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Abstract

Gliomas are one of the most common types of primary brain tumors. Among
those, high grade astrocytomas - so-called glioblastoma multiforme - are the
most aggressive type of cancer originating in the brain, leaving patients a me-
dian survival time of 15 to 20 months after diagnosis. The invasive behavior
of the tumor leads to considerable difficulties regarding the localization of all
tumor cells, and thus impedes successful therapy. Here, mathematical models
can help to enhance the assessment of the tumor’s extent.
In this thesis, we set up a multiscale model for the evolution of a glioblastoma.
Starting on the microscopic level, we model subcellular binding processes and
velocity dynamics of single cancer cells. From the resulting mesoscopic equa-
tion, we derive a macroscopic equation via scaling methods. Combining this
equation with macroscopic descriptions of the tumor environment, a nonlinear
PDE-ODE-system is obtained. We consider several variations of the derived
model, amongst others introducing a new model for therapy by gliadel wafers,
a treatment approach indicated i.a. for recurrent glioblastoma.
We prove global existence of a weak solution to a version of the developed
PDE-ODE-system, containing degenerate diffusion and flux limitation in the
taxis terms of the tumor equation. The nonnegativity and boundedness of all
components of the solution by their biological carrying capacities is shown.
Finally, 2D-simulations are performed, illustrating the influence of different
parts of the model on tumor evolution. The effects of treatment by gliadel
wafers are compared to the therapy outcomes of classical chemotherapy in dif-
ferent settings.
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Chapter 1

Introduction

In 2020, cancer was the second most frequent cause of death in Germany [67].
While nowadays some types of cancer, like prostate cancer or melanoma, have
good chances of healing, there are other types with very poor prognosis. Af-
ter diagnosis of a glioblastoma multiforme, the most aggressive type of cancer
originating in the brain, patients have median survival time of 15 to 20 months
[28]. The aggressive spread and invasive behavior of the tumor cells combined
with the necessity not to destroy essential vital functions during surgery causes
the impossibility of a complete removal of the tumor. The usual therapy con-
sists of surgical resection combined with chemotherapy and/or radiation. It is
agreed that during surgical resection, the largest part of the tumor should be
removed. Still, there are different concepts on how much brain volume should be
resected to maximize survival time while preserving important functions [40].
The expression ’gross total resection’ is often used in this context, originally
being defined as complete removal of tumor mass. Having an understanding of
the infiltrative behavior of gliomas, it is clear that a complete removal is barely
possible. Meanwhile, it is spoken of gross total resection if at least 90-97% of
the tumor are removed [33]. The concept of supramaximal resection was used
in more recent studies [33, 43, 87]. Supramaximal resection means that also
the large part of non-contrast-enhancing tumor components is removed. The
difficulty lies in the identification of those tumor parts.
Even by supramaximal resection, not all tumor cells can be surgically removed
due to their infiltrative behavior. Such single invasive cells are neither visible
in MRI nor cognizable by the surgeon during resection, and are hence not ac-
counted for in therapy planning. Mathematical simulations could give guidance
where non-contrast-enhancing as well as invasive tumor cells can be expected,
such that appropriate therapy is possible.

State of the art

Most models for glioma invasion are based on a macroscopic ansatz. An early
approach to this kind of modeling was done by Murray [53] in 1989. The ansatz
by Murray has been further developed in a variety of papers by the introduction
of taxis terms, taking into account extracellular signaling, e.g. [31, 35]. Origi-
nally supposing a constant diffusion coefficient, the model was slightly precised
by differing between white and grey matter [72]. Later on, patient specific data
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CHAPTER 1. INTRODUCTION

were included by usage of a diffusion tensor, including the individual anisotropy
of the brain, e.g. [9, 39]. Switches between subpopulations have been modeled,
respecting the go-or-grow-dichotomy, which means the switch of glioma cells
between proliferating and migrating status, see e.g. [65, 85]. Different models
for the interplay between tumor and its environment have been developed, e.g.
[3, 48], modeling hypoxia and angiogenesis.
The major drawback in this kind of modeling lies in the neglection of subcellular
processes. Those are only respected in a heuristic way. A different approach was
done in [8] for general multicellular systems. Starting from a microscopic kinetic
description including cell velocity and so-called activity variables describing the
biological microscopic state of a cell, macroscopic models are deduced by scaling
methods. In [13, 14, 15, 20, 21, 22, 32, 42], from this kind of equations macro-
scopic systems for tumor spread are deduced by limit procedures, the resulting
equations containing information on brain tissue anisotropy and subcellular dy-
namics.
In the present work, we build up on the latter approach. The resulting model
is a nonlinear PDE-ODE-system containing flux limitation in the diffusion and
taxis terms and degenerate diffusion. To the best of my knowledge, analysis for
a similar model has not been performed yet.

Outline

The thesis is structured as follows:

� Chapter 2 (Modeling): Starting on the scale of single cells, we model
binding to the extracellular matrix and velocity dynamics in dependence
on spatial gradients of acidity, tissue, and tumor cell densities. The cor-
responding mesoscopic equation contains transport terms with respect to
these activity and velocity variables. Unlike previous models, the velocity
dynamics here allows for changes in both speed and direction. Beyond a
more precise modeling of regions of decreased motility due to high tumor
density, this ansatz allows to include the concept of the go-or-grow di-
chotomy without switching between different subspecies. A closed system
of moment equations is deduced. From this system, a macroscopic PDE
with degenerate flux limited diffusion, chemo- and haptotaxis is derived
by scaling methods. Combining this PDE with equations for acidity, tis-
sue density and vascularization, a nonlinear PDE-ODE-system with flux-
limitation and degenerate diffusion is obtained.
Beside the main model, we present some further modeling approaches, in-
cluding changes in the taxis terms of the endothelial cell equation, therapy
approaches and switches between the subspecies of migrating and prolif-
erating cells.

� Chapter 3 (Analysis): We prove global existence of a weak solution
to the model introduced in chapter 2, making a simplification in the flux
limitation of the diffusion term. The main difficulty of the existence proof
lies in the degeneracy of the diffusion and the strong nonlinear coupling
of the PDE-ODE-system, including flux limitation in the taxis terms.
We show how the proof for existence of a weak solution of the main model
can be adapted to get a global bounded weak solution also for some of the
model variations introduced in chapter 2.
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� Chapter 4 (Simulations): In this chapter we show 2D simulations of
the models from chapter 2. The code for the main model was imple-
mented by Niklas Kolbe and Nikolaos Sfakianakis [18]. In the scope of
this thesis, the code was adapted in order to obtain simulations also for
the model’s variations. We show the influence of the flux limitation by
comparing simulations for tumor spread with and without flux limitation.
The angiogenic behavior of endothelial cells is illustrated, comparing the
different modeling approaches for taxis of endothelial cells introduced in
chapter 2. We contrast a classical go-or-grow-model, where cells are di-
vided into subspecies, with the main model, where we included the go-
or-grow-dichotomy via the cell speed from microscale dynamics. Finally,
different therapy approaches are simulated and compared.
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Chapter 2

Modeling

The spread of a tumor is triggered by several factors. In [29], six hallmarks
leading to neoplastic disease are presented. We want to focus on two of these
hallmarks: angiogenesis and invasion.
Angiogenesis describes the growth of blood vessels into the tumor as a con-
sequence of overexpression of proangiogenic factors like vascular endothelial
growth factor. The formed vasculature sustains the tumor with nutrients and
oxygen and enables it to dispose of waste products like carbon dioxide [29].
A common feature of all glioblastoma subtypes is the aggressive invasive be-
havior. Thereby, the invasion can be performed by individual cells as well as
collectively and follows preexisting structures like white matter tracts [77]. For
the invasion of glioma cells, often triggered by chemotactic signals [63], frequent
changes in cell-ECM-interactions play a major role [24].
The presented model and its variations aim to cover both the effects of angio-
genesis and invasion.
In this chapter, multiscale models for anisotropic spread of glioblastoma and
possible therapies are introduced. The chapter is structured as follows:
In section 2.1, a model describing the microscopic and mesoscopic dynamics
of glioma cells and the macroscopic evolution of the tumor environment is in-
troduced. From the micro-meso-description of tumor cells, a closed system of
moment equations is derived. Using scaling methods, the system of moment
equations is reduced to a single macroscopic equation, which - in combination
with the macroscopic equations for the tumor environment - describes the de-
velopment and spread of the neoplasm.
In sections 2.2 and 2.3, variations of the model developed in 2.1 are presented.
While in section 2.2 different forms of taxis for vascularization are considered,
in section 2.3 the focus lies on a more detailed description of the go-or-grow
dichotomy.
Finally, in section 2.4 models for different kinds of treatment are set up.

2.1 A multiscale model for glioma spread

This section was first published in Multiscale modeling of glioma invasion: from
receptor binding to flux-limited macroscopic PDEs in 2022.1 The model devel-

1[18] Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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oped in this section considers the following aspects:

� migration of cancer cells due to pH gradients, tissue gradients and popu-
lation pressure, incorporating the effects of tissue alignment,

� binding of cancer cells to tissue fibers,

� influence of acidic environment on tumor evolution,

� vascularization.

The presented multiscale modeling approach follows the ideas of several previous
papers [13, 14, 15, 21, 20, 22, 32]. Involving signed gradients of tactic signals,
the microscopic description of velocity dynamics is related to that in [15], but
differs by a non-constant cell speed. Beneath other effects, this approach enables
the incorporation of the influence of population density on cell motility. The
performed upscaling is related but differs in several aspects from earlier limiting
procedures and leads to a macroscopic PDE-ODE system featuring for glioma
cell density degenerate self-diffusion and multiple taxis, all of which are flux-
limited.

2.1.1 Microscopic scale

Dynamics of the receptor binding state y

Let y andR denote the cell surface concentration of receptors bound to ECM and
the total surface concentration of receptors able to bind to ECM, respectively.
For simplicity, we assume R to be constant. The surface concentration of free
receptors for a cell in binding state y is then given by R−y with y ∈ Y := [0, R].
Let k+ denote the attachment rate of a free receptor to adjacent tissue fibers,
and let k− denote the corresponding detachment rate. Then the process of
binding and unbinding in dependence on the macroscopic tissue density Q(t, x)
is described by

(R− y) +Q
k+

−−→←−−
k−

y.

The corresponding ODE obtained by mass action kinetics is

ẏ = k+(R− y)Q− k−y =: G(y,Q). (2.1)

Dynamics of cell velocity v

The migration of cancer cells is affected by different gradients. Decreasing pH
has a repelling effect, whereas the cells are attracted by gradients of tissue
density [56]. The lower the surface concentration of bound tissue receptors
of a cell, the more sensitive it reacts towards tissue gradients. We further
assume that cancer cells try to avoid regions of high cell densities. Under these
assumptions, the preferred direction of a cell can be modeled by a weighted sum
of the gradients −∇xh, ∇xQ and −∇xM , where M represents the macroscopic
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2.1. A MULTISCALE MODEL FOR GLIOMA SPREAD

tumor cell density. For constants ρ1, ρ2 ∈ (0, 1) fulfilling ρ1 + ρ2 < 1, we choose

b =(1− ρ1 − ρ2)
−∇h√(

Kh

ξ

)2
+ |∇h|2

+ ρ1
R− y

R

∇Q√(
KQ

ξ

)2
+ |∇Q|2

+ ρ2
−∇M√(

KM

ξ

)2
+ |∇M |2

.

ξ is a constant to be selected in correspondence to appropriate time and length
scales. We will adress this issue in subsection 2.1.4.
Typically, glioma cells migrate along tissue fibers, following the white matter
tracts [24]. Diffusion tensor imaging (DTI) provides a means to assess (with the
aid of the water diffusion tensor DW ) the anisotropic brain structure down to
the level of voxels with edges of 1-2mm. The joint effect of fiber tract orientation
and the preferred direction relating to gradients leads to a change in velocity
orientation of the form

DW · b =
n∑

i=1

αiωiω
T
i b =

n∑
i=1

αiωi⟨ωi, b⟩,

where ωi are normed eigenvectors of DW with corresponding eigenvalues αi.
The acceleration is then given by

g(t, x) = a1
KM −M

KM
DW b, a1 > 0,

where the factor KM−M
KM

is due to limited motility in crowded regions.
A cell which is not exposed to external signal gradients will probably slow down
its migrational process. We model deceleration by −a2v, a2 > 0. Altogether we
obtain the following equation for velocity dynamics:

∂v

∂t
= g(t, x)− a2v =: S(v, y, h,Q,M). (2.2)

We see that g(t, x) is bounded:

|g(t, x)| = |a1
KM −M

KM
DW b| = a1

KM −M

KM
|

n∑
i=1

αiωi⟨ωi, b⟩| ≤ a1αmax

(the boundedness of M by its carrying capacity KM will be shown in lemma
3.1.7). Starting with speed s := |v| ≤ smax := a1

a2
αmax and assuming the

water diffusion tensor DW to be constant in time, the speed smax cannot be
exceeded. In case of a water diffusion tensor which varies in time and space,
αmax and hence also smax depend on t and x and we have s = |v| ≤ s̄max :=

max
0≤t≤T,x∈Ω̄

smax(t, x).

2.1.2 Mesoscopic scale

We consider the cell density function

p(t, x, v, y) : [0, T ]× RN × V × Y → R+
0 , V ⊂ RN , Y ⊂ R+

0 ,

7



CHAPTER 2. MODELING

depending on time t, position x, velocity v and activity variable y. The velocity
variable v = sθ contains information on speed s ∈ [0, smax] and direction θ ∈
SN−1 of a cell. The scalar variable y denotes the surface concentration of cell
receptors bound to tissue. The macroscopic tumor cell density is obtained by
integration over velocity and activity variables:

M(t, x) =

∫
Y

∫
V

p(t, x, v, y) dv dy.

Then the dynamics of p can be described by way of a kinetic transport equation
of the form

∂p

∂t
+∇x · (vp) +

∂

∂y
(G(y,Q)p) +∇v · (S(v, y, h,Q,M)p) = β(p), (2.3)

where the right hand side β(p) accounts for source terms to be addressed be-
low. In difference to previous models [12, 13, 14, 15, 21, 20, 22, 30, 32, 55] in
the kinetic theory of active particles framework [7], velocity reorientations are
not described by way of a turning operator on the right hand side, but by the
modeling of the velocity dynamics via S(v, y, h,Q,M).

The proliferative activity of cancer cells depends on their actual binding
state. Without connection to the surrounding tissue, cells cannot perform mi-
tosis and even die through anoikis [25, 46]. On the other hand, too many bounds
also inhibit cell division.

We will factorize the proliferation rate into a part β1, which is independent

of y, and a part β2, which depends on y and for which we choose β2 = y(R−y)
R2 .

Therewith, the proliferation is nearly turned off when there are too few or too
many receptors bound to tissue. The y-independent part of the proliferation rate
is modeled due to the assumption of glioma cells not being able to proliferate and
migrate at the same time, also known as go-or-grow-dichotomy [27, 84]. Unlike
previous models [13, 22, 32, 36, 70, 85], where the tumor cells are split into
mutually exclusive migrating and proliferating subpopulations, the mentioned
dichotomous behavior is taken into account here by relating the y-independent
part of the proliferation rate to cell speed in a decreasing manner. A more
detailed modeling of the go-or-grow phenomenon with a splitting of the glioma
population into subpopulations as in [13, 22, 32, 36, 70, 85] is presented in section
2.3. As the adaptation of speed to the surrounding environment happens fast
compared with the time needed for proliferation, we approximate the velocity by
the quasi-steady state v∗ of its dynamics. The corresponding speed is denoted by
s∗ = |v∗|. Taking into account also the detrimental influences of a highly acidic
environment as well as of population pressure by surrounding cancer cells, we
propose for the y-independent part of the proliferation rate

β1(h,M, s∗) = µM
smax − s∗

smax

(
1− M

KM

)
Kh

Kh + h
,

with µM ,Kh being constants, the latter representing a threshold acidity level
beyond which the cancer cells cannot advance through the cell cycle leading
to mitosis [75, 78]. After proliferation, the binding state of the daughter cells
might differ from the original state. We assume that the receptor binding states
of daughter cells are distributed symmetrically around the quasi-steady state

8



2.1. A MULTISCALE MODEL FOR GLIOMA SPREAD

y∗ of the binding dynamics (2.1). Since the binding dynamics is a very fast
process compared to the time needed for proliferation, it is nearby to assume
that the receptor binding states of the daughter cells do not depend on the
original activity states of the mother cells. Hence, we are led to choosing

β(y, p, h,M, s∗) = β1(h,M, s∗)

∫
Y

β2(y
′)χ(t, x, y)p(t, x, v, y′) dy′,

where χ is a probability kernel representing the likelihood of cells to receive a re-
ceptor binding regime y after division. As such, it holds

∫
Y
χ(t, x, y) dy = 1 and

further, due to our assumption of symmetry around y∗,
∫
Y
(y−y∗)χ(t, x, y) dy =

0.

2.1.3 Macroscopic scale

Tissue

The acidity produced by the tumor cells by upregulated glycolysis degrades the
surrounding tissue [38]. Assuming that the latter is regenerated in a logistic
way, we take

Q̇(t) = µQQ(1− Q

KQ
)− δQ

h

Kh + h
Q (2.4)

with µQ, δQ constants. For the initial condition we choose

Q(0) = KQ

(
1−

√
tr(DW )

3dref

)
, (2.5)

where the constant dref is the maximum value (taken over all positions x) any
of the entries of DW can reach (corresponding to the diagonal entries of DW for
no surrounding tissue).

Acidity

The dynamics of acidity concentration h in the tumor microenvironment is
modeled by

∂th = Dh∆h+ µh
M

KM +M

(
1− h

Kh

)
+

− δhhe, (2.6)

where the second term on the right hand side describes proton production by
tumor cells, which is limited by the acidity threshold Kh, whereas the third
term describes uptake by blood vessels, which are represented by the density e
of endothelial cells. Later on, we will show that for 0 ≤ h(0, x) ≤ Kh, Kh is
never exceeded, so there is no need to take the positive part in the second term
on the right hand side.

Vascularization

The tumor itself stimulates growth of blood vessels by producing certain growth
factors. The latter are increasingly expressed under hypoxic conditions, which

9



CHAPTER 2. MODELING

is typically occuring at sites with high tumor cell density [19]. Our model for
endothelial growth builds upon the one presented in [10], where vascularization
of a tumor is described by endothelial cells following tumor angiogenic factor.
Since we do not want to inflate the model with yet another space-time dependent
variable explicitly accounting for the concentration of such growth factor, we
propose instead a chemotactic bias of endothelial cells towards regions with
lower pH and choose for their evolution

∂te = De∆e− ςe∇ ·
(
e

(
1− e

Ke

)
∇h
)
+Ge(h,M)e

(
1− e

Ke

)
. (2.7)

The growth term Ge(h,M) should be increasing w.r.t. h and M , and could
be assigned, e.g., the form Ge(h,M) = µe

hM
KhKM+hM . Moreover, we assume

that the tactic sensitivity decreases with the amount of available vasculature.
Variational approaches to model the tactic behavior of endothelial cells without
introducing a further equation for endothelial growth factors are discussed in
section 2.2.

2.1.4 Non-dimensionalization

Before deducing a macroscopic model, we non-dimensionalize equations (2.3)-
(2.7). To this aim, we define

t̂ =
t

τ
, x̂ =

x

ξ
, ŷ =

y

R
, v̂ =

v

smax
, p̂ =

Rsmax

KM
p, Q̂ =

Q

KQ
, ĥ =

h

Kh
, ê =

e

Ke
,

M̂ =

∫∫
p̂ dv̂ dŷ, V̂ = [0, 1]× SN−1, Ŷ = [0, 1].

Note, that

M̂ =

∫
Ŷ

∫
V̂

p̂ dv̂ dŷ =

∫ 1

0

∫
SN−1

∫ 1

0

p̂ dŝdθ dŷ =

∫
Y

∫
V

Rsmax

KM
p

1

Rsmax
dv dy

=
M

KM
.

Applying the above transformations on (2.3) and multiplying the outcome by
Rτsmax

KM
, we arrive at

∂t̂p̂+
τsmax

ξ
∇x̂ · (v̂p̂) + k−τ

∂

∂ŷ

(
Ĝ(ŷ, Q̂)p̂

)
+ a2τ∇v̂ ·

(
Ŝ(v̂, ŷ, ĥ, Q̂, M̂)p̂

)
= µMτ β̂(ŷ, p̂, ĥ, M̂ , ŝ∗),

(2.8)

10



2.1. A MULTISCALE MODEL FOR GLIOMA SPREAD

where

Ĝ(ŷ, Q̂) = κ̂(1− ŷ)Q̂− ŷ, with κ̂ =
KQk

+

k−
,

Ŝ(v̂, ŷ, ĥ, Q̂, M̂) =
a1

a2smax
(1− M̂)DW b̂(ŷ, ĥ, Q̂, M̂)− v̂,

b̂(ŷ, ĥ, Q̂, M̂) =(1− ρ1 − ρ2)
−∇ĥ√
1 + |∇ĥ|2

+ ρ1(1− ŷ)
∇Q̂√

1 + |∇Q̂|2

+ ρ2
−∇M̂√
1 + |∇M̂ |2

,

β̂(ŷ, p̂, ĥ, M̂ , ŝ∗) = (1− M̂)η̂(ĥ, ŝ∗)

∫
ŷ

ŷ′(1− ŷ′)χ̂(ŷ)p̂(ŷ′) dŷ′,

η̂(ĥ, ŝ∗) =
1− ŝ∗

1 + ĥ
, ŝ∗ =

s∗

smax
, χ̂(ŷ) = Rχ(ŷR).

Note, that it still holds
∫
Ŷ
χ̂(ŷ) dŷ =

∫
Ŷ
Rχ(ŷR) dŷ =

∫
Y
Rχ(y) 1

R dy = 1.
Equation (2.4) is rescaled as

∂t̂Q̂ = µ̂QQ̂(1− Q̂)− δ̂Q
ĥ

1 + ĥ
Q̂, (2.9)

with µ̂Q = τµQ and δ̂Q = τδQ and the initial condition becoming

Q̂(0) = 1−

√
tr(DW (x̂))

3dref
.

From (2.6), we obtain

∂t̂ĥ = D̂h∆ĥ+ µ̂h(1− ĥ)
M̂

1 + M̂
− δ̂hĥê, (2.10)

where D̂h = Dhτ
ξ2 , µ̂h = µhτ

Kh
, δ̂h = δhKeτ.

Finally, we obtain from (2.7)

∂t̂ê = D̂e∆ê− ς̂e∇ ·
(
ê(1− ê)∇ĥ

)
+ Ĝe(ĥ, M̂)ê(1− ê), (2.11)

where D̂e =
Deτ
ξ2 , ς̂e =

ςeKhτ
ξ2 , Ĝe(ĥ, M̂) = µ̂e

ĥM̂
1+ĥM̂

, µ̂e = µeτ.

In the following, we will drop the hat symbol from all variables for simplicity of
writing.
We are still free to choose the scaling variables τ and ξ. What is a suitable choice
of these variables depends on the processes of interest and the time and length
scales upon which they are happening. We choose τ = 1

µM
, which means that

one time unit corresponds to the (average) proliferation time of glioma cells.
For the length scale, we choose the distance which can maximally be covered by
a cell in one time unit, hence ξ = τ ·smax = smax

µM
. Thus, we obtain the following

11



CHAPTER 2. MODELING

non-dimensionalized system:

∂tp+∇x · (vp) +
k−

µM
∂y(G(y,Q)p) +

a2
µM
∇v · (S(v, y, h,Q,M)p)

= β(y, p, h,M, s∗),

(2.12a)

∂tQ = µQQ(1−Q)− δQ
h

1 + h
Q, (2.12b)

∂th = Dh∆h+ µh(1− h)
M

1 +M
− δhhe, (2.12c)

∂te = De∆e− ςe∇ · (e(1− e)∇h) +Ge(h,M)e(1− e), (2.12d)

with

G(y) = κ(1− y)Q− y, (2.12e)

S(v, y, h,Q,M) =
a1

a2smax
(1−M)DW b− v, (2.12f)

b(y, h,Q,M) = (1− ρ1 − ρ2)
−∇h√
1 + |∇h|2

+ ρ1(1− y)
∇Q√

1 + |∇Q|2

+ ρ2
−∇M√
1 + |∇M |2

,

(2.12g)

β(y, p, h,M, s∗) = (1−M)η(h, s∗)

∫
Y

y′(1− y′)χ(y)p(y′) dy′, (2.12h)

η(h, s∗) =
1− s∗

1 + h
(2.12i)

Ge(h,M) = µe
hM

1 + hM
. (2.12j)

The kinetic equation (2.12a) is still characterizing mesoscopic dynamics of
cancer cells, as p depends on time, position, velocity, and the activity variable
(cell surface density of receptors bound to tissue fibers). Thus, the attempt to
solve system (2.12) numerically has to face the high dimensionality of the phase
space RN×V ×Y, which is quite inconvenient. Therefore, in the next subsection
we aim at deducing a macroscopic counterpart of (2.12a), to be coupled with
the rest of equations in (2.12).

2.1.5 Derivation of a fully macroscopic system

Assumptions and notations

We make the following simplifying assumptions, which will be needed in the
process of obtaining a closed system by integrating w.r.t. y and v:∫

V

∫
Y

(v − v∗)(y − y∗)p dy dv ≈ 0,

∫
V

∫
Y

(y − y∗)2pdy dv ≈ 0,∫
V

∫
Y

(vi − v∗i )(v − v∗)p dy dv ≈ 0, ∇x ·
∫
V

∫
Y

(vi − v∗i )(v − v∗)p dy dv ≈ 0,

where vi is the i-th component of the vector v, and y∗ = κQ
1+κQ and v∗ =

(1−M) a1

a2smax
DW b are the quasi-stationary states of the correspondingly non-

dimension-

12



2.1. A MULTISCALE MODEL FOR GLIOMA SPREAD

alized microscopic dynamics (2.1) and (2.2). Thus, we assume that some of
the second order moments for the tumor cell distribution w.r.t. deviations of
v and y from their steady states are negligible, which is reasonable, since the
microscopic dynamics of receptor binding and velocity innovations happen very
fast in comparison to the (mesoscopic) behavior of cell groups sharing the same
regimes of activity and kinetic variables. The second order moment of v is not
required to nullify, but only its divergence.
Subsequently we use the following notations:

M(t, x) :=

∫
V

∫
Y

p dy dv, My(t, x) :=

∫
V

∫
Y

ypdy dv,

Mv
i (t, x) :=

∫
V

∫
Y

vip dy dv, Mv(t, x) :=

∫
V

∫
Y

vpdy dv = (Mv
i )

N
i=1 .

Boundary conditions

Due to the performed non-dimensionalization, the domains Y and V are given
by

Y = (0, 1) and V = B1(0) ⊂ R3.

We assume p to be compactly supported in the V × Y space.

Remark 2.1.1. Equation (2.12a) is of transport type with respect to y and v.
Hence, boundary conditions w.r.t. these variables must be prescribed only at
the inflow boundary of Y and V .

� Inflow boundary of Y : The dynamics of y is given by ẏ = k−

µM
G(y,Q) =

k−

µM
(κ(1−y)Q−y). A binding state y ∈ ∂Y is part of the inflow boundary,

if G(y,Q) · ν < 0, where ν is the outward normal vector on the boundary.
On ∂Y = {0, 1}, it holds

G(0) · ν(0) = κQ · (−1) < 0 and G(1) · ν(1) = −1 · 1 < 0.

Hence, the inflow boundary of Y coincides with ∂Y . Thus, boundary
conditions can be prescribed on the whole of ∂Y.

� Inflow boundary of V : The dynamics of v is determined by v̇ = a2

µM
S(v) =

a2

µM

(
a1

a2smax
(1−M)DW b− v

)
, where |b| < 1. Now let v ∈ ∂B1(0), so

|v| = 1. The corresponding outward normal vector is then given by ν = v,
and we obtain

S(v) · ν =

〈
a1

a2smax
(1−M)DW b, v

〉
− ⟨v, v⟩

=
a1

a2smax
(1−M)

〈
3∑

i=1

αiωi ⟨ωi, b⟩ , v

〉
− |v|2

≤ a1
a2smax

(1−M)

∣∣∣∣∣
3∑

i=1

αiωi ⟨ωi, b⟩

∣∣∣∣∣− 1

≤ a1
a2smax

αmax |b|︸︷︷︸
<1

−1

<
a1

a2smax

a2
a1

smax − 1 = 0,

13
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where we used boundedness of M by its carrying capacity, which is shown
later on in the analysis section. Hence, V only has an inflow boundary,
therefore boundary conditions can be prescribed on the whole of ∂V .

Equations for the moments

For simplicity of writing, temporarily all dependencies of the coefficient func-
tions on the macroscopic density functions h,Q, e and M are dropped. We
integrate (2.12a) with respect to y and v:

∂tM +∇x ·Mv +
k−

µM

∫
V

∫
Y

∂y(G(y)p) dy dv +
a2
µM

∫
V

∫
Y

∇v · (S(v, y)p) dy dv

=

∫
V

∫
Y

β(y, p) dy dv.

The third and fourth term on the left hand side are zero due to the chosen
boundary conditions. For the integral on the right hand side we find∫

V

∫
Y

β(y, p) dy dv =

∫
V

∫
Y

(1−M)η(s∗)

∫
Y

y′(1− y′)χ(y)p(y′) dy′ dy dv

= (1−M)η(s∗)

∫
Y

χ(y) dy︸ ︷︷ ︸
=1

∫
V

∫
Y

y′(1− y′)p(y′) dy′ dv,︸ ︷︷ ︸
(A)

from which by

(A) =

∫
V

∫
Y

y(1− y)p(y) dy dv =

∫
V

∫
Y

yp(y) dy dv −
∫
V

∫
Y

y2p(y) dy dv

= My −
∫
V

∫
Y

(y − y∗)2p(y) dy dv︸ ︷︷ ︸
≈0

−
∫
V

∫
Y

2y∗yp(y) dy dv

+

∫
V

∫
Y

(y∗)2p(y) dy dv

= My − 2y∗My + (y∗)2M

we conclude∫
V

∫
Y

β(y, p) dy dv = (1−M)η(s∗)
(
My − 2y∗My + (y∗)2M

)
.

Hence, we obtain the macroscopic equation

∂tM +∇x ·Mv = η(s∗)(1−M)
(
My − 2y∗My + (y∗)2M

)
. (2.13)

To obtain a closed system we need further equations for the moments My and
Mv. To this aim, we multiply (2.12a) by y and again integrate with respect to
y und v:

∂tM
y +∇x ·

∫
Y

∫
V

vypdy dv +
k−

µM

∫
V

∫
Y

y∂y(G(y)p) dy dv

+
a2
µM

∫
V

∫
Y

y∇v · (S(v, y)p) dy dv

=

∫
V

∫
Y

yβ(y, p) dy dv.

(2.14)
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2.1. A MULTISCALE MODEL FOR GLIOMA SPREAD

Again, the fourth term is zero due to the chosen boundary conditions. The third
term on the left hand side can be computed by partial integration:

k−

µM

∫
V

∫
Y

y∂y(G(y)p) dy dv = − k−

µM

∫
V

∫
Y

G(y)p dy dv

= − k−

µM

∫
V

∫
Y

(κQ(1− y)− y)pdy dv

=
k−

µM
(κQ+ 1)My − k−κ

µM
QM.

For the remaining terms we find

∇x ·
∫
V

∫
Y

vypdy dv = ∇x ·
∫
V

∫
Y

(v − v∗)(y − y∗)pdy dv

+∇x ·
∫
V

∫
Y

(vy∗ + v∗y)p dy dv −∇x ·
∫
V

∫
Y

y∗v∗p dy dv

= ∇x · (y∗Mv + v∗My − y∗v∗M),∫
V

∫
Y

yβ(y, p) dy dv = η(s∗)(1−M)

∫
V

∫
Y

yχ(y) dy

∫
Y

y′(1− y′)p(y′) dy′ dv

= η(s∗)(1−M)y∗(My − 2y∗My + (y∗)2M),

where we used the symmetry of χ around y∗:∫
Y

yχ(y) dy =

∫
Y

(y − y∗)χ(y) dy︸ ︷︷ ︸
=0

+y∗
∫
Y

χ(y) dy︸ ︷︷ ︸
=1

= y∗.

Putting the above terms together, we find from (2.14)

∂tM
y+∇x · (y∗Mv + v∗My − y∗v∗M) +

k−

µM
((κQ+ 1)My − κQM)

= η(s∗)(1−M)y∗(My − 2y∗My + (y∗)2M).

(2.15)

To find an equation for Mv, we repeat the computations from above, now mul-
tiplying (2.12a) by vi instead of y. Integration w.r.t. v yields

∂tM
v
i +

∫
V

∫
Y

vi∇x · (vp) dy dv +
a2
µM

∫
V

∫
Y

vi∇v · (S(v, y)p) dy dv

=

∫
V

∫
Y

viβ(y, p) dy dv.

We compute the terms separately:∫
V

∫
Y

vi∇x · (vp) dy dv = ∇x ·
∫
V

∫
Y

vivpdy dv

= ∇x ·
∫
V

∫
Y

(vi − v∗i )(v − v∗)p dy dv︸ ︷︷ ︸
≈0

+∇x ·
∫
V

∫
Y

(viv
∗ + v∗i v − v∗i v

∗)pdy dv

= ∇x · (v∗Mv
i + v∗i M

v − v∗i v
∗M),
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and ∫
V

∫
Y

vi∇v · (S(v, y)p) dy dv

=

∫
Y

∫
V

vi∂vi(Si(v, y)p) dv +

n∑
j=1,j ̸=i

∫
V

vi∂vj (Sj(v, y)p) dv

 dy

=

∫
Y

∫
V \Vi

∫
Vi

vi∂vi(Si(v, y)p) dvi dṽi dy

+

n∑
j=1,j ̸=i

∫
Y

∫
V \Vj

vi

∫
Vj

∂vj (Sj(v, y)p) dvj dṽj dy

=

∫
Y

∫
V \Vi

vi Si(v, y)p|∂Vi︸ ︷︷ ︸
=0

−
∫
Vi

Si(v, y)p dvi

 dṽi dy

+
n∑

j=1,j ̸=i

∫
Y

∫
V \Vj

vi Sj(v, y)p|∂Vj︸ ︷︷ ︸
=0

dṽj dy

= −
∫
Y

∫
V

Si(v, y)pdv dy

= −
∫
Y

∫
V

(g
(1)
i p+ yg

(2)
i p− vip) dv dy

= −g(1)i M − g
(2)
i My +Mv

i ,

where we used the notation v = (vi, ṽi) ∈ Vi × V̸=i = V along with (recall
(2.12f))

S(v, y) = g(y)− v = g(1) + yg(2) − v,

g(1) =
a1

a2smax
(1−M)DW

(
(1− ρ1 − ρ2)

−∇h√
1 + |∇h|2

+ ρ1
∇Q√

1 + |∇Q|2

+ρ2
−∇M√
1 + |∇M |2

)
,

g(2) = − a1
a2smax

ρ1y(1−M)DW
∇Q√

1 + |∇Q|2
.

Eventually,∫
V

∫
Y

viβ(y, p) dy dv

= η(s∗)(1−M)

∫
V

∫
Y

vi

∫
Y

χ(y)y′(1− y′)p(y′) dy′ dy dv

= η(s∗)(1−M)

∫
Y

χ(y) dy︸ ︷︷ ︸
=1

∫
V

∫
Y

viy
′(1− y′)p(y′) dy′ dv

= η(s∗)(1−M)

(∫
V

∫
Y

(vi − v∗i )(y − y2)p(y) dy dv

16



2.1. A MULTISCALE MODEL FOR GLIOMA SPREAD

+v∗i

∫
V

∫
Y

(y − y2)p(y) dy dv

)
= η(s∗)(1−M)

(∫
V

∫
Y

(vi − v∗i )(y − y∗)p(y) dy dv

+ y∗
∫
V

∫
Y

(vi − v∗i )p(y) dy dv

−
∫
V

∫
Y

(vi − v∗i )(y − y∗)2p(y) dy dv

−
∫
V

∫
Y

(vi − v∗i )(2yy
∗ − (y∗)2)p(y) dy dv

+

∫
V

∫
Y

v∗i yp(y) dy dv −
∫
V

∫
Y

v∗i (y − y∗)2p(y) dy dv

−
∫
V

∫
Y

v∗i (2yy
∗ − (y∗)2)p(y) dy dv

)
= η(s∗)(1−M)

(
y∗Mv

i − y∗v∗i M

−
∫
V

∫
Y

vi(2yy
∗ − (y∗)2)p(y) dy dv + v∗i M

y

)
= η(s∗)(1−M)

(
y∗Mv

i − y∗v∗i M − 2y∗v∗i M
y − 2(y∗)2Mv

i

+2(y∗)2v∗i M + (y∗)2Mv
i + v∗i M

y
)

= η(s∗)(1−M)
(
(2(y∗)2v∗i − y∗v∗i )M + (v∗i − 2y∗v∗i )M

y

+(y∗ − (y∗)2)Mv
i

)
.

Hence, summarizing the terms calculated above, we find

∂tM
v
i +∇x · (v∗Mv

i + v∗i M
v − v∗i v

∗M) +
a2
µM

(
Mv

i − g
(1)
i M − g

(2)
i My

)
= η(s∗)(1−M)

(
(2(y∗)2v∗i − y∗v∗i )M + (v∗i − 2y∗v∗i )M

y + (y∗ − (y∗)2)Mv
i

)
.

(2.16)

for i = 1, 2, ..., N . Summarizing (2.13),(2.15) and (2.16), we obtain a closed
macroscopic system:

∂tM +∇x ·Mv = η(s∗)(1−M)
(
My − 2y∗My + (y∗)2M

)
, (2.17a)

∂tM
y +∇x · (y∗Mv + v∗My − y∗v∗M) +

k−

µM
((κQ+ 1)My − κQM)

= η(s∗)(1−M)y∗(My − 2y∗My + (y∗)2M),

(2.17b)

∂tM
v
i +∇x · (v∗Mv

i + v∗i M
v − v∗i v

∗M) +
a2
µM

(
Mv

i − g
(1)
i M − g

(2)
i My

)
= η(s∗)(1−M)

(
(2(y∗)2v∗i − y∗v∗i )M + (v∗i − 2y∗v∗i )M

y + (y∗ − (y∗)2)Mv
i

)
.

(2.17c)

Upscaling

The aim of this section is to derive a single macroscopic equation for M from
system (2.17a) - (2.17c) by scaling methods. For this, we take a closer look at
the involved parameters. In literature, the following values can be found:
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� µM ∼ 10−4 1
min [68]

� k− ∼ 6 1
min [21]

� κ ∼ 1 [21]

For a2 no reliable data could be found. We assume, that a2 ∼ 10 1
min . This

value corresponds to the ability of a cell reaching near to its maximal speed in
approximately 10s (which seems reasonable but is, however, only a guess). We
set ϵ = 10−5 and find

µM

a2
≈ 10−5 = ϵ

and
µM

k−
≈ 10−5 = ϵ.

Applying these estimates to the equations (2.17a)-(2.17c) deduced above, we
find

∂tM +∇x ·Mv = η(s∗)(1−M)
(
My − 2y∗My + (y∗)2M

)
, (2.18a)

ϵ∂tM
y + ϵ∇x · (y∗Mv + v∗My − y∗v∗M) + (κQ+ 1)My − κQM

= ϵη(s∗)(1−M)(My − 2y∗My + (y∗)2M),
(2.18b)

ϵ∂tM
v
i + ϵ∇x · (v∗Mv

i + v∗i M
v − v∗i v

∗M) +Mv
i − g

(1)
i M − g

(2)
i My

= ϵη(s∗)(1−M)
(
(2(y∗)2v∗i − y∗v∗i )M + (v∗i − 2y∗v∗i )M

y

+(y∗ − (y∗)2)Mv
i

)
.

(2.18c)

Remark 2.1.2. The presented method for scaling differs from the one applied
in e.g. [20, 32]. Instead of directly prescribing scalings of t and x by some
small parameter ϵ, we stick to the more parameter focused method applied in
[8], considering the (in our case biologically) prescribed orders of the model
parameters after non-dimensionalization with time and length scale of interest.
The result corresponds in the given case with a hyperbolic scaling. Compared to
directly setting x→ ϵx, t→ ϵt, the approach has the advantage, that - assuming
the availability of reliable data on the parameter orders - we directly obtain the
correct scaling for the non-derivative terms of the model corresponding to the
chosen time and length scale.

We consider Hilbert expansions

M = M0 + ϵM1 + ...,

Mv = Mv
0 + ϵMv

1 + ...,

My = My
0 + ϵMy

1 + ...

Plugging this into (2.18a)-(2.18c), sorting by orders of ϵ and considering only
the leading order terms, we deduce from equation (2.18b)

(κQ+ 1)My
0 = κQM0 ⇒ My

0 =
κQ

κQ+ 1
M0 = y∗M0. (2.19)

Equation (2.18c) yields

Mv
0i − g

(1)
i M0 − g

(2)
i My

0 = 0,
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where g
(1)
i = g

(1)
i (M0). Plugging in (2.19) we find

Mv
0i = (g

(1)
i + y∗g

(2)
i )M0 = gi(y

∗)M0 (2.20)

Collecting leading order terms in (2.18a) and using (2.19) and (2.20), we find

∂tM0 +∇x · (g(y∗)M0) = GM (h, s∗, y∗)M0(1−M0), (2.21)

where

g(y∗) =
a1

a2smax
(1−M0)DW b(y∗),

b(y∗) = (1− ρ1 − ρ2)
−∇h√
1 + |∇h|2

+ ρ1(1− y∗)
∇Q√

1 + |∇Q|2
+ ρ2

−∇M0√
1 + |∇M0|2

,

GM (h, s∗, y∗) = η(h, s∗)
(
y∗ − (y∗)2

)
=

(1− s∗)(y∗ − (y∗)2)

1 + h
.

This is a genuinely macroscopic reaction-diffusion-taxis PDE for the leading
term M0 in the Hilbert expansion of the macroscopic glioma density M , thus it
is supposed to approximate the tumor density dynamics for ϵ → 0.2 The rest
of the equations in system (2.12) were already macroscopic.

So far, we considered the space variable x ∈ RN , however, we should actually
deal with a bounded region in which glioma cells, normal tissue, acidity and
endothelial cells are evolving. Let Ω ⊂ RN be such a bounded domain with
sufficiently smooth boundary. By the non-dimensionalization, the domain on
which (2.24) holds is Ω̃ = µM

smax
Ω, with outer unit normal vector ν(x) at x ∈ ∂Ω.

Assuming no normal mass flux across the boundary gives the mesoscopic no flux
condition

0 =

∫
V

∫
Y

vp(t, x, v, y) · ν(x) dy dv = Mv
0 (t, x) · ν(x) = g(y∗)M0(t, x) · ν(x),

for all x ∈ ∂Ω̃, t > 0,

(2.22)

cf. [61]. The other PDEs in (2.24) were introduced in subsection 2.1.3 directly
on a macroscopic level, thus we can simply impose no-flux conditions:

Dh∇h · ν = 0 on ∂Ω̃, t > 0, (2.23a)

(De∇e− ςee(1− e)∇h) · ν = 0 on ∂Ω̃, t > 0. (2.23b)

The subsequently summarized system (2.24) with boundary conditions (2.22)
and (2.23) has to be supplemented with adequate initial conditions. These can
be the tumor cell distribution observed at diagnosis, an estimate of the macro-
scopic volume fraction of the tissue as proposed in (2.5), some (estimated) acid-
ity distribution at diagnosis and a given distribution of endothelial cell density.
For convenience of notation we will subsequently write M instead of M0, and Ω
instead of Ω̃. We summarize the full macroscopic system characterizing glioma
dynamics under the influence of tissue, acidity, and vasculature:

2This is just a formal deduction; a rigorous study of convergence is not performed in the
scope of this thesis.
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Model 2.1: The basic model

∂tM +∇x · (g(h,Q,M, y∗)M) = GM (h, s∗, y∗)(1−M)M, (2.24a)

∂tQ = µQQ(1−Q)− δQ
h

1 + h
Q, (2.24b)

∂th = Dh∆h+ µh(1− h)
M

1 +M
− δhhe, (2.24c)

∂te = De∆e− ςe∇x · (e(1− e)∇xh) +Ge(h,M)e(1− e) (2.24d)

in R+ × Ω (in R+ × Ω̄ for equation (2.24b)), with

g(h,Q,M, y∗) =
a1

a2smax
(1−M)DW b(h,Q,M, y∗), (2.25a)

b(h,Q,M, y∗) =(1− ρ1 − ρ2)
−∇h√
1 + |∇h|2

+ ρ1(1− y∗)
∇Q√

1 + |∇Q|2

+ ρ2
−∇M√
1 + |∇M |2

,

(2.25b)

GM (h, s∗, y∗) =
(1− s∗)(y∗ − (y∗)2)

1 + h
, (2.25c)

Ge(h,M) = µe
hM

1 + hM
, (2.25d)

s∗ = |g(h,Q,M, y∗)|, (2.25e)

y∗ =
κQ

1 + κQ
, (2.25f)

boundary conditions

Mg(h,Q,M, y∗) · ν = 0 on ∂Ω, t > 0, (2.26a)

Dh∇h · ν = 0 on ∂Ω, t > 0, (2.26b)

(De∇e− ςee(1− e)∇h) · ν = 0 on ∂Ω, t > 0, (2.26c)

and nonnegative initial data

M(0, x) = M0(x), h(0, x) = h0(x), e(0, x) = e0(x) for x ∈ Ω, (2.27a)

Q(0, x) = Q0(x) for x ∈ Ω̄, (2.27b)

bounded by their carrying capacities, i.e.

0 ≤M0(x), Q0(x), h0(x), e0(x) ≤ 1.

The system features self-diffusion, repellent pH-taxis, and haptotaxis, all of
which involve limited fluxes. The diffusivity, taxis sensitivity functions and
even the proliferation rate depend on the solution components, directly or via
the steady state y∗ of receptor binding dynamics. Thus, although macroscopic,
they still carry information from the lowermost (subcellular) level modeled here.
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2.2 Endothelial cells following ∇M/∇(hM)

In section 2.1, we modeled the spread of endothelial cells by pH-taxis. As was
already mentioned there, blood vessels actually do not spread into acidic regions
but into regions of high concentrations of vascular endothelial growth factor
(VEGF). Since VEGF is mainly produced by cancer cells in contact with an
acidic environment, there is a correlation between pH and VEGF concentration.
In section 2.1, we did not set up a separate equation for production and diffusion
of VEGF in order to avoid inflating the model with a further equation. Instead,
we assumed that VEGF and protons diffuse in a similar way. Being a product of
cancer cells in contact with acidity, while the latter is also produced by cancer
cells, we simply replaced VEGF concentration in the taxis term by pH, leading
to

∂te = De∆e− ςe∇x · (e(1− e)∇xh) +Ge(h,M)e(1− e),

Ge(h,M) = µe
hM

KhKM + hM
.

Assuming instead that VEGF concentration is dominated by production rather
than diffusion, it makes more sense to approximate VEGF by hM, which is
proportional to the production rate of VEGF. Note, that this approach means
to neglect diffusivity of VEGF. A third possible approach could be to drop h
and assume, that VEGF concentration is proportional to the density of cancer
cells.
We shortly introduce the changes in the modeling of endothelial cells for the two
approaches suggested above. Later on, we show in simulations how the choice
of the taxis term affects the resulting vascularization of the tumor.

2.2.1 Modeling

Substantially, we stick to the model introduced in section 2.1. Changes are
made in equation (2.7): We choose now

∂te = De∆e− ςe∇
(
e

(
1− e

Ke

)
∇f (i)

)
+Ge(h,M)e

(
1− e

Ke

)
, (2.28)

Ge(h,M) = µe
hM

KhKM + hM
,

replacing the pH-tactic term ∇h by ∇f (i), i = 1, 2. We set

f (1)(M) = M and f (2)(h,M) = hM.

Finally, we have to non-dimensionalize equation (2.28). Proceeding in the same

way as was done in section 2.1.4, now with ς̂
(1)
e = ςeKMτ

ξ2 and ς̂
(2)
e = ςeKhKMτ

ξ2 ,

we find (dropping the hats)

∂te = De∆e− ς(i)e ∇ ·
(
e(1− e)∇f (i)(h,M)

)
+Ge(h,M)e(1− e),

(2.29)

Ge(h,M) = µe
hM

1 + hM
. (2.30)

For i = 1 or i = 2, the complete macroscopic system is given by

21



CHAPTER 2. MODELING

Model 2.2: Endothelials following ∇M/∇(hM)

∂tM +∇x · (g(h,Q,M, y∗)M) = GM (h, s∗, y∗)(1−M)M, (2.31a)

∂tQ = µQQ(1−Q)− δQ
h

1 + h
Q, (2.31b)

∂th = Dh∆h+ µh(1− h)
M

1 +M
− δhhe, (2.31c)

∂te = De∆e− ς(i)e ∇ ·
(
e(1− e)∇f (i)(h,M)

)
+Ge(h,M)e(1− e) (2.31d)

in R+ × Ω (in R+ × Ω̄ for equation (2.31b)), with

g(h,Q,M, y∗) =
a1

a2smax
(1−M0)DW b(h,Q,M, y∗), (2.32a)

b(h,Q,M, y∗) =(1− ρ1 − ρ2)
−∇h√
1 + |∇h|2

+ ρ1(1− y∗)
∇Q√

1 + |∇Q|2

+ ρ2
−∇M√
1 + |∇M |2

,

(2.32b)

GM (h, s∗, y∗) =
(1− s∗)(y∗ − (y∗)2)

1 + h
, (2.32c)

f (i)(M) =

{
M, if i = 1,

hM, if i = 2,
(2.32d)

Ge(h,M) = µe
hM

1 + hM
, (2.32e)

s∗ = |g(h,Q,M, y∗)|, (2.32f)

y∗ =
κQ

1 + κQ
, (2.32g)

boundary conditions

Mg(h,Q,M, y∗) · ν = 0 on ∂Ω, t > 0, (2.33a)

Dh∇h · ν = 0 on ∂Ω, t > 0, (2.33b)

(De∇e− ς(i)e e(1− e)∇f (i)(h,M)) · ν = 0 on ∂Ω, t > 0, (2.33c)

and nonnegative initial data

M(0, x) = M0(x), h(0, x) = h0(x), e(0, x) = e0(x) for x ∈ Ω, (2.34a)

Q(0, x) = Q0(x) for x ∈ Ω̄, (2.34b)

bounded by their carrying capacities, i.e.

0 ≤M0(x), Q0(x), h0(x), e0(x) ≤ 1.
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2.3. THE GO-OR-GROW HYPOTHESIS

2.3 The go-or-grow hypothesis

In the models in sections 2.1 and 2.2, we integrated the assumption that pro-
liferating cells do not migrate (the so called go-or-grow dichotomy) by a speed
dependent proliferation rate. We want to compare this ansatz with a more clas-
sical modeling approach for the go-or-grow phenomenon. In [32, 69, 70, 85],
the population of cancer cells is divided into two subpopulations: migrating
and proliferating cells. While in many works the modeling is performed directly
on the macroscopic level, as was done for example in [69, 85], there also exist
models connecting different scales [36, 70] as well as works deriving macroscopic
models from the micro-mesolevel [32]. We choose the latter approach, modifying
the micro-meso-model set up in section 2.1 and again performing an upscaling.
In simulations in chapter 4, the resulting macroscopic system will be compared
with the basic model 2.1 based on the speed dependent proliferation rate.

2.3.1 Modeling

The population of cancer cells is divided into a population of migrating cancer
cells m(t, x, y, v) and a population of proliferating cancer cells p(t, x, y). Equa-
tion (2.3) has to be split into two equations, where for the equation for p the
transport terms and for the equation for m the proliferation term are dropped.
Both equations are complemented by transition terms wmp, wpm between the
two populations:

∂m

∂t
+∇x · (vm) +

∂

∂y
(G(y,Q)m) +∇v · (S(v, y, h,Q,C)m)

= wpm(m, p)− wmp(m, p),

(2.35)

∂p

∂t
+

∂

∂y
(G(y,Q)p) = β(p,m) +

∫
V

wmp(m, p) dv −
∫
V

wpm(m, p) dv. (2.36)

In the following, M(t, x) =
∫
V

∫
Y
m dy dv and P (t, x) =

∫
Y
p dy will denote the

total concentrations of migrating and proliferating cells. By C(t, x) = M(t, x)+
P (t, x) we denote the total concentration of all cancer cells.

Dynamics of the binding state

The dynamics of the binding state is chosen as in subsection 2.1.1, so

G(y,Q) = k+(R− y)Q− k−y. (2.37)

Dynamics of cell velocity

Corresponding to the modeling in subsection 2.1, the dynamics of cell velocity
is modeled by

S(v, y, h,Q,C) = g(y, h,Q,C)− a2v, (2.38)
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where

g(y, h,Q,C) = a1
KC − C

KC
DW b,

b(y, h,Q,C) = (1− ρ1 − ρ2)
−∇h√(

Kh

ξ

)2
+ |∇h|2

+ ρ1
R− y

R

∇Q√(
KQ

ξ

)2
+ |∇Q|2

+ ρ2
−∇C√(

KC

ξ

)2
+ |∇C|2

.

Transition terms

We assume that the decision to switch between migrating and proliferating
phenotype depends on the signal strength a cell receives. The stronger the
received signal the more cells switch from proliferation to migration in order to
follow the received signal. In case of low signal, more cells stop migration and
start to proliferate. We choose the following switch terms:

wmp(m, p) = α1(a
2
1α

2
max − |g|2)m,

wpm(m, p) = α2|g|2pδ
(
|v|

smax

)
.

Recall |g| ≤ a1αmax, hence for a maximal signal |g| we obtain wmp(m, p) = 0,
meaning that no cells switch from migrational to proliferative regime. After
transition of a cell from proliferative to migrational stage, the cell starts with
speed 0 before accelerating into the direction of the received signal. Hence, we

choose the factor δ
(

|v|
smax

)
in wpm, such that the distribution of velocities after

a switch from proliferation to migration is concentrated in v = 0.

Proliferation

Proliferation is modeled similarly as in subsection 2.1.2. The main difference
lies in dropping the speed dependent term smax−s∗

smax
and replacing in the logistic

growth term M
KM

by C
KC

, where KC is the carrying capacity for cancer cells
(which should have the same value as KM in section 2.1). We choose

β(p,m) = β1(h,C)

∫
Y

β2(y
′)χ(t, x, y)p(t, x, y′) dy′,

where

β1(h,C) = µP

(
1− C

KC

)
Kh

Kh + h
and β2(y) =

y(R− y)

R2
.

Tissue

The modeling of tissue density is identical to that in section 2.1.3, so

Q̇(t) = µQQ(1− Q

KQ
)− δQ

h

Kh + h
Q. (2.39)
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Again, the initial condition is chosen as

Q(0) = KQ

(
1−

√
tr(DW )

3dref

)
.

Acidity

The concentration h of protons in the tumor environment is modeled similarly
to section 2.1.3:

∂th = Dh∆h+ µh
P

KC + P

(
1− h

Kh

)
− δhhe. (2.40)

Here, we replaced M
KM+M by P

KC+P to take into account, that predominantly
proliferating cancer cells produce an acidic environment as a result of the pro-
liferation cycle.

Vascularization

Finally, also the equation describing vascularization can be mainly retained:

∂te = De∆e− ςe∇
(
e

(
1− e

Ke

)
∇h
)
+Ge(h, P )e

(
1− e

Ke

)
. (2.41)

The growth term Ge(h, P ) should be increasing w.r.t. h and P , and is here
chosen as Ge(h, P ) = µe

hP
KhKC+hP .

2.3.2 Non-dimensionalization

Analogously to section 2.1.4, we non-dimensionalize equations (2.35)-(2.41). To
this aim, we define

t̂ =
t

τ
, x̂ =

x

ξ
, ŷ =

y

R
, v̂ =

v

smax
, p̂ =

R

KC
p, m̂ =

Rsmax

KC
m, Q̂ =

Q

KQ
,

ĥ =
h

Kh
, ê =

e

Ke
, M̂ =

∫
V̂

∫
Ŷ

m̂dv̂ dŷ, P̂ =

∫
Ŷ

p̂dŷ, Ĉ = M̂ + P̂ .

Note, that

M̂ =

∫
V̂

∫
Ŷ

m̂ dv̂ dŷ =

∫
V

∫
Y

Rsmax

KC
m · 1

Rsmax
dv dy =

M

KC
,

P̂ =

∫
Ŷ

p̂dŷ =

∫
Y

R

KC
p · 1

R
dy =

P

KC
,

Ĉ = M̂ + P̂ =
M

KC
+

P

KC
=

C

KC
.

Multiplying equation (2.35) by Rτsