Vzz(t, x
h
i , z

h
j ) ≈

V (t, xhi , z
h
j−1)− 2V (t, xhi , z

h
j ) + V (t, xhi , z

h
j+1)

h2
.

For the mixed derivative, we approximate the derivative Vx by the centered difference
quotient, i.e. we compute

V h
x (t, xhi , z

h
j ) =

V (t, xhi+1, z
h
j )− V (t, xhi−1, z

h
j )

2h
.
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Then we approximate the derivative with respect to z of V h
x also by the centered difference

quotient and obtain

Vxz(t, x
h
i , z

h
j ) ≈

V h
x (t, xhi , z

h
j+1)− V h

x (t, xhi , z
h
j−1)

2h

=
V (t, xhi+1, z

h
j+1)− V (t, xhi−1, z

h
j+1)− V (t, xhi+1, z

h
j−1) + V (t, xhi−1, z

h
j−1)

4h2
.

This only works for i = 1, . . . , N − 2 and j = 1, . . . ,M − 2; as in Section 5.1.1, we need to
treat the cases at the boundary separately. Again we use left-sided or right-sided difference
quotients as necessary. As an example, we consider the case that j = 0. For Vzz we then
have by twice applying a right-sided difference quotient

V (t, xhi , z
h
0 ) ≈ V (t, xhi , z

h
2 )− 2V (t, xhi , z

h
1 ) + V (t, xhi , z

h
0 )

h2
.

For the mixed derivative we still apply the centered difference quotient to approximate the
derivative Vx as long as xhi does not also lie at the boundary. Then we use the right-sided
difference quotient in z resulting in

Vxz(t, x
h
i , z

h
0 ) ≈

V (t, xhi+1, z
h
1 )− V (t, xhi−1, z

h
1 )− V (t, xhi+1, z

h
0 ) + V (t, xhi−1, z

h
0 )

2h2
.

Since we have to consider the cases where xhi or zhj lie at one of the boundaries, as well
as the cases at the corners where (i, j) ∈ {(0, 0), (N − 1, 0), (0,M − 1), (N − 1,M − 1)},
many other special cases arise, which we omit here for brevity.

Thus we have again transformed the PDE into an ODE, which now has dimension
N ×M , i.e. takes the form of a matrix, where

Vt(t, x
h
i , z

h
j ) = − R̃(t)

2c

(
V (t, xhi+1, z

h
j )− V (t, xhi−1, z

h
j )

2h

)2

+
G̃(t)2

2

V (t, xhi−1, z
h
j )− 2V (t, xhi , z

h
j ) + V (t, xhi+1, z

h
j )

h2

+ G̃(t) H̃(t)
V (t, xhi+1, z

h
j+1)− V (t, xhi−1, z

h
j+1)− V (t, xhi+1, z

h
j−1) + V (t, xhi−1, z

h
j−1)

4h2

+
H̃(t)2

2

V (t, xhi , z
h
j−1)− 2V (t, xhi , z

h
j ) + V (t, xhi , z

h
j+1)

h2
.

for (i, j) ∈ {1, . . . , N − 2} × {1, . . . ,M − 2}; otherwise we need to apply the modified
difference quotients as indicated above. By introducing again the function V h as the
discretization of the function V , where now V h : [0, T ]→ RN×M , we reformulate the ODE
as

dV h
i,j

dt
= −R̃(t)

2c

(
V h
i+1,j − V h

i−1,j

2h

)2

+
G̃(t)2

2

V h
i−1,j − 2V h

i,j + V h
i+1,j

h2

+ G̃(t) H̃(t)
V h
i+1,j+1 − V h

i−1,j+1 − V h
i+1,j−1 + V h

i−1,j−1

4h2

+
H̃(t)2

2

V h
i,j−1 − 2V h

i,j + V h
i,j+1

h2
.
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This ODE is again solved numerically by the Radau IIA Runge-Kutta method as described
above. Also in this case we provide the Jacobian, which now takes the form of a four-
dimensional tensor where

Jijkl =
∂fij

∂V h
kl

.

For (i, j) ∈ {1, . . . , N − 2} × {1, . . . ,M − 2} we then have

(Jijkl)k=i−1,i,i+1;l=j−1,j,j+1 =


G̃(t) H̃(t)

4h2
R̃(t)
2c

V hi+1,j−Vi−1,j

2h2 + G̃(t)2

2h2 − G̃(t) H̃(t)
4h2

H̃(t)2

2h2 − G̃(t)2

h2 − H̃(t)2

h2
H̃(t)2

2h2

− G̃(t) H̃(t)
4h2 − R̃(t)

2c

V hi+1,j−V hi−1,j

2h2 + G̃(t)2

2h2
G̃(t) H̃(t)

4h2


and Jijkl = 0 for any other k and l. The boundary cases again need to be considered
separately and are omitted here. Since the solver solve ivp cannot handle matrix ODEs,
we first flatten the matrix valued function V h to an RNM -valued function. Then we obtain
an ODE of the form

y′ = f(t, y)

where f : [0, T ]× RNM → RNM . For the corresponding Jacobian Jf we have Jf : [0, T ]×
RNM → RNM×NM . Both the function f as the right-hand side of the ODE and the
Jacobian Jf are passed to the ODE solver and treated as described in the previous section.

As can be seen from the dimensions of f and Jf , the second variable in multi-period
model II greatly increases computational effort and storage requirements. Additionally,
using non-equidistant grids would again entail further modifications on the difference quo-
tients and the implementation thereof. Thus only coarser equidistant grids with step sizes
10, 20 and 50 were tested; these tests were done in the simple model variant. As shown in

(a) h = 10 (b) h = 20

Figure 5.8: PDE solution Vx of the last time period in the simple model variant of multi-
period model II. The solution is shown at the fixed time point t = 1.5 for two different step
sizes h.

Figure 5.8, the result with a step size of 10 shows a strong anomaly for large values of x
and rather small values of z; this also appears to greatly increase the run time of solving
the PDE. Since the anomaly lies at a position that the SDE system rarely reaches, because
X and Z are strongly correlated, the high run time is the more problematic issue. On a
grid with step size h = 20 the anomaly is still present, but by far not as severe; moreover,
the run time in this case is acceptable. The grid with step size h = 50 is already quite
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coarse and might lead to less accurate results; although the above mentioned anomaly is
not present on this grid, there seems to be an error for large values of z. Therefore, an
equidistant grid with h = 20 was chosen for numerical computations in the simple model
variant. In the Brownian and Ornstein-Uhlenbeck model variants, the solution algorithm
fails for a step size of h = 20 or h = 50. Thus simulations had to be conducted with the
very coarse step size of h = 100.

As explained in Section 3.2.5, we need to specify the price function for the last time
period S̃N0 in advance. One straight-forward approach to this is to set S̃N0 (z) = s for
some constant s, similar to the case of multi-period model I. To be able to let the price
parameter vary also for the last time period, we make use of multi-period model I: For a
given constant s, we solve the PDE of this model on a time period after the actual final
time point T and use the resulting price function as input for multi-period model II. More
precisely, we compute a solution V fin

x of the PDE derived in Section 3.1.2 on [T, T + ∆T ],
which delivers the price function as S̃N0 (z) = V fin

x (0, z) erT .

Summary

We first introduced the discretization of our PDE along the x-axis, which transforms the
PDE into an ODE. Then we discussed the choice of an appropriate grid for the discretiza-
tion: To reduce numerical errors, we use a grid with varying step sizes, which becomes
coarser in time. Since we apply an implicit Runge-Kutta method to solve the ODE, we pro-
vided an introduction to this class of ODE solution methods. Additionally, we described
how we obtain the functions required for the Runge-Kutta method from the discretized
PDE. Finally, we commented on the adjustments that need to be made to apply this
procedure to multi-period model II.

5.2 Numerical Solution of the SDE

We aim to solve the SDE

dXt = −u(t,Xt)dt+G(t)dWt.

To compute a numerical solution, we will apply the Euler-Maruyama scheme as already
introduced in Section 2.4.2 in Definition 2.19. Again this involves a discretization of
a particular input variable, in this case the time variable t. We choose an equidistant
partition 0 = t0 < t1 < . . . < tN = T with step size ∆t = 0.01, so we have tn = n∆t.
Then we set X0 = x0 (we will discuss in Section 5.3.3 how we choose the constant x0) and
apply the scheme

Xtn+1 = Xtn − u(tn, Xtn) ∆t+G(tn)∆Wn.

For each time step n, we have to simulate a Brownian increment as ∆Wn ∼ N (0,∆t).
Furthermore, we need to evaluate the drift function u at given points tn and Xn. If
we have an analytical solution of the PDE, this can easily be implemented by writing the
analytical solution as a function in the code. If on the other hand we only have a numerical
PDE solution, this gives us the function values at the corresponding grid points, but not
in-between. The output of the PDE solution is chosen in such a way that the time points
match the partition used in the Euler-Maruyama scheme. Along the x-axis we then need
to perform linear interpolation to obtain an approximation of the PDE solution Vx(tn, x)
at any given point x. From the PDE solution, we can directly compute the drift u(tn, x).
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In the rare case that the process X leaves the grid on which the PDE was solved, linear
extrapolation is applied to compute Vx(tn, x). At the same time the occurrence of this is
documented.

By applying the scheme as described, we obtain one realization of the process X. Since
we are interested in the distribution of X, we repeat this procedure many times; we choose
to do 10 000 repetitions. From the thus obtained realizations of X we compute quantities
such as the expectation E[Xt], the variance Var(Xt) for any t ∈ {t0, . . . , tN}, but also
visualize for example the distribution of XT .

If we are aiming to solve the SDE in multi-period model I, i.e. with constant price
parameter, we have to introduce some minor modifications. We now define a partition
for each time period [0,∆Ti] with N steps and again step size ∆t = 0.01, i.e. we have
0 = t0 < t1 < . . . < tN−1 < tN = ∆Ti with tn = n∆t. In each time period i - except
for the first - we need to compute the initial value given by Xi

0 from the realization of
the Brownian motion W until time Ti, as shown in Section 3.1.1. More precisely, in the
simple model variant we have

Xi
0 = xi0 + σWTi

and in the Brownian variant
Xi

0 = xi0 + σ∆TiWTi ,

therefore in these two model variants we require the realized value of WTi . In the Ornstein-
Uhlenbeck variant we have

Xi
0 = xi0 − σ

e−θTi+1 − e−θTi

θ

∫ Ti

0
eθsdWs,

so we need to approximate the realization of the stochastic integral
∫ Ti

0 eθsdWs. We
compute WTi from the simulated Brownian increments as

WTi =

iN−1∑
n=0

∆Wn =

iN−1∑
n=0

(Wtn+1 −Wtn) = WtiN

and approximate the stochastic integral by its discretization∫ Ti

0
eθsdWs ≈

iN−1∑
n=0

eθtn ∆Wn.

Note that if we are in time period i, the increments ∆Wn for n = 0, . . . , iN−1 are available
since we solve the SDEs forward in time and have thus simulated these increments when
solving the SDE for time period 0, . . . , i− 1.

In the case of multi-period model II, where the price parameter is allowed to vary,
we need to make some further modifications. Firstly, we now also need to solve the SDE
describing the process Z given by

dZit = H i(t)dW i
t .

This can be done by applying the Euler-Maruyama scheme as for the process X, delivering

Zitn+1
= Zitn +H i(tn) ∆Wn,

where in each time period Zi0 is computed from Xi
0.
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Furthermore, the evaluation of u becomes more challenging: The drift u is now a
function of t, x and z, where both x and z usually do not lie on the grid for which we
have computed the PDE solution. For x ∈ [xhi , x

h
i+1] and z ∈ [zhj , z

h
j+1] and a grid point

tn we therefore need to perform a bilinear interpolation between the four points (xhi , z
h
j ),

(xhi+1, z
h
j ), (xhi , z

h
j+1) and (xhi+1, z

h
j+1). We first interpolate between (xhi , z

h
j ) and (xhi+1, z

h
j )

to obtain an approximation for u(tn, x, z
h
j ) and between (xhi , z

h
j+1) and (xhi+1, z

h
j+1) to

approximate u(tn, x, z
h
j+1). By then interpolating between (x, zhj ) and (x, zhj+1), we obtain

the desired approximation for u(tn, x, z). Also in this model we use linear extrapolation
if the processes X or Z leave their respective grid. Since they might do so independently,
we also need to allow for mixed cases. If for example X leaves its grid, but Z is still on
its grid, we perform extrapolation in the direction of x and interpolation in the direction
of z.

Summary

In this section, we described how we apply the Euler-Maruyama scheme to the SDEs for
X, and in case of multi-period model II also for Z. We discussed the evaluation of the
drift u away from the grid points of the PDE solution and explained the computation of
the initial values of later time periods, given by Xi

0 and Zi0, in the multi-period models.

5.3 Parameter Choices

For the purpose of consistency parameters were largely chosen as in the work by Seifert
et al. [SUW08]; the default value of each parameter can be found in Table 5.1. We will
discuss the choice of these parameters below. Since many parameters are hard to estimate,
we also conduct numerical simulations with varying parameters to cover a wider range for
the parameters in question. It should be noted that the choice of units is a bit unusual:

Table 5.1: Default parameter choices for numerical simulations.

Parameter Value Unit

T 3 years
e0 6000 Mt CO2 equivalents
p 70 Euro per ton
r 0.10
c 0.24 Euro times years per 106 t2

x0 6240 Mt CO2 equivalents
P 6
sN−1 0 Euro per ton

The emissions and also the emission threshold are measured in mega tons (Mt) to avoid
the use of large numbers. At the same time, the penalty is given in Euro per ton for the
same reason. Thus the unit of the costs in the system given by V is 106 Euro; the unit
of the abatement rate is Mt per year. Since the price of an allowance should be given in
Euro per ton, the resulting unit for the cost coefficient c is Euro times years per 106 t2,
which is also consistent with the unit of the abatement cost function given as 106 Euro
per year. In this way, the cost coefficient balances out the mismatch of units for emission
data and price data.
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5.3.1 Regulatory Parameters

Several parameters appearing in our model are regulatory parameters which are set by
the respective regulatory institution; in case of the EU ETS, this is the European Union
or its member states. The regulatory framework of the EU ETS was established in 2003
by the Directive 2003/87/EC of the European Parliament and the Council [EU03]; major
adjustments were made in 2018 by the Directive 2018/410 [EU18]. The figures quoted
below mainly can be found in these documents.

One parameter to be set by the regulator is the length of the trading period T or
the length of one sub-period ∆T . The first phase of the EU ETS was three years long
(from 2005 until 2007). Later phases were increasingly longer with Phase 2 lasting 5 years
(from 2008 until 2012), Phase 3 of 8 years (from 2013 until 2020) and the current Phase
4 spanning 10 years (from 2021 until 2030). Since in the one-period model allowances
become invalid at the end of the time period and no auctioning is possible, this is closest
to the regulatory framework of the EU ETS in its earliest phase. Thus we choose T = 3.
Also in multi-period models we set ∆T = 3 so that any differences to the one-period model
can be attributed to the multi-period setting rather than a change in the length of one
time period. We study the effect of such a change separately.

A key choice by the regulator concerns the initial endowment of allowances to the
system given by the parameter e0. In the initial phase of the EU ETS, the allocation of
allowances was done by each country separately via so-called national allocations plans.
The total allocations of each country can be found in the European Union Transaction
Log [ECb] and were formerly stored in its predecessor, the Community Independent Trans-
action Log (CITL). In their analysis on abatement in Phase 1, Anderson and Di Maria
[AD11] use this data and obtain an amount of 6246.6 Mt CO2 from the sum of all national
allocation plans. In line with Seifert et al. we choose e0 = 6000, although this is consider-
ably lower than the actual amount. As we will see below, the expected emissions without
abatement x0 can reasonably be set to x0 = 6240, which means that in expectation no
abatement would be required. In order to study the impact of the emission trading sys-
tem, we therefore choose a value slightly below x0. The allocation of allowances plays a
key role in ensuring the efficacy of an ETS: If too many allowances are present, there is
no longer an incentive to reduce emissions, whereas if there are too few allowances, costs
of abatement may prove to be so large that companies choose to pay the penalty instead.
Therefore, we vary the amount of allocated allowances to study how this affects the sys-
tem. Since the third phase, i.e. since 2013, the allocation of allowances is done centrally
on a union-wide level. For the year 2013, the number of allowances was set to 2048 Mt
CO2; this figure decreased yearly by 1.74% until 2020 and by 2.2% from 2021 onward,
amounting to 1572 Mt CO2 for 2021. Therefore, we also study the effect of decreasing the
amount of allocated allowances in multi-period model I.

Another important regulatory parameter is the choice of the penalty payment: As can
already be seen from theoretical considerations, this strongly impacts the allowance price.
Initially, the penalty was set to 40 Euro per ton of surplus emissions. In their work, Seifert
et al. set the penalty parameter to p = 70 to account for the requirement to surrender
the missing allowances in the subsequent time period; they assume that the price of these
allowances is approximately 30 Euro. We will therefore also set p = 70 in the one-period
model. In the multi-period models, we use the price parameter si to represent the price of
the missing allowances, thus we set p = 40. Furthermore, from 2008 on the penalty in the
EU ETS was increased to 100 Euro; to account for this and to study the effects of a further
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increase in the penalty, we additionally work with p = 100 and p = 160. Furthermore, we
vary the penalty in the one-period model to observe how this impacts the emission trading
system.

5.3.2 Descriptory Parameters

Two further parameters are required which are not chosen by the regulator but are also
not determined from emission data. The interest rate r needs to be set to r = 0 to be able
to compute analytical solutions in the simple model variant. For all other variants, the
reference interest rate of the European Central Bank (ECB) can be used as orientation; for
the years from 2005 to 2007, during phase 1 of the EU ETS, an interest rate between 2%
and 4% would be plausible. For later years, a lower interest rate would be more realistic;
since 2013 the main refinancing operations rate of the ECB is close to zero, thus r = 0
as required for analytical solutions is realistic. Seifert et al. on the contrary choose an
artificially high interest rate of 10% to stress the effect of interest. Again for consistency
we work with r = 0.1 where it is possible.

Furthermore, we need to set the cost coefficient c. In theory, this parameter captures
the cost of abatement for each company in the system in an aggregated way, hence it
is very difficult to estimate. One way to circumvent this problem is to assume that
abatement is undertaken by fuel-switching, as it is done for example by Carmona et al.
[CFH09]; then coal and gas prices can be used to obtain the cost of abatement Seifert et
al. adopt a different approach: They argue that in a deterministic setting with parameters
chosen as given above, the representative agent would need to abate 80 Mt per year,
leading to marginal abatement costs and thus an allowance price of 80c. They choose
c = 0.24, corresponding to an allowance price of 19.2, which lies in the range of allowance
prices of the year 2006 that varied between 10 and 30 Euro. This however can only be
a very rough estimate: Any other value between 0.125 and 0.375 would also work in this
argumentation; moreover, the value of e0 and therefore the yearly abatement of 80 Mt
is not exact, so possibly it would be more reasonable to work with the estimates in the
literature of approximately 60 Mt per year for the first phase of the EU ETS. As default
we set c = 0.24 but we additionally study the effect that the cost coefficient has on overall
results. Due to technological advancement it is plausible that the cost coefficient decreases
in time. We analyze the effects of such a decrease in multi-period model I.

5.3.3 Parameters Derived from Emission Data

The remaining parameters, the initially expected emissions x0 and the parameters char-
acterizing the emission rate Y , are all linked to observable emission data. In this section,
we will explain how to obtain x0 from the so-called historical baseline data collected by
governments and derive the parameters to describe Y from data on emissions within the
European Union. Emission data is available from the European Union itself but this only
dates back to 1990. Therefore, we will use a data set from the World Bank, providing the
yearly CO2 emissions from 1960 until 2016 in the European Union [WBa]2. We will only
use the data until 2004 since we do not want to have the effect of the EU ETS contained
in our data. We will denote this data set by (ẼT+1

T )T=0,...,N , where we let ẼT+1
T be the

emissions in year T . More generally, we denote by ẼT2
T1

the emissions from the beginning

2It should be remarked that this data set is no longer available on the World Bank website; currently
only data from 1990 onwards is available.
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of year T1 until the beginning of year T2. A graphical visualization of the World Bank
data set can be found in Figure 5.9. The graph shows a steep increase in yearly emissions
between 1960 and 1975 but after that the development of yearly emissions changed dras-
tically; since 1979 emissions have slightly decreased again on average and exhibit a much
more irregular behavior. It seems unreasonable that the increase until 1975 contains any
information on how yearly emissions would behave from 2005 onwards. We will therefore
consider several different ranges for our data set, all starting in 1975 or later.

Figure 5.9: CO2 emissions of the European Union between 1960 and 2004 as given by the
World Bank data set [WBa].

Importantly, the EU ETS only covers the greenhouse gas emissions in the European
Union partially3, whereas the World Bank data comprises all CO2 emissions of the respec-
tive year. We thus need to scale the data set by an appropriate scaling factor, denoted
by ρ. To obtain this factor, we will make use of the parameter x0, which represents the
initially expected emissions in the EU ETS without abatement and is thus in particular
a figure that only takes emissions into account which underlie the EU ETS. We will then
denote the scaled emission data as

(
ET+1
T

)
T=0,...,N

. The parameters estimated in this
section for the different variants are summarized in Table 5.2.

Table 5.2: Parameters derived from emission data for the three different model variants.

Model variant Parameter Value

All x0 6240
σ 115.47 or 288.68

Brownian µ −10
Ornstein-Uhlenbeck (one-period model) θ 0.2
Ornstein-Uhlenbeck (multi-period model) θ 0.04

µ 2000

It should be noted that the data available is scarce and may contain biases and flaws.
Furthermore, the structure of the process Y does not allow for simple estimation techniques
for all parameters required. Thus the description below can only show that the parameters
given here are plausible; we cannot provide a precise derivation of these results.

3More precisely, it also only covered CO2 emissions in its first phase from 2005 until 2007, emissions of
other greenhouse gases were added in the subsequent phases.
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The Initially Expected Emissions x0

The parameter x0 represents the emissions we expect initially and without abatement to
occur in course of the trading period. Before the start of the EU ETS, it was crucial to
know how many emissions were to be expected in the relevant sectors without the emission
trading system, therefore the EU member states attempted to estimate a corresponding
figure by gathering a historical emission baseline. The results can be found at the German
Emissions Trading Authority [Lan+05]; as commented by Ellerman and Buchner in their
analysis on abatement or over-allocation in 2005 [EB08], the baseline data may be biased
due to the mechanism and the time pressure under which it was collected. Nevertheless
we will use this data to obtain the parameter x0. The historical baseline emissions for the
EU, based on data from 2001 until 2003, amount to 2078 Mt CO2 per year. For a period
of three years we would therefore obtain 6234 Mt CO2, which is approximately the value
of x0 = 6240 that Seifert et al. use in their simulations. Ellerman and Buchner continue
to adjust this value by taking into account economic growth and the change in carbon
intensity, which delivers expected BAU emissions of 2150 Mt CO2 in 2005. Since we are
only interested in a rough estimate and to maintain consistency with the work by Seifert
et al., we will use the value of x0 = 6240.

The Drift Parameter µ in the Brownian Model Variant

We aim to use the emission data to estimate the drift parameter µ of the Brownian model
variant. Since we only have yearly emission data, we approximate the emission rate YT of
year T by ET+1

T , thus we have in the Brownian model that

ET+1
T ≈ YT = y0 + µT + σWT = y0 + µT + ε

with ε ∼ N (0, σ2 T ). Therefore, we perform simple linear regression on the data pairs
(T,ET+1

T ). This is done by using the Python package scikit-learn [Ped+11]. We first
apply linear regression to the unscaled data (T, ẼT+1

T ) and obtain the corresponding pa-
rameters ỹ0 and µ̃. We use these estimates to extrapolate the line to the years 2005 until
2007, which corresponds to the first phase of the EU ETS. From this extrapolation, we
derive an estimate for the emissions expected from 2005 until 2007 given by

x̃0 = Y2005 + Y2006 + Y2007 = 3ỹ0 + (2005− T0)µ̃+ (2006− T0)µ̃+ (2007− T0)µ̃,

where we need to subtract the year T0 that we use as zero in the linear regression. In
the data sets we work with below, we have T0 = 1974, T0 = 1978 and T0 = 1989 for the
time period starting in 1975, 1979 and 1990, respectively. The linear regression performed
on the unscaled data including the extrapolation is shown in Figure 5.10. From x̃0, we
compute the scaling factor to obtain the emissions that underlie the EU ETS as

ρ =
x̃0

x0
.

By applying the scaling factor to the parameters estimated from linear regression we arrive
at the scaled parameters that can be used in our model. We perform these computations
on three different time periods, namely 1975 to 2004, 1979 to 2004 and 1990 to 2004,
as these years all mark a changing behavior of the yearly emissions. Moreover, 1990 is
also a common reference to judge emission reductions and was for instance the reference
year in the Kyoto Protocol. The results are summarized in Table 5.3. The determination
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Figure 5.10: Yearly emissions from 1979 to 2004 and corresponding regression line, extrap-
olated for the years 2005 to 2007.

Table 5.3: Results from linear regression to estimate the parameter µ in the Brownian model

Time period ỹ0 µ̃ R2 x̃0 ρ y0 µ

1975 – 2004 3782.51 −13.39 0.48 10061.69 0.62 2345.16 −8.30
1979 – 2004 3782.87 −16.62 0.58 9952.35 0.63 2383.21 −10.47
1990 – 2004 3460.70 −1.43 0.0094 10309.12 0.61 2111.02 −0.87

coefficients R2 indicate that the model fits the data fairly well when the data from 1975
to 2004 or from 1979 to 2004 are used (as can be also observed in Figure 5.10 for the years
from 1979 to 2004), whereas the data set from 1990 to 2004 does not seem to follow a linear
relation as assumed in the Brownian model. We also observe that the drift coefficient µ is
negative in all three cases, ranging from −0.87 to −10.47. Since the fit is best for the data
from 1979 to 2004 and the result is only slightly different for the data from 1975 to 2004,
we will use a drift coefficient of µ = −10 in our simulations. Note that we only require
µ in the multi-period model; in the one-period model this parameter is contained in the
parameter x0. The same holds for the parameter y0 in general, which we therefore do not
require at all.

The second parameter we have in the Brownian model variant is the volatility σ. Since
this is difficult to estimate in the Brownian model variant and for better comparability
with the simple model variant, we will use the volatility estimated in the setting of the
simple model variant, as described next.

The Volatility Parameter σ in the Simple Model Variant

In the simple model variant we model the total expected emissions X directly. At final
time of a given time period [0, T ], we then have

XT = x0 −
∫ T

0
utdt+ σWT .

By omitting the abatement term, we obtain the realized emissions without abatement, i.e.
the Business-As-Usual (BAU) emissions

XBAU
T = x

(T )
0 + σWT ∼ N

(
x

(T )
0 , σ2 T

)
,
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where the initially expected total emissions x̃
(T )
0 depend on the length of the time period

T , as indicated by the superscript. With the notations introduced above, we have for the

unscaled data with unscaled parameters x̃
(T )
0 and σ̃

ẼT2
T1
≈ XBAU

T2−T1
= x̃

(T2−T1)
0 + σ̃ WT2−T1

and more specifically for the emissions in year T

ẼT+1
T ≈ x̃(1)

0 + σ̃ W1 ∼ N
(
x̃

(1)
0 , σ̃2

)
.

Thus we compute the sample mean and sample standard deviation to estimate x̃
(1)
0 and σ̃.

Since the initially expected emissions x0 are given for a period of three years, we compute
the scaling factor ρ by

ρ =
x0

3x̃
(1)
0

.

To maintain consistency with the estimates from the Brownian model variant, we also
apply the scaling factor computed in the Brownian model variant for the respective time
period. We then obtain the appropriately scaled result for the volatility as σ = ρ σ̃. The
results of all computations are summarized in Table 5.4. For the data from the time

Table 5.4: Estimation of the volatility σ and the initially expected total emissions x
(1)
0 in

the simple model variant. Scaled results were computed both from the scaling factor derived
in the Brownian and in the simple model variant.

Time period x̃
(1)
0 σ̃ Origin of ρ ρ x

(1)
0 σ

1975 – 2004 3574.90 170.16 Simple model 0.58 2073.44 98.70
Brownian model 0.62 2216.44 105.50

1979 – 2004 3558.47 166.67 Simple model 0.58 2063.91 96.67
Brownian model 0.63 2241.84 105.00

1990 – 2004 3449.25 65.94 Simple model 0.60 2069.55 39.56
Brownian model 0.61 2104.04 40.22

periods from 1975 to 2004 and from 1979 to 2004, we obtain a volatility of approximately
100, whereas the data set from 1990 to 2004 delivers a volatility of only 40. As can be
seen from Figure 5.11, both of these results should be treated with caution; the histograms
of the underlying data do not provide strong support for the assumption that this data
follows a normal distribution.

In their work, Seifert et al. work with a volatility that depends on the length T of the
time period considered and is given by σ = 500√

T
; thus the variance of the BAU emissions

XBAU
T is constant in the length of the time period. For a time period of three years, this

corresponds to a volatility of σ = 288.68. They argue that this should lead to a volatility
of the price of about 50% as observed in market prices. This value deviates considerably
from the estimation results above; additionally we will observe below that the volatility
strongly impacts the system as a whole. In early simulations, we studied the impact of
a small volatility by setting σ = 200√

T
= 115.47 for T = 3, in line with the approach by

Seifert et al. Since this is close to the volatility of approximately 100 derived above, we
will use the value of 115.47 instead. In summary, we mainly work with a volatility of
288.68 and provide additional results with a smaller volatility of 115.47 in the appendix.
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(a) 1979 to 2004 (b) 1990 to 2004

Figure 5.11: Histogram of the yearly emissions ET+1
T for two different time periods.

Additionally, we vary the volatility further to analyze its impact on simulation results.
However, in contrast to the approach by Seifert et al., we do not let the volatility vary
with the length of the time period; also for varying T we will use a fixed value for the
volatility.

The Mean Reversion Speed θ in the Ornstein-Uhlenbeck Model Variant

The Ornstein-Uhlenbeck model variant of the emission rate can be written as

YT = y0 e−θT + µ(1− e−θT ) + σ

∫ T

0
e−θ(t−s)dWs.

As in the Brownian model variant, we approximate the emission rate by the yearly emis-
sions ET+1

T . Then we have

ET+1
T ≈ YT = y0 e−θT + µ(1− e−θT ) + ε = (y0 − µ)e−θT + µ+ ε,

where ε follows a normal distribution with mean zero, i.e. ε ∼ N
(
0, σ̄2(T )

)
for some

T -dependent variance σ̄2(T ). We thus have a non-linear function involving four different
parameters, which makes it very challenging to find proper estimates. We therefore again
use the same volatility parameter σ as for the other two model variants. Furthermore,
we can obtain y0 from the Brownian model variant since this parameter serves a similar
purpose in both model variants. However it is not plausible to also take µ from the
Brownian model variant; while in the Brownian variant µ denotes the drift, in the Ornstein-
Uhlenbeck variant it represents the long term mean. In particular, we have

lim
T→∞

E [YT ] = µ,

whereas in the Brownian variant

lim
T→∞

E
[
Y B
T

]
=


∞ if µ > 0

0 if µ = 0

−∞ if µ < 0.

In a first approach, we therefore use the parameter x
(1)
0 computed in the simple model

variant, as this represents the mean emissions of one year, so it may serve as the long term
mean of the yearly emission rate.
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It remains to determine θ. We have seen that

YT = (y0 − µ)e−θT + µ+ ε

with ε ∼ N
(
0, σ̄2(T )

)
. For varying θ in a given interval [a, b], we compute

YT (θ) = (y0 − µ)e−θT + µ

and aim to find θ solving

min
θ∈[a,b]

N∑
T=1

(
ET+1
T − YT (θ)

)2
,

i.e. as in linear regression, we minimize the sum of the squared residuals. We perform
this minimization simply by discretizing the considered interval [a, b], where we choose
[a, b] = [0, 2]. The results computed from the different time periods can be found in Table
5.5. For each data set we also compute the determination coefficient R2 as

R2 =
S2
N

(
ET+1
T

)
− RES

(
ET+1
T , θ

)
S2
N

(
ET+1
T

)
where S2

N

(
ET+1
T

)
denotes the sample variance of

(
ET+1
T

)
T=0,...,N

and RES
(
ET+1
T , θ

)
de-

notes the sum of the squared residuals as given above, i.e.

RES
(
ET+1
T , θ

)
=

N∑
T=1

(
ET+1
T − YT (θ)

)2
.

We again obtain the best fit for the data from the time period 1979 to 2004; but also for

Table 5.5: Estimation of the parameter θ in the Ornstein-Uhlenbeck model variant. The
scaling factor computed in the Brownian model variant is applied, parameters µ and y0 are
taken from estimations in the simple and in the Brownian model variant, respectively.

Time period ρ y0 µ θ R2

1975 – 2004 0.62 2345.16 2216.44 0.14 0.20
1979 – 2004 0.63 2383.21 2241.84 0.2 0.39
1990 – 2004 0.61 2111.02 2104.04 0.39 0.096

this data set, the determination coefficient only reaches R2 = 0.39. The fitted line and the
underlying data as well as the sum of the squared residuals for this time period are shown
in Figure 5.12. In the one-period model, we will use the value θ = 0.2 computed for the
time period from 1979 to 2004 in our simulations. As in the Brownian model variant, the
parameter y0 does not appear explicitly in computations, whereas the parameter µ is only
required in the multi-period model.

With µ = 2240 as estimated in the simple model variant for the years 1979 to 2004,
we obtain expected emissions of 6720 Mt for a time period of three years; this figure is
considerably higher than the emissions we expect for the first time period as given by
the parameter x0 = 6240. Thus by choosing µ = 2240, we implicitly assume that BAU
emissions increase between time period 0 and time period 1; this is not supported by the
downward tendency of the data. By repeating the procedure described above for different
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(a) Sum of the squared residuals for varying val-
ues of θ.

(b) Yearly emissions and corresponding regres-
sion curve.

Figure 5.12: Regression results to determine θ for the time period from 1979 to 2004.

values of µ, we find that we obtain the best fit for µ = 2090; but this still corresponds
to emissions within three years that slightly surpass the value of x0 = 6240. Instead we
choose µ = 2000; in this way, we assume that the emissions of three years in the long-term
are equal to the emission cap e0. The parameters obtained under this assumption are
shown in Table 5.6. We observe that the fit is much better for the two larger data sets;

Table 5.6: Estimation of the parameter θ in the Ornstein-Uhlenbeck model variant. The
scaling factor computed in the Brownian model variant is applied, the parameter y0 is taken
from estimations in the Brownian model variant and we assume µ = 2000.

Time period ρ y0 µ θ R2

1975 – 2004 0.62 2345.16 2000 0.03 0.47
1979 – 2004 0.63 2383.21 2000 0.04 0.64
1990 – 2004 0.61 2111.02 2000 0.01 0.077

with the data from 1979 to 2004, we obtain a higher determination coefficient as we did
in the estimation of µ in the Brownian model variant. This is underlined by Figure 5.13,
showing a distinctive minimum of the squared residuals and a fitted curve that visibly fits
the data points. At the same time, the estimates for θ are very small; the highest value,
obtained from the 1979 to 2004 data set, only reaches 0.04. As we will see in Sections 6.1.1
and 6.1.5, this implies for the one-period setting that both the PDE solution and the SDE
solution are very similar to the respective results in the Brownian model variant. As a
consequence, we will use the value of θ = 0.2 in the one-period model to be able to see
some effects from the changed model variant. In the multi-period model, the parameter θ
also influences the amount of emissions we expect initially for each time period i as given
by the parameter xi0. Since this differs considerably between the Brownian and Ornstein-
Uhlenbeck variant, also for θ = 0.04, we will use the parameters θ = 0.04 and µ = 2000 in
the multi-period model.

5.3.4 Additional Model Parameters in the Multi-Period Model

In the multi-period model we additionally need to set the number of time periods P and
the price parameter for the last time period sN−1. These parameters can neither be
estimated from data nor can they be taken from the regulatory regime in the EU ETS:

160



CHAPTER 5. IMPLEMENTATION

(a) Sum of the squared residuals for varying val-
ues of θ.

(b) Yearly emissions and corresponding regres-
sion curve.

Figure 5.13: Regression results to determine θ for the time period from 1979 to 2004 under
the assumption that µ = 2000.

Actual emission trading systems usually do not have a fixed end point, thus both P and
sN−1 can be viewed as artificial auxiliary parameters. We choose to work with six time
periods. In this way we have sufficiently many time periods to be able to observe the effects
of a multi-period setting, while the required computational effort can still be handled.

To avoid arbitrariness, we set the price parameter of the last time period sN−1 to zero
in multi-period model I, which means that allowances become invalid at the end of the
last time period. In multi-period model II, we compute the price function S̃N0 for the last
time period from the PDE solution in multi-period model I, as explained in Section 5.1.4.
For this we again require a price parameter s, which we set to zero.

Summary

This section served to justify our parameter choices: The parameters p, e0 and T (or
∆T ) were obtained from the regulatory framework of the EU ETS. Further parameters,
namely r and c, were taken directly from the choice of Seifert et al. [SUW08]; while r
alternatively could be retrieved from reference interest rates, the cost coefficient c is very
difficult to estimate. The initially expected emissions x0 were estimated by using the
historical emission baseline data. With the help of the estimate for x0, the parameters
required to describe the emission rate, namely µ, σ and θ, could be estimated from data on
CO2 emissions in the EU. The parameters P and sN−1, which we need in the multi-period
models, again could not be obtained from data and had to be chosen in a suitable way.
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Chapter 6

Numerical Results

The numerical methods presented in Chapter 5 allow us to solve the PDEs and SDEs
which are central to the ETS model derived in Chapter 2 and its extensions introduced in
Chapters 3 and 4. Thus we obtain realizations of the total expected emissions process X;
based on these results, we can assess the impacts of parameter and design choices made
by the regulator. We first present the results obtained in the one-period model. Then
we continue with the two approaches to the multi-period model; in particular, we aim to
analyze the effect of allowing for the transfer of allowances from one time period to the
next. Finally, we briefly look into the impact of auctioning on the costs arising in the
emission trading system.

6.1 One-Period Model

In this section, we first discuss the PDE solution for the simple, Brownian and Ornstein-
Uhlenbeck model variant. Then we study the processes X and S obtained from solving
the SDE in each model variant. By varying several model parameters, we analyze their
impact on the emission trading system.

6.1.1 Solution to the PDE

For the simple model variant, we have solved the PDE analytically as described in Sec-
tion 2.3.1. Thus we apply the corresponding formulae to plot the value function V and
its derivatives; for the plots, any entries taking the value infinity were set to zero. The
plots for V and the first derivative Vx are shown in Figure 6.1. We observe that V is
constantly zero for small values of x, i.e. if x lies well below the number of allowances
given by e0 = 6000. For high values of x, the value increases almost linearly in x. This
is confirmed by the results for Vx: If x is small, then Vx is constantly zero, whereas for
large x it is constant and equal to p = 70. Around the value of e0 = 6000, the function
Vx is increasing in x, with an increasingly steep slope as time t approaches the final time
point T , where we have a jump as given by the final condition. Thus we clearly see that
Vx is bounded between 0 and p and tends to 0 for x going to −∞ and to p for x going to
infinity as shown in Proposition 2.7.

Additionally, we visualize the second derivatives Vxx and Vxt in Figure 6.2. We directly
see that Vxx is zero for x away from e0 = 6000; it attains increasingly large values for t
approaching T if x is close to e0. While this indicates that Vxx is unbounded on [0, T ],
the plot is bounded on [0, T − ε] for any fixed time point T − ε < T , which is in line with
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(a) Solution V . (b) First derivative Vx.

Figure 6.1: Analytical PDE solution in the simple model variant1.

(a) Second derivative Vxx. (b) Second derivative Vxt.

Figure 6.2: Second derivatives of the PDE solution in the simple model variant.

Proposition 2.7 (iv). The derivative Vxt also attains its highest value for large values of t;
in contrast to all other derivatives, it takes negative values. In this case, it is not as clear
to see that boundedness on [0, T − ε] for any ε > 0 holds.

For the Brownian model variant, the PDE was solved numerically as described in
Section 5.1; the derivatives were estimated by difference quotients. The resulting plots
for V and Vx are shown in Figure 6.3. The overall structure of the solution is similar to
the simple variant, both for V and the derivative Vx, but slight differences are observable:
Most notably, the plot is now bounded by 51.85, since we need to take the interest rate
into account. Thus the bound corresponds to p e−rT . As can be seen in the plot of Vx
and more clearly in Figure 6.7 showing the difference between the two model variants, the
slope of Vx gets steeper faster: In the Brownian variant, close to time T , Vx is already
almost at its upper bound or almost zero also for values of x close to e0. On the other
hand, in the simple variant, Vx still slightly deviates from its bounds at these points. This
is also reflected in the second derivatives shown in Figure 6.4: Both Vxx and Vxt attain
higher values than in the simple model variant. Around x = e0, the second derivatives

1In interpreting these 3D-plots, note that the tick labels on the x-axis refer to the ticks directly above
each number.
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(a) Solution V . (b) First derivative Vx.

Figure 6.3: Numerical PDE solution in the Brownian model variant.

(a) Second derivative Vxx. (b) Second derivative Vxt.

Figure 6.4: Second derivatives of the PDE solution in the Brownian model variant.

appear to tend to infinity for t approaching T . Thus on [0, T ] both Vxx and Vxt can be
assumed to be unbounded. But again it is plausible that boundedness can be assured on
[0, T − ε] for any points T − ε before T .

Also in the Ornstein-Uhlenbeck model variant, the PDE solution needs to be solved
numerically; the results for V and Vx are shown in Figure 6.5. These are very similar to
those in the Brownian model; the same holds for the second derivatives Vxx and Vxt shown
in Figure 6.6.

The similarity between the Brownian and Ornstein-Uhlenbeck model is underlined by
the comparison plot in Figure 6.7b. By considering the PDEs for the two models, this
similarity can be easily explained: As shown in Figure 6.8, the coefficients of the second
derivative Vxx are almost identical for t close to T , where in all models Vxx is the largest.
Also for small t, the coefficients behave similarly; thus only a small difference between the
two model variants can be observed as shown in Figure 6.7. When comparing the Brownian
variant to the simple model variant (shown in Figure 6.7a), the resulting difference is in
particular also large for t close to T . Thus the deviations between the simple model variant
on the one hand and the Brownian and Ornstein-Uhlenbeck model on the other are much
more striking. Note that we do not need to compare the coefficients of V 2

x : If we set the

165



CHAPTER 6. NUMERICAL RESULTS

(a) Solution V . (b) First derivative Vx.

Figure 6.5: Numerical PDE solution in the Ornstein-Uhlenbeck model variant.

(a) Second derivative Vxx. (b) Second derivative Vxt.

Figure 6.6: Second derivatives of the PDE solution in the Ornstein-Uhlenbeck model variant.

(a) Vx of Brownian variant subtracted by Vx of
simple variant (with r = 0.1).

(b) Vx of Brownian variant subtracted by Vx of
Ornstein-Uhlenbeck variant.

Figure 6.7: Differences of the derivative Vx between the Brownian model variant and the
simple or Ornstein-Uhlenbeck model variant.
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Figure 6.8: Coefficient of the Vxx-term in the PDE for the three model variants.

interest rate to r = 0.1 also in the simple model variant, as we did in Figure 6.7a for the
purpose of comparison, these coefficients are identical in all model variants.

Summary

An understanding of the PDE solution and in particular of its derivative Vx is crucial, as
both the abatement rate u, serving as the drift term in the SDE, and the price function
S are directly computed from Vx. We observed that Vx is constant for small or large
values of x. If x is close to e0, the function Vx is increasing in x, with a slope that
increases in time. This behavior is similar in all model variants; the results obtained in
the Ornstein-Uhlenbeck variant are almost identical to those obtained in the Brownian
variant.

Moreover, the results shown here suggest that Vx is bounded also in the Brownian
and Ornstein-Uhlenbeck model variant. As argued above, the numerical results also sup-
port that Vxx and Vxt are bounded on intervals of the form [0, T − ε], which would imply
Lipschitz continuity of Vx in t and x. These properties together would allow us to ap-
ply Theorems 2.15 and 2.26, which provide existence and uniqueness of a solution and
convergence of the Euler-Maruyama scheme. While this argumentation cannot replace a
rigorous proof of the required properties, it still may serve as a motivation to solve the
SDE numerically also in the Brownian and Ornstein-Uhlenbeck model variant.

6.1.2 Solution to the SDE in the Simple Model Variant

With the abatement rate u obtained from the PDE solution, we can solve the SDE de-
scribing the process of the total expected emissions X. We first consider the simple model
variant. The SDE is solved numerically by applying the Euler-Maruyama method as de-
scribed in Section 5.2, delivering realizations of the total expected emissions X. From the
price function S(t,Xt) = Vx(t,Xt) we compute the corresponding realizations of the price
process S.

We first explore three example runs, chosen to represent typical characteristics seen
in many simulation results. In Figure 6.9 the trajectories of the total expected emissions
X and of the price S for these runs are shown. The first run moves below the emission
threshold given by the total number of allowances e0 early. From time 2 onwards, the
fluctuations in X of this run barely influence the price S, as X moves in a region where
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(a) Trajectories of X. (b) Trajectories of S.

Figure 6.9: Three example trajectories of the total expected emissions X with corresponding
trajectories of the price process S. The dashed line represents the emission cap e0.

Vx and thus S is almost constant and close to zero. As the actual allowance price of the
EU ETS towards 2007, the price S is therefore very small. The second run stays slightly
above the threshold for a long time. In the earlier part of the time period, fluctuations in
X lead to similar fluctuations in S. From time 2 on, small changes in X lead to massive
jumps in S due to the increasingly steep slope of Vx. Shortly before the end of the time
period, X moves below the threshold, thus prices drop down to zero. The third run
remains above the threshold throughout the time period. After an initial increase of both
paths, the price S roughly stays constant between time 1 and time 2, whereas X shows a
downward tendency. Towards the end, the price jumps to 70 and stays constant despite
the fluctuations of X, as the total expected emissions X remain well above the threshold.

In general, changes in X lead to similar changes in S at the beginning, as all runs
are still close to e0 and the range where Vx is increasing almost linearly is broad. As
time proceeds, individual runs may move out of this range, while the slope gets steeper.
Thus for some runs, changes in price are extreme, whereas for others, the price is almost
constant. At the end, the price S either takes the value 0 if the realized emissions XT are
below the threshold, or it takes the value p = 70 if they are above. Moreover, the paths
of X show a general downward tendency.

This observation is confirmed by the mean trajectory of X shown in Figure 6.10a,
which resembles a straight line with negative slope. A downward tendency should be
expected from the definition of X: At any time point t, the variable Xt only takes into
account abatement until time t. Since the abatement rate is non-negative and positive on
average, X is decreasing.

To judge the efficacy of the ETS as an emission reduction instrument, we need to
study the emissions which are actually produced in the corresponding time period, given
by XT ; in the following, we will refer to this quantity as the realized emissions. The
distribution of XT is visualized as a histogram in Figure 6.10b; the mean is given by
5900.51. We observe that the distribution is slightly asymmetric with a peak at 6000;
thus a considerable number of runs leads to realized emissions above the threshold, as
for instance run 3 of the runs described above. The relative frequency of having realized
emissions above the threshold, which means that the system does not comply with the
emission cap, is 39.49%.
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(a) Mean trajectory of X. (b) Histogram of realized emissions XT .

Figure 6.10: Mean trajectory of the process X and distribution of the realized emissions XT

in the simple model variant.

The second goal of an ETS is to provide a price signal so that companies have an
incentive to reduce emissions and invest in clean and efficient technology. In Figure 6.11a
we observe that the mean price trajectory remains almost constant throughout the time
period. Additionally, we take the average price of an individual run along the time period
and visualize the distribution of this quantity in a histogram, shown in Figure 6.11b. This
average varies strongly among the individual runs; while the price is bounded between 0
and 70, we obtain that the average price ranges roughly between 10 and 55. The most
frequent average values lie between 10 and 20, which fits the actual allowance prices of the
EU ETS in its first phase with an average of 12.38. But on the other hand, prices between
40 and 50 still occur with high frequency.

(a) Mean trajectory of S. (b) Histogram of mean prices within each run.

Figure 6.11: Mean trajectory of the process S and distribution of the mean prices within
one run in the simple model variant.

Next to the value of the allowance price, also its variability is relevant to provide an
incentive for investment. As shown in Figure 6.12a, the standard deviation of the price
process increases in time, which is plausible since all runs start at the same point. More
interestingly, this increase has a very steep slope towards the end: At the final time point
T , the price is either zero or equal to p = 70, so all runs deviate strongly from the mean
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(a) Standard deviation trajectory of S. (b) Histogram of the standard deviation of absolute
daily returns of S, normalized to one year.

Figure 6.12: Trajectory of the standard deviation of the allowance price and distribution of
its variability in the simple model variant.

at 27.64. To asses how the price varies within one run in course of the time period, we
compute the absolute returns of the price and determine the standard deviation of this
quantity, which we normalize to one year. Thus we obtain the standard deviation of the
price change for a time step of one year. In the following, we will refer to this quantity
as the variability of the allowance price. Its distribution is shown in Figure 6.12b. We
observe that most runs lie between 10 and 20, while only few runs reach a value higher
than 30. To get a better idea of this quantity, we report the variabilities of the exemplary
runs discussed above: The price variabilities of the first and the third run are similar and
amount to 11.89 and 14.29, respectively. Possibly due to the large jumps towards the end,
the second run has a higher price variability of 25.87.

Summary

We presented example simulation results of the processes X and S and analyzed their
behavior in the mean. Moreover, we discussed the distributions of several quantities
derived from these processes. From these results, we conclude that the ETS encourages
abatement, leading to a decrease in the mean of X and an approximately constant mean
allowance price S of about 27.5 Euro. However, in a considerable fraction of simulation
runs, the realized emissions XT violate the cap, and the allowance price varies strongly in
many runs.

6.1.3 Solution to the SDE in the Brownian Model Variant

We now study the results in the Brownian model variant in some detail, as there are some
relevant differences to the simple model variant. In Figure 6.13 three example trajectories
are shown, both for the total expected emission process X and for the price process S.
The first run shown here moves downwards at the beginning and stays below the threshold
throughout the time period. Thus the corresponding price process decreases and drops
down to zero early. The other two runs start by moving upwards and behave rather
similarly; nevertheless the corresponding price processes differ massively towards the end:
The second run is slightly closer to e0 than the third, resulting in heavy price fluctuations,
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(a) Trajectories of X. (b) Trajectories of S.

Figure 6.13: Three example trajectories of the total expected emissions X with correspond-
ing trajectories of the price process S in the Brownian model variant.

while the price in the third increases linearly with the interest rate from time 2.5 onwards.
Notably, the final price of the second run lies between zero and the upper bound given
by p = 70. The final value XT in this case is very close to e0; since Vx is computed as a
finite difference and Vx(T,XT ) is evaluated by linear interpolation of the PDE solution,
we obtain a result for ST between zero and the upper bound.

In general, we observe that the fluctuations in X become less and less as time proceeds;
at the same time for some runs which are close to e0 small variations in X lead to massive
fluctuations in the price paths S, as seen for run 2. This is plausible since in the Brownian
model the volatility of X approaches zero as time moves towards the final time point T ,
while Vx and thus the price function is very steep around e0 towards the end of the time
period.

As can be seen in Figure 6.14a, the total expected emissions X follow a linear downward
movement in the mean, while the 95% confidence interval is considerably broader than in
the simple model variant. For the distribution shown in Figure 6.14b, we observe that it
has a very sharp peak at 6000; about 2000 runs – corresponding to 20% of all runs – lead to
realized emissions close to 6000 mega tons (Mt). The distribution is only slightly skewed
to the left and has long tails; thus a considerable amount of runs violates the threshold e0

and, due to the long tails, some to a great extent. The relative frequency of compliance
with the emission cap is 55.58%.

The mean price trajectory shown in Figure 6.15a is increasing linearly, which is caused
by the interest rate. The distribution of the average prices in each run is visualized in
Figure 6.15b. Interestingly, this distribution has two peaks: One around 5 Euro and the
other around 55 Euro. Thus commonly the price either remains low throughout the time
period or it remains high. This may be explained by the fact that in the Brownian model
the volatility of X decreases in time as mentioned above, therefore if X either is well
below or above e0, the probability of approaching or crossing the threshold e0 is small;
but this would be required for a drastic change in price behavior. Consequently, for many
realizations it is evident on the allowance market fairly early whether it is in over- or in
undersupply.

Finally, we consider the variation of the price. In Figure 6.16a we observe that the
trajectory of the standard deviation is increasing in time; but in contrast to the case of
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(a) Mean trajectory of X. (b) Histogram of realized emissions XT .

Figure 6.14: Mean trajectory of the process X and distribution of the realized emissions XT

in the Brownian model variant.

(a) Mean trajectory of S. (b) Histogram of mean prices within each run.

Figure 6.15: Mean trajectory of the process S and distribution of the mean prices within
one run in the Brownian model variant.

the simple model variant, we do not see such a sharp increase towards the end of the time
period. The distribution of the price variability shown in Figure 6.16b is strongly skewed
to the right with a peak around 12.

Summary

We have seen that the behavior of the total expected emissions X and the allowance price
S in the Brownian model variant shows some similarities to the case of the simple variant,
especially when considering their characteristics in the mean. As seen both for the realized
emissions XT and the mean price for individual runs, the details of the corresponding
distributions display considerable differences.

6.1.4 Solution to the SDE in the Ornstein-Uhlenbeck Model Variant

We may present the results obtained in the Ornstein-Uhlenbeck model variant in more
brevity, as we will see that they strongly resemble those from the Brownian model variant.
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(a) Standard deviation trajectory of S. (b) Histogram of the standard deviation of absolute
daily returns of S, normalized to one year.

Figure 6.16: Trajectory of the standard deviation of the allowance price and distribution of
its variability in the Brownian model variant.

(a) Trajectories of X. (b) Trajectories of S.

Figure 6.17: Three example trajectories of the total expected emissions X with correspond-
ing trajectories of the price process S in the Ornstein-Uhlenbeck model variant.

In Figure 6.17 again example trajectories of the processes X and S are shown. While the
individual processes are of course different to the ones shown for the Brownian variant,
they behave in a similar manner; notably the range of fluctuations of the process X is
smaller, as can be seen most clearly from the scaling of the axis.

In Figure 6.18a we show the mean trajectory of the total expected emissions X and
the distribution of the realized emissions XT . We observe that the 95% confidence interval
of the trajectories is slightly more narrow and the tails of the distribution are shorter than
in the Brownian model variant; otherwise these results are very similar.

The same holds for the allowance price: The mean price trajectory shown in Fig-
ure 6.19a lies slightly below the price trajectory of the Brownian model variant, while the
distribution of the mean price within individual runs is very similar, as can be seen in
Figure 6.19b. Also the path of the standard deviation of the price as well as the distribu-
tion of the variability shown in Figure 6.20 are almost identical to the results found in the
Brownian model variant.

These strong similarities are plausible: As seen in Section 6.1.1, the PDE solutions and
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(a) Mean trajectory of X. (b) Histogram of realized emissions XT .

Figure 6.18: Mean trajectory of the process X and distribution of the realized emissions XT

in the Ornstein-Uhlenbeck model variant.

(a) Mean trajectory of S. (b) Histogram of mean prices within each run.

Figure 6.19: Mean trajectory of the process S and distribution of the mean prices within
one run in the Ornstein-Uhlenbeck model variant.

thus the drift functions of the SDE are very similar; moreover, the volatility functions GB
of the Brownian model and GOU of the Ornstein-Uhlenbeck model are similar throughout
most of the time period, which is shown in Figure 6.21. The difference is the largest at the
beginning of the time period; since this is also when the volatility itself is the largest, the
smaller volatility in the Ornstein-Uhlenbeck model appears to lead to a smaller variance
of the process X and thus to a more narrow distribution of XT .

Summary

In this section, we analyzed the results from the Ornstein-Uhlenbeck model variant to find
that these are very similar to those obtained in the Brownian variant. Only the process X
varies less, meaning that the distribution of Xt at any given time point t is slightly more
narrow. Due to this similarity, we focus on the simple and Brownian model variants for
the remainder of this chapter.
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(a) Standard deviation trajectory of S. (b) Histogram of the standard deviation of absolute
daily returns of S, normalized to one year.

Figure 6.20: Trajectory of the standard deviation of the allowance price and distribution of
its variability in the Ornstein-Uhlenbeck model variant.

Figure 6.21: Volatility functions G(t) of the simple, Brownian and Ornstein-Uhlenbeck
model variants.

6.1.5 Variation of Model Parameters

The model depends on several parameters, which in part may be chosen by the regulator
and in part are inherent to the system. In this section, we discuss how varying parameter
values affect the SDE solutions presented above.

Variation of Regulatory Parameters

The choice of regulatory parameters affects the behavior of companies underlying the ETS
and thus the resulting total expected emissions X as well as the price S. Beside more
complex structural changes such as to allow banking or the introduction of a mechanism
like the Market Stability Reserve, the regulator chooses the penalty p, the amount of
allocated allowances e0 and the length of one time period T . We will first study the effects
of a varying penalty p in detail; then we will cover the impact of varying e0 or T in a more
aggregated manner.
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Varying the Penalty in the Simple Model Variant We start by considering the
simple model variant and first analyze the results for the total expected emissions X. In
Figure 6.22a we observe that the downward slope of the mean trajectory of X becomes
steeper for increasing penalties. In particular, as shown in Figure 6.22b, the realized

(a) Mean trajectories of X. (b) Mean realized emissions XT .

Figure 6.22: Mean results for X in the simple model variant for varying penalties p.

emissions XT decrease. Notably, this effect becomes smaller for higher penalties. The
change in the penalty also affects the distribution of XT . In Figure 6.23 we visualize this
distribution for a very low and a very high penalty. If the penalty is chosen to be only

(a) Low penalty of p = 20. (b) High penalty of p = 200.

Figure 6.23: Histograms of realized emissions XT for a very low and a very high penalty in
the simple model variant.

p = 20, then the ETS hardly seems to affect the realized emissions; their distribution
appears to be symmetric with a peak above the threshold e0 = 6000. If on the other
hand a very high penalty of p = 200 is chosen, the resulting distribution of XT is strongly
skewed to the left and its peak is at or slightly below e0. In line with this observation,
the relative frequency of remaining below the threshold e0 and thus complying with the
emission target increases with an increase of the penalty, as can be seen in Figure 6.24;
again this effect weakens with increasing penalties.

A change in the penalty clearly also affects the allowance price as we know that the
price is bounded by the penalty. The mean price trajectory is always constant and the
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Figure 6.24: Relative frequency of compliance with the emission threshold as given by e0 in
the simple model variant.

(a) Mean trajectories of the price S. (b) Mean across all runs of the mean prices within
one time period.

Figure 6.25: Mean results for the allowance price S in the simple model variant for varying
penalties p.

price increases with the penalty as shown in Figure 6.25a. Again this effect becomes
smaller for high penalties. The change in the penalty strongly impacts the distribution
of the mean prices of individual runs, visualized in histograms in Figure 6.26: For a low
penalty, the distribution is skewed to the left with a peak at approximately 16 Euro, but
also very low mean prices of about 5 Euro are fairly frequent. If the penalty is very high on
the other hand, the distribution is strongly skewed to the right with mean prices between
20 and 40 Euros being the most frequent.

To be able to assess the price variability, we show the histograms of its distribution
in Figure 6.27. We observe that the overall structure is similar; for a high penalty the
variability is much higher, which is plausible since the penalty determines the price bound.
When considering the variability relative to the penalty, we obtain similar values for both
penalties shown here.

Summary An increase of the penalty reduces the expected emissions and increases
the probability of compliance with the emission target. It leads to an increase of the
allowance price, but also the price variability increases.
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(a) Low penalty of p = 20. (b) High penalty of p = 200.

Figure 6.26: Histograms of mean prices along the time period in the simple model variant
for a very low and a very high penalty.

(a) Low penalty of p = 20. (b) High penalty of p = 200.

Figure 6.27: Histograms of the variability of the allowance price S normalized to one year
for a very low and a very high penalty.

Varying the Penalty in the Brownian Model Variant Next, we study the effect
of varying the penalty in the Brownian model variant. In Figure 6.28 the mean trajectory
of the total expected emissions X is shown for different penalty values. We observe that
an increase of the penalty increases the downward slope of the mean trajectory of X.
Consequently, this leads to a decrease of the mean realized emissions from more than 6100
for a penalty of 20 Euro down to approximately 5700 for a penalty of 200 Euro. The
change of penalty also has a strong effect on the distribution of the realized emissions,
shown in Figure 6.29. For the very low penalty of 20 Euro, the distribution appears to be
almost symmetric; however the ETS still has an effect, since there is a clearly visible peak
at 6000. This peak becomes higher as the penalty increases; for the very high penalty of
200 Euro, as show in Figure 6.29b, we observe that more than 4000 or 40% of all runs lead
to realized emissions close to 6000. Moreover, this distribution has a very long tail on the
left and is thus strongly skewed to the left. In accordance with these observations, the
relative frequency of compliance with the emission cap e0, shown in Figure 6.30, increases
for an increasing penalty; for a penalty of 200 Euro it reaches 74.75%.
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(a) Mean trajectories of X. (b) Mean realized emissions XT .

Figure 6.28: Mean results for X in the Brownian model variant for varying penalties p.

(a) Low penalty of p = 20. (b) High penalty of p = 200.

Figure 6.29: Histograms of realized emissions XT for a very low and a very high penalty in
the Brownian model variant.

Figure 6.30: Relative frequency of compliance with the emission threshold as given by e0 in
the Brownian model variant.

As can be seen in Figure 6.31a, the mean allowance price increases approximately
linearly in time, with a slope that increases with the penalty. Since also at any time point
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the mean price is increasing in the penalty, it follows that the mean price across all time
points increases if the penalty increases, as can be observed in Figure 6.31b. Moreover, the

(a) Mean trajectories of the price S. (b) Mean across all runs of the mean prices within
one time period.

Figure 6.31: Mean results for the allowance price S in the Brownian model variant for
varying penalties p.

distribution of mean prices within individual runs changes due to the increasing penalty,
as shown in Figure 6.32: For a low penalty of p = 20, we obtain a distribution with two
peaks, where the second peak at approximately 16 Euro is notably higher than the first at
2 Euro. If the penalty is high with p = 200, a second peak is no longer visible. Instead the

(a) Low penalty of p = 20. (b) High penalty of p = 200.

Figure 6.32: Histograms of mean prices along the time period in the Brownian model variant
for a very low and a very high penalty.

distribution has a very high peak at approximately 10 Euro and a long tail to the right
reaching to about 150 Euro.

Finally, we consider the variability of the allowance price. The distributions shown in
Figure 6.33 for a penalty of p = 20 and p = 200 are similar in structure with a peak at
3 and 20, respectively; the tail of the distribution becomes heavier for the higher penalty.
Thus a higher penalty increases the price variability, which can be explained by the larger
price bound.
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(a) Low penalty of p = 20. (b) High penalty of p = 200.

Figure 6.33: Histograms of the variability of the allowance price S normalized to one year
in the Brownian model variant for a very low and a very high penalty.

Summary The overall effect is the same as in the simple model variant: An in-
crease of the penalty decreases the mean realized emissions and increases the frequency of
compliance as well as the mean allowance price; at the same time, these effects gradually
become weaker as the penalty increases. The distributions of the quantities analyzed here
behave differently than in the simple model variant: Also for a low penalty, a peak at the
emission cap e0 is visible and the increasing penalty shifts the weight in distribution of
mean prices from the second peak to the first.

Varying the Number of Allowances The next parameter we study is the emission
cap, given by the number of emission allowances e0. Again we first analyze the impact
of varying this parameter in the simple model variant and then turn to the Brownian
model variant. The resulting realized emissions XT are visualized in Figure 6.34. To

(a) Mean of realized emissions XT . (b) Relative frequency of compliance with the
emission target e0.

Figure 6.34: Results on the total expected emissions X for a varying number of allowances
in the simple model variant.

interpret these results, we distinguish three different regimes: For small values of e0,
corresponding to a very restrictive cap, we observe that the mean realized emissions are
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low and approximately constant in e0, whereas the relative frequency of compliance with
the cap e0 is zero. In this case, the cap is so strict that in essentially all runs the agent
chooses to pay the penalty for some of her emissions since the costs of abatement would
be higher. Consequently, as can be seen in Figure 6.35, the allowance price is at its
maximum and does not vary. If on the other hand the value of e0 is high and thus

(a) Mean across all runs of the mean prices within
one time period.

(b) Mean of the variability of the price S.

Figure 6.35: Results on the allowance price S for a varying number of allowances in the
simple model variant.

the cap very loose, we observe the opposite: The mean realized emissions are high and
constant, the frequency of compliance is equal to one. In this setting, the cap is well
above the initially expected emissions x0, so no abatement is necessary to ensure that
the probability of remaining below the emission threshold e0 is high. Thus the allowance
price is zero with low variability. For a cap that is fairly close to the initially expected
emissions e0, the mean realized emissions and the frequency of compliance increase with e0,
whereas the price decreases; the price variability is the highest. This regime corresponds
to the situation that abatement is necessary for compliance and preferable to the penalty
payment, at least for part of the simulation runs. Thus an increase in e0 leads to less
abatement but also makes it easier to comply with the threshold. Abatement depends
on the development of the total expected emissions X, so the agent reacts to random
movements, which leads to more variability of the price.

In the Brownian model, a variation of the emission cap e0 leads to similar effects.
However, in contrast to the simple model variant we observe that also for a very strict or
a very loose cap the ETS has en effect: As can be seen in Figure 6.36, changing e0 among
small values of this quantity has an impact on the realized emissions and the frequency
of compliance; thus even a very strict cap seems to motivate abatement at least in some
cases. This might be due to the heavier tails of the distribution of XT in the Brownian
model variant. For a very loose cap, corresponding to high values for e0, we do not see
an effect on the realized emissions, but the frequency of compliance still increases with
increasing e0. Similarly, as shown in Figure 6.37, the mean of mean allowances prices
is affected by a change of e0 also for small or large e0, and the price variability is small
but does not reach zero. For intermediate values of e0 we observe the same effects as
in the simple model variant: An increase of e0 leads to increasing realized emissions, an
increasing frequency of compliance and decreasing allowance prices.
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(a) Mean of realized emissions XT . (b) Relative frequency of compliance with the
emission target e0.

Figure 6.36: Results on the total expected emissions X for a varying number of allowances
in the Brownian model variant.

(a) Mean across all runs of the mean prices within
one time period.

(b) Mean of the variability of the price S.

Figure 6.37: Results on the allowance price S for a varying number of allowances in the
Brownian model variant.

Summary If the cap is either very strict or very loose, a small change in the number
of allowances has almost no impact. If on the other hand the number of allowances
is not too far away from the expected BAU emissions, an increase in the cap leads to
higher realized emissions, a higher frequency of compliance and to lower prices. The price
variability is the highest if the cap is close to expected BAU emissions. These conclusions
can be drawn in a similar way in both the Brownian and the simple model variant.

Varying the Length of the Time Period To study the effects of varying the length
of the time period T , we adapt the number of allowances e0 and the initially expected
emissions of the entire time period x0 proportionally. Figure 6.38 shows the resulting mean
realized emissions and the relative frequency of compliance in the simple model variant.
As the length of the time period increases, the mean realized emissions increase and
approach e0. Also the frequency of compliance increases, approaching a value of around
68%, while prices decrease towards a value around 22 Euro as shown in Figure 6.39. The
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(a) Mean of realized emissions XT relative to the
emission target e0.

(b) Relative frequency of compliance with the
emission target e0.

Figure 6.38: Results on the total expected emissions X for a varying length of the time
period T in the simple model variant.

(a) Mean across all runs of the mean prices within
one time period.

(b) Mean of the variability of the price S.

Figure 6.39: Results on the allowance price S for a varying length of the time period T in
the simple model variant.

price variability strongly goes down from more than 30 for a time period of one year to
about 10 for a time period lasting 10 years. During a longer time period, the impacts of
uncertainty can be smoothed out, therefore the agent aims for realized emissions closer to
the threshold e0. Hence less abatement is necessary, leading to a decrease of the price; at
the same time the frequency of compliance is higher. However, it remains far away from
one: It is still possible that the emissions move to a level that the required abatement is
more expensive than partly paying the penalty; in this case, the emission cap is violated.

In the Brownian model variant, we observe that for longer time periods, realized emis-
sions approach the emission cap e0, while the frequency of compliance decreases as shown
in Figure 6.40. It should be noted that while the last value for T = 10 does not seem to
confirm this observation, the results of the simulations in this setting need to be inter-
preted with caution: The path of X left the grid on which the PDE was solved in almost
20% of the simulation runs so that linear extrapolation methods were applied; at the same
time the PDE solution (not shown) suggests that extrapolation results are not reliable in
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(a) Mean of realized emissions XT relative to the
emission target e0.

(b) Relative frequency of compliance with the
emission target e0.

Figure 6.40: Results on the total expected emissions X for a varying length of the time
period T in the Brownian model variant.

this case. On the other hand, already for a time period of 6 or 8 years the path of X left
the grid in a considerable number of runs; in these cases the extrapolation method might
yield better results, as the PDE solution is almost constant at the boundary of the grid.
Nevertheless, these potential errors need to be kept in mind.

When analyzing the behavior of the allowance price, we observe that as in the simple
model variant, prices decrease for longer time periods, and the price variability is dras-
tically reduced, which is shown in Figure 6.41. Notably, the decrease of the mean price
has an increasing slope (i.e. the mean price is concave), while the slope of the mean price
is decreasing (i.e. convex) in case of the simple model variant. Only the behavior of the
mean variability is similar to the one observed in the simple model variant.

(a) Mean across all runs of the mean prices within
one time period.

(b) Mean of the variability of the price S.

Figure 6.41: Results on the allowance price S for a varying length of the time period T in
the Brownian model variant.

Due to the unreliability of the results obtained in the Brownian model variant, we also
present the results from the Ornstein-Uhlenbeck model variant here. These are much less
compromised as only a small number of runs left the grid, even for T = 10. At the same
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time, the PDE solution remains largely constant at the boundary, enabling the extrapo-
lation method to work properly. In Figure 6.42 the mean realized emissions, relative to
the cap, and the relative frequency of compliance with the emission cap are shown. These

(a) Mean of realized emissions XT relative to the
emission target e0.

(b) Relative frequency of compliance with the
emission target e0.

Figure 6.42: Results on the total expected emissions X for a varying length of the time
period T in the Ornstein-Uhlenbeck model variant.

results confirm the general tendencies observed in the Brownian model variant, namely
that mean realized emissions decrease, whereas the frequency of compliance decreases.
Interestingly, the latter represents the opposite behavior to the one observed in the simple
model variant. Both the increase in the mean realized emissions and the decrease in the
compliance frequency are roughly linear, which is not the case in the Brownian variant.
In particular, it is not clear how these quantities behave for very large T , as in contrast to
the simple model variant they do not appear to approach some constant value. Therefore,
simulations with very large T would be of interest to observe whether for instance the
mean realized emissions surpass the cap. Due to the computational difficulties already
encountered for values of T = 10, this might be challenging.

The observations on the allowance price, which can be drawn from Figure 6.43, are
similar to what we observed in the Brownian model variant: The mean prices decrease for
longer time periods; this decrease accelerates for short time periods but remains constant
for later time periods. The variability is also decreasing with longer time periods, but
here, as in all other model variants, this decrease becomes weaker for larger values of T .

Summary The results obtained in the simple model variant on the one hand and
in the Brownian or Ornstein-Uhlenbeck model variant on the other differ considerably:
In the simple model variant, the realized emissions approach e0 and the frequency of
compliance increases, converging to approximately 68%. At the same time, the mean
price approaches roughly 22 Euro, while the price variability strongly goes down. In the
Brownian and Ornstein-Uhlenbeck model, we obtain a completely different picture: The
mean realized emissions might surpass the cap for very large T and the frequency of
compliance decreases. At the same time, prices do not seem to converge and thus possibly
attain very low values for long time periods. Without further simulations however, these
projections cannot be confirmed. The large differences to the simple model variant may
be due to the different structure of the volatility function. In case of the simple model
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(a) Mean across all runs of the mean prices within
one time period.

(b) Mean of the variability of the price S.

Figure 6.43: Results on the allowance price S for a varying length of the time period T in
the Ornstein-Uhlenbeck model variant.

variant, the volatility of X is not influenced by the length of the time period, while both
for the Brownian and the Ornstein-Uhlenbeck model variant, the parameter T enters the
volatility function.

Impact of Non-Regulatory Parameters

Several parameters entering the system are not given by the regulator; at the same time,
they are difficult to obtain or to estimate. Thus we also assess their impact on simulation
results. For the sake of brevity, we restrict this analysis to the simple model variant; only
the impact of the parameter θ needs to be studied in the Ornstein-Uhlenbeck model, since
it does not appear in the two other model variants.

A variation of the cost coefficient c strongly impacts the mean realized emissions,
the frequency of compliance and the allowance price, as shown in Figures 6.44 and 6.45.
Increasing c means that abatement becomes more expensive, thus the mean realized emis-

(a) Mean of realized emissions XT . (b) Relative frequency of compliance with the
emission target e0.

Figure 6.44: Results on the total expected emissions X for a varying cost coefficient c in the
simple model variant.
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sions increase; at the same time the level of abatement at which it becomes cheaper to pay
the penalty decreases, leading to a decrease of the frequency of compliance. The allowance
price also increases, as it is given by the marginal abatement costs. The impact on the
variability of the allowance price however is small.

(a) Mean across all runs of the mean prices within
one time period.

(b) Mean of the variability of the price S.

Figure 6.45: Results on the allowance price S for a varying cost coefficient c in the simple
model variant.

Next we vary the volatility parameter σ, which determines the volatility of the process
X. In Figure 6.46 we observe that the realized emissions as well as the frequency of
compliance decrease. Due to the higher uncertainty, the agent is willing to abate more

(a) Mean of realized emissions XT . (b) Relative frequency of compliance with the
emission target e0.

Figure 6.46: Results on the total expected emissions X for a varying volatility parameter σ
in the simple model variant.

to avoid penalty payments; on the other hand the higher fluctuations more often lead
to sufficiently high emissions such that paying the penalty is cheaper than fully abating
them. Interestingly, as shown in Figure 6.47, the allowance price does not increase that
much with increasing σ, whereas the price variability is barely affected.

Finally we consider the impact of the initially expected emissions x0. Since this setting
is similar to changing the number of allowances, we make similar observations as above.
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(a) Mean across all runs of the mean prices within
one time period.

(b) Mean of the variability of the allowance price
S.

Figure 6.47: Results on the allowance price S for a varying volatility parameter σ in the
simple model variant.

When analyzing the results shown in Figures 6.48 and 6.49, we again notice three different
regimes: If only very low emissions are expected initially, the cap is very loose, so that the

(a) Mean of realized emissions XT . (b) Relative frequency of compliance with the
emission target e0.

Figure 6.48: Results on the total expected emissions X for varying initially expected emis-
sions x0 in the simple model variant.

presence of the ETS has little impact. Therefore, the realized emissions increase lineary
with x0 and the frequency of compliance is one. Accordingly, the allowance price is zero
with zero variability. Conversely, for very high initially expected emissions, the cap is very
strict, thus if x0 increases further, the agent pays the penalty for this increase instead
of abating the emissions. As a result, realized emissions again increase linearly with x0.
The frequency of compliance is zero and the allowance price is close to its bound, with
small price variability. In the intermediate case, where x0 is close to the emission cap
e0, higher emissions are at least partly abated. Therefore, an increase in x0 does not
lead to a corresponding increase of the realized emissions XT . Since for higher x0 more
abatement is necessary, the frequency of compliance decreases and the price increases; the
price variability is the highest in this setting.
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(a) Mean across all runs of the mean prices within
one time period.

(b) Mean of the variability of the price S.

Figure 6.49: Results on the allowance price S for varying initially expected emissions x0 in
the simple model variant.

In comparison to the simple and the Brownian model variant, the Ornstein-Uhlenbeck
model has an additional parameter, namely the mean reversion speed θ. We thus analyze
how it affects the SDE solution results if this parameter varies on a range typically used
in Ornstein-Uhlenbeck models. From Figure 6.50, we obtain that an increase of θ leads
to higher realized emissions and a higher frequency of compliance with the emission cap
e0. An increase of θ implies a smaller volatility of X especially in the beginning of the

(a) Mean of realized emissions XT . (b) Relative frequency of compliance with the
emission target e0.

Figure 6.50: Results on the total expected emissions X for varying mean reversion speed θ
in the Ornstein-Uhlenbeck model variant.

time period, as shown in Figure 6.51. We have already seen above that if the volatility
is smaller, the agent does not need to abate as much to avoid penalty payments. So
the realized emissions may be higher, while the frequency of compliance also increases
since it is less likely that emissions are high enough to make penalty payments cheaper
than abatement. This effect causes the mean allowance price to decrease as shown in
Figure 6.52a; at the same time, the price variability given in Figure 6.52b increases.
Possibly the smaller variance of X causes more runs to remain close to e0, where the price
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Figure 6.51: Volatility function G(t) of the total expected emissions process X for varying
mean reversion speeds θ in the Ornstein-Uhlenbeck model variant and for the Brownian model
variant.

(a) Mean across all runs of the mean prices within
one time period.

(b) Mean of the variability of the price S.

Figure 6.52: Results on the allowance price S for varying mean reversion speed θ in the
Ornstein-Uhlenbeck model variant.

function is the steepest, thus causing higher fluctuations of the price. All these effects
however are comparably small. Interestingly, as can be seen in Figure 6.51, an increase
of θ also moves the volatility function away from the volatility function of the Brownian
model, thus reducing the similarity between the two models. On the other hand, for a
value of θ = 0.04 as obtained in the second estimate in Section 5.3.3, we observe that the
volatility function is almost identical to the one of the Brownian model variant; thus we
do not conduct any simulations with this choice for θ in the one-period model.

Summary We studied the impact of several descriptive parameters that cannot be cho-
sen by the regulator. We find that the cost coefficient has a large impact on the system;
only the price variability is not affected much by a varying cost coefficient. The effects of
changing the volatility parameter σ are considerably smaller, leaving the price variability
almost unchanged. The variation of the initially expected emissions x0 has similar impli-
cations as varying the emission cap e0. A change in the mean reversion speed θ in the
Ornstein-Uhlenbeck model variant only has a small impact on the system. Importantly,
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decreasing θ increases the similarity to the Brownian model variant.

6.1.6 Asymptotic Behavior

To gain a more thorough understanding of the model, we analyze the behavior of the
model if parameters tend to infinity or to zero by letting them grow large or small in
simulation settings.

Firstly, we are interested in the impact of a penalty that tends to infinity. In Figure 6.53
we observe for an increasingly large penalty, that the mean realized emissions XT appear to
converge in all three model variants; notably, for the Ornstein-Uhlenbeck model the limit
is about 70 Mt higher. At the same time, the relative frequency of compliance seems to

(a) Mean of realized emissions XT . (b) Relative frequency of compliance with the
emission cap e0.

Figure 6.53: Results on the total expected emissions X for a penalty value that becomes
large in all model variants.

converge to 1 for increasingly large penalties in case of the simple model variant, but both
in the Brownian and the Ornstein-Uhlenbeck variant the limit appears to be around 0.8.
Similarly, the mean allowance prices shown in Figure 6.54a converge, with the Brownian
and the simple model variant behaving in a similar way, while the asymptotic mean price
in the Ornstein-Uhlenbeck model is approximately 5 Euro lower. This is consistent with
the observation on the realized emissions: The limit obtained there determines the mean
abatement requirement and thus the mean price. The mean price variability, which is
shown in Figure 6.54b, appears to diverge in all three models, increasing faster in the
Brownian and Ornstein-Uhlenbeck model.

In a further simulation, we let the length of the time period T grow large. Due to
the problems encountered already for T = 10 in the Brownian and Ornstein-Uhlenbeck
model variant, as discussed in the previous section, we only do this in the simple model
variant. By using the analytical PDE solution, we increase the length of the time period
up to a value of 100 years. Similar to the observations made when varying T among lower
values, we see in Figure 6.55 that the mean realized emissions approach the emission cap,
while the relative frequency of compliance stabilizes around 70%. Both the mean prices
and the mean price variability shown in Figure 6.56 decrease quickly; the price appears
to converge to a value slightly below 20 Euro, whereas the price variability becomes very
small, reaching a value of 3 Euro for a time period of 100 years. If indeed the mean realized
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(a) Mean across all runs of the mean prices within
one time period.

(b) Mean of the variability of the price S.

Figure 6.54: Results on the allowance price S for a penalty value that becomes large in all
model variants.

(a) Mean of realized emissions XT relative to the
emission target e0.

(b) Relative frequency of compliance with the
emission target e0.

Figure 6.55: Results on the total expected emissions X for the length of the time period T
becoming large in the simple model variant.

emissions converge to the emission cap, it is plausible that the prices remain positive, since
this would still correspond to an abatement of 80 Mt per year.

By letting the volatility parameter σ become small, we approach a deterministic setting.
Not surprisingly, Figure 6.57a shows that for small σ the mean realized emissions approach
the emission cap e0. The relative frequency of compliance shown in Figure 6.57b also
becomes large, at least in the Brownian and Ornstein-Uhlenbeck model variants. In the
simple variant it only reaches 78% for the smallest σ considered here. In contrast to
the Brownian and Ornstein-Uhlenbeck model variants the volatility of the process X in
the simple variant is not time dependent, thus even in the very last simulation step it is
large enough to cross the threshold given by the emission cap e0; at this time point, it
is no longer possible to reduce emissions again by abatement. Accordingly, by analyzing
the absolute numbers of the realized emissions (not shown), we can see that for the runs
in violation of the emission cap, the realized emissions are only very slightly above the
cap. In Figure 6.58a we observe that for small σ the mean price approaches a value
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(a) Mean across all runs of the mean prices within
one time period.

(b) Mean of the variability of the price S.

Figure 6.56: Results on the allowance price S for the length of the time period T becoming
large in the simple model variant.

(a) Mean of realized emissions XT . (b) Relative frequency of compliance with the
emission target e0.

Figure 6.57: Results on the total expected emissions X for a volatility σ that becomes small
in all model variants.

slightly below 20 Euro. This is again plausible: In deriving the parameter c in Section
5.3.2 we chose c in such a way that the price in a deterministic setting would be 19.2
Euro. The result on the mean price variability shown in Figure 6.58b possibly is more
surprising: In all model variants the parameter σ barely influences the price variability
for most values of σ. But for very small σ the price variability decreases in case of the
Brownian and Ornstein-Uhlenbeck model variants, while it sharply increases in case of the
simple model variant. This might be due to the effect mentioned above: Since the price
function becomes steeper towards the end of the time period, this is where changes in X
have the largest impact on the price variability. In the Brownian and Ornstein-Uhlenbeck
model variants the volatility function G(t) of the process X is very small at this time
point, which makes it unlikely that relevant jumps in X occur, leading to a small price
variability. But in the simple model variant, jumps of relevant size are possible. Moreover,
the small volatility parameter σ causes the trajectories to remain close to e0. Thus jumps
crossing the threshold e0 are likely, resulting in very high price jumps and accordingly in
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(a) Mean across all runs of the mean prices within
one time period.

(b) Mean of the variability of the price S.

Figure 6.58: Results on the allowance price S for a volatility σ that becomes small in all
model variants.

a high price variability.

Summary

In this section, we studied the asymptotic behavior of the model. For an increasing
penalty, we found that most of the characteristic quantities converge; in the Brownian
and Ornstein-Uhlenbeck model variant, the frequency of compliance converges to a value
of approximately 0.8, well below 1. For increasingly longer time periods, studied only in the
simple variant, the trends observed in Section 6.1.5 can be confirmed: The system appears
to converge to a state where emissions are equal to the cap, with a frequency of compliance
of 0.7 and low price variability. However, we need to be careful to draw conclusions from
this result, as the behavior for a varying length of the time period is very different in
the Brownian and Ornstein-Uhlenbeck model variant, as seen in Section 6.1.5. Also for a
volatility approaching zero, the behavior of the model variants differs: In the simple model
variant, the frequency of compliance is smaller and the price variability becomes large for
a very small volatility, while the frequency of compliance is large and the price variability
is small in the two other model variants. In the Brownian and Ornstein-Uhlenbeck model
variant, the results for a decreasing volatility overall approach the results we would expect
in a deterministic setting.

6.2 Multi-Period Model I

In this section, we apply multi-period model I as introduced in Section 3.1 to simulate
an emission trading system with six time periods. Our main objective is to compare the
differences between a system where allowances can be transferred to the case where this
is not possible. We discuss the PDE solution obtained with transferable allowances and
present the results from solving the SDE for both cases. We then vary several parameter
settings and analyze the corresponding effects.
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6.2.1 Solution to the PDE

In multi-period model I, we assume that the price parameter si, which reflects the antici-
pated initial allowance price of the next time period, is constant within each time period.
As can be seen in Section 3.1.3, we were able to solve the PDE analytically for the simple
model variant with interest rate zero. In Figure 6.59 we visualize this solution; here the
parameter si was chosen to be 30, while the penalty was set to p = 40. Since the total

(a) Solution V . (b) First derivative Vx.

Figure 6.59: Analytical PDE solution in the simple model variant.

payment is given by the sum of these two quantities in case of non-compliance, this situa-
tion closely resembles that of Section 6.1.1, while allowing for the transfer of allowances to
the subsequent time period. As a result, the cost function V is no longer constant zero for
x sufficiently smaller than e0; in this range, it is instead now negative and approximately
linearly increasing in x but with a slope that is smaller than for high values of x. In this
way, the benefit obtained from surplus allowances is incorporated in the cost function in
the form of negative costs. Around e0 on the x-axis and zero on the z-axis, there is a
visible kink representing the shift from benefits to penalty payments.

The first derivative Vx is similar to the one-period model, but for low values of x, i.e.
well below e0, the derivative is now constant at a value corresponding to the parameter
si instead of being equal to zero. Thus, as shown in Proposition 3.3, the derivative Vx
is bounded between si and si + p. The second derivatives Vxx and Vxt are shown in
Figure 6.60; they are overall similar to the one-period case with small differences in Vxx
at the beginning of the time period.

In the Brownian model variant, it is again necessary to compute the PDE solution nu-
merically. We consider the setting of six time periods which we will work with throughout
this section. To combine these time periods, we proceed as explained in Section 3.1.5: We
first solve the PDEs in reversed order and are thus able to compute the price parameter
si from the PDE of the subsequent time period. Since the price parameter sN−1 of the
last time period is set to zero, we implicitly assume that after the last time period con-
sidered, the allowances become invalid and cannot be transferred to some later time. In
this way, we obtain values for si as given in Figure 6.61. In particular, the input s0 of
time period 0 is given as s0 = 27.31 in the case of transferable allowances. With this value
we can solve the PDE of time period 0; the result for the first derivative Vx is shown in
Figure 6.62. The result is similar to the one-period model, except that for small x the
derivative is equal to a constant below 25 instead of being zero. In particular, Vx appears
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(a) Second derivative Vxx. (b) Second derivative Vxt.

Figure 6.60: Second derivatives of the PDE solution in the simple model variant.

Figure 6.61: Price input parameters si computed from the price function of the subsequent
time period in the Brownian model variant.

Figure 6.62: Numerical PDE solution in the Brownian model variant.

to be bounded between approximately 25 and 50 Euro; more precisely, these bounds are
given by e−r∆T s0 = 20.23 and e−r∆T (s0 + p) = 49.87.

The second derivatives Vxx and Vxt are shown in Figure 6.63. Again we observe a
high similarity to the results in the one-period model. Thus while both second derivatives
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(a) Second derivative Vxx. (b) Second derivative Vxt.

Figure 6.63: Second derivatives of the PDE solution in the Brownian model variant.

appear to be unbounded on [0, T ], it is plausible to expect that they are bounded on any
interval of the form [0, T −ε] with ε > 0. This observation again motivates the application
of the Euler-Maruyama method to compute a numerical SDE solution.

As in the one-period model, the PDE solution in the Ornstein-Uhlenbeck model variant
is largely similar to the one in the Brownian model variant. Therefore we omit a detailed
discussion here.

Summary

The structure of Vx as obtained from the PDE solution is similar to the results in the
one-period model. Importantly, instead of being constant to zero for small x, the function
Vx now takes a constant positive value if x is small, reflecting the benefit from surplus
allowances. The similarities in Vx imply that also the results for the second derivatives
Vxx and Vxt are similar to the one-period model.

6.2.2 Solution to the SDE in the Simple Model Variant

In order to solve the SDE numerically in the simple model variant, we still require the
price parameter si for each time period. As described above for the Brownian model
variant, we have sN−1 = 0, thus assuming that all allowances become invalid at the end
of the last time period. From sN−1, we proceed in reversed order by computing si from
the PDE solution that was obtained by using si+1 as price parameter. We do this both
for the model where the transfer of allowances, i.e. banking, is possible, and for the model
where this is not the case, as introduced in Section 3.1.6. Furthermore, we assume that the
penalty is set to p = 40. Thus we obtain the price parameters si as shown in Figure 6.64.
We see that in the case of transferable allowances the price parameter possibly does not
converge for an increasing number of time periods, whereas if the transfer of allowances is
not possible, the price parameter converges to a value slightly below 30.

To acquire a better understanding of the behavior of the emissions and the allowance
price in this model, we study three exemplary trajectories of both processes; we do this
both for the case where allowances can be transferred shown in Figure 6.65 and for the
opposite case where this is not possible presented in Figure 6.66. In both cases, we observe
a discontinuity in the trajectories of X and S at the points where one time period ends.

198



CHAPTER 6. NUMERICAL RESULTS

Figure 6.64: Price input parameters si computed from the price function of the subsequent
time period in the simple model variant.

(a) Trajectories of X. (b) Trajectories of S.

Figure 6.65: Three example trajectories of the total expected emissions X with correspond-
ing trajectories of the price process S when allowances are transferable to subsequent time
periods in the simple model variant.

While for the total expected emissions X this is plausible since they are not continuous
by construction, the allowance prices observed on the market are continuous across time
periods if a transfer of allowances is possible. As already observed in the one-period model,
prices fluctuate strongly if the total expected emissions X are close to the emission cap
e0; otherwise they remain close to the minimum or maximum bound. If allowances can
be transferred, the minimum price bound is given by si and therefore is well above zero
for earlier time periods and decreases to zero towards the last time period. If on the
other hand allowances cannot be transferred, the minimum price bound is always zero.
Furthermore, in the case of transferable allowances, the trajectories of X show a more clear
downward tendency; this observation can still be made when considering more examples.
Notably, price fluctuations mostly occur during the early time periods, while towards the
end in both cases one run has constant prices throughout the time period. This happens
since in earlier time periods more runs are still close to e0 as they all start at the same
point. As time proceeds, more and more runs move away from e0 and thus lead to almost
constant prices. This translates to the situation that emissions are sufficiently low or high
that in each time period an overall allowance surplus or shortage is expected already from
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(a) Trajectories of X. (b) Trajectories of S.

Figure 6.66: Three example trajectories of the total expected emissions X with correspond-
ing trajectories of the price process S when allowances are not transferable to subsequent time
periods in the simple model variant.

the start of that particular time period.

When considering the mean trajectories of the process X as shown in Figure 6.67a, we
directly see that especially in early time periods, the slope of the trajectory is much steeper
in the case of transferable allowances, leading to lower mean realized emissions at the end
of each time period. For the last time period the result is identical as was to be expected
by the setup of the simulation with sN−1 = 0. In line with these results, we observe that
the distribution of realized emissions in time period 0, which is given in Figure 6.67b, is
shifted considerably to the left in the case of transferable allowances. If it is not possible

(a) Mean trajectory of X. (b) Histogram of realized emissions XTi+1 in time
period 0.

Figure 6.67: Mean trajectory of X and distribution of realized emissions XTi+1
in an ETS

with transferable and non-transferable allowances, in the simple model variant.

to transfer allowances, the distribution has a high peak at e0 = 6000 and is slightly skewed
to the left, as already observed in the one-period model. For later time periods, shown
in Figure 6.68, the distributions move closer together until they are identical in the last
time period. Allowing for the transfer of allowances substantially increases the relative
frequency of compliance as can be seen in Table 6.1; this effect too diminishes for later
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(a) Histogram of realized emissions XTi+1 in time
period 2.

(b) Histogram of realized emissions XTi+1 in the
last time period.

Figure 6.68: Distribution of realized emissions XTi+1
in time periods 2 and 5 in an ETS

with transferable or non-transferable allowances in the simple model variant.

time periods.

Table 6.1: Relative frequency of compliance in an ETS with transferable or non-transferable
allowances in the simple model variant.

Time period 0 1 2 3 4 5

Transferable 87.98% 79.27% 71.98% 65.94% 59.35% 50.46%
Non-transferable 59.95% 58.13% 57.36% 56.84% 54.85% 50.49%

The mean price trajectories, which we visualize in Figure 6.69a, are constant during
each time period. If the transfer of allowances to subsequent time periods is not allowed,
the mean prices are almost identical throughout the first five periods; if on the other
hand such a transfer is possible, mean prices decrease from one time period to the next.
At the same time, they are much higher than in the case when no transfer is allowed.
This can be traced back to two effects: Since the price parameters si are higher and not
convergent if a transfer of allowances is possible, the upper price bound is higher in this
case. At the same time, also the lower price bound is higher, leading to higher prices in the
mean. Consistently, the mean prices within one simulation run are higher if the transfer of
allowances is possibly, as can be seen in the distributions of this quantity for time period
0, shown in Figure 6.69b. If no transfer is allowed, the prices are almost evenly spread
between 10 and 50 Euro. If a transfer is possible, mean prices are almost always higher so
that the distributions barely overlap. The distribution for transferable allowances shows
a high peak around 60 Euro; in rare cases, values up to 80 Euro are reached. Again the
distributions move closer to each other for later time periods (not shown here). Moreover,
their structure changes: In line with the observations for the price trajectories, we obtain
two peaks, each one close to either of the price bounds.

Finally, we consider the variation of the allowance price. The trajectory of the standard
deviation given in Figure 6.70a follows a similar pattern as in the one-period model, but
the standard deviation is much higher if the transfer of allowances is not possible; this can
again be explained by the different price bounds. Accordingly, also the variation within one
run measured by the variability of the price is higher for non-transferable allowances. This
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(a) Mean trajectory of S. (b) Histogram of mean allowance prices within
each run for time period 0.

Figure 6.69: Mean price trajectory and distribution of mean allowance prices within each
run in an ETS with transferable or non-transferable allowances in the simple model variant.

(a) Standard deviation trajectory of S. (b) Histogram of the standard deviation of absolute
daily returns of S in time period 0, normalized to
one year.

Figure 6.70: Trajectory of the standard deviation of the allowance price and distribution of
its variability in an ETS with transferable or non-transferable allowances.

can be seen in the histogram of the corresponding distribution for time period 0, shown
in Figure 6.70b. In the case of non-transferable allowances, most runs show a variability
between 10 and 25, whereas if allowances are transferable, the variability mostly is below
10 and barely reaches values of 20 or higher.

Summary

We conclude that the possibility to transfer allowances to the subsequent time period
reduces the mean realized emissions and increases the frequency of compliance, while
leading to higher prices with reduced variability. These effects become smaller in later
time periods as a result of the simulation setup.

It should be noted that the model does not fully capture the consequences of allowing
for a transfer of emission allowances: While the value of an unused allowance is taken into
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account by the representative agent, the actual allowance is not transferred to the next
time period, thus the emission cap e0 the agent needs to comply with is the same as without
the transfer. This is not relevant when considering the time period 0. Additionally, in
time period 0, the time point when the allowances eventually do become invalid is still far
away. Therefore, time period 0 serves to mimic the situation of transferable allowances
that never become invalid.

6.2.3 Solution to the SDE in the Brownian Model Variant

To analyze the simulation results in the Brownian model variant, we first recall the price
parameters si shown in Figure 6.61. As in the simple model variant, the price parameter
diverges if allowances can be transferred; in contrast to the simple model variant it also
appears to diverge if no transfer of allowances is possible. The price parameter values are
lower than in the simple model variant, which may be due to the effect of the interest rate:
Abatement costs and penalty payments in the future are discounted to time zero prices so
that an allowance saved for future use loses in value, making the transfer of an allowance
less profitable. At the same time, in the Brownian model variant we assume that expected
BAU emissions decrease in time, which also leads to a lower price parameter.

The trajectories of the total expected emissions X and the allowance price S shown in
Figure 6.71 for transferable allowances and in Figure 6.72 for non-transferable allowances
all in all behave similarly as in the simple model variant: While in early time periods most
runs are sufficiently close to e0 that prices fluctuate, they mostly move away from e0 in
later time periods, leading to prices either at the upper or lower price bound. If allowances

(a) Trajectories of X. (b) Trajectories of S.

Figure 6.71: Three example trajectories of the total expected emissions X with correspond-
ing trajectories of the price process S when allowances are transferable to subsequent time
periods in the Brownian model variant.

cannot be transferred, the lower price bound is always zero, so that prices fluctuate more
heavily in early time periods. In contrast to the simple model variant, the price bounds in
each time period are increasing approximately linearly due to the positive interest rate.

For the mean trajectories of the total expected emissions X shown in Figure 6.73a,
we observe that allowing for the transfer of allowances leads to a steeper slope and lower
realized emissions. Moreover, the initially expected emissions for each time period decrease
in time since we assume that BAU emissions are decreasing. Strikingly, this effect is
stronger if allowances cannot be transferred, and as a result, the trajectories differ also for
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(a) Trajectories of X. (b) Trajectories of S.

Figure 6.72: Three example trajectories of the total expected emissions X with correspond-
ing trajectories of the price process S when allowances are not transferable to subsequent time
periods in the Brownian model variant.

(a) Mean trajectory of X. (b) Histogram of realized emissions XTi+1 in time
period 0.

Figure 6.73: Mean trajectory of X and distribution of realized emissions XTi+1
in an ETS

with transferable and non-transferable allowances in the Brownian model variant.

the last time period, where emissions are lower in this case. Possibly this is a numerical
artifact: The initial value Xi

0 depends on WTi ; while the expectation of this random
influence is zero, the mean computed from the simulation might not be exact. Especially
in later time periods the variance of WTi is high, favoring such deviations. Moreover, since
WTi+1 and thus Xi+1

0 depend on WTi , these deviations translate to the subsequent time
periods.

The distributions of the realized emissions XT in the time period 0 shown in Fig-
ure 6.73b nevertheless are fairly similar. They both have a peak at e0 = 6000, while
the distribution for the case of transferable allowances is slightly more skewed to the left.
Already for time period 2 this difference is small (Figure 6.74a), while for the last time
period (Figure 6.74b) the distributions are essentially identical. At the same time, we
observe that the distributions become very broad, even reaching negative values, which
is probably due to the higher volatility in the Brownian variant. This is in particular
important to note as the grid on which the PDE was solved does not cover this range.
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(a) Histogram of realized emissions XTi+1 in time
period 2.

(b) Histogram of realized emissions XTi+1 in the
last time period

Figure 6.74: Distribution of realized emissions XTi+1
in time periods 2 and 5 in an ETS

with transferable or non-transferable allowances in the Brownian model variant.

Since the PDE is constant outside the grid, the extrapolation methods used in this case
should deliver reasonable results.

The frequency of compliance is increased if the transfer of allowances is possible, as
can be seen in Table 6.2. Notably, in comparison to the simple model variant this increase
is by far not as large. Interestingly, if allowances cannot be transferred, the frequency of

Table 6.2: Relative frequency of compliance in an ETS with transferable or non-transferable
allowances in the Brownian model variant.

Time period 0 1 2 3 4 5

Transferable 61.63% 56.48% 55.96% 55.65% 55.28% 54.1%
Non-transferable 52.93% 53.11% 53.41% 54.77% 54.7% 54.68%

compliance increases towards later time periods; this might be due to the decrease in BAU
emissions, making it easier to comply with the emission cap.

The mean price trajectories shown in Figure 6.75a increase with the interest rate in
each time period, where the mean prices in the case of transferable allowances are higher,
but decrease overall. If allowances cannot be transferred, the price development within
each time period does not change much for the first five time periods; prices appear to
decrease very slightly, possibly due to the decrease in BAU emissions.

In Figure 6.75b the distribution of the mean prices within each simulation run are
shown. As in the one-period model, we obtain distributions with two peaks, one close
to the minimum and the other close to the maximum price. If allowances cannot be
transferred, the first peak thus lies at approximately 5 Euro and the second around 45
Euro; both peaks are of similar intensity. If the transfer of allowances is possible, the first
and much higher peak is positioned at approximately 25 Euro, while the second is found
at 55 Euro. In this case the distributions do overlap, with the second peak of the case
with non-transferable allowances lying between the two peaks of the case with transferable
allowances.

When studying the variation of the allowance price, we find that the standard deviation
is higher if allowances cannot be transferred, as shown in Figure 6.76a. Also the variability
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(a) Mean trajectory of S. (b) Histogram of mean allowance prices within
each run for time period 0.

Figure 6.75: Mean price trajectory and distribution of mean allowances prices within each
run in an ETS with transferable or non-transferable allowances in the Brownian model variant.

(a) Standard deviation trajectory of S. (b) Histogram of the standard deviation of absolute
daily returns of S in time period 0, normalized to
one year

Figure 6.76: Trajectory of the standard deviation of the allowance price and distribution
of its variability in an ETS with transferable or non-transferable allowances in the Brownian
model variant.

of the allowance price within one run is higher for the case of non-transferable allowances,
which can be seen from the distributions of the time period 0 shown in Figure 6.76b.
If allowances cannot be transferred, the distribution has its peak at 10 and has a long
tail, whereas if such a transfer is possible, the peak is found at 6 or 7. This effect is again
probably due to the more tight price bounds present in the case of transferable allowances.

Summary

All in all the results in the Brownian model variant confirm the findings from the simple
variant. It should be noted that most effects of allowing for the transfer of allowances are
weaker in the Brownian model variant, which is probably caused by the lower values of
the price parameter si.

206



CHAPTER 6. NUMERICAL RESULTS

Results in the Ornstein-Uhlenbeck model are again very similar. We omit a detailed
discussion here; a graphical representation of the corresponding results can be found in
Section C.1.2 in the appendix.

6.2.4 Variation of Regulatory Parameters

We vary further regulatory parameters apart from setting the transferability of allowances.
In particular, we study the impact of changing the number of allowances e0 or the cost
coefficient c in each time period.

Varying the Penalty

First, we consider varying the penalty in the simple model variant; due to the argumen-
tation above, we focus our analysis on time period 0 in a six-period setting. As can be
seen in Figure 6.77, in line with previous results an increase of the penalty decreases the
mean realized emissions and increases the relative frequency of compliance. Notably, in

(a) Mean of realized emissions XTi+1 . (b) Relative frequency of compliance with the
emission target e0.

Figure 6.77: Results on the total expected emissions X for a varying penalty in the simple
model variant in an ETS with transferable or non-transferable allowances.

both cases the effect of allowing for the transfer of allowances is larger than the effect of
increasing the penalty. Moreover, if allowances cannot be transferred, the effect of increas-
ing the penalty on the relative frequency of compliance is larger. On the other hand, if
the transfer is possible, the compliance reaches almost 100% for penalties of 100 or 160
Euro. Similar observations can be made for the price characteristics shown in Figure 6.78:
Increasing the penalty leads to higher prices and to a higher price variability, but the effect
of allowing for the transfer of allowances has a much stronger effect. Notably, if allowances
can be transferred, the penalty barely has an effect on the price variability.

We also study the effect of varying the penalty in the Brownian variant of the multi-
period model. An increase of the penalty leads to lower mean realized emissions and to
a higher frequency of compliance, as can be seen in Figure 6.79; especially in case of the
frequency of compliance, the effect of increasing the penalty is stronger than the effect of
allowing for the transfer of emission allowances. On the other hand, the combination of a
high penalty of 160 and the transferability of allowances leads to a frequency of compliance
of approximately 85%; this is higher than the limit we observed for very large penalties
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(a) Mean across all runs of the mean prices within
one time period.

(b) Mean of the variability of the price S.

Figure 6.78: Results on the allowance price S for a varying penalty in the simple model
variant in an ETS with transferable or non-transferable allowances.

(a) Mean of realized emissions XTi+1 . (b) Relative frequency of compliance with the
emission target e0.

Figure 6.79: Results on the total expected emissions X for a varying penalty in the Brownian
model variant in an ETS with transferable or non-transferable allowances.

in the one-period model. Furthermore, increasing the penalty leads to higher mean prices
and a higher mean variability of the prices, which is shown in Figure 6.80; this effect is
also of relevant amplitude if allowances can be transferred.

Summary The increasing penalty decreases the realized emissions and increases the
frequency of compliance as well as the allowance price, regardless whether allowances can
be transferred or not. Notably, the frequency of compliance reaches almost 100% if the
penalty is high and allowances can be transferred. In the simple model variant, the effect
of allowing for the transfer outweighs the impact of the penalty. In the Brownian model
variant on the other hand, allowing for the transfer of emission allowances has a weaker
effect overall, so that the impact of changing the penalty is more relevant in comparison.
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(a) Mean across all runs of the mean prices within
one time period.

(b) Mean of the variability of the price S.

Figure 6.80: Results on the allowance price S for a varying penalty in the Brownian model
variant in an ETS with transferable or non-transferable allowances.

Decreasing the Emission Cap

So far we have assumed that the emission cap e0 remains constant throughout all time
periods. This is neither reasonable in a situation where emissions eventually need to be
reduced to net zero, nor does it reflect the situation in the EU ETS. Motivated by the
current regulation and the decision adopted by the European Parliament in June 2022 on
the recent revision proposal of the Commission, we assume that the emission cap decreases
either by 2.2% or by 4.6% each year, while still setting the cap for the first time period
to e0 = 6000. To obtain an idea how this influences the system, we analyze the price
parameters si computed in this setting (with a decrease of 2.2%), which are shown in
Figure 6.81; as simulations can be conducted much faster in the simple model variant,
we only work with this variant in the current setting. In the case that allowances can be

Figure 6.81: Price input parameters si computed from the price function of the subsequent
time period in an ETS with transferable or non-transferable allowances where the emission
cap decreases by 2.2% every year.

transferred, the price parameter is decreasing towards later time periods, attaining higher
values than for constant e0 to account for the tightening cap. If allowances cannot be
transferred, two counteracting factors influence the price parameter: The tightening cap
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means that in later time periods more abatement is required, which leads to an increase
of the price. On the other hand, the costs of non-compliance are the lowest in the last
time period, which causes the price parameter to decrease towards the end.

With having these observations in mind, we compare the simulation results for a con-
stant emission cap and for a decreasing cap with a linear reduction factor (LRF) of 2.2% or
4.6%. The corresponding mean realized emissions are shown in Figure 6.82a. If allowances

(a) Allowances can be transferred. (b) Allowances cannot be transferred.

Figure 6.82: Mean of realized emissions XTi+1
throughout six time periods in the simple

model variant in an ETS with transferable or non-transferable allowances. The emission cap
decreases yearly by a linear reduction factor (LRF) as indicated.

can be transferred, mean realized emissions are decreased considerably during the early
time periods by decreasing the emission cap; thus the additional abatement occurs in this
phase. Towards the end the mean realized emissions are still slightly lower than for a con-
stant cap, but the difference becomes smaller. If it is not possible to transfer allowances,
the picture is quite a different one: In line with the behavior of the price parameter, the
mean realized emissions are the lowest for time period 2 and 3; in the beginning, they
are higher, because the emission cap is not as stringent. Towards the end, mean realized
emissions are also higher due to the low costs of cap violations.

In Figure 6.83 we show the frequency of compliance with the emission cap for each
time period. In case of a constant cap, this quantity gradually decreases from one time
period to the next, arriving at a value of about 50% in the last time period. If allowances
can be transferred, the relative frequency of compliance is considerably higher initially, as
already observed above. For a decreasing cap we obtain a very high variation: While the
frequency of compliance is almost one in the first two time periods as long as allowances are
transferable, it drops down to almost zero towards the end, especially if the linear reduction
factor is 4.6%. This behavior partly is a result of the model setup, as the allowances saved
in early time periods due to additional abatement are not in fact available in later time
periods. If allowances cannot be transferred, the general behavior is the same; only the
relative frequency of compliance in the first time period is already much lower. Here both
effects mentioned above act together: The increasing stringency of the cap makes it more
difficult to comply while the cost of non-compliance decreases.

The mean prices shown in Figure 6.84 reflect the results on the realized emissions: If
allowances can be transferred, abatement is high in early time periods and even more so
for a decreasing cap, thus also the mean allowance price is high. As abatement decreases
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(a) Allowances can be transferred. (b) Allowances cannot be transferred.

Figure 6.83: Relative frequency of compliance with the emission target e0 throughout six
time periods in the simple model variant in an ETS with transferable or non-transferable
allowances. The emission cap decreases yearly by a linear reduction factor (LRF) as indicated.

(a) Allowances can be transferred. (b) Allowances cannot be transferred.

Figure 6.84: Mean of mean allowance prices throughout six time periods in the simple
model variant in an ETS with transferable or non-transferable allowances. The emission cap
decreases yearly by a linear reduction factor (LRF) as indicated.

for later time periods so does the price. In the case that allowances cannot be transferred,
abatement is highest in time periods 2 and 3, when the cap has already tightened, but
non-compliance is still expensive enough to encourage abatement. As a result also the
price is highest in these time periods.

Finally, we study the mean variability of the allowance price shown in Figure 6.85.
If allowances can be transferred to the next time period, the price variability is lower
for a decreasing emission cap in most time periods, reaching almost zero for both the
first and the last. This is plausible since in time period 0 full compliance is reached and
thus the allowance price is mostly at its minimum value given by the price parameter si.
For the last time period, almost none of the simulation runs are compliant with the cap
and therefore the price is at its maximum given by the penalty p = 40. As a result, in
both cases the price variability is very low. If a transfer of allowances is not possible, the
price variability is in general much higher, especially in the beginning; also in this case it
increases at least from time period 0 to 1 if the cap is decreasing. This can be explained
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(a) Allowances can be transferred. (b) Allowances cannot be transferred.

Figure 6.85: Mean of the variability of the allowance price S throughout six time periods
in the simple model variant in an ETS with transferable or non-transferable allowances. The
emission cap decreases yearly by a linear reduction factor (LRF) as indicated.

by recalling the development of the price parameter and the mean price: Both increase in
early time periods, indicating that the range for the allowance price increases. Therefore
in increase in the variability is plausible.

While the results for individual time periods provide some valuable insight how the
decreasing cap affects the system, they cannot directly reflect the situation in the real-
world application, since the model does not capture the actual transfer of allowances.
Furthermore, we cannot restrict our considerations to time period 0, as we did in analyses
above, since the element of interest, namely the decrease in the cap, takes its effect in later
time periods only. Thus in the following, we will consider aggregated quantities of all time
periods; we will use these aggregates to analyze the effect of an increase in the penalty.

In Figure 6.86 the sum of the mean realized emissions of all time periods is shown. We
observe that a decrease in the emission cap decreases the overall mean realized emissions
and it does this much more effectively for higher penalties. Also allowing for the transfer
of allowances enhances the effectiveness of the more stringent cap and especially of the
increase in the penalty.

By summing up the emission caps of each time period and thus the number of al-
lowances handed out, we obtain the overall cap for the six periods of 18 years in total.
In case of a constant cap this simply amounts to 36 000 Mt. If the linear reduction fac-
tor is 2.2%, we have an overall cap of 30 666 Mt and if it is 4.6%, we obtain an overall
cap of 26 030 Mt. By comparing the overall realized emissions of each run with these
thresholds, we compute the aggregate frequency of compliance shown in Figure 6.87. For
a low penalty, compliance is low. In case of the more stringent cap, the higher penalties
succeed to increase the compliance to similar levels as for the constant (and thus overall
less stringent) cap, as long as allowances can be transferred. If the transfer is not possible,
the relative frequency of compliance is very low for the decreasing and more stringent
emission caps.

To aggregate the mean prices of all time periods, we compute their mean and obtain
the overall mean prices, which are shown in Figure 6.88. Their behavior is closely linked
to the mean realized emissions: For a more stringent cap and a higher penalty, the prices
increase, regardless whether allowances can be transferred or not; but if the transfer is
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(a) Allowances can be transferred. (b) Allowances cannot be transferred.

Figure 6.86: Sum of the mean realized emissions XTi+1
for a varying penalty in the simple

model variant in an ETS with transferable or non-transferable allowances. The emission cap
decreases yearly by a linear reduction factor (LRF) as indicated.

(a) Allowances can be transferred. (b) Allowances cannot be transferred.

Figure 6.87: Relative frequency of compliance with the overall cap for a varying penalty
in the simple model variant in an ETS with transferable or non-transferable allowances. The
emission cap decreases yearly by a linear reduction factor (LRF) as indicated.

possible, prices are in general much higher.
We aggregate the mean price variabilities also by computing their mean; the results are

shown in Figure 6.85. Increasing the penalty increases the variability; but while the price
variability is smaller for a decreasing cap if allowances can be transferred, they are higher
if this is not the case: The decreasing cap leads to a higher value for the price parameter
and thus to a broader range for the allowance price if allowances cannot be transferred. If
the transfer is possible, the range is only shifted; on the other hand, a more stringent cap
moves price paths closer to their maximum value, which leads to less price variability.

Summary If the emission cap decreases in time, the effects strongly depend on whether
allowances are transferable or not. If the transfer of allowances is possible, the decreasing
cap has a particularly large influence on the early time periods, leading to much lower
emissions and a higher allowance price. If allowances cannot be transferred, the impact
is highest for the intermediate time periods, when the cap is more stringent but non-
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(a) Allowances can be transferred. (b) Allowances cannot be transferred.

Figure 6.88: Mean of mean prices for a varying penalty in the simple model variant in an
ETS with transferable or non-transferable allowances. The emission cap decreases yearly by
a linear reduction factor (LRF) as indicated.

(a) Allowances can be transferred. (b) Allowances cannot be transferred.

Figure 6.89: Mean of the variability of the allowance price S for a varying penalty in the
simple model variant in an ETS with transferable or non-transferable allowances. The emission
cap decreases yearly by a linear reduction factor (LRF) as indicated.

compliance is still expensive.

On aggregate across all time periods, the decreasing and in particular more stringent
cap leads to lower emissions and higher prices. The frequency of compliance strongly
depends both on the transferability of allowances and the penalty: If the penalty is high
and allowances can be transferred, the aggregate compliance is high also for a decreasing
emission cap. Otherwise it is very low and in particular much lower than for the constant
cap.

Decreasing the Cost Coefficient

As time proceeds, technological progress may cause abatement to become cheaper. Thus
we let the cost coefficient c decrease in the course of the six time periods considered. In
a model by Beck and Kruse-Andersen [BK20], the technological progress is modeled for a
regenerative competitor, whose technology catches up with a fossil-fuel based electricity

214



CHAPTER 6. NUMERICAL RESULTS

generator. They obtain a technological progress of 0.6%. Although their setup does not
quite match the situation of our model, we still use this quantity to give us an idea which
change in c might be plausible. To simplify calculations and to aggravate the effect of
technological progress (TP), we assume that c is reduced by 1% each year. In Figure 6.90
the effect of this on the price parameter si is shown for a penalty of 40 Euro both for a
setting with transferable and non-transferable allowances. The differences to the case of a
constant cost coefficient as shown in Figure 6.64 are almost negligible; the price parameter
is only very slightly smaller.

Figure 6.90: Price input parameters si computed from the price function of the subse-
quent time period in an ETS with transferable or non-transferable allowances where the cost
coefficient decreases by 1% every year.

Again we study aggregated quantities over all six time periods for varying penalties.
In Figure 6.91 we observe that the technological progress barely has an effect on the mean
realized emissions; only if allowances cannot be transferred and the stringency of the cap is
increasing over time, technological process slightly decreases the mean realized emissions.

(a) Allowances can be transferred. (b) Allowances cannot be transferred.

Figure 6.91: Mean of realized emissions XTi+1
for a varying penalty in the simple model

variant in sum over all time periods. The abatement cost coefficient c decreases yearly due
to technological progress (TP) and the emission cap e0 decreases by a linear reduction factor
(LRF) as indicated.
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As can be seen in Figure 6.92, the effect on the relative frequency of compliance is
slightly more pronounced. Especially if allowances cannot be transferred, the decreas-

(a) Allowances can be transferred. (b) Allowances cannot be transferred.

Figure 6.92: Relative frequency of compliance with the emission target e0 for a varying
penalty in the simple model variant in aggregate over all time periods. The abatement cost
coefficient c decreases yearly due to technological progress (TP) and the emission cap e0
decreases yearly by a linear reduction factor (LRF) as indicated.

ing costs of abatement visibly increase the frequency of compliance; this effect becomes
stronger for larger penalties and if the cap is decreasing over time.

The effect on the mean price shown in Figure 6.93 is the most evident which is not
surprising, since the price depends directly on the cost coefficient c. Thus the decreasing

(a) Allowances can be transferred. (b) Allowances cannot be transferred.

Figure 6.93: Mean of mean allowance prices for a varying penalty in the simple model
variant. The abatement cost coefficient c decreases yearly due to technological progress (TP)
and the emission cap e0 decreases by a linear reduction factor (LRF) as indicated.

cost coefficient leads to lower prices in all cases.
When considering the price variability, the effect of a decreasing cost coefficient differs

between the case of transferable allowances and the case where this is not possible, as can
be seen in Figure 6.94: If allowances can be transferred, the price variability increases
slightly with technological progress, whereas it decreases if a transfer is not possible. In
this case, the slightly lower price parameter decreases the range of the allowance price,
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(a) Allowances can be transferred. (b) Allowances cannot be transferred.

Figure 6.94: Mean of the variability of the allowance price S for a varying penalty in the
simple model variant. The abatement cost coefficient c decreases yearly due to technologi-
cal progress (TP) and the emission cap e0 decreases by a linear reduction factor (LRF) as
indicated.

thus allowing for less variability. In the case that allowances can be transferred, this range
is only shifted; the increase of the price variability might be a result of price paths moved
away from the maximum price bound by cheaper abatement.

Summary The decreasing cost coefficient only has little effect on the quantities studied
here; the highest impact can be observed for the mean allowance price, which directly
depends on the cost coefficient. Possibly a higher percentage of technological progress
might lead to more distinctive effects.

6.3 Multi-Period Model II

We proceed similarly as in the previous section, applying multi-period model II as intro-
duced in Section 3.2 instead of multi-period model I. Again we simulate a system with
six time periods. First we discuss the solution to the PDE in this model, which is more
complex and more computationally challenging than in multi-period model I. Then we
proceed in the same way as before to discuss the results on the total expected emissions
X and on the price process S obtained from solving the SDE. We conclude this section
by analyzing the effects of varying the penalty.

6.3.1 Solution to the PDE

We first consider the simple model variant and fix a penalty of 40 Euro to resemble the case
studied in multi-period model I. We solve the PDE numerically and restrict our analysis
on the first derivative Vx as this is is the function required to determine the allowance price
and to describe the total expected emissions process X. Due to the high dimensionality
of the solution, a visualization of the results is challenging; we thus need to fix one of
the three variables t, x and z. In figures 6.95a and 6.95b we show the resulting plot of
Vx in the case of transferable allowances for a small and a high value of z, respectively.
If z is small, we obtain a picture that is very similar to the one-period model case, with
values ranging between zero and the penalty 40. If on the other hand z is very large, the
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(a) Vx as a function of t and x for z = 2880. (b) Vx as a function of t and x for z = 9040.

(c) Vx as a function of x and z for t = 0.33. (d) Vx as a function of x and z for t = 2.64.

Figure 6.95: Derivative Vx of the PDE solution for the time period 0 in multi-period model II
with transferable allowances in the simple model variant.

solution lies in a range between 230 and 270; moreover, at earlier time points, Vx takes on
the minimum value 230 for all but the largest values of x. This behavior is confirmed by
the plots of Vx in dependence of x and z, where the time point t is fixed, given in figures
6.95c and 6.95d. For small values of both x and z, we obtain a value of zero for Vx. When
z reaches a value of about e0 = 6000, the derivative Vx increases approximately linearly
with z, since the anticipated allowance price for the next time period computed from z
is increasing for sufficiently large z. In the direction of x, we still observe the step-like
structure known from the one-period model with an increasingly steep slope as we proceed
in time.

If allowances cannot be transferred, the resulting PDE solution shown in Figure 6.96
differs substantially: If x is below e0, we always obtain a value of approximately zero. For
x above e0, the derivative Vx is approximately constant at a value of 40 as long as z is
below e0, meaning that the anticipated price for the next time period is zero. If z is above
e0, the derivative Vx is again increasing in z; thus for high values of z and varying x, it
ranges from zero to values well above 200.

It should be noted that the solutions shown in Figures 6.95 and 6.96 both contain
anomalies as was already mentioned in Section 5.1.4; possibly these are caused by the
lack of boundary conditions and the use of asymmetric difference quotients as a result. In
simulations in the Brownian model, these numerical issues appear to be even more grave:
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(a) Vx as a function of t and x for z = 2880. (b) Vx as a function of t and x for z = 9040.

(c) Vx as a function of x and z for t = 0.33. (d) Vx as a function of x and z for t = 2.64.

Figure 6.96: Derivative Vx of the PDE solution for the time period 0 in multi-period model II
with non-transferable allowances in the simple model variant.

As mentioned in Section 5.1.4, the simulation fails for a step size of 20 or 50. Thus in the
Brownian model we apply a step size of 100. Results for Vx in the case of transferable
allowances are shown in Figure 6.97. The overall picture for fixed values of z is similar to
the one-period model and the previous multi-period model; for large values of z, the lower
boundary is well above zero. Strikingly, the formerly constant regions for small or high x
are now decreasing in time if z is small and increasing if z is large. Again Vx is almost zero
if both x and z are small; as z comes close to e0, the derivative Vx starts to increase with
z. In contrast to the simple model variant, we may observe that for very high values of z
the derivative Vx is again almost constant in z. This difference may be due to the larger
z-grid applied in the Brownian model variant; for later time periods, the PDE solution in
the simple model variant is also constant for large z, so probably the constant region in
the time period 0 is cut off by the shorter grid. Moreover, we have that the maximum
value of Vx at approximately 90 is much lower than in case of the simple model variant.

If we no longer allow for the transfer of allowances, as shown in Figure 6.98, the picture
changes as expected: For x sufficiently below e0 = 6000, the derivative Vx always takes
values close to zero; for high values of x it still increases in time. Moreover, if x is well
above e0, the dependence on z is identical to the case of transferable allowances.

Overall, these results can be explained as follows: If allowances can be transferred
and we expect that we are in oversupply for the current time period, then the current
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(a) Vx as a function of t and x for z = 2900. (b) Vx as a function of t and x for z = 9200.

(c) Vx as a function of x and z for t = 0.33. (d) Vx as a function of x and z for t = 2.64.

Figure 6.97: Derivative Vx of the PDE solution for time period 0 in multi-period model II
with transferable allowances in the Brownian model variant.

allowance price and the abatement rate – and therefore also Vx – mainly depend on the
price anticipated for an allowance at the beginning of the next time period since this
represents the benefit we get from a surplus allowance. If the total expected emissions
of the next time period, which are modeled by z, are small, allowances in the next time
period have little or no value, leading to a small value of Vx. On the contrary, if they
are high, the anticipated price is also high and thus we obtain a high value of Vx. If in
the current time period we do not have sufficiently many allowances corresponding to a
value of x well above e0, we need to account for the additional allowances required from
the next time period in addition to the penalty. Thus Vx in principle behaves in a similar
way, but is increased by the penalty value. If allowances cannot be transferred, the same
arguments apply as long as x is above e0; for small x we obtain small values of Vx, since
in this case we do not receive any benefits from surplus allowances.

Summary

In this section, we discussed the PDE solution in multi-period model II, which is more
complex than in previous models due to the additional variable z. For a fixed value of z,
the overall structure is still similar to the solutions obtained in the one-period model and
in multi-period model I. If allowances can be transferred, the constant values of Vx for
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(a) Vx as a function of t and x for z = 2900. (b) Vx as a function of t and x for z = 9200.

(c) Vx as a function of x and z for t = 0.33. (d) Vx as a function of x and z for t = 2.64.

Figure 6.98: Derivative Vx of the PDE solution for time period 0 in multi-period model II
with non-transferable allowances in the Brownian model variant.

small or large x are shifted upwards in comparison to the one-period model, depending on
the value of z. If the transfer is not possible, this shift only applies for large x.

6.3.2 Solution to the SDE in the Simple Model Variant

We proceed similarly as in previous models to gain an understanding of the results on the
processes X, Z and S obtained from the SDE solution. First, we analyze the trajectories
of these processes for three example simulation runs shown in Figure 6.99; additionally we
show the points on the x-z-plane covered by the trajectories to illustrate the correlation
between X and Z.

The X-trajectory of the first run moves to small values rather quickly; while it jumps
upwards at the start of most time periods, it remains below the threshold e0 throughout
the six time periods. Accordingly, the allowance price is comparably low, approaching
zero in the second to last time period. The trajectory of Z strongly resembles that of X;
only the jumps at the start of each time period are smoothened out. Accordingly, in the
scatter plot in Figure 6.99d most points lie on the bisecting line.

In case of the second run, the trajectory of X generally moves around the threshold
e0, also jumping upwards at the beginning of each time period; at the end of most time
periods it remains below e0. The price thus fluctuates in an intermediate range. Since in
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(a) Trajectories of X. (b) Trajectories of S.

(c) Trajectories of Z. (d) Scatter plot of X and Z.

Figure 6.99: Three example trajectories of the total expected emissions X with correspond-
ing trajectories of the price process S and the process Z as well as the interdependence between
X and Z; allowances are transferable to subsequent time periods.

the last time period, XT is above e0, the price reaches a value of about 80 Euro in the
end; note that in this setting this value can be higher than the penalty as also for the last
time period the anticipated allowance price in the next time period SN0 depends on Z. As
can be seen from the trajectory of Z, this process takes on a fairly large value at the end
of the last time period, thus leading to the high allowance price. Throughout the six time
periods the trajectory of Z shows similarity to that of X, but all upward movements X
lead to stronger upward movements of Z. As a consequence, Z takes higher values than
X, remaining above e0 for most of the time. This in turn leads to the comparably high
prices, although the run is in compliance with the cap for most time periods. Figure 6.99d
confirms that Z mostly is higher than X.

The third run represents a special case: Especially in the last four time periods, the
trajectory of X jumps to large values at the beginning of each time period. Then in course
of the time period, X decreases, presumably due to abatement. The trajectory of Z takes
considerably large values throughout the six time periods. Thus the BAU emissions remain
large, causing the jumps in the trajectory of X at the beginning of each time period. As
a result, prices are high, especially in time periods 2 and 3; in contrast to the two other
runs shown here and most runs in general, the price process exhibits jumps at the points
where time periods change. For later time periods, the derivative Vx is constant in z if z is
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very large, thus delivering a maximum price; this constant decreases from one time period
to the next. Since the third run reaches this maximum price, it needs to jump down to
the maximum price of the subsequent time period. In line with previous observations, the
scatter plot in Figure 6.99d shows that Z is much higher than X at most time points.

In general, we mostly obtain price trajectories without clear jumps at the points where
the time period changes. This is much more plausible than the trajectories with jumps
obtained in multi-period model I. The trajectory of X contains jumps by construction,
while Z appears to be continuous as we would expect from its definition. Moreover, Z is
never smaller than X: The process Z only contains the random movement of the BAU
emissions, while X also contains the effects of abatement. Since abatement is always
positive, corresponding to a negative drift term in the SDE of X, the abatement pushes
the process X below Z.

We conduct a similar analysis for the case that allowances cannot be transferred,
with results shown in Figure 6.100. The first run was again chosen with an X-trajectory

(a) Trajectories of X. (b) Trajectories of S.

(c) Trajectories of Z. (d) Scatter plot of X and Z.

Figure 6.100: Three example trajectories of the total expected emissions X with corre-
sponding trajectories of the price process S and the process Z as well as the interdependence
between X and Z; allowances are not transferable to subsequent time periods.

remaining below the threshold e0 for most of the six time periods. Since also the trajectory
of Z mostly remains below e0, abatement only plays a minor role in this run, thus both
trajectories are very similar, as can be seen in Figure 6.100d. As a consequence, the
trajectory of X barely contains any visible jumps. At the same time the price is low,
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reaching zero at the end of most time periods. This partly leads to jumps in the price
trajectory: Since the range of X for which the price is not zero is broader at the beginning
of a time period, the price jumps to a non-zero value.

The X-trajectory of the second run moves around e0, thus the price fluctuates strongly.
The trajectory of Z is slightly higher than that of X, indicating that some abatement
occurs. The third run exhibits large values of X throughout most of the time periods
which are caused by large BAU emissions as given by Z, in turn leading to high prices.
Notably, in most time periods Z is considerably larger than X towards the end of each
time period as abatement efforts push down the values of the process X. The general
behavior of the trajectories for the processes X and Z is similar to the case of transferable
allowances; but since the price may always take the value zero as long as X is small, more
heavy price fluctuations occur.

These trajectories may only serve as examples; to obtain more precise results on how
the transfer of allowances influences the system, we turn our analysis to aggregated quan-
tities and distributions across all runs. In Figure 6.101a we show the mean trajectory of X
for both the case of transferable allowances and the case where a transfer is not possible.
In line with the results of multi-period model I, allowing for the transfer leads to a steeper
decreasing slope and thus to lower mean realized emissions. Notably, a small but visible
reduction still occurs in the last time period. Moreover, in comparison to the results from
multi-period model I, the mean realized emissions in case of non-transferable allowances
are lower.

(a) Mean trajectory of X. (b) Histogram of realized emissions XTi+1 in time
period 0.

Figure 6.101: Mean trajectory of X and distribution of realized emissions XTi+1
in time

period 0 in an ETS with transferable and non-transferable allowances in the simple model
variant.

The distribution of the realized emissions of time period 0 shown in Figure 6.101b
confirms these findings: While the distribution in the case of non-transferable allowances
is more skewed, the distribution in a setting with transferable allowances is shifted to
the left, thus leading to lower realized emissions. For later time periods, as shown in
Figure 6.102 for time periods 2 and 5, these distributions move closer together; for the
last time period 5, there is still a slight but visible difference.

The lower realized emissions lead to a higher frequency of compliance as can be seen
in Table 6.3; in case of transferable allowances, compliance almost reaches 100% in time
period 0, compared to less than 70% if allowances cannot be transferred.
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(a) Histogram of realized emissions XTi+1 in time
period 2.

(b) Histogram of realized emissions XTi+1 in the
last time period.

Figure 6.102: Distribution of realized emissions XTi+1
in time periods 2 and 5 in an ETS

with transferable or non-transferable allowances in the simple model variant.

Table 6.3: Relative frequency of compliance in an ETS with transferable or non-transferable
allowances in the simple model variant.

Time period 0 1 2 3 4 5

Transferable 95.8% 93.59% 88.87% 80.94% 71.54% 60.35%
Non-transferable 68.78% 68.61% 66.7% 64.7% 61.84% 56.3%

The mean prices shown in Figure 6.103a are constant within each time period. If

(a) Mean trajectory of S. (b) Histogram of mean allowance prices within
each run for time period 0.

Figure 6.103: Mean price trajectory and distribution of mean allowance prices within each
run in an ETS with transferable or non-transferable allowances in the simple model variant.

allowances can be transferred, the mean price decreases from one time period to the next;
it is always higher than in the setting where allowances cannot be transferred. In this case,
the mean price increases between early time periods and decreases from one time period
to another towards the end. Consequently, the mean of the prices of all time points within
one run are higher if allowances can be transferred, in particular in early time periods.
In Figure 6.103b we show the distribution of this quantity for time period 0. In case of
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non-transferable allowances, the distribution is strongly skewed to the right, with a peak
around 20 Euro, while for transferable allowances the distribution is more symmetric,
peaking at approximately 60 Euro.

The trajectory of the price standard deviation, which is shown in Figure 6.104a, is
similar for both cases early in each time period; but towards the end of each period,
the standard deviation sharply increases if allowances cannot be transferred, whereas it
continues to increase with almost constant slope if the transfer is possible. To further

(a) Standard deviation trajectory of S. (b) Histogram of the standard deviation of absolute
daily returns of S for time period 0, normalized to
one year.

Figure 6.104: Trajectory of the standard deviation and the distribution of the variability of
the allowance price in an ETS with transferable or non-transferable allowances in the simple
model variant.

asses the variation of the price, we show the distribution of its variability within each run
in Figure 6.104b for time period 0. If allowances can be transferred, we obtain a slightly
right-skewed distribution with a high peak around 18. If the transfer is not allowed, the
distribution of the variability has two peaks, one roughly around 10 and the other at 30;
additionally, it has a heavy tail to the right. Thus allowing for the transfer leads to a
lower variability in the mean, but a similar variability is also likely if the transfer is not
allowed.

Summary

As observed in multi-period model I, allowing for the transfer of emission allowances
decreases realized emissions and considerably increases the frequency of compliance, while
increasing the allowance price and reducing its variability. It should be noted that the
results on the total expected emissions X are similar to the results obtained in multi-period
model I as described in Section 6.2. The characteristics of the allowance price S on the
other hand differ considerably. Also the behavior of individual trajectories is very different
between the two approaches to the multi-period model; since in multi-period model II the
price process does not jump between two time periods and exhibits more fluctuations, it
is more realistic than the price process obtained in multi-period model I.
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6.3.3 Solution to the SDE in the Brownian Model Variant

We proceed in the same way for the Brownian model variant. From the SDE solution, we
obtain realizations of the processes X, Z and S. Three example trajectories of each process
and the relation between X and Z are shown in Figure 6.105. As in multi-period model

(a) Trajectories of X. (b) Trajectories of S.

(c) Trajectories of Z. (d) Scatter plot of X and Z.

Figure 6.105: Three example trajectories of the total expected emissions X with corre-
sponding trajectories of the price process S and the process Z as well as the interdependence
between X and Z; allowances are transferable to subsequent time periods, simulations were
done in the Brownian model variant.

I, fluctuations in the trajectory of X become weaker towards the end of each time period
due to the time-dependent volatility. Moreover, we observe distinctive jumps at each step
from one time period to the next; in contrast to the simple model variant, this also occurs
if X is well below e0. The process Z has a constant volatility and does not contain such
obvious jumps, although by construction it is not continuous; the difference between Zi∆T
and Zi+1

0 amounts to ∆T 2 µ = −90 and is thus not visible. Nevertheless, these two effects
together may cause Z to be smaller than X: By construction, Z is smaller by |∆T 2 µ|
at the beginning of each time period, while large downward movements in the underlying
Brownian motion have a larger effect on Z than on X, explaining the observations in
Figure 6.105d. On the other hand, if X is large, the process Z moves to values well above
X due to the effects of abatement. For the first run with an X-trajectory remaining below
e0, the price is small and fluctuates only slightly, approaching zero in the course of time
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period 4. The two other runs remain close to e0 in the beginning, leading to notable and
in case of the second run heavy price fluctuations. The trajectory of X in the second
run then decreases to below e0 and remains there for most of the time until the end,
therefore fluctuations eventually become smaller and the price approaches zero. The third
run takes very high values in X and Z, especially in time periods 2 and 3; here again the
price appears to move close to its maximum given by the PDE solution, which is increasing
in time due to the positive interest rate.

In the case that allowances cannot be transferred, the processes X and Z behave
similarly, as can be seen in Figure 6.106; the fluctuations of Z might appear to be slightly
stronger, but this possibly is due to the different scaling of the y-axis. The most striking

(a) Trajectories of X. (b) Trajectories of S.

(c) Trajectories of Z. (d) Scatter plot of X and Z.

Figure 6.106: Three example trajectories of the total expected emissions X with corre-
sponding trajectories of the price process S and the process Z as well as the interdependence
between X and Z when allowances are not transferable to subsequent time periods in the
Brownian model variant.

differences to the case of transferable allowances can be observed for the price process S.
Here, the price trajectories of all three runs are constantly zero in the course of at least
one time period. For the first run, this holds for a long time during the six time periods.

The mean trajectories shown in Figure 6.107a have a steeper slope if allowances can
be transferred and thus reach lower realized emissions at the end of each time period.
Strikingly, also the emissions expected at the beginning of each time period decrease
considerably; this effect is much stronger than in multi-period model I. At the same
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(a) Mean trajectory of X. (b) Histogram of realized emissions XTi+1 in time
period 0.

Figure 6.107: Mean trajectory of X and distribution of realized emissions XTi+1
in time

period 0 in an ETS with transferable and non-transferable allowances in the Brownian model
variant.

time the impact of allowing for the transfer is smaller. As in multi-period model I, the
distribution of realized emissions in time period 0 shown in Figure 6.107b is slightly more
skewed to the left if allowances can be transferred; for time period 2, the difference between
the two distributions is already small and for time period 5, they are virtually identical,
as can be seen in Figure 6.108.

In accordance with the lower mean realized emissions, the transfer of allowances in-
creases the frequency of compliance as shown in Table 6.4. If allowances can be transferred,

Table 6.4: Relative frequency of compliance in an ETS with transferable or non-transferable
allowances in the Brownian model variant.

Time period 0 1 2 3 4 5

Transferable 71.36% 63.09% 60.75% 59.86% 58.26% 57.02%
Non-transferable 60.6% 57.05% 56.8% 56.54% 57.03% 55.73%

this value reaches 71.36% and is thus about 10 percentage points higher than in the case
of non-transferable allowances. Notably, this effect is by far not as strong as in the simple
model variant.

The differences in the price characteristics between the case of transferable allowances
versus non-transferable allowances are also not as large as in multi-period model I: The
mean allowance price shown in Figure 6.109a is in both cases increasing within each time
period; in time period 0, the price is approximately 10 Euro higher if allowances are
transferable. This difference becomes smaller with each time period until both price paths
are almost the same. The distribution of the mean price of individual runs in time period
0, which is shown in Figure 6.109b, covers a similar range in both cases. If allowances
cannot be transferred, also very low prices are reached and one high peak is found at
approximately 7 Euro. If the transfer of allowances is possible, the first peak of the
distribution can be observed at about 30 Euro. Both distributions have a second, smaller
peak between 70 and 80 Euro.

Also the trajectories of the standard deviation of the price shown in Figure 6.110a are
similar for both cases, with only slightly higher values if allowances cannot be transferred.
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(a) Histogram of realized emissions XTi+1 in time
period 2.

(b) Histogram of realized emissions XTi+1 in the
last time period.

Figure 6.108: Distribution of realized emissions XTi+1
in time periods 2 and 5 in an ETS

with transferable or non-transferable allowances in the Brownian model variant.

(a) Mean trajectory of S. (b) Histogram of mean allowance prices within
each run for time period 0.

Figure 6.109: Mean price trajectory and distribution of mean allowance prices within each
run in an ETS with transferable or non-transferable allowances in the Brownian model variant.

The distribution of the price variability in time period 0, which is shown in Figure 6.110b,
reaches higher values if allowances cannot be transferred and such high values are more
likely, but these differences are only small.

Summary

Allowing for the transfer of emission allowances leads to lower realized emissions and a
higher frequency of compliance; at the same time, the price increases and the price vari-
ability decreases slightly. Qualitatively, the results obtained in the simple model variant
can also be confirmed in the Brownian model variant, but the amplitude of these effects
is smaller.
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(a) Standard deviation trajectory of S. (b) Histogram of the standard deviation of absolute
daily returns of S in time period 0, normalized to
one year.

Figure 6.110: Trajectory of the standard deviation and the distribution of the variability of
the allowance price in an ETS with transferable or non-transferable allowances in the Brownian
model variant.

6.3.4 Variation of the Penalty

Similar to previous models, we increase the penalty to observe how this affects the system;
for this purpose, we study several characteristic values in each setting for time period 0.

In Figure 6.111a we can see that the effect on the mean realized emissions is small in
comparison to the effect of allowing for the transfer of emission allowances. If allowances

(a) Mean of realized emissions XTi+1 . (b) Relative frequency of compliance with the
emission target e0.

Figure 6.111: Results on the total expected emissions X for a varying penalty in the simple
model variant in an ETS with transferable or non-transferable allowances.

cannot be transferred, increasing the penalty considerably increases the frequency of com-
pliance, as shown in Figure 6.111b. We have seen above that the frequency of compliance
is already high for a penalty of 40 Euro if the transfer of allowances is possible; as the
penalty increases, the frequency of compliance approaches 100%.

The mean price increases slightly with an increasing penalty, which is shown in Fig-
ure 6.112a; as for the mean realized emissions, the penalty only has a minor effect here,
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while the possibility to transfer allowances almost doubles the mean price. The mean price

(a) Mean across all runs of the mean prices within
one time period.

(b) Mean of the variability of the price S.

Figure 6.112: Results on the allowance price S for a varying penalty in the simple model
variant in an ETS with transferable or non-transferable allowances.

variability shown in Figure 6.112b increases strongly in the case that allowances cannot
be transferred; otherwise the increase of the penalty has almost no effect. These observa-
tions strongly resemble those made in multi-period model I; while the exact values of the
quantities studied here deviate slightly, the tendencies are very similar.

We proceed in the same way for the Brownian variant. In Figure 6.113 the mean
realized emissions and the frequency of compliance are shown. We observe that allowing
for the transfer of allowances decreases the mean realized emissions, in particular for a
high penalty of p = 160. At the same time, it increases the frequency of compliance,
but especially for the choice of a high penalty the difference is small; already without
the transfer of allowances, the frequency of compliance reaches approximately 95%. If
the transfer is allowed, the frequency of compliance is even higher, both if p = 100 or if
p = 160, reaching almost 100%.

(a) Mean of realized emissions XTi+1 . (b) Relative frequency of compliance with the
emission target e0.

Figure 6.113: Results on the total expected emissions X for a varying penalty in the Brow-
nian model variant in an ETS with transferable or non-transferable allowances.
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The mean prices shown in Figure 6.114a are higher if the transfer of allowances is
possible, and increase further for higher penalties; again the effect of allowing for the
transfer is higher for the large penalty of p = 160. The mean price variability, which is
shown in Figure 6.114b, is slightly smaller in the case of transferable allowances; also here
the difference is larger for the high penalty of p = 160.

(a) Mean across all runs of the mean prices within
one time period.

(b) Mean of the variability of the price S.

Figure 6.114: Results on the allowance price S for a varying penalty in the Brownian model
variant in an ETS with transferable or non-transferable allowances.

In comparison to the results obtained in multi-period model I, the effect of increasing
the penalty to p = 100 in the case of transferable allowances is much stronger; all graphs
show a notable kink at this position. To a lesser extent and with the exception of the
frequency of compliance, this is also notable in the case that allowances cannot be trans-
ferred. Apart from this observation, the results discussed here are again similar to those
from multi-period model I described in Section 6.2.4.

Summary

As in multi-period model I, increasing the penalty leads to lower realized emissions and
higher prices, while increasing the frequency of compliance. Again if the penalty is large
and allowances can be transferred, the frequency of compliance reaches very high values
of almost 100%.

Since we only consider aggregate quantities, in line with the observations made in the
previous sections, the results are very similar to those obtained in multi-period model I.

6.4 Costs in the Auction Model

In Section 4.1.4 we have shown that the introduction of auctioning has no effect on the
quantities we have studied so far in this chapter, as long as the total amount of allocated
allowances is the same. The value function V only changes by the term SADA representing
the costs at the auction, which is constant in x so that the derivative Vx remains the same.
As a consequence, the process of total expected emissions X and the price process S are
not changed. We therefore do not need to discuss the PDE and the SDE solution. Instead,
we take a brief look at the impact auctioning has on the total costs arising in the system;
we only consider the one-period model.
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We first analyze the costs in the simple model variant. Costs arise from penalty
payments and abatement costs as given by the solution of the HJB equation V on the one
hand, and from purchasing allowances at the auction on the other, in case that allowances
are auctioned instead of being distributed for free. These costs as well as the total costs,
which we denote as V A in the auction model, are given in Table 6.5; we assume that a
quantity of etot = 6000 million allowances are either fully auctioned (i.e. eF = 0, eA =
6000) or fully distributed for free (eF = 6000, eA = 0). We observe that the costs

Table 6.5: Costs originating from the ETS as expected initially in the simple model variant
with and without auctioning, given in Million Euro. The total costs V A comprise the costs of
abatement and penalty payments V and the costs at the auction given by SADA. Costs are
given in million Euro.

V SADA V A

With auctioning 13105.03 164743.28 177848.31
Without auctioning 13105.03 – 13105.03

arising from the auction are by a factor ten higher than those from abatement and penalty
payment. This is plausible as the abatement and penalty costs only need to be paid for
a fraction of the total emissions, while the auction price of an allowance needs to be paid
for any emissions occurring in the system. Moreover, the total costs amount to almost
178 billion Euro for the period of three years considered here, with about 165 billion
Euro originating from the auction. Thus the auction generates a relevant revenue for the
corresponding regulator.

We proceed in the same way for the Brownian model variant, with results given in Table
6.6. Here the difference between the two sources of costs is even higher, with auction costs

Table 6.6: Costs originating from the ETS as expected initially in the Brownian model
variant with and without auctioning. The total costs V A comprise the costs of abatement and
penalty payments V and the costs at the auction given by SADA. Costs are given in million
Euro.

V SADA V A

With auctioning 7344.37 137925.42 145269.78
Without auctioning 7344.37 – 7344.37

being almost twenty times as high. They are still slightly lower than in the simple model
variant, since the allowance price at the auction is lower in this case. At the same time,
the costs arising from abatement and penalty payment are considerably lower than in the
simple model variant.

Summary

In the auction model, we only consider the costs arising in the system. We find that
the auction costs are by a factor of 10 to 20 higher than costs arising from abatement
and penalty payments. Thus, while the introduction of auctioning should not impact the
resulting emissions or the allowance price according to our model, it leads to a large shift
of revenue from CO2-emitters to the regulator.
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Discussion and Outlook

In this thesis we present a continuous time stochastic model of an emission trading sys-
tem. We provide an extension to a multi-period setting and introduce the auctioning of
allowances to the model.

One-Period Model

Based on the model of Seifert et al. [SUW08], we construct a one-period model to reflect the
first phase of the EU ETS. We follow three different approaches to model the emission rate
and thus obtain three model variants, which we call the simple, Brownian and Ornstein-
Uhlenbeck model variant. We introduce the total expected emissions X and derive an
SDE to describe this process for each of the model variants. A key step in the model is
to determine the optimal abatement rate u that minimizes the total costs in the system.
To this end we apply a stochastic control approach; thus the problem to find the optimal
abatement rate reduces to solving the HJB equation. The optimal abatement rate then
enters the SDE describing X. The second central step of the model is to solve the SDE,
delivering the process of total expected emissions X. From X, the price process S can be
computed. The results on S and X and particularly on the realized emissions XT allow
us to assess the functionality of the ETS and to study the effects of different regulatory
parameters.

In the simple model variant, we are able to solve the characteristic PDE derived from
the HJB equation analytically, which allows us to show that the solution satisfies the re-
quirements of a standard verification theorem. Moreover, we show that the SDE obtained
from the corresponding abatement rate has a unique solution. With the verification theo-
rem, we conclude that the HJB equation delivers an optimal abatement rate and that the
PDE solution represents the minimum costs. To prove the existence of a unique solution to
the SDE, we formulate a general result on the existence and uniqueness of an SDE solution
in the setting of bounded coefficient functions which can be discontinuous at final time.
Under similar assumptions, we show that the Euler-Maruyama scheme converges strongly
to the unique SDE solution, which implies convergence of the scheme for our model. Both
of these general results might be of interest in other applications: The specific structure
of a discontinuity that only is present at final time may also more generally arise from
a PDE with a final condition that is not continuous or not continuously differentiable.
This theoretical foundation to the model provides an extension to the proof that the value
function is a viscosity solution of the HJB equation given by Liang and Huang [LH22].

In case of the other model variants, the PDE needs to be solved numerically, which is
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done by applying the method of lines. Due to the low regularity of the final condition and
the numerical instability of computing difference quotients, finding a proper grid in space
for the numerical solution proved to be challenging. Based on the PDE solution results,
the SDE is solved numerically by applying the Euler-Maruyama scheme.

Numerical results resembling the settings of the EU ETS in its first phase are plausible
when compared to the actual price development: In a large number of simulation runs, the
allowance price eventually drops down to zero as it did towards the end of the first phase
of the EU ETS. This is not surprising since already the final condition of the PDE delivers
that the price is either zero or equal to a positive constant at the end of the time period.
Also the mean price observed for the first phase and its variability fit the simulation results;
according to the distributions of both quantities derived from simulations, the real-world
values are likely. In the mean, realized emissions are slightly below the emission cap e0.
This is in line with results by Seifert et al. [SUW08]: They find that the initial abatement
rate is larger than the abatement that would have been expected in the deterministic
case, where the latter would correspond to emissions exactly matching the cap (with an
abatement rate of 80 Mt per year). The actual abatement in the EU ETS estimated for
its first phase is lower, amounting to approximately 60 Mt per year; possibly the BAU
emissions in the model were assumed to be too high. Nevertheless, the probability of
non-compliance with the emission cap, estimated in the model by the relative frequency of
violating the cap, reaches approximately 40%, depending on the model variant considered.
Hence the model shows that a violation of the cap is likely. This happens whenever it
is cheaper to pay the penalty than to abate: Due to random movements of the process
X, the required abatement to keep XT below the cap may become so high that marginal
abatement costs at this level are higher than the penalty, so a violation of the cap is
preferred. In many models this case is not taken into account. Deterministic models in
particular often introduce the cap as a constraint to the cost minimization problem; in
this way, it is assumed a priori that the cap is not violated. Therefore, our results lead to
the conclusion that an ETS cannot ensure that emissions remain below a given threshold.
It should be noted at this point that the model is imprecise in one aspect: If the cap
is violated, in the EU ETS the corresponding number of additional allowances has to be
surrendered in the subsequent time period. This is incorporated by assuming a fixed price
of 30 Euro for those allowances; it would be more realistic to have a price that varies
depending on the developments in the model.

The probability of compliance can be increased by increasing the penalty. Additionally,
a higher penalty leads to further reduced realized emissions and higher allowance prices,
which is both desirable from the regulator’s point of view; on the other hand, as a less
favorable effect, the price variability increases. The efficacy of increasing the penalty
is reduced if the penalty is already high. In a deterministic setting, we would expect
a different behavior: The agent would choose abatement in such a way that marginal
abatement costs equal the penalty. Since marginal abatement costs are linear, the resulting
abatement is linear in the penalty p. In our model, we observe from the analytical PDE
solution in the simple model variant that the abatement rate is non-linear in p. As a result,
the mean realized emissions and the allowance price are also non-linear in p, leading to
the reduced effect of increasing penalties. Intuitively, this can be explained as follows: A
higher penalty provides an incentive to further reduce the probability of having to pay the
penalty by increasing the abatement rate. But as this probability becomes smaller, the
expected costs of penalty payment have less of an impact on the total expected costs, as
the costs of abatement rise with the higher abatement rate. Therefore, the incentive to
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increase abatement might become smaller. As penalties increase to large values, we observe
that the mean realized emissions and the mean allowance price converge, showing that a
larger penalty no longer induces any additional abatement. Possibly, at some point the
effects of increasing abatement as a reaction to a higher penalty on the abatement costs on
the one hand and the penalty costs on the other balance each other out. This is supported
by an observation made by Seifert et al.: They obtain that the allowance price function
is bounded for increasing penalties; since the allowance price function is essentially given
by the abatement function, this delivers a bound on the abatement rate. The converging
realized emissions also have an effect on the probability of compliance: While in the
simple model variant this quantity conceivably might converge to one, the probability of
compliance appears to converge to approximately 0.8 in both the Brownian and Ornstein-
Uhlenbeck model variant. Hence increasing the penalty cannot ensure compliance, even if
the penalty rises to unrealistically high values.

A key parameter of the system that needs to be set by the regulator is the emission
cap given by the number of allowances allocated to companies. From varying either the
emission cap or the BAU emissions expected initially, we observe that an ETS works best
if these parameters are sufficiently close together. If there are too many allowances on
the market, abatement is no longer necessary and the ETS has no impact on emissions.
Importantly, this does not happen if the cap is only slightly higher than the initially
expected BAU emissions. Due to the uncertainty about the development of BAU emissions,
companies will still reduce their emissions in this case. If on the other hand the cap is
too strict with a value far below the initially expected BAU emissions, companies abate
their emissions up to a certain point, so that the ETS still has an effect. But as soon
as penalty payments become cheaper than abatement, they pay the penalty instead. As
a consequence, a further decrease of the cap has no effect on realized emissions; the
probability of compliance with the cap is zero. At the same time, allowance prices are high
and the price variability is low, providing a strong incentive for investment in low emission
technologies. Therefore, in reality, companies would probably reduce their abatement
costs, which would allow them to further reduce their emissions; this effect is not captured
by the model.

In the course of its existence, the EU ETS has seen an increase in the length of one time
period from initially three years to ten years in the current phase. Our results on varying
the length of the time period are ambiguous: It is reasonable to expect that a longer time
period reduces the effects of uncertainty, as there is more time to react to unfavorable
random movements. In the simple model variant, we observe that the realized emissions
increase and approach the cap since companies plan for a smaller safety margin between
the cap and the realized emissions. At the same time, the probability of compliance with
the cap increases but stays well below 1; in accordance with the penalty, it is optimal
to allow for non-compliance with a certain probability. The most drastic effect can be
observed for the price variability, which is strongly reduced. The largest value used in
the numerical study is a time period of 100 years; this clearly undermines the purpose
of an ETS, as in this setting a targeted regulation of emissions is no longer possible.
Nevertheless, the results from the simple model variant suggest that it might be favorable
to choose a time period that is not too short; in accordance with these results, a length of
ten years as currently implemented in the EU ETS is probably still reasonable and serves to
reduce price variability. This conclusion can no longer be drawn from the results obtained
in the Brownian and Ornstein-Uhlenbeck model variant. While also in these variants,
the price variability decreases for long time periods, at the same time the probability of
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compliance decreases. Moreover, the tendencies observed for the mean realized emissions
and the mean prices suggest that for time periods longer than 10 years, the cap might be
violated in the mean and prices may become very low; but these projections would need to
be confirmed by further simulations. From the Brownian and Ornstein-Uhlenbeck model
variant, we therefore conclude that the time period probably should not be longer than 10
years. With regard to the probability of compliance, it might be favorable to choose an
even shorter time period of for example 6 years; in this case the price variability is already
greatly reduced, while the probability of compliance and the mean price are still high.

Except for the impact of varying the length of the time period, the conclusions drawn
from the three different model variants are largely similar. Particularly the Brownian and
Ornstein-Uhlenbeck model variant show a high similarity, which can easily be explained
by the similarity of their respective volatility functions G. While aggregate quantities
computed in the simple model variant are mostly also similar, there are considerable dif-
ferences in the behavior of individual paths of the processes X and S, and the distributions
of quantities computed from these differ. The main structural difference between the sim-
ple model on the one hand and the Brownian and Ornstein-Uhlenbeck model on the other
lies in the volatility function G of the process X: In the simple model variant, this is a con-
stant, while for the other two variants the volatility converges to zero as time approaches
the end of the time period. Both the model derivation and the intuitive understanding are
more plausible in the latter case: Xt models the emissions we expect for the entire time
period at a given time point t. As we proceed in time, the uncertainty in X should decrease
since more is known about the actual development of the emissions. If we derive X from a
model of the emission rate, as we did in the Brownian and Ornstein-Uhlenbeck model, this
structure arises naturally. In the simple model variant, we model X directly and assume
a constant volatility for the sake of simplicity, thus we cannot capture this effect. Hence
the Brownian and Ornstein-Uhlenbeck model represent the development of emissions in a
more realistic way; on the other hand, the theoretical foundation of the model can only be
provided in the simple model variant, and the analytical solution significantly simplifies
and accelerates simulations.

Multi-Period Model

Since its earliest phase between 2005 and 2007, the EU ETS has seen numerous changes.
An important modification is the possibility to transfer allowances from one time-period
to the next, which was enabled in 2008. If such a transfer is possible, an unused allowance
has a value at the end of the time period which corresponds to the price of an allowance
at the beginning of the next time period. In our model, this value is represented by the
price parameter si. We model several consecutive time periods and compute the value of
an unused allowance, i.e. the price parameter, from the pricing function of the subsequent
time period. At the same time, the price parameter allows us to capture the consequences
of non-compliance with more precision: The price of the allowances which have to be
surrendered in the next time period if the cap is violated can now be modeled by the price
parameter.

We introduce two different approaches to a multi-period model. In multi-period model
I, we make the simplifying assumption that the price parameter is constant throughout
each sub-period. Then we proceed similarly as in the one-period model, with some adap-
tions to the definition of the process X. The key step to enable the transfer of allowances
is done by a modification of the penalty function: In case of non-compliance, the price
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parameter is added to the penalty to account for the allowances that need to be handed in
in the next time period. If the system is compliant with the cap, the benefit from surplus
allowances is represented by a negative penalty equal to the price parameter. If we do not
want to allow for the transfer of allowances, the penalty can again be set to zero in the
case of compliance. This way to include the value of unused allowances in the model is
similar to the approach taken by Liang and Huang in their two-period model [LH20], but
they do not include the requirement to hand in the missing allowances in the next time
period in the case of non-compliance. Moreover, they compute the price parameter in a
different way by modeling it separately as a geometric Brownian motion.

As in the one-period model, we are able to solve the HJB equation analytically in
the simple model variant; with the help of the analytical solution, we show that the
verification theorem we applied in the one-period model holds, and therefore the solution
to the HJB equation delivers an optimal abatement rate and the minimum costs. We again
apply the theorems on existence and uniqueness of a solution to the SDE and convergence
of the Euler-Maruyama scheme to obtain that a unique solution exists, which can be
approximated by the Euler-Maruyama scheme.

Since the price of an allowance at the beginning of the next time period depends on
the BAU emissions expected for that time period, it is in fact not realistic to assume that
the price parameter is constant: If for instance the BAU emission rate of the current time
period is high, then due to the continuity of the emission rate, we might expect that in
the next time period, BAU emissions are also high, leading to a high allowance price. In
multi-period model II, we therefore introduce a second stochastic process Z to model the
BAU emissions anticipated for the next time period from the current state of the system.
From this process, we then compute the price anticipated for the beginning of the next
time period. Importantly, by construction, the process Z is strongly correlated to X.
This approach is in contrast to the one adopted by Liang and Huang: In their model, the
auction price ST serves a similar purpose as the price we compute from Z; but they model
the process S as a geometric Brownian motion which is assumed to be uncorrelated to the
process X. Both processes X and Z can be described by an SDE in all model variants.
From the SDE, we derive the HJB equation of the cost minimization problem and thus
obtain the characteristic PDE, which now has two variables in space. This PDE does not
allow for an analytical solution, also not in the simple model variant; therefore, it is not
possible to provide a verification of the HJB equation and to prove existence of a unique
solution to the SDE as well as convergence of the Euler-Maruyama scheme.

The numerical implementation of both multi-period models can be done in a similar
way to the one-period model; multi-period model II requires some more profound adap-
tations due to the additional dimension. Moreover, the solution of the PDE in this case
proved to be challenging numerically.

Before we discuss the results obtained in the multi-period models, we need to make the
following remark regarding the construction of the model. While the value of an allowance
is taken into account, both for the possible transfer of an unused allowance and for the
purchase of missing allowances in case of non-compliance, allowances are not in fact added
or subtracted from the cap of the subsequent time period. Thus a physical transfer in
either direction does not take place. At the same time, the model only works in a finite
time horizon, and both multi-period models require us to set the price parameter or the
price function for the last time period; in this way we artificially influence the model. As
a consequence, we mainly study the first time period of a six-period model; in the first
time period, the lack of a physical transfer of allowances has no effect, and at the same
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time, it is far away from the artificial price parameter or price function in the last time
period. In this way, the first time period might serve as a proxy for a time period in a
multi-period setting with infinite time horizon.

All simulations are conducted both in a setting where the transfer of allowances is
possible and a setting where this is not the case, so that we can assess the effects of
the transferability of allowances. In both multi-period models, results show clearly that
allowing for the transfer increases the probability of compliance and reduces the mean
realized emissions. In particular, both effects surpass the limits we observed for increasing
penalties, at least if the penalty takes a moderate value of 100 Euro or higher, meaning that
compliance probabilities close to 1 are reached. This is not surprising: If allowances can
be transferred, companies are rewarded for additional abatement efforts, while in the case
of no transfer, any abatement below the emission cap induces costs without any benefit
and is thus unfavorable. Moreover, if allowances can be transferred, allowance prices are
higher and price crashes down to zero are avoided. The policy goals of an ETS therefore
strongly benefit from the transferability of allowances.

Interestingly, in multi-period model II, the probability of compliance is higher than
in the one-period model or in multi-period model I, even if the transfer is not allowed.
The probability of compliance is dependent on the cost of non-compliance; in multi-period
model II, this in turn depends on the allowance price at the beginning of the next time pe-
riod and thus on the process Z. In particular, this implies that the cost of non-compliance
is subject to uncertainty. Due to the strong correlation of X and Z, an unfavorable devel-
opment of the emission rate increases the probability of non-compliance and at the same
time also the additional costs in this case. Therefore, the incentive to ensure compliance
with the cap is larger, leading to a higher probability of compliance. Another difference
between the two multi-period models can be observed for the price variability: While in
multi-period model II, the opportunity to transfer allowances on aggregate does not affect
the price variability, this quantity is reduced considerably in multi-period model I. How-
ever, in this model the paths of the process S are unrealistic in comparison to observed
allowance prices, as they are constant or linear in many cases and jump at the end of each
time period. In multi-period model II, more realistic price paths are obtained, thus we
conclude that allowing for the transfer of allowances does not impact the price variability.

Multi-period model II is more realistic from a theoretical perspective and delivers more
plausible results. On the other hand, simulations require a higher computational effort and
more storage capacities; the more complex PDE introduces numerical challenges, which
lead to crashed simulations. In addition, it is not possible to show that the computations
deliver an optimal abatement rate and that the resulting SDE has a unique solution. At the
same time, the high similarity between the results of multi-period model I and multi-period
model II justify the use of multi-period model I as an approximation to the multi-period
setting. For this model, it is possible to derive an analytical solution and provide the
theoretical backbone in case of the simple model variant. Simulations are considerably
simplified, also in the two other model variants. Moreover, multi-period model I can serve
as a model for a governmental buyback program as suggested by Hintermayer in [Hin20]
to set a minimum allowance price. By considering only one time-period and letting the
regulator fix the price parameter s = s1, we obtain a model of a setting where allowances
can be sold back to the regulator for the price s at the end of each time period. At
the same time, companies are allowed to buy additional allowances for the price s at the
beginning of the next time period to cover emissions exceeding the number of allowances
they were holding. In this way, the regulator can set a price corridor with minimum price
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s and maximum price s+ p by choosing s and p as desired. To obtain a system where the
regulator only sets the minimum price, the model would need to be adapted.

We additionally study the effect of changing the allowance cap over time as it is cur-
rently implemented in the EU ETS; due to the argumentation above, we conduct this
analysis only in the simple variant of multi-period model I. We let the cap decrease yearly
by a given percentage and compare this to the case of a constant cap. If allowances are
transferable, most of the additional abatement effort for a decreasing cap takes place in
early time periods; if on the other hand allowances cannot be transferred, abatement is
highest for the sub-periods in the middle of the overall time horizon. In this setting, we
obtain that an increasing penalty has a strong impact if allowances can be transferred.
Additionally, we study the impact of a cost coefficient that decreases in time due to tech-
nological progress; we obtain that the moderate yearly decrease of 1% shows very little
effect. It should be noted that the reliability of both these results is limited due to the
setup of the model; we set the price parameter for the last time period to zero, causing
the violation of the cap to be cheapest for this time period. This probably leads to low
abatement and little compliance in the last time period. Moreover, the analysis of a de-
creasing cap is strongly impaired by the fact that allowances are not actually transferred,
as discussed above.

Hence this points to a possible model extension: It is clearly desirable to incorporate
the impact of the allowance transfer on the cap in the model. While it is straight-forward
to adapt the cap after the preceding time period has been simulated, the question arises
how the possibly altered cap affects the cost minimization problem of each time period.
Another possible direction of future research is to develop a more elaborate method to
evaluate multi-period model II with the goal of avoiding numerical errors and reducing
the computational effort. As discussed above, multi-period model II simulates the paths
of the processes X and S more accurately, thus it enables a more accurate analysis of
regulatory settings. In both multi-period models presented here, we assume that the
abatement effort of the previous time period does not affect the BAU emissions of the
current time period. As long as abatement measures are assumed to consist of short-term
measures such as fuel-switching, this is a reasonable approach since these measures might
be reversed if allowance prices are too low. If we aim to take into account investments
in clean technology, which have a long-term effect on emissions, we need to allow BAU
emissions to react to the abatement of previous time periods.

Auctioning

Another important change that the EU ETS has seen after its initial phase is the introduc-
tion of the auctioning of allowances. To include this in our model, we need to add the costs
of purchasing allowances at the auction to the value function. Moreover, the auction itself
poses an additional optimization problem: The representative agent needs to determine
a demand schedule depending on the auction price in such a way that her total costs –
including the auction costs – are minimized. In line with the approach by Haita [Hai14]
and the second approach of Liang and Huang [LH20], we obtain a two-step optimization
problem: We first solve the optimization problem in the course of the trading period; the
solution to the problem can be obtained directly from the solution in the model without
auctioning. In the second step, we solve the optimization problem at the auction. By us-
ing that the abatement rate u minimizes the costs from penalty payment and abatement,
we derive a necessary condition for the demand delivering minimum costs. We assume
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that the market at the auction clears and thus obtain an expression for the auction price.
Under some assumptions, which can only be guaranteed in the simple model variant, we
show that the auction price is equal to the allowance price at the beginning of the trading
period. This is plausible since the agent does not gain any additional information between
the auction and the beginning of the trading period. Moreover, this result is in line with a
result by Haita: In her static model, she was able to show that the auction price is equal
to the price on the allowance market. We then show that the introduction of auctioning to
the model does not affect the processes X and S, as long as the total amount of allocated
allowances remains the same. Thus in particular for the results presented above, which
solely concern the realized emissions, the compliance probability and the behavior of the
allowance price, it is not relevant whether allowances are auctioned or distributed for free.
On the other hand, the introduction of auctioning has a large effect on the total costs
arising in the system: By simulating an ETS with and without auctioning, we obtain that
the costs of purchasing the allowances at an auction by far surpasses the costs arising from
emission abatement and penalty payments. The explanation behind this observation is
that a price has to be paid for every ton of emissions if allowances are auctioned. On the
other hand, costs of abatement and penalty payments only arise for the emissions which
are abated or surpass the cap; these usually comprise a fraction of total emissions.

Also in the auction model, further extensions are conceivable. For example, an in-
tegration with both multi-period models is of interest to further align the model to the
current state of the EU ETS. We expect that this would lead to similar results as in the
one-period auction model; still, it would be valuable to verify this projection.

Summary and Concluding Remarks

This thesis provides a thorough analysis of the possible outcomes in an ETS within a
stochastic setting, showing that the introduction of uncertainty has a relevant impact on
the system. In particular, we obtain that compliance with the emission cap cannot be
guaranteed, especially in a one-period framework. Our results stress that allowing for the
transfer of allowances (i.e. banking) has a huge positive impact on desirable properties
of the development in the ETS. Moreover, we conclude that a sufficiently high penalty
is important to increase the probability of compliance, while it is not effective to choose
a very large penalty. At the same time, the model suggests that the cap should be
chosen in accordance with the expected BAU emissions; in particular, it should not be too
large. These results, at least in the one-period setting, are not influenced if allowances are
auctioned instead of being allocated for free.

While the multi-period setting and the introduction of auctioning serve to align the
model to the framework of the EU ETS, some important features are not included in
the model. The multi-period models lack the physical transfer of allowances; and more
complex mechanisms of the EU ETS such as the market stability reserve are not included.
Since uncertainty has such a notable impact on an ETS, a stochastic model that closely
reflects the EU ETS in its current state could provide a valuable tool to assess further
policy modifications. However, the model presented here is already complex, so that the
integration of an intricate mechanism like the market stability reserve might prove to be
challenging.
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Appendix A

Derivatives and other Auxiliary
Computations

This section serves to provide the derivation of the various derivatives of the PDE solution
in the simple model variant as needed in the course of the thesis. As another auxiliary
computation, we consider the quadratic covariation of the shifted Brownian motion W i

required in both multi-period models.

A.1 Derivatives in the One-Period Model

In Section 2.3.1 we derived a solution of the characteristic PDE for the simple model
variant as

V (t, x) = −cσ2 ln


(

1 + erf
(

e0−x√
2σ
√
T−t

))
+
(

1− erf
(
c(e0−x)+p(T−t)√

2cσ
√
T−t

))
e

2cp(e0−x)+p2(T−t)
2c2σ2

2

.
Before we compute the derivative, we first introduce some auxiliary functions1

F1(t, x) = 1− erf

(
ce0 − cx+ p(T − t)√

2cσ
√
T − t

)
F2(t, x) = 1 + erf

(
e0 − x√

2σ
√
T − t

)
E1(t, x) = e

(c(e0−x)+p(T−t))2

2c2σ2(T−t)

E2(t, x) = e
(e0−x)2

2σ2(T−t)

E3(t, x) = e
2cp(e0−x)+p2(T−t)

2c2σ2 .

By inserting these functions, we may express V as

V (t, x) = −cσ2 ln

(
F2(t, x) + F1(t, x) · E3(t, x)

2

)
.

1These are identical to the auxiliary functions introduced in Section 2.3.2.
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A.1.1 First Derivative Vx

With the expression above for Vx, we compute the derivative with respect to x as

Vx(t, x) = −cσ2 2

F2(t, x) + F1(t, x) · E3(t, x)

· 1

2
(F2,x(t, x) + F1,x(t, x) · E3(t, x) + F1(t, x) · E3,x) ,

where F1,x, F2,x and E3,x each denote the corresponding partial derivative with respect to
x. We have

F1,x(t, x) = − 2√
π

e
− (c(e0−x)+p(T−t))2

2c2σ2(T−t) ·
(
− 1√
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√
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)
=
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√
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· 1
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2√
π

e
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(
− 1√

2σ
√
T − t

)
= − 2√

2πσ
√
T − t

· 1

E2(t, x)

E3,x(t, x) = E3(t, x) ·
(
− 2cp

2c2σ2

)
= − p

cσ2
E3(t, x).

Furthermore, we can show that E1(t, x) = E2(t, x)E3(t, x) by computing

E1(t, x) = e
(c(e0−x)+p(T−t))2

2c2σ2(T−t) = e
c2(e0−x)2+2cp(e0−x)(T−t)+p2(T−t)2

2c2σ2(T−t)

= e
(e0−x)2

2σ2(T−t) · e
2cp(e0−x)+p2(T−t)

2c2σ2 = E2(t, x)E3(t, x).

This also implies that E3(t,x)
E1(t,x) = 1

E2(t,x) . Thus we have

Vx(t, x) = −cσ2
− 2√

2πσ
√
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1
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2πσ
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p
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.

By applying the definitions of the auxiliary functions again, we then obtain

Vx(t, x) =
p

1 +
e
− 2cp(e0−x)+p2(T−t)

2c2σ2

(
1+erf

(
e0−x√
2(T−t)σ

))
1−erf

(
ce0−cx+p(T−t)√

2(T−t)cσ

)
.

A.1.2 Second Derivative Vxx

We proceed similarly for the second derivatives. We start from Vx given as

Vx(t, x) =
pF1(t, x)E3(t, x)

F2(t, x) + F1(t, x)E3(t, x)
.
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For ease of notation, we will drop the “(t, x)” in the following. We first compute the
second derivative with respect to x. This can be expressed as

Vxx =
p (F1,xE3 + F1E3,x) (F2 + F1E3)− pF1E3 (F2,x + F1,xE3 + F1E3,x)

(F2 + F1E3)2

=
pF1,xE3 (F2 + F1E3) + pF1E3,x (F2 + F1E3)− pF1E3 (F2,x + F1,xE3 + F1E3,x)

(F2 + F1E3)2

=
pF1,xE3

F2 + F1E3
+
pF1E3,x (F2 + F1E3)− pF1E3 (F2,x + F1,xE3 + F1E3,x)

(F2 + F1E3)2

=: Axx +Bxx.

We consider the two fractions separately. For the first, we apply the derivatives of the
auxiliary functions as given above and recall that E3

E1
= 1

E2
to compute
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p
√

2
√
πσ
√
T − t (F2E2 + F1E1)

.

In the derivation of Vx, we have in particular seen that F2,x + F1,xE3 = 0. Then we have
for the second fraction

Bxx =
pF1E3,x (F2 + F1E3)− pF1E3 (F2,x + F1,xE3 + F1E3,x)

(F2 + F1E3)2
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(F2 + F1E3)2

=
pF1 F2E3,x
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We apply the derivative of E3,x as computed above and evaluate the square in the denom-
inator, resulting in

Bxx =
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F 2
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Combining these results, we have

Vxx(t, x) =
p
√
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T − t (F2E2 + F1E1)

− p2

cσ2
(
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) .
A.1.3 Second Derivative Vxt

For the mixed derivative Vxt, we again start from

Vx =
pF1E3

F2 + F1E3
.

We compute the derivative as

Vxt =
p (F1,tE3 + F1E3,t) (F2 + F1E3)− pF1E3 (F2,t + F1,tE3 + F1E3,t)
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where the partial derivatives with respect to t are given by
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With this, we compute
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We again split up the fraction

Vxt =
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and simplify the three terms separately2. For the first, we have with the derivatives of the
auxiliary functions computed above and the relation between E1, E2 and E3
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For the second term, we again apply the derivatives and evaluate the square in the de-
nominator
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F 2
1 E

2
3

F1 F2 E3

)
= − p3

2c2σ2
(

F2
F1 E3

+ 2 + F1 E3
F2

) .
2Note that the term Axt introduced here is split up further into two terms Axt and Dxt in the proof of

Proposition 2.7 (iv), where this derivative is needed
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For the last term, we apply the result computed above and again evaluate the square in
the denominator

Cxt = −pF1E3 (F2,t + F1,tE3)

(F2 + F1E3)2

= −
pF1 · E3

E2
· p√

2πcσ
√
T−t

F 2
2 + 2F2 F1E3 + F 2

1 E
2
3

= − p2

√
2πcσ

√
T − t

(
F 2

2 E2

F1E3
+ 2 F1 F2 E2 E3

F1 E3
+

F 2
1 E2 E2

3
F1 E3

)
= − p2

√
2πcσ

√
T − t

(
F 2

2 E2

F1E3
+ 2F2E2 + F1E2E3

)
= − p2

√
2πcσ

√
T − t

(
F 2

2 E2

F1E3
+ 2F2E2 + F1E1

) .

Finally, we combine these results to obtain

Vxt(t, x) =
p2

√
2πcσ

√
T − t (F2E2 + F1E1)

− p3

2c2σ2
(

F2
F1 E3

+ 2 + F1 E3
F2

)
− p2

√
2πcσ

√
T − t

(
F 2

2 E2

F1E3
+ 2F2E2 + F1E1

) − p(e0 − x)
√

2πσ(T − t)
3
2 (F2E2 + F1E1)

.

A.2 Derivatives in Multi-Period Model I

We have determined a solution of the characteristic PDE V i in Section 3.1.3 as

V i(t, x) = −cσ2 ln

[
1

2

(
1 + erf

(
c(e0 − x) + si(∆Ti − t)√

2cσ
√

∆Ti − t

))
e

2csi(e0−x)+(si)
2
(∆Ti−t)

2c2σ2

+
1

2

(
1− erf

(
c(e0 − x) +

(
p+ si

)
(∆Ti − t)√

2cσ
√

∆Ti − t

))
e

2c(p+si)(e0−x)+(p+si)
2
(∆Ti−t)

2c2σ2

]
.
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Again we introduce auxiliary functions similar to the ones for the one-period model of
Section A.1 as

F i1(t, x) = 1− erf

(
c(e0 − x) +

(
p+ si

)
(∆Ti − t)√

2cσ
√

∆Ti − t

)

F i2(t, x) = 1 + erf

(
c(e0 − x) + si(∆Ti − t)√

2cσ
√

∆Ti − t

)

Ei1(t, x) = e
(c(e0−x)+(p+si)(∆Ti−t))

2

2c2σ2(∆Ti−t)

Ei2(t, x) = e
(c(e0−x)+si(∆Ti−t))

2

2c2σ2(∆Ti−t)

Ei3(t, x) = e
2c(p+si)(e0−x)+(p+si)

2
(∆Ti−t)

2c2σ2

Ei4(t, x) = e
2csi(e0−x)+(si)

2
(∆Ti−t)

2c2σ2 .

Then we write

V i(t, x) = −cσ2 ln

(
Ei4(t, x)F2(t, x) + Ei3(t, x)F i1(t, x)

2

)
.

In the following, we will again drop the “(t, x)” where necessary to improve readability.

A.2.1 First Derivative V i
x

From the expression for V i, we compute the derivative with respect to x as

V i
x = −cσ2 2

Ei4 F
i
2 + Ei3 F

i
1

· 1

2

(
Ei4,x F

i
2 + Ei4 F

i
2,x + Ei3,x F

i
1 + Ei3 F

i
1,x

)
where we compute the partial derivatives as

F i1,x(t, x) = − 2√
π

e
−(c(e0−x)+(p+si)(∆Ti−t))

2

2c2σ2(∆Ti−t) ·
(
− c√

2cσ
√

∆T − t

)
=

√
2

√
πσ
√

∆T − t
1

E1(t, x)

F i2,x(t, x) =
2√
π

e
−(c(e0−x)+si(∆Ti−t))

2

2c2σ2(∆Ti−t) ·
(
− c√

2cσ
√

∆Ti − t

)
= −

√
2

√
πσ
√

∆Ti − t
1

E2(t, x)
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and for the exponential functions we have

Ei3,x(t, x) = e
2c(p+si)(e0−x)+(p+si)

2
(∆Ti−t)

2c2σ2 ·

(
−

2c
(
p+ si

)
2c2σ2

)

= −p+ si

cσ2
Ei3(t, x)

Ei4,x(t, x) = e
2csi(e0−x)+(si)

2
(∆Ti−t)

2c2σ2

(
− 2csi

2c2σ2

)
= − si

cσ2
Ei4(t, x).

Next we compute

Ei1(t, x)

Ei2(t, x)
= e

(c(e0−x)+(p+si)(∆Ti−t))
2

2c2σ2(∆Ti−t) e
−(c(e0−x)+si(∆Ti−t))

2

2c2σ2(∆Ti−t)

= e

c2(e0−x)2+2c(e0−x)(p+si)(∆Ti−t)+(p+si)
2
(∆Ti−t)

2−c2(e0−x)2−2csi(e0−x)(∆Ti−t)−(si)
2
(∆Ti−t)

2

2c2σ2(∆Ti−t)

= e

2c(e0−x)(p+si)(∆Ti−t)+(p+si)
2
(∆Ti−t)

2

2c2σ2(∆Ti−t) e
−

2csi(e0−x)(∆Ti−t)+(si)
2
(∆Ti−t)

2

2c2σ2(∆Ti−t)

=
Ei3(t, x)

Ei4(t, x)
.

Then clearly we also have
Ei4(t, x)

Ei2(t, x)
=
Ei3(t, x)

Ei1(t, x)

which implies that

Ei4(t, x)F i2,x(t, x) + Ei3(t, x)F i1,x(t, x)

= −
√

2
√
πσ
√

∆Ti − t
Ei4(t, x)

Ei2(t, x)
+

√
2

√
πσ
√

∆Ti − t
Ei3(t, x)

E1(t, x)
= 0.

We use this to further evaluate the inner derivative as

Ei4,x(t, x)F i2(t, x) + Ei4(t, x)F i2,x(t, x) + Ei3,x(t, x)F i1(t, x) + Ei3(t, x)F i1,x(t, x)

= − si

cσ2
Ei4(t, x)F i2(t, x)−

√
2

√
πσ
√

∆Ti − t
Ei4(t, x)

Ei2(t, x)
− p+ si

cσ2
Ei3(t, x)F i1(t, x)

+

√
2

√
πσ
√

∆Ti − t
Ei3(t, x)

Ei1(t, x)

= − si

cσ2
Ei4(t, x)F i2(t, x)− p+ si

cσ2
Ei3(t, x)F i1(t, x)

= − si

cσ2

(
Ei4(t, x)F i2(t, x) + Ei3(t, x)F i1(t, x)

)
− p

cσ2
Ei3(t, x)F i1(t, x).

Then we obtain

V i
x = − cσ2

Ei4 F
i
2 + Ei3 F

i
1

·
(
− si

cσ2

(
Ei4 F

i
2 + Ei3 F

i
1

))
− cσ2

Ei4 F
i
2 + Ei3 F

i
1

·
(
− p

cσ2
Ei3 F

i
1

)
= si +

pEi3 F
i
1

Ei4 F
i
2 + Ei3 F

i
1

= si +
p

Ei4 F
i
2

Ei3 F
i
1

+
Ei3 F

i
1

Ei3 F
i
1

= si +
p

1 +
Ei4 F

i
2

Ei3 F
i
1

.
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Furthermore, we have

Ei4(t, x)

Ei3(t, x)
= e

2csi(e0−x)+(si)
2
(∆Ti−t)

2c2σ2 e−
2c(p+si)(e0−x)+(p+si)

2
(∆Ti−t)

2c2σ2

= e
2csi(e0−x)+(si)

2
(∆Ti−t)−2cp(e0−x)−2csi(e0−x)−p2(∆Ti−t)−2psi(∆Ti−t)−(si)

2
(∆Ti−t)

2c2σ2

= e−
2cp(e0−x)+p(p+2si)(∆Ti−t)

2c2σ2 =:
1

Ei5(t, x)

which delivers the derivative Vx as

V i
x(t, x) = si +

p

1 +
F i2(t,x)

Ei5(t,x)F i1(t,x)

and by substituting the auxiliary functions again, we arrive at

V i
x(t, x) = si +

p

1 +
e
− 2cp(e0−x)+p(p+2si)(∆Ti−t)

2c2σ2

(
1+erf

(
c(e0−x)+si(∆Ti−t)√

2cσ
√

∆Ti−t

))
1−erf

(
c(e0−x)+(p+si)(∆Ti−t)√

2cσ
√

∆Ti−t

)
.

A.2.2 Second Derivative V i
xx

We start with the expression of the first derivative

V i
x = si +

pEi3 F
i
1

Ei4 F
i
2 + Ei3 F

i
1

as computed above. Then the second derivative can be written as

V i
xx =

p
(
Ei3,x F

i
1 + Ei3 F

i
1,x

) (
Ei4 F

i
2 + Ei3 F

i
1

)(
Ei4 F

i
2 + Ei3 F

i
1

)2
−
pEi3 F

i
1

(
Ei4,x F

i
2 + Ei4 F

i
2,x + Ei3,x F

i
1 + Ei3 F

i
1,x

)(
Ei4 F

i
2 + Ei3 F

i
1

)2 .

We now use that we have Ei4 F
i
2,x + Ei3 F

i
1,x = 0 as computed above and rewrite

V i
xx =

p
(
Ei3,x F

i
1 + Ei3 F

i
1,x

) (
Ei4 F

i
2 + Ei3 F

i
1

)
− pEi3 F i1

(
Ei4,x F

i
2 + Ei3,x F

i
1

)(
Ei4 F

i
2 + Ei3 F

i
1

)2
=

pEi3 F
i
1,x

Ei4 F
i
2 + Ei3 F

i
1

+
p
(
Ei3,x F

i
1 E

i
4 F

i
2 + Ei3,x F

i
1 E

i
3 F

i
1 − Ei3 F i1 Ei4,x F i2 − Ei3 F i1 Ei3,x F i1

)(
Ei4 F

i
2 + Ei3 F

i
1

)2
=

pEi3 F
i
1,x

Ei4 F
i
2 + Ei3 F

i
1

+
p
(
Ei3,x F

i
1 E

i
4 F

i
2 + Ei3 F

i
1 E4,x F

i
2

)(
Ei4 F

i
2 + Ei3 F

i
1

)2
=: Axx +Bxx.
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To simplify the first term, we apply the relationship
Ei1
Ei3

=
Ei2
Ei4

proven above and insert the

partial derivative F i1,x. Then

Axx =
p

√
2√

πσ
√

∆T−t
Ei3
Ei1

Ei4 F
i
2 + Ei3 F

i
1

=
p
√

2
√
πσ
√

∆Ti − t
(
Ei4 F

i
2 E

i
1

Ei3
+

Ei3 F
i
1 E

i
1

Ei3

)
=

p
√

2
√
πσ
√

∆Ti − t
(
Ei4 F

i
2 E

i
2

Ei4
+ Ei1 F

i
1

)
=

p
√

2
√
πσ
√

∆Ti − t
(
Ei2 F

i
2 + Ei1 F

i
1

) .
For the second, we have with the definition of Ei5 that

Bxx =
p
(
−p+si

cσ2 Ei3 F
i
1 E

i
4 F

i
2 − si

cσ2 E
i
3 F

i
1 E

i
4 F

i
2

)
(
Ei4 F

i
2 + Ei3 F

i
1

)2
=

−p p+2si

cσ2 Ei3 F
i
1 E

i
4 F

i
2

(Ei4)2 (F i2)2 + 2Ei3 F
i
1 E

i
4 F

i
2 + (Ei3)2 (F i1)2

= − p(p+ 2si)

cσ2
(
Ei4 F

i
2

Ei3 F
i
1

+ 2 +
Ei3 F

i
1

Ei4 F
i
2

)
= − p(p+ 2si)

cσ2
(

F i2
Ei5 F

i
1

+ 2 +
Ei5 F

i
1

F i2

) .
So by combining these results, we obtain

V i
xx =

p
√

2
√
πσ
√

∆Ti − t
(
Ei2 F

i
2 + Ei1 F

i
1

) − p(p+ 2si)

cσ2
(

F i2
Ei5 F

i
1

+ 2 +
Ei5 F

i
1

F i2

) .
A.2.3 Second Derivative V i

xt

We again start with the expression

V i
x(t, x) = si +

pEi3(t, x)F i1(t, x)

Ei4(t, x)F i2(t, x) + Ei3(t, x)F i1(t, x)
.

Then we write the derivative with respect to t as

V i
xt =

p
(
Ei3,t F

i
1 + Ei3 F

i
1,t

) (
Ei4 F

i
2 + Ei3 F

i
1

)(
Ei4 F

i
2 + Ei3 F

i
1

)2
−
pEi3 F

i
1

(
Ei4,t F

i
2 + Ei4 F

i
2,t + Ei3,t F

i
1 + Ei3 F

i
1,t

)(
Ei4 F

i
2 + Ei3 F

i
1

)2 .
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We compute the partial derivatives with respect to t as

F i1,t(t, x) = − 2√
π

e
−(c(e0−x)+(p+si)(∆Ti−t))

2

2c2σ2(∆Ti−t) ·

(
−
(
p+ si

)√
2cσ
√

∆Ti − t
2c2σ2(∆Ti − t)

−
(
c(e0 − x) +

(
p+ si

)
(∆Ti − t)

) √
2cσ(∆Ti − t)−

1
2 · 1

2 · (−1)

2c2σ2(∆Ti − t)

)

= − 1

Ei1(t, x)

(
−
(
p+ si

)√
2cσ
√

∆Ti − t√
πc2σ2(∆Ti − t)

+

√
2c2σ(e0 − x) 1

2
√

∆Ti−t
+ 1

2

(
p+ si

)√
2cσ
√

∆Ti − t
√
πc2σ2(∆Ti − t)

)

= − 1

Ei1(t, x)

−1
2 (p+ si)

√
2cσ
√

∆Ti − t+
√

2c2σ(e0 − x) 1
2
√

∆Ti−t√
πc2σ2(∆Ti − t)

=
1

Ei1(t, x)

(
p+ si√

2πcσ
√

∆Ti − t
− e0 − x
√

2πσ (∆Ti − t)
3
2

)

and

F i2,t(t, x) =
2√
π

e
−(c(e0−x)+si(∆Ti−t))

2

2c2σ2(∆Ti−t) ·

(
−si
√

2cσ
√

∆Ti − t
2c2σ2(∆Ti − t)

−
(
c(e0 − x) + si(∆Ti − t)

)√
2cσ 1

2(∆Ti − t)−
1
2 · (−1)

2c2σ2(∆Ti − t)

)

=
1

Ei2(t, x)

−si
√

2cσ
√

∆Ti − t+
√

2c2σ(e0 − x) 1
2
√

∆Ti−t
+ 1

2 s
i
√

2cσ
√

∆Ti − t
√
πc2σ2(∆Ti − t)

=
1

Ei2(t, x)

−1
2 s

i
√

2cσ
√

∆Ti − t+
√

2c2σ(e0 − x) 1
2
√

∆Ti−t√
πc2σ2(∆Ti − t)

=
1

Ei2(t, x)

(
− si√

2πcσ
√

∆Ti − t
+

e0 − x√
2πσ(∆Ti − t)

3
2

)
.

For the exponential functions, we obtain

Ei3,t(t, x) = e
2c(p+si)(e0−x)+(p+si)

2
(∆Ti−t)

2c2σ2 ·

(
−
(
p+ si

)2
2c2σ2

)

= −
(
p+ si

)2
2c2σ2

Ei3(t, x)

Ei4,t(t, x) = e
2csi(e0−x)+(si)

2
(∆Ti−t)

2c2σ2 ·

(
−
(
si
)2

2c2σ2

)

= −
(
si
)2

2c2σ2
Ei4(t, x).
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Next, with
Ei4
Ei2

=
Ei3
Ei1

as shown above, we compute

Ei4 F
i
2,t + Ei3 F

i
1,t =

Ei4
Ei2

(
− si√

2πcσ
√

∆Ti − t
+

e0 − x√
2πσ(∆Ti − t)

3
2

)

+
Ei3
Ei1

(
p+ si√

2πcσ
√

∆Ti − t
− e0 − x
√

2πσ (∆Ti − t)
3
2

)

=
Ei3
Ei1

(
− si√

2πcσ
√

∆Ti − t
+

e0 − x√
2πσ(∆Ti − t)

3
2

)

+
Ei3
Ei1

(
p+ si√

2πcσ
√

∆Ti − t
− e0 − x
√

2πσ (∆Ti − t)
3
2

)

=
Ei3
Ei1

p√
2πcσ

√
∆Ti − t

.

We rewrite the expression for V i
xt by splitting up the fraction as3

V i
xt =

p
(
Ei3,t F

i
1 + Ei3 F

i
1,t

) (
Ei4 F

i
2 + Ei3 F

i
1

)(
Ei4 F

i
2 + Ei3 F

i
1

)2
−
pEi3 F

i
1

(
Ei4,t F

i
2 + Ei4 F

i
2,t + Ei3,t F

i
1 + Ei3 F

i
1,t

)(
Ei4 F

i
2 + Ei3 F

i
1

)2
=
pEi3 F

i
1,t

(
Ei4 F

i
2 + Ei3 F

i
1

)
+ pEi3,t F

i
1 E

i
4 F

i
2(

Ei4 F
i
2 + Ei3 F

i
1

)2
+
pEi3,t F

i
1 E

i
3 F

i
1 − pEi3 F i1 Ei4,t F i2 − pEi3 F i1 Ei3,t F i1 − pEi3 F i1

(
Ei4 F

i
2,t + Ei3 F

i
1,t

)(
Ei4 F

i
2 + Ei3 F

i
1

)2
=

pEi3 F
i
1,t

Ei4 F
i
2 + Ei3 F

i
1

+
pF i1 F

i
2

(
Ei3,tE

i
4 − Ei3Ei4,t

)(
Ei4 F

i
2 + Ei3 F

i
1

)2 −
pEi3 F

i
1

(
Ei4 F

i
2,t + Ei3 F

i
1,t

)(
Ei4 F

i
2 + Ei3 F

i
1

)2
=: Axt +Bxt + Cxt.

3As in the one-period model, the term Axt is split up further into two terms Axt and Dxt in the proof
of Proposition 3.3 (iv), where this derivative is needed.
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We first consider the term Axt. By inserting for the partial derivative F i1,t and using that
Ei1
Ei3

=
Ei2
Ei4

, we have

Axt =
pEi3 F

i
1,t

Ei4 F
i
2 + Ei3 F

i
1

=

p
Ei3
Ei1

(
p+si√

2πcσ
√

∆Ti−t
− e0−x√

2πσ(∆Ti−t)
3
2

)
Ei4 F

i
2 + Ei3 F

i
1

=

p

(
p+si√

2πcσ
√

∆Ti−t
− e0−x√

2πσ(∆Ti−t)
3
2

)
Ei1 E

i
4

Ei3
F i2 +

Ei1 E
i
3

Ei3
F i1

=
p
(
p+ si

)
√

2πcσ
√

∆Ti − t
(
Ei2 F

i
2 + Ei1 F

i
1

) − p(e0 − x)
√

2πσ (∆Ti − t)
3
2
(
Ei2 F

i
2 + Ei1 F

i
1

) .
For the second term, we insert the expressions for Ei3,t and Ei4,t to rewrite

Bxt =
pF i1 F

i
2

(
Ei3,tE

i
4 − Ei3Ei4,t

)(
Ei4 F

i
2 + Ei3 F

i
1

)2
=

pF i1 F
i
2

(
−(p+si)

2

2c2σ2 Ei3E
i
4 +

(si)
2

2c2σ2 E
i
3E

i
4

)
(
Ei4 F

i
2 + Ei3 F

i
1

)2
=

pEi3 F
i
1 E

i
4 F

i
2

(si)
2−p2−2psi+(si)

2

2c2σ2

(Ei4)2 (F i2)2 + 2Ei3 F
i
1 E

i
4 F

i
2 + (Ei3)2 (F i1)2

= −
p2
(
p+ 2si

)
2c2σ2

(
Ei4 F

i
2

Ei3 F
i
1

+ 2 +
Ei3 F

i
1

Ei4 F
i
2

)
= −

p2
(
p+ 2si

)
2c2σ2

(
F i2

Ei5 F
i
1

+ 2 +
Ei5 F

i
1

F i2

) .
Finally, with the results from above and with

Ei4 E
i
1

Ei3
= Ei2, we have for the third term

Cxt = −
pEi3 F

i
1

(
Ei4 F

i
2,t + Ei3 F

i
1,t

)(
Ei4 F

i
2 + Ei3 F

i
1

)2
= −

pEi3 F
i
1
Ei3
Ei1

p√
2πcσ

√
∆Ti−t

(Ei4)2 (F i2)2 + 2Ei3 F
i
1 E

i
4 F

i
2 + (Ei3)2 (F i1)2

= − p2

√
2πcσ

√
∆Ti − t

(
(Ei4)2 (F i2)2 Ei1

(Ei3)2 F i1
+ 2

Ei1 E
i
3 F

i
1 E

i
4 F

i
2

(Ei3)2 F i1
+

(Ei3)2 (F i1)2 Ei1
(Ei3)2 F i1

)
= − p2

√
2πcσ

√
∆Ti − t

(
Ei2 E

i
4 (F i2)2

Ei3 F
i
1

+ 2
Ei1 E

i
4 F

i
2

Ei3
+ Ei1 F

i
1

)
= − p2

√
2πcσ

√
∆Ti − t

(
(Ei2)2 (F i2)2

Ei1 F
i
1

+ 2Ei2 F
i
2 + Ei1 F

i
1

) .
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Combining all terms delivers

V i
xt =

p
(
p+ si

)
√

2πcσ
√

∆Ti − t
(
Ei2 F

i
2 + Ei1 F

i
1

) − p(e0 − x)
√

2πσ (∆Ti − t)
3
2
(
Ei2 F

i
2 + Ei1 F

i
1

)
−

p2
(
p+ 2si

)
2c2σ2

(
F i2

Ei5 F
i
1

+ 2 +
Ei5 F

i
1

F i2

) − p2

√
2πcσ

√
∆Ti − t

(
(Ei2)2 (F i2)2

Ei1 F
i
1

+ 2Ei2 F
i
2 + Ei1 F

i
1

) .
A.3 Derivatives in the Auction Model

As argued in Section 4.1.1, we obtain the value function and the solution of the char-
acteristic PDE for the auction model, which is denoted by V A, from the corresponding
results in the one-period model by replacing e0 with eF +DA; we denote the corresponding
solution from the one-period model as V . Then V A = V + SADA and therefore

V A(t, x) = −cσ2 ln

1 + erf

(
eF+DA−x√

2σ2(T−t)

)
2

+

(
1− erf

(
c(eF+DA−x)+p(T−t)

cσ
√

2(T−t)

))
e

2cp(eF+DA−x)+p2(T−t)
2c2σ2

2

+ SADA.

Again we introduce auxiliary functions, almost identical to the ones in Section A.1; we
only need to replace all occurrences of e0 with eF +DA:

F1(t, x) = 1− erf

(
c(eF +DA)− cx+ p(T − t)√

2cσ
√
T − t

)
F2(t, x) = 1 + erf

(
eF +DA − x√

2σ
√
T − t

)
E1(t, x) = e

(c(eF+DA−x)+p(T−t))2

2c2σ2(T−t)

E2(t, x) = e
(eF+DA−x)2

2σ2(T−t)

E3(t, x) = e
2cp(eF+DA−x)+p2(T−t)

2c2σ2 .

Then we can write

V (t, x) = −cσ2 ln

(
F2(t, x) + E3(t, x)F1(t, x)

2

)
+ SADA.

A.3.1 First Derivative Vx

With the results from Section A.1.1, we directly see that the derivative can be written as

Vx(t, x) =
p

1 + F2(t,x)
F1(t,x)·E3(t,x)
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since this differs from the one-period model only by the constant SADA and by having
eF+DA instead of e0 in the auxiliary functions. By substituting for the auxiliary functions,
we obtain

Vx(t, x) =
p

1 +
e
− 2cp(eF+DA−x)+p2(T−t)

2c2σ2
(

1+erf
(
eF+DA−x√

2σ
√
T−t

))
1−erf

(
c(eF+DA)−cx+p(T−t)√

2cσ
√
T−t

)
.

A.3.2 First Derivative Vd

We now view the value function V as a function of t, x and of the auctioned amount of
allowances d = DA. Thus we write

V (t, x, d) = −cσ2 ln

1 + erf
(
eF+d−x√

2σ2t

)
+
(

1− erf
(
c(eF+d−x)+pt

cσ
√

2t

))
e

2cp(eF+d−x)+p2t

2c2σ2

2


+ SA d.

Accordingly, we redefine the auxiliary functions as

F1(t, x, d) = 1− erf

(
c(eF + d)− cx+ p(T − t)√

2cσ
√
T − t

)
F2(t, x, d) = 1 + erf

(
eF + d− x√

2σ
√
T − t

)
E1(t, x, d) = e

(c(eF+d−x)+p(T−t))2

2c2σ2(T−t)

E2(t, x, d) = e
(eF+d−x)2

2σ2(T−t)

E3(t, x, d) = e
2cp(eF+d−x)+p2(T−t)

2c2σ2

and write

V (t, x, d) = −cσ2 ln

(
F2(t, x, d) + E3(t, x, d)F1(t, x, d)

2

)
+ SA d.

We therefore have for the derivative with respect to d

Vd(t, x, d) = −cσ2 2

F2(t, x, d) + E3(t, x, d)F1(t, x, d)

· 1

2
(F2,d(t, x, d) + E3,d(t, x, d)F1(t, x, d) + E3(t, x, d)F1,d(t, x, d)) + SA

= −
cσ2 (F2,d(t, x, d) + E3,d(t, x, d)F1(t, x, d) + E3(t, x, d)F1,d(t, x, d))

F2(t, x, d) + E3(t, x, d)F1(t, x, d)
+ SA.
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We compute

F1,d(t, x, d) = − 2√
π

e
− (c(eF+d)−cx+p(T−t))2

2c2σ2(T−t)
c√

2cσ
√
T − t

= −
√

2
√
πσ
√
T − t

1

E1(t, x, d)

F2,d(t, x, d) =
2√
π

e
− (eF+d−x)2

2σ2(T−t)
1√

2σ
√
T − t

=

√
2

√
πσ
√
T − t

1

E2(t, x, d)

E3,d(t, x, d) =
2cp

2c2σ2
E3(t, x, d) =

p

cσ2
E3(t, x, d).

Similar to Section A.1.1, it can be shown that E1(t, x, d) = E2(t, x, d)E3(t, x, d). Thus we
obtain

F2,d(t, x, d) + E3(t, x, d)F1,d(t, x, d)

=

√
2

√
πσ
√
T − t

1

E2(t, x, d)
−

√
2

√
πσ
√
T − t

E3(t, x, d)

E1(t, x, d)

=

√
2

√
πσ
√
T − t

1

E2(t, x, d)
−

√
2

√
πσ
√
T − t

E3(t, x, d)

E2(t, x, d)E3(t, x, d)
= 0.

Then we have

Vd(t, x, d) = −
cσ2 p

cσ2 E3(t, x, d)F1(t, x, d)

F2(t, x, d) + E3(t, x, d)F1(t, x, d)
+ SA

= − p

1 + F2(t,x,d)
E3(t,x,d)F1(t,x,d)

+ SA.

A.3.3 Second Derivative Vxx

Similar to the case of the first derivative Vx, we obtain the second derivative Vxx directly
from the one-period model without auctioning by replacing e0 with eF+DA in the auxiliary
functions, thus we have

Vxx(t, x) =
p
√

2
√
πσ
√
T − t (F2E2 + F1E1)

− p2

cσ2
(

F2
F1 E3

+ 2 + F1 E3
F2

)
and with Proposition 4.1

Vdd(t, x) =
p
√

2
√
πσ
√
T − t (F2E2 + F1E1)

− p2

cσ2
(

F2
F1 E3

+ 2 + F1 E3
F2

) .
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To assess the sign of this expression, another formulation for Vdd might be more helpful.
From the derivation of Vxx in the one-period model without auctioning, we have

Vdd =
p (F1,xE3 + F1E3,x) (F2 + F1E3)− pF1E3 (F2,x + F1,xE3 + F1E3,x)

(F2 + F1E3)2

=
pF2 (F1,xE3 + F1E3,x) + pF1E3 (F1,xE3 + F1E3,x)

(F2 + F1E3)2

− pF1E3 F2,x − pF1E3 (F1,xE3 + F1E3,x)

(F2 + F1E3)2

=
pF2 F1,xE3 + pF2 F1E3,x − pF1E3 F2,x

(F2 + F1E3)2

=
pF2 · 2√

2πσ
√
T−t ·

1
E1
E3 + pF2 F1 ·

(
− p
cσ2 E3

)
− pF1E3 ·

(
− 2√

2πσ
√
T−t ·

1
E2

)
(F2 + F1E3)2

=
pE3

(
2√

2πσ
√
T−t

(
F2
E1

+ F1
E2

)
− p

cσ2 F1 F2

)
(F2 + F1E3)2 .

Also in this expression, it is not straight-forward to show that the nominator is positive.

A.4 Auxiliary Computations in the Multi-Period Model

A.4.1 Quadratic Covariation of W i

The shifted Brownian motionW i defined in Section 3.1 does not start in zero, asW i
0 = WTi ,

and is therefore not a standard Brownian motion. By introducing the shifted filtration
F i given by F it = FTi+t, we observe that W i satisfies all other properties of a Brownian
motion with respect to Fi. In particular, W i is adapted to F i and has independent,
normally distributed increments. Then for s < t, we have as in the standard case

E
[(
W i
t

)2 − t ∣∣F is] = E
[(
W i
t −W i

s +W i
s

)2 − t ∣∣Fs]
= E

[(
Eit −W i

s

)2]
+ 2W i

s E
[
W i
t −W i

s

]
+
(
W i
s

)2 − t
= t− s+

(
W i
s

)2 − t =
(
W i
s

)2 − s
and therefore the quadratic variation of W i is given as

[
W i
]
t

= t. With

Xi
t = Xi

0 −
∫ t

0
uisds+

∫ t

0
Gi(s)dW i

s

we obtain that [
Xi
]
t

=

[∫
Gi(s)dW i

s

]
t

=

∫ t

0

(
Gi(s)

)2
ds.

Similarly, with

Zit = Zi0 +

∫ t

0
H i(s)dW i

s ,
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we compute the quadratic variation

[
Zi
]
t

=

[∫
H i(s)dW i

s

]
t

=

∫ t

0

(
H i(s)

)2
ds

and the quadratic covariation

[
Xi, Zi

]
=

[∫
Gi(s)dW i

s ,

∫
H i(s)dW i

s

]
t

=

∫ t

0
Gi(s)H i(s)ds.
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Appendix B

Additional Proofs

This section provides additional proofs that were omitted in the main text of the thesis.

B.1 Properties of V i in Multi-Period Model I

In Section 3.1.3 we formulated the following statement on the properties of the PDE
solution V i in the simple variant of multi-period model I; since the proof is very similar
to the one provided for the corresponding statement in the one-period model, we did not
include it in the main part of the thesis.

Proposition 3.3. The function V i as given by (3.5) and its derivative V i
x given by (3.6)

satisfy the following properties:

(i) V i is infinitely differentiable on (−∞,∆Ti)× R, i.e. V i ∈ C∞ ((−∞,∆Ti)× R).

(ii) V i
x satisfies si ≤ V i

x(t, x) ≤ p+ si for all (t, x) ∈ [0,∆Ti]× R\{(∆Ti, e0)}, i.e. V i
x is

bounded.

(iii) For any t ∈ [0,∆Ti] we have

lim
x→∞

V i
x(t, x) = p+ si and lim

x→−∞
V i
x(t, x) = si.

(iv) Let ε > 0 arbitrary. Then the derivatives V i
xx and V i

xt are bounded on [0,∆Ti−ε]×R.

Proof. To simplify notation, we again introduce some auxiliary functions; note that these
are similar to the auxiliary functions for the one-period model in Section 2.3.2 and identical
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to the ones in Section A.2:

F i1(t, x) = 1− erf

(
c(e0 − x) +

(
p+ si

)
(∆Ti − t)√

2cσ
√

∆Ti − t

)

F i2(t, x) = 1 + erf

(
c(e0 − x) + si(∆Ti − t)√

2cσ
√

∆Ti − t

)

Ei1(t, x) = e
(c(e0−x)+(p+si)(∆Ti−t))

2

2c2σ2(∆Ti−t)

Ei2(t, x) = e
(c(e0−x)+si(∆Ti−t))

2

2c2σ2(∆Ti−t)

Ei3(t, x) = e
2c(p+si)(e0−x)+(p+si)

2
(∆Ti−t)

2c2σ2

Ei4(t, x) = e
2csi(e0−x)+(si)

2
(∆Ti−t)

2c2σ2

Ei5(t, x) = e
2cp(e0−x)+p(p+2si)(∆Ti−t)

2c2σ2 .

Due to the similarities to the auxiliary functions used in the one-period model, we directly
observe that for any x ∈ R and any t ∈ (−∞,∆Ti), all these functions are well-defined
and we have that

F i1(t, x) > 0 and F i2(t, x) > 0

as well as

Ei1(t, x) > 0, Ei2(t, x) > 0, Ei3(t, x) > 0, Ei4(t, x) > 0 and Ei5(t, x) > 0.

(i) We know that νi is infinitely differentiable on (0,∞)×R. Then after time reversion

ν̃i(t, x) =
Ei4(t, x)F i2(t, x) + Ei2(t, x)F i1(t, x)

2

is infinitely differentiable on (−∞,∆Ti)×R. Again all auxiliary functions are positive, so
the range of ν̃i is (0,∞). Since the back transformation is again essentially the natural
logarithm, the function V i as the composition of ν̃i and the back transformation is also
infinitely differentiable on (−∞,∆Ti)× R.

(ii) For t ∈ [0,∆Ti) and x ∈ R, we may write

V i
x(t, x) =

p

1 +
F i2(t,x)

Ei5(t,x)F i1(t,x)

+ si.

Since the auxiliary functions are all positive, we obtain that

0 ≤ p

1 +
F i2(t,x)

Ei5(t,x)F i1(t,x)

≤ p

and thus
si ≤ V i

x(t, x) ≤ p+ si

follows. For t = ∆Ti and x 6= e0 we have

V i
x(∆Ti, x) =

{
p+ si if x > e0,

si if x < e0

and the claim follows immediately.

262



CHAPTER B. ADDITIONAL PROOFS

(iii) We assume that t ∈ [0,∆Ti) since for t = ∆Ti this can be seen directly. We start
with the limit x→∞. We have

lim
x→∞

F i2(t, x) = 0 and lim
x→∞

Ei5(t, x) = 0

and with l’Hôpital’s rule we compute

lim
x→∞

F i2(t, x)

Ei5(t, x)
= lim

x→∞

1 + erf
(
c(e0−x)+si(∆Ti−t)√

2cσ
√

∆Ti−t

)
e

2cp(e0−x)+p(p+2si)(∆Ti−t)
2c2σ2

= lim
x→∞

∂
∂x

(
1 + erf

(
c(e0−x)+si(∆Ti−t)√

2cσ
√

∆Ti−t

))
∂
∂xe

2cp(e0−x)+p(p+2si)(∆Ti−t)
2c2σ2

= lim
x→∞

−
√

2√
πσ
√

∆Ti−t
e
−(c(e0−x)+si(∆Ti−t))

2

2c2σ2(∆Ti−t)

− p
cσ2 e

2cp(e0−x)+p(p+2si)(∆Ti−t)
2c2σ2

= lim
x→∞

√
2cσ

√
πp
√

∆Ti − t
e

−(c(e0−x)+si(∆Ti−t))
2
−2cp(e0−x)(∆Ti−t)−p(p+2si)(∆Ti−t)

2

2c2σ2(∆Ti−t) = 0

since the term of highest order in the polynomial in the exponential function has a negative
coefficient. Then with limx→∞ F

i
1(t, x) = 2 we obtain

lim
x→∞

V i
x(t, x) = lim

x→∞

 p

1 +
F i2(t,x)

Ei5(t,x)F i1(t,x)

+ si

 =
p

1 + 0
+ si = p+ si.

For the limit x→ −∞ we first observe that

lim
x→−∞

F i1(t, x) = 0 and lim
x→−∞

1

Ei5(t, x)
= 0.

We then apply l’Hôpital’s rule as

lim
x→−∞

(
Ei5(t, x)

)−1

F i1(t, x)

= lim
x→−∞

e−
2cp(e0−x)+p(p+2si)(∆Ti−t)

2c2σ2

1− erf
(
c(e0−x)+(p+si)(∆Ti−t)√

2cσ
√

∆Ti−t

) = lim
x→−∞

∂
∂x e−

2cp(e0−x)+p(p+2si)(∆Ti−t)
2c2σ2

∂
∂x

(
1− erf

(
c(e0−x)+(p+si)(∆Ti−t)√

2cσ
√

∆Ti−t

))
= lim

x→−∞

p
cσ2 e−

2cp(e0−x)+p(p+2si)(∆Ti−t)
2c2σ2

√
2√

πσ
√

∆Ti−t
e
− (c(e0−x)+(p+si)(∆Ti−t))

2

2c2σ2(∆Ti−t)

= lim
x→−∞

√
πp
√

∆Ti − t√
2cσ

e
(c(e0−x)+(p+si)(∆Ti−t))

2
−2cp(e0−x)(∆Ti−t)−p(p+2si)(∆Ti−t)

2

2c2σ2(∆Ti−t) =∞

because in this case the term of highest order has a positive coefficient. Since we have
limx→−∞ F

i
2(t, x) = 2, this results in

lim
x→−∞

V i
x(t, x) = lim

x→−∞

 p

1 +
F i2(t,x)

Ei5(t,x)F i1(t,x)

+ si

 = 0 + si = si.
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(iv) Let ε > 0 be arbitrary and let t ∈ [0,∆Ti − ε]. We first consider the derivative
V i
xx. As can be seen in Section A.2.2, we can write this as

V i
xx(t, x) =

p
√

2
√
πσ
√

∆Ti − t
(
Ei2(t, x)F i2(t, x) + Ei1(t, x)F i1(t, x)

)
− p(p+ 2si)

cσ2
(

F i2(t,x)

Ei5(t,x)F i1(t,x)
+ 2 +

Ei5(t,x)F i1(t,x)

F i2(t,x)

)
=: Axx +Bxx.

Since the auxiliary functions are positive, we have for the second term Bxx

Bxx = − p(p+ 2si)

cσ2
(

F i2(t,x)

Ei5(t,x)F i1(t,x)
+ 2 +

Ei5(t,x)F i1(t,x)

F i2(t,x)

) ≥ −p(p+ 2si)

2cσ2

and

Bxx = − p(p+ 2si)

cσ2
(

F i2(t,x)

Ei5(t,x)F i1(t,x)
+ 2 +

Ei5(t,x)F i1(t,x)

F i2(t,x)

) < 0,

thus Bxx is bounded. For the term Axx, we also obtain the lower bound directly as

Axx =
p
√

2
√
πσ
√

∆Ti − t
(
Ei2(t, x)F i2(t, x) + Ei1(t, x)F i1(t, x)

) > 0

with the auxiliary functions being positive. For the upper bound, we have that Ei1(t, x) ≥ 1
and Ei2(t, x) ≥ 1 as in the one-period model. We again perform a case distinction: First
we assume that x ≤ e0. We may show that then F i2(t, x) ≥ 1 which implies

Ei2(t, x)F i2(t, x) + Ei1(t, x)F i1(t, x) > 1.

Next we assume that x ≥ e0 + (p+ si)∆Ti/c. In this case we obtain that F i1(t, x) ≥ 1 and
therefore we again have

Ei2(t, x)F i2(t, x) + Ei1(t, x)F i1(t, x) > 1.

Together these results imply that if x ≤ e0 or x ≥ e0 + (p+ si)∆Ti/c, we have

Axx =
p
√

2
√
πσ
√

∆Ti − t
(
Ei2(t, x)F i2(t, x) + Ei1(t, x)F i1(t, x)

) ≤ p
√

2
√
πσ
√

∆Ti − t
.

This expression is increasing in t and therefore we obtain an upper bound by setting
t = ∆Ti − ε as

Axx <
p
√

2√
πσ
√
ε
.

Thus we have shown that V i
xx is bounded on [0,∆Ti−ε]×((−∞, e0] ∪ [e0 + (p+ si)∆Ti/c,∞)).

But since V i
xx is continuous by part (i) of this Proposition, we may apply the extreme value

theorem to conclude that V i
xx is also bounded on the bounded and closed set [0,∆Ti−ε]×

[e0, e0 + (p+ si)∆Ti/c]. By combining these results, the claim follows.
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It remains to consider the derivative V i
xt. In Section A.2.3 we derive this as

V i
xt(t, x) =

p
(
p+ si

)
√

2πcσ
√

∆Ti − t
(
Ei2(t, x)F i2(t, x) + Ei1(t, x)F i1(t, x)

)
−

p2
(
p+ 2si

)
2c2σ2

(
F i2(t,x)

Ei5(t,x)F i1(t,x)
+ 2 +

Ei5(t,x)F i1(t,x)

F i2(t,x)

)
− p2

√
2πcσ

√
∆Ti − t

(
(Ei2(t,x))2 (F i2(t,x))2

Ei1(t,x)F i1(t,x)
+ 2Ei2(t, x)F i2(t, x) + Ei1(t, x)F i1(t, x)

)
− p(e0 − x)
√

2πσ (∆Ti − t)
3
2
(
Ei2(t, x)F i2(t, x) + Ei1(t, x)F i1(t, x)

)
=: Axt +Bxt + Cxt +Dxt.

We observe that similar to the one-period model we have Axt = p+si

2 Axx and Bxt = p
2 B

xt,
therefore it remains to consider the terms Cxt and Dxt. Since the auxiliary functions are
positive, we have

Cxt = − p2

√
2πcσ

√
∆Ti − t

(
(Ei2(t,x))2 (F i2(t,x))2

Ei1(t,x)F i1(t,x)
+ 2Ei2(t, x)F i2(t, x) + Ei1(t, x)F i1(t, x)

)
> − p2

√
2πcσ

√
∆Ti − t

(
Ei2(t, x)F i2(t, x) + Ei1(t, x)F i1(t, x)

)
> − p2 + psi√

2πcσ
√

∆Ti − t
(
Ei2(t, x)F i2(t, x) + Ei1(t, x)F i1(t, x)

) = −Axt = −p+ si

2
Axx

and Axx is bounded from below as shown above. The upper bound is simply given as

Cxt = − p2

√
2πcσ

√
∆Ti − t

(
(Ei2(t,x))2 (F i2(t,x))2

Ei1(t,x)F i1(t,x)
+ 2Ei2(t, x)F i2(t, x) + Ei1(t, x)F i1(t, x)

) < 0.

For the final term Dxt, we again perform a case distinction. In the first case, we assume
that x < e0, which directly delivers the upper bound as

Dxt = − p(e0 − x)
√

2πσ (∆Ti − t)
3
2
(
Ei2(t, x)F i2(t, x) + Ei1(t, x)F i1(t, x)

) < 0.

Furthermore, we may show that F i2(t, x) > 1 and then we have

Dxt = − p(e0 − x)
√

2πσ (∆Ti − t)
3
2
(
Ei2(t, x)F i2(t, x) + Ei1(t, x)F i1(t, x)

)
> − p(e0 − x)
√

2πσ (∆Ti − t)
3
2 Ei2(t, x)

=: g(t, x).

As in the one-period model we have limx→−∞ p(e0 − x) =∞ and

lim
x→−∞

√
2πσ (∆Ti − t)

3
2 Ei2(t, x) = lim

x→−∞

√
2πσ (∆Ti − t)

3
2 e

(c(e0−x)+si(∆Ti−t))
2

2c2σ2(∆Ti−t) =∞,
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so we can apply l’Hôpital’s rule to compute the limit of g as x→∞. We have

∂Ei2(t, x)

∂x
= e

(c(e0−x)+si(∆Ti−t))
2

2c2σ2(∆Ti−t)
2
(
c(e0 − x) + si(∆Ti − t)

)
2c2σ2(∆Ti − t)

· (−c)

= −c(e0 − x) + si(∆Ti − t)
cσ2(∆Ti − t)

Ei2(t, x)

and therefore

lim
x→−∞

g(t, x) = − lim
x→−∞

p(e0 − x)
√

2πσ (∆Ti − t)
3
2 Ei2(t, x)

= − lim
x→−∞

−p
−
√

2πσ (∆Ti − t)
3
2
c(e0−x)+si(∆Ti−t)

cσ2(∆Ti−t) Ei2(t, x)

= − lim
x→−∞

p
√

2π
cσ2

√
∆Ti − t (c(e0 − x) + si(∆Ti − t)) Ei2(t, x)

= 0.

Then we compute

∂Ei2(t, x)

∂t
= e

(c(e0−x)+si(∆Ti−t))
2

2c2σ2(∆Ti−t)

(
2
(
c(e0 − x) + si(∆Ti − t)

)
· (−si) · 2c2σ2(∆Ti − t)

4c4σ4(∆Ti − t)2

−
(
c(e0 − x) + si(∆Ti − t)

)2 · (−2c2σ2)

4c4σ4(∆Ti − t)2

)

= Ei2(t, x)

(
c(e0 − x) + si(∆Ti − t)

) (
−2si(∆Ti − t) + c(e0 − x) + si(∆Ti − t)

)
2c2σ2(∆Ti − t)2

= Ei2(t, x)
c2(e0 − x)2 −

(
si
)2

(∆Ti − t)2

2c2σ2(∆Ti − t)2

and therefore we have

∂g(t, x)

∂t
=

p(e0 − x)
√

2πσEi2(t, x)

2πσ2(∆Ti − t)3Ei2(t, x)2

(
3

2
(∆Ti − t)

1
2 · (−1)

+ (∆Ti − t)
3
2
c2(e0 − x)2 −

(
si
)2

(∆Ti − t)2

2c2σ2(∆Ti − t)2

)

=
p(e0 − x)√

2πσ(∆Ti − t)3Ei2(t, x)

(
−3

2

√
∆Ti − t+

c2(e0 − x)2 −
(
si
)2

(∆Ti − t)2

2c2σ2
√

∆Ti − t

)
.

Since we assumed x < e0, this is positive if

c2(e0 − x)2 −
(
si
)2

(∆Ti − t)2

2c2σ2
√

∆Ti − t
>

3

2

√
∆Ti − t

which is equivalent to

(e0 − x)2 > 3σ2(∆Ti − t) +

(
si
)2
c2

(∆Ti − t)2.
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We know that e0 − x > 0, so we can equivalently require

x < e0 −

√
3σ2(∆Ti − t) +

(si)2

c2
(∆Ti − t)2.

This expression is increasing in t, implying for any t ∈ [0,∆Ti − ε] that

e0 −

√
3σ2∆Ti +

(si)2

c2
∆T 2

i < e0 −

√
3σ2(∆Ti − t) +

(si)2

c2
(∆Ti − t)2.

Thus for any x satisfying

x < e0 −

√
3σ2∆Ti +

(si)2

c2
∆T 2

i ,

we have that ∂
∂tg(t, x) > 0, which implies that g is strictly increasing in t. Therefore we

may conclude that
g(t, x) ≥ g(0, x) for any t ∈ [0,∆Ti − ε].

But since limx→−∞ g(0, x) = 0 as shown above, we may now apply Lemma 2.8: We choose
K > 0 such that there exists x̃1 so that |g(0, x)| < K for all x < x̃1. So by setting

x1 = min

x̃1, e0 −

√
3σ2∆Ti +

(si)2

c2
∆T 2

i

 ,

we obtain that
g(0, x) > −K for all x < x1.

Hence we have a lower bound for Dxt with

Dxt > g(t, x) ≥ g(0, x) > −K.

For the second case, we assume that x > e0 + (p+ si)∆Ti/c. Then in particular we have
x > e0 and therefore

Dxt = − p(e0 − x)
√

2πσ (∆Ti − t)
3
2
(
Ei2(t, x)F i2(t, x) + Ei1(t, x)F i1(t, x)

) > 0.

For the lower bound, we recall that F i1(t, x) ≥ 1, so we have

Dxt = − p(e0 − x)
√

2πσ (∆Ti − t)
3
2
(
Ei2(t, x)F i2(t, x) + Ei1(t, x)F i1(t, x)

)
< − p(e0 − x)
√

2πσ (∆Ti − t)
3
2 Ei1(t, x)

=: h(t, x).

By applying l’Hôpital’s rule, we obtain that limx→∞ h(t, x) = 0, which works in the same
way as in the one-period model. We then compute the derivative with respect to t. In
analogy to the above, we have

∂Ei1(t, x)

∂t
= Ei1(t, x)

c2(e0 − x)2 −
(
p+ si

)2
(∆Ti − t)2

2c2σ2(∆Ti − t)2
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and therefore

∂h(t, x)

∂t
=

p(e0 − x)√
2πσ(∆Ti − t)3Ei1(t, x)

(
c2(e0 − x)2 −

(
p+ si

)2
(∆Ti − t)2

2c2σ2
√

∆Ti − t
− 3

2

√
∆Ti − t

)
.

Since now x > e0, this expression is negative if

c2(e0 − x)2 −
(
p+ si

)2
(∆Ti − t)2

2c2σ2
√

∆Ti − t
>

3

2

√
∆Ti − t,

which is equivalent to

(e0 − x)2 > 3σ2(∆Ti − t) +

(
p+ si

)2
c2

(∆Ti − t)2.

With e0 − x < 0, we rewrite this as

−(e0 − x) >

√
3σ2(∆Ti − t) +

(p+ si)2

c2
(∆Ti − t)2

and, equivalently, as

x > e0 +

√
3σ2(∆Ti − t) +

(p+ si)2

c2
(∆Ti − t)2.

Here the right-hand side is decreasing in t, so this inequality holds for all t ∈ [0,∆Ti − ε]
if

x > e0 +

√
3σ2∆Ti +

(p+ si)2

c2
∆T 2

i .

Then ∂
∂th(t, x) < 0 and therefore h is strictly decreasing in t on [0,∆Ti− ε], which implies

that
h(t, x) ≤ h(0, x) for any t ∈ [0,∆Ti − ε].

We have limx→∞ h(0, x), so we proceed as above by applying Lemma 2.8: We choose
K > 0, then there exists x̃2 such that |h(0, x)| < K for all x > x̃2. Therefore by setting

x2 := max

x̃2, e0 +

√
3σ2∆Ti +

(p+ si)2

c2
∆T 2

i

 ,

we have that

h(t, x) ≤ h(0, x) < K for all t ∈ [0,∆Ti − ε] and for all x > x2,

which delivers the upper bound as

Dxt < h(t, x) ≤ h(0, x) < K

on [0,∆Ti − ε]× (x2,∞).

Thus we have shown that V i
xt is bounded on [0,∆Ti− ε]× ((−∞, x1) ∪ (x2,∞)). Since

V i
xt is continuous on the bounded and closed set [0,∆Ti−ε]×[x1, x2], we apply the extreme

value theorem to conclude that V i
xt is bounded on [0,∆Ti − ε]× R.
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Additionally, in Section 3.1.3, we stated two results on the PDE solution V i and the
corresponding control ui, which served to ensure applicability of the verification theorem
for the HJB equations. The proofs to these statements can be found in the following.

Proposition 3.4. The functions V i given by equation (3.5) for t ∈ [0,∆Ti) and by the
terminal condition of the PDE for t = ∆Ti satisfy the requirements of the verification
theorem for the HJB equation, i.e. we have

(i) V i is continuously differentiable in t and twice continuously differentiable in x on
[0,∆Ti)× R,

(ii) V i is continuous on [0,∆Ti]× R,

(iii) V i satisfies a quadratic growth condition, uniformly in t, i.e. there exists K > 0 such
that

|V i(t, x)| ≤ K
(
1 + |x|2

)
for all t ∈ [0,∆Ti].

Proof. (i) This follows directly with Proposition 3.3 (i).

(ii) In Proposition 3.2 we have shown that the solution νi of the transformed PDE
converges to the initial value function when (t, x) → (0, ξ0). For the solution after time
reversion ν̃i, we therefore have

lim
(t,x)→(∆Ti,ξ∆Ti )

ν̃i(t, x) = e−
Pi(ξ∆Ti)

cσ2

for any ξ∆Ti ∈ R. As discussed in the proof of Proposition 3.3 (i), the back transformation
function is essentially the natural logarithm and therefore continuous on (0,∞), which is
the image of [0,∆Ti)×R under ν̃i. Thus also the back transformed function V i converges
to the initial value function given by P i, i.e.

lim
(t,x)→(∆Ti,ξ∆Ti )

V i(t, x) = P i(ξ∆Ti).

Since V i is continuous on [0,∆Ti)×R and P i is continuous on R, we conclude that V i is
continuous on [0,∆Ti]× R.

(iii) We first let t ∈ [0,∆Ti) arbitrary. Then we have with Proposition 3.3 that si ≤
V i
x(t, x) ≤ p + si for any x ∈ R. By applying the fundamental theorem of calculus we

obtain

|V i(t, x)| =
∣∣∣∣∫ x

e0

V i
x(t, y)dy + V i(t, e0)

∣∣∣∣
≤
∫ x

e0

|V i
x(t, y)|dy + |V i(t, e0)| ≤

(
p+ si

)
|x− e0|+ |V i(t, e0)|.

We now consider V i(t, e0) given as

V i(t, e0) = −cσ2 ln

[
1

2

(
1 + erf

(
si
√

∆Ti − t√
2cσ

))
e
(si)

2
(∆Ti−t)

2c2σ2

+
1

2

(
1− erf

((
p+ si

)√
∆Ti − t√

2cσ

))
e
(p+si)

2
(∆Ti−t)

2c2σ2

]
.
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Since the arguments of the error functions are non-negative, we have

1 ≤ 1 + erf

(
si
√

∆Ti − t√
2cσ

)
≤ 2 and 0 ≤ 1− erf

((
p+ si

)√
∆Ti − t√

2cσ

)
≤ 1,

and as the arguments of the exponential functions are also non-negative, it holds that

e
(si)

2
(∆Ti−t)

2c2σ2 ≥ 1 and e
(p+si)

2
(∆Ti−t)

2c2σ2 ≥ 1.

Then we have

1

2
≤ 1

2

(
1 + erf

(
si
√

∆Ti − t√
2cσ

))
e

(si)
2
(∆Ti−t)

2c2σ2 +
1

2

(
1− erf

((
p+ si

)√
∆Ti − t√

2cσ

))
e

(p+si)
2
(∆Ti−t)

2c2σ2

≤ e
(si)

2
∆Ti

2c2σ2 +
1

2
e

(p+si)
2
∆Ti

2c2σ2 .

Since the logarithm is monotonically increasing, this is equivalent to

−cσ2 ln

(
1

2

)
≥ V i(t, e0) ≥ −cσ2 ln

(
e
(si)

2
∆Ti

2c2σ2 +
1

2
e
(p+si)

2
∆Ti

2c2σ2

)

and thus V i(t, e0) is bounded by a constant. We may conclude that V i(t, x) is linearly
bounded in x, uniformly in t for t ∈ [0,∆Ti). It remains to consider the case that t = ∆Ti.
But then V i is given by the terminal condition of the PDE, which is piecewise linear and
therefore linearly bounded.

Proposition 3.5. Fix a time period i and let X be a continuous R-valued stochastic
process on [0,∆Ti] which is F i-adapted. Then for any t ∈ [0,∆Ti] the control process ui

given by

ui =
(
uis
)
s∈[t,∆Ti]

=
(
ui(s,Xs)

)
s∈[t,∆Ti]

where ui(s, x) =
V i
x(s, x)

c

lies in Ai(t).

Proof. Since ui is continuous as a function of x on [0,∆Ti) by Proposition 3.3 (i) and
piecewise constant for t = ∆Ti, we obtain that ui is F i-adapted from F i-adaptedness of
X. By Proposition 3.3 (i), we have that ui is right-continuous as a function of t; with
continuity of X, we conclude that ui is progressively measurable.

Furthermore, by Proposition 3.3 (iv), we know that V i
x is bounded and V i

x ≥ 0. There-
fore ui ∈ U and

E

[∫ ∆Ti

t
|uis|2ds

]
= E

[∫ ∆Ti

t

∣∣∣∣V i
x(s,Xs)

c

∣∣∣∣2 ds

]
<∞,

thus ui ∈ Ai(t).
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Appendix C

Additional Numerical Results

In this section we present numerical results that were not discussed in Chapter 6. These
include additional results in the Ornstein-Uhlenbeck model variant as well as results ob-
tained in the simple model variant with a lower volatility σ or a modified amount of
initially expected BAU emissions x0.

C.1 Numerical Results in the Ornstein-Uhlenbeck Model

C.1.1 One-Period Model

In the one-period model, we omitted most of the results of varying different regulatory
parameters obtained in the Ornstein-Uhlenbeck model variant as these are very similar
to the ones presented for the Brownian variant. In Figure C.1 the results for varying the
penalty p are shown. Figures C.2 and C.3 show the corresponding graphics obtained when
varying the emission cap e0.

C.1.2 Multi-Period Model I

Due to the high similarity between the Brownian and the Ornstein-Uhlenbeck model vari-
ants, in Section 6.2 we did not discuss the results obtained in the Ornstein-Uhlenbeck
variant of multi-period model I. As explained in Section 5.3.3, we now have θ = 0.04
and µ = 2000. With the very small value for θ, the results in the one-period model pre-
sented in Section 6.1.5 suggest that the difference to the Brownian model variant should
be small. However, in the multi-period model, the choice of the model variant also affects
the initially expected emissions for each time period, given by xi0. In the simple variant,
they were chosen to be constant. As shown in Figure C.4a, the value of xi0 decreases
linearly in case of the Brownian model variant. In the Ornstein-Uhlenbeck model variant,
it approaches the long term mean of 3µ = 6000; for the small value of θ = 0.04, this
happens very slowly. As a result, xi0 is much higher than in the Brownian model for all
time periods. Since the allowance price at the beginning of each time period is increasing
in the initially expected emissions, we observe in Figure C.4b that the price parameter si

is higher than in the Brownian model variant; at the same time, it decreases only very
slowly in the early time periods if allowances cannot be transferred.

The difference in xi0 leads to a different behavior of the mean trajectory of X and in
particular of the mean realized emissions. As can be seen in Figure C.5a, the value reached
by the mean trajectory at the end of each time period (i.e. the realized emissions XTi)
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(a) Mean of realized emissions XT . (b) Relative frequency of compliance with the
emission target e0.

(c) Mean across all runs of the mean prices within
one time period.

(d) Mean of the variability of the price S.

Figure C.1: Results for varying penalties p in the Ornstein-Uhlenbeck model variant of the
one-period model.

(a) Mean of realized emissions XT . (b) Relative frequency of compliance with the
emission target e0.

Figure C.2: Results on the total expected emissions X for a varying number of allowances
in the Ornstein-Uhlenbeck model variant of the one-period model.
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(a) Mean across all runs of the mean prices within
one time period

(b) Mean of the variability of the price S.

Figure C.3: Results on the allowance price S for a varying number of allowances in the
Ornstein-Uhlenbeck model variant of the one-period model.

decreases for the second time period but increases afterwards. In comparison, in case of
the Brownian model variant, this value is decreasing throughout the overall time horizon.
In the early time periods, the price parameter si in both model variants is high, resulting in
high abatement and correspondingly, in low realized emissions. But for later time periods
si attains lower values, which reduces the incentive for abatement; while in the Brownian
variant, the low value of xi0 still causes low realized emissions, in the Ornstein-Uhlenbeck
variant, xi0 has barely changed so that realized emissions increase again. Although the
mean of the realized emissions is different between the two model variants, the structure
of its distribution is barely changed, as can be seen in Figures C.5b, C.5c, and C.5d. The
resulting frequency of complying with the emission cap is given in Table C.1. We observe
that in early time periods, the frequency of compliance is higher than in the Brownian
model variant, possibly due to the higher price parameter si. For later time periods,
compliance is lower, which is probably caused by the differences in xi0 discussed above.

Table C.1: Relative frequency of compliance in an ETS with transferable or non-transferable
allowances in the Ornstein-Uhlenbeck model variant of multi-period model I.

Time period 0 1 2 3 4 5

Transferable 65.09% 57.83% 56.64% 55.79% 54.33% 52.2%
Non-transferable 53.35% 52.39% 52.08% 52.91% 52.36% 51.56%

The characteristics of the allowance price S, visualized in Figure C.6, largely remain
unaffected.

In Figure C.7 we show the effect of varying the penalty on the usual characteristics
of the system; again the general behavior of the quantities studied is similar as in the
Brownian variant, while the absolute numbers differ slightly.

C.1.3 Multi-Period Model II

As in multi-period model I, we omitted the Ornstein-Uhlenbeck variant from the analysis
in Section 6.3. In Figure C.8 the mean trajectory of the total expected emissions X and
the distributions of the realized emissions XT for different time periods are shown; in
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(a) Initially expected emissions xi0 for each time
period in the Brownian variant and for varying θ in
the Ornstein-Uhlenbeck variant.

(b) Price input parameters si computed from the
price function of the subsequent time period in the
Ornstein-Uhlenbeck model variant.

Figure C.4: Initially expected emissions xi0 and price input parameters si for all six time
periods in multi-period model I.

(a) Mean trajectory of X. (b) Histogram of realized emissions XTi+1 in time
period 0.

(c) Histogram of realized emissions XTi+1 in time
period 2.

(d) Histogram of realized emissions XTi+1 in the
last time period.

Figure C.5: Mean trajectory of X and distributions of realized emissions XTi+1 in an ETS
with transferable or non-transferable allowances in the Ornstein-Uhlenbeck model variant of
multi-period model I.
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(a) Mean trajectory of S. (b) Histogram of mean allowance prices within
each run for time period 0.

(c) Standard deviation trajectory of S. (d) Histogram of the standard deviation of absolute
daily returns of S for time period 0, normalized to
one year.

Figure C.6: Results on the allowance price S in an ETS with transferable or non-transferable
allowances in the Ornstein-Uhlenbeck model variant of multi-period model I.

each case, we visualize the results both for the system where the transfer of allowances is
possible and the case where this is not allowed. As the main difference to the Brownian
model variant, we observe that the mean realized emissions decrease in the first three
time periods but then increase again (this can be most clearly seen in Figure C.8a); in
the Brownian model variant, this quantity decreases throughout most of the overall time
period. This is in line with the observation made in multi-period model I; the reason for
this behavior is again the difference in the development of the initially expected emissions
xi0, as shown in Figure C.4a.

Table C.2 reports the relative frequency of compliance; these values are only very
slightly lower than in case of the Brownian model variant.

Table C.2: Relative frequency of compliance in an ETS with transferable or non-transferable
allowances in the Ornstein-Uhlenbeck model variant of multi-period model II.

Time period 0 1 2 3 4 5

Transferable 70.27% 62.01% 59.82% 58.78% 57.5% 55.46%
Non-transferable 61.11% 57.19% 56.69% 55.73% 54.65% 54.18%
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(a) Mean of realized emissions XT . (b) Relative frequency of compliance with the
emission target e0.

(c) Mean across all runs of the mean prices within
one time period.

(d) Mean of the variability of the price S.

Figure C.7: Results for a varying penalty in the Ornstein-Uhlenbeck model variant in an
ETS with transferable or non-transferable allowances of multi-period model I.

The mean price trajectory and the trajectory of the standard deviation as well as
the distributions of the mean price within one run and the price variability are shown in
Figures C.9 and C.10; they barely show any difference to the Brownian model variant.

In Figure C.11 the impact of varying the penalty p on resulting emissions and the
behavior of the allowance price is visualized; as in the Brownian model variant, we observe
a clear kink at a penalty of p, meaning that an increase in the penalty from 40 to 100 has
a strong effect on the behavior of the system.

C.2 Numerical Results in the Simple Model Variant with
Changed Parameter Settings

As discussed in Section 5.3.3, the value of the volatility parameter σ is particularly difficult
to estimate. Therefore, we repeated many simulations with a smaller value of σ = 115.47;
the results are shown in this section.

At the start of the EU ETS, it proved to be challenging to determine the BAU emissions
to be expected in the first phase, which are represented by the parameter x0 in our model.
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(a) Mean trajectory of X. (b) Histogram of realized emissions XTi+1 in time
period 0.

(c) Histogram of realized emissions XTi+1 in time
period 2.

(d) Histogram of realized emissions XTi+1 in the
last time period.

Figure C.8: Mean trajectory of X and distribution of realized emissions XTi+1 in an ETS
with transferable or non-transferable allowances in the Ornstein-Uhlenbeck model variant of
multi-period model II.

(a) Mean trajectory of S. (b) Histogram of mean allowance prices within
each run for time period 0.

Figure C.9: Mean price trajectory and distribution of mean allowance prices within each run
in an ETS with transferable or non-transferable allowances in the Ornstein-Uhlenbeck variant
of multi-period model II.
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(a) Standard deviation trajectory of S (b) Histogram of the standard deviation of absolute
daily returns of S for time period 0, normalized to
one year

Figure C.10: Trajectory of the standard deviation and the distribution of the variability of
the allowance price in an ETS with transferable or non-transferable allowances in the Ornstein-
Uhlenbeck model variant of multi-period model II.

(a) Mean of realized emissions XT . (b) Relative frequency of compliance with the
emission target e0.

(c) Mean across all runs of the mean prices within
one time period.

(d) Mean of the variability of the price S.

Figure C.11: Results for a varying penalty in an ETS with transferable or non-transferable
allowances in the Ornstein-Uhlenbeck model variant of multi-period model II.
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In the one-period model, we analyzed the impact of varying this parameter in Section
6.1.5; to also gain an idea how x0 affects simulation results in a multi-period setting, we
set x0 = 5750 (i.e. lower than the default value) or x0 = 6750 (i.e. higher than the default)
in a simulation in the simple variant of multi-period model I.

C.2.1 One-Period Model with Small Volatility

We present the results obtained in the simple model variant with σ = 115.47. In Fig-
ure C.12 three example trajectories of both X and S are shown. The mean trajectory
with a 95%-confidence interval as well as the distribution of the mean realized emissions
XT are shown in Figure C.13. The smaller volatility reduces the amplitude of fluctuations
in the trajectories and leads to a more narrow confidence interval; the distribution of re-
alized emissions is strongly skewed to the left but the frequency of compliance still only
reaches 67.38%.

(a) Trajectories of X. (b) Trajectories of S.

Figure C.12: Three example trajectories of the total expected emissions X with correspond-
ing trajectories of the price process S in the simple model variant of the one-period model.
The dashed line represents the threshold e0. The volatility was set to σ = 115.47.

(a) Mean trajectory of X. (b) Histogram of realized emissions XT .

Figure C.13: Mean trajectory of the process X and distribution of the realized emissions
XT in the simple model variant of the one-period model. The volatility was set to σ = 115.47.
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In Figure C.14 the corresponding characteristics of the allowance price are shown: The
mean price trajectory is again approximately constant but at a lower level than for a higher
volatility; the mean prices of each simulation run are more concentrated around lower
prices of approximately 20 Euro. Interestingly, both the standard deviation trajectory
and the price variability are barely affected by the lower volatility parameter.

(a) Mean trajectory of S. (b) Histogram of mean prices within each run.

(c) Standard deviation trajectory of S. (d) Histogram of the standard deviation of absolute
daily returns of S for time period 0, normalized to
one year.

Figure C.14: Results on the allowance price S in the simple model variant of the one-period
model. The volatility was set to σ = 115.47.

Varying Parameters

We also study the effect of varying several parameters in the case that σ = 115.47. In
Figure C.15 the results of varying the penalty p are shown. While the numbers attained
in parts strongly differ from the results obtained with a higher value of σ, the impact of
changing the penalty essentially remains the same.

A similar conclusion can be drawn for varying the emission cap e0, as visualized in
Figures C.16 and C.17: The smaller volatility reduces the range for the emission cap in
which the ETS has the largest effect; but the general behavior in reaction to the changing
cap is not affected.

Also when varying the length of the time period T , as shown in Figure C.18, the overall
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(a) Mean of realized emissions XT . (b) Relative frequency of compliance with the
emission target e0.

(c) Mean across all runs of the mean prices within
one time period.

(d) Mean of the variability of the price S.
.

Figure C.15: Results for varying penalties p and volatility σ = 115.47 in the simple model
variant of the one-period model.

(a) Mean of realized emissions XT . (b) Relative frequency of compliance with the
emission target e0.

Figure C.16: Results on the total expected emissions X for a varying number of allowances
and volatility σ = 115.47 in the simple model variant of the one-period model.
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(a) Mean across all runs of the mean prices within
one time period.

(b) Mean of the variability of the price S.

Figure C.17: Results on the allowance price S for a varying number of allowances and
volatility σ = 115.47 in the simple model variant of the one-period model.

(a) Mean of realized emissions XT relative to the
emission target e0.

(b) Relative frequency of compliance with the
emission target e0.

(c) Mean across all runs of the mean prices within
one time period.

(d) Mean of the variability of the price S.

Figure C.18: Results for a varying length of the time period and volatility σ = 115.47 in
the simple model variant of the one-period model.
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results are similar as in the case of a higher volatility. The only striking difference is that
the frequency of compliance with the cap appears to decrease again for long time periods;
as the analysis for large values of T in Section 6.1.6 shows, this is not the case with a
volatility parameter of σ = 288.68.

C.2.2 Multi-Period Model I with Small Volatility

In multi-period model I, a smaller volatility leads to a lower value of the price parameter
si, as shown in Figure C.19. At the same time, si is constant among early time periods if
allowances cannot be transferred but increasing if the transfer is possible, as it is the case
for the higher volatility parameter.

Figure C.19: Price input parameter si computed from the price function of the subsequent
time period in the simple model variant of multi-period model I with σ = 115.47.

The trajectories shown in Figures C.20 and C.21 exhibit a more pronounced downward
tendency and less fluctuations of X than in the case of a higher volatility, while the
behavior of the price process S is largely similar.

(a) Trajectories of X. (b) Trajectories of S.

Figure C.20: Three example trajectories of the total expected emissions X with correspond-
ing trajectories of the price process S in the simple variant of multi-period model I where
allowances can be transferred. The dashed line represents the threshold e0. The volatility was
set to σ = 115.47.

283



CHAPTER C. ADDITIONAL NUMERICAL RESULTS

(a) Trajectories of X. (b) Trajectories of S.

Figure C.21: Three example trajectories of the total expected emissions X with correspond-
ing trajectories of the price process S in the simple model variant of multi-period model I
where allowances cannot be transferred. The dashed line represents the threshold e0. The
volatility was set to σ = 115.47.

Figure C.22 compares the mean trajectories of X and the distributions of the realized
emissions XTi in the case that the transfer of allowances is possible and the case where
this is not allowed. These results are again similar to the ones obtained for the higher
volatility. The main differences can be found in the exact shape of the distributions; for
instance, these are much more narrow.

The relative frequencies of compliance reported in Table C.3 are slightly higher than for
the high volatility parameter; but again the frequency of compliance increases remarkably
if the transfer of allowances is possible.

Table C.3: Relative frequency of compliance in an ETS with transferable or non-transferable
allowances in the simple model variant of multi-period model I with σ = 115.47.

Time period 0 1 2 3 4 5

Transferable 95.31% 89.51% 84.56% 78.01% 68.73% 50.45%
Non-transferable 64.11% 63.15% 62.51% 60.94% 59.55% 51.07%

The behavior of the allowance price S, as given by its mean and standard deviation
trajectories and the distributions of the mean price and the price variability, is visualized
in Figure C.23. These results are similar to those obtained with the higher volatility
parameter; again the main differences lie in the absolute numbers and the exact shape of
the distributions.

Varying Parameters

As in Section 6.2.4, we analyze the impact of varying the penalty p if the volatility pa-
rameter is set to σ = 115.47. The results are shown in Figure C.25; we observe effects
very similar to the case of the high volatility parameter, with the impact of allowing for
the transfer of allowances being even higher.
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(a) Mean trajectory of X. (b) Histogram of realized emissions XTi+1 in time
period 0.

(c) Histogram of realized emissions XTi+1 in time
period 2.

(d) Histogram of realized emissions XTi+1 in the
last time period.

Figure C.22: Mean trajectory of the process X and distributions of the realized emissions
XTi+1

in the simple model variant of multi-period model I. The volatility was set to σ = 115.47.
The case of an ETS with transferable allowances is compared to the case where the transfer
is not possible.

(a) Mean trajectory of S. (b) Histogram of mean allowance prices within
each run for time period 0.

Figure C.23: Mean trajectory of the process S and distribution of the mean prices within
one run in the simple model variant of multi-period model I with volatility σ = 115.47.
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(a) Standard deviation trajectory of S (b) Histogram of the standard deviation of absolute
daily returns of S in time period 0, normalized to
one year.

Figure C.24: Trajectory of the standard deviation of the allowance price and distribution of
its variability in the simple model variant of multi-period model I with volatility σ = 115.47.

(a) Mean of realized emissions XTi+1 . (b) Relative frequency of compliance with the
emission target e0.

(c) Mean across all runs of the mean prices within
one time period.

(d) Mean of the variability of the price S.

Figure C.25: Results from time period 0 for varying penalties p in the simple model variant
of multi-period model I. The volatility was set to σ = 115.47.
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C.2.3 Multi-Period Model I with Modified Values of x0

In Figure C.26 the effect of varying the penalty is shown in the case that the initially
expected BAU emissions xi0 amount to 5750 Mt in each time period. Due to the lower
BAU emissions, mean realized emissions are lower, whereas the frequency of compliance
and the allowance prices are higher; but the impacts of both increasing the penalty and
allowing for the transfer of allowances are very similar to the case with default parameters.

(a) Mean of realized emissions XTi+1 . (b) Relative frequency of compliance with the
emission target e0.

(c) Mean across all runs of the mean prices within
one time period.

(d) Mean of the variability of the price S.

Figure C.26: Results from time period 0 for varying penalties p in the simple model variant
of multi-period model I. The initially expected BAU emissions were set to x0 = 5750. The
case of an ETS with transferable allowances is compared to the case where the transfer is not
possible.

A similar conclusion can be drawn if the initially expected BAU emissions are increased
to xi0 = 6750 in each time period, as shown in Figure C.27. In this case, the mean realized
emissions are increased, and the frequency of compliance as well as the mean allowance
price decrease; again the impact of increasing the penalty and allowing for the transfer of
allowances is very similar to what we observed in default settings.
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(a) Mean of realized emissions XTi+1 . (b) Relative frequency of compliance with the
emission target e0.

(c) Mean across all runs of the mean prices within
one time period.

(d) Mean of the variability of the price S.

Figure C.27: Results from time period 0 for varying penalties p in the simple model variant
of multi-period model I. The initially expected BAU emissions were set to x0 = 6750. The
case of an ETS with transferable allowances is compared to the case where the transfer is not
possible.
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List of Frequently Used Notation

A(t) Admissibility set for controls starting at time t
C Cost function
DA Number of allowances demanded by the agent at the auction
F Filtration generated by W , augmented by the null sets
G Volatility function of the process X
H Volatility function of the process Z
P Penalty function
S Allowance price process
SA Auction price of an allowance

S̃i0 Function to describe the allowance price at the beginning of time period i
T Final time
Ti Starting point of time period i
∆T Length of one time period in a setting with equidistant time periods
∆Ti Length of time period i
U The set [0,∞), into which admissible controls are required to map
V The value function in the stochastic control approach, or the solution of the

characteristic PDE
W A standard Brownian motion
X Total expected emissions (see Definition 2.1)
X+
Ti

Left-sided limit of X at time Ti in the multi-period models; identical to Xi
0.

Y Mainly: Emission rate process
Z Mainly: Process to predict the initially expected emissions of the next time

period in multi-period model II, given by X+
Ti+1

. Z is also used to denote a given
process or random variable in other models.

Z+
Ti

Left-sided limit of Z at time Ti in multi-period model II

b Mainly: Drift term in general formulation of an SDE
c Cost coefficient
e0 Emission cap/number of allowances
eA Number of allowances distributed by auctioning
eF Number of allowances allocated for free in the model with auctioning
erf Error function
h Step size in the discretization of the PDE
p Penalty per ton of surplus emissions
r Interest rate
si Price of an allowance at the beginning of the next time period, viewed from time

period i
u Abatement rate
x0 Initially expected BAU emissions for the entire time period
xi0 BAU emissions expected for time period i at time 0 in the multi-period models
y0 Initial value of the emission rate
θ Mean reversion speed of the Ornstein-Uhlenbeck process
µ Drift parameter of the emission rate Y in the Brownian model variant and long-

term mean of Y in the Ornstein-Uhlenbeck model variant
σ Volatility parameter of the process X; additionally: Volatility term in general

formulation of an SDE
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ABBREVIATIONS AND NOTATION

The following superscripts occur in the model extensions:

� Superscript i: Denotes the respective quantity in time period i in the multi-period
models; if it is a function in time or a process, then time is measured relative to
period i. For example, Xi

t denotes the value of the total expected emissions in time
period i at the time point t units after the beginning of time period i.

� Superscript A: Denotes the respective quantity in the auction model.

List of Abbreviations

BAU Business as usual
CO2 Carbon dioxide
COP Conference of the Parties (to the UNFCCC)
ETS Emission trading system
EUA Allowance future in the EU ETS
EU ETS Emission trading system of the European Union
GDP Gross domestic product
IPCC Intergovernmental Panel on Climate Change
IR Infrared
HJB Hamilton-Jacobi-Bellman
MSR Market Stability Reserve
Mt Mega tons
ODE Ordinary differential equation
PDE Partial differential equation
SDE Stochastic differential equation
UNFCCC United Nations Framework Convention on Climate Change
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[CFH09] René Carmona, Max Fehr, and Juri Hinz. “Optimal stochastic control and
carbon price formation”. SIAM Journal on Control and Optimization 48.4
(2009), pp. 2168–2190.

[CK96] Mark Cronshaw and Jamie Kruse. “Regulated Firms in Pollution Permit Mar-
kets with Banking.” Journal of Regulatory Economics 9 (1996), pp. 179–89.

[Com] The SciPy Community. SciPy v1.8.1 Manual – scipy.integrate.solve ivp. https:
//docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.

solve_ivp.html (visited on 05/23/2022).

[CP17] Wugan Cai and Jiafeng Pan. “Stochastic Differential Equation Models for
the Price of European CO2 Emissions Allowances”. Sustainability 9.2 (2017),
p. 207.

[DED10] Erik D. Delarue, A. Denny Ellerman, and William D. D’haeseleer. “Short-term
CO2 Abatement in the European Power Sector: 2005–2006”. Climate Change
Economics 01.2 (2010), pp. 113–133.

[EB08] A. Denny Ellerman and Barbara K. Buchner. “Over-Allocation or Abatement?
A Preliminary Analysis of the EU ETS Based on the 2005–06 Emissions Data”.
Environmental and Resource Economics 41.2 (2008), pp. 267–287.

[ECa] European Commission. Development of EU ETS (2005-2020). Climate Ac-
tion. https://ec.europa.eu/clima/eu-action/eu-emissions-trading-
system-eu-ets/development-eu-ets-2005-2020_en (visited on 06/03/2022).

[ECb] European Commission. European Green Deal. Climate Action. https : / /

ec.europa.eu/clima/eu-action/european-green-deal_en (visited on
06/03/2022).

[ECc] European Commission. Market Stability Reserve. Climate Action. https://
ec.europa.eu/clima/eu-action/eu-emissions-trading-system-eu-

ets/market-stability-reserve_en (visited on 06/07/2022).

[ECd] European Commission. Revision for phase 4 (2021-2030). Climate Action.
https://ec.europa.eu/clima/eu- action/eu- emissions- trading-

system-eu-ets/revision-phase-4-2021-2030_en (visited on 06/03/2022).

[EC21] European Commission. Proposal for a Directive of the European Parliament
and of the council amending Directive 2003/87/EC establishing a system for
greenhouse gas emission allowance trading within the Union, Decision (EU)
2015/1814 concerning the establishment and operation of a market stability
reserve for the Union greenhouse gas emission trading scheme and Regulation
(EU) 2015/757. 2021. https://eur-lex.europa.eu/legal-content/EN/
TXT/?uri=CELEX%3A52021PC0551.

[ECP10] A. Denny Ellerman, Frank J. Convery, and Christian de Perthuis. Pricing Car-
bon: The European Union Emissions Trading Scheme. Cambridge: Cambridge
University Press, 2010.

[EEA] European Environment Agency. EU Emissions Trading System (ETS) data
viewer. https : / / www . eea . europa . eu / data - and - maps / dashboards /

emissions-trading-viewer-1 (visited on 10/08/2021).

292

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html
https://ec.europa.eu/clima/eu-action/eu-emissions-trading-system-eu-ets/development-eu-ets-2005-2020_en
https://ec.europa.eu/clima/eu-action/eu-emissions-trading-system-eu-ets/development-eu-ets-2005-2020_en
https://ec.europa.eu/clima/eu-action/european-green-deal_en
https://ec.europa.eu/clima/eu-action/european-green-deal_en
https://ec.europa.eu/clima/eu-action/eu-emissions-trading-system-eu-ets/market-stability-reserve_en
https://ec.europa.eu/clima/eu-action/eu-emissions-trading-system-eu-ets/market-stability-reserve_en
https://ec.europa.eu/clima/eu-action/eu-emissions-trading-system-eu-ets/market-stability-reserve_en
https://ec.europa.eu/clima/eu-action/eu-emissions-trading-system-eu-ets/revision-phase-4-2021-2030_en
https://ec.europa.eu/clima/eu-action/eu-emissions-trading-system-eu-ets/revision-phase-4-2021-2030_en
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021PC0551
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021PC0551
https://www.eea.europa.eu/data-and-maps/dashboards/emissions-trading-viewer-1
https://www.eea.europa.eu/data-and-maps/dashboards/emissions-trading-viewer-1


BIBLIOGRAPHY

[EEA07] European Environment Agency. Annual European Community greenhouse gas
inventory 1990-2005 and inventory report 2007. Available at https://www.

eea.europa.eu/publications/technical_report_2007_7. 2007.

[EEA11] European Environment Agency. EUA future prices 2005–2011. Oct. 18, 2011.
https://www.eea.europa.eu/data- and- maps/figures/eua- future-

prices-200520132011 (visited on 03/02/2021).

[Ege+11] Christian Egenhofer, Monica Alessi, Anton Georgiev, and Noriko Fujiwara.
“The EU Emissions Trading System and Climate Policy Towards 2050: Real
Incentives to Reduce Emissions and Drive Innovation?” CEPS Special Reports
(2011). Available at SSRN: http://ssrn.com/abstract=1756736.
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Harald Winkler, Roberto Schaeffer, Fu Sha, Keywan Riahi, and Malte Meins-
hausen. “Paris Agreement climate proposals need a boost to keep warming
well below 2 °C”. Nature 534.7609 (2016), pp. 631–639.

[Rub96] Jonathan D. Rubin. “A Model of Intertemporal Emission Trading, Banking,
and Borrowing”. Journal of Environmental Economics and Management 31.3
(1996), pp. 269–286.

297



BIBLIOGRAPHY

[Run95] Carl Runge. “Ueber die numerische Auflösung von Differentialgleichungen”.
Mathematische Annalen 46.2 (1895), pp. 167–178.

[Sch00] Susanne M. Schennach. “The Economics of Pollution Permit Banking in the
Context of Title IV of the 1990 Clean Air Act Amendments”. Journal of
Environmental Economics and Management 40.3 (2000), pp. 189–210.

[Sch91] William E. Schiesser. The numerical method of lines. Academic Press, 1991.

[Sie08] Horst Siebert. Economics of the Environment. 7th ed. Berlin Heidelberg: Sprin-
ger-Verlag, 2008.

[SMB16] Igor Shishlov, Romain Morel, and Valentin Bellassen. “Compliance of the Par-
ties to the Kyoto Protocol in the first commitment period”. Climate Policy
16.6 (2016), pp. 768–782.

[SNC06] Jos Sijm, Karsten Neuhoff, and Yihsu Chen. “CO2 cost pass-through and
windfall profits in the power sector”. Climate Policy 6.1 (2006), pp. 49–72.

[SS16] Anton A. Shardin and Michaela Szölgyenyi. “Optimal control of an energy
storage facility under a changing economic environment and partial informa-
tion”. International Journal of Theoretical and Applied Finance 19.4 (2016),
p. 1650026.

[SUW08] Jan Seifert, Marliese Uhrig-Homburg, and Michael Wagner. “Dynamic behav-
ior of CO2 spot prices”. Journal of Environmental Economics and Manage-
ment 56.2 (2008), pp. 180–194.

[SV18] Bodo Sturm and Carla Vogt. Umweltökonomik. 2nd ed. Springer-Verlag GmbH
Deutschland, 2018.

[tag22] tagesschau. Extreme Temperaturen und viele Brände in Süd- und Westeuropa.
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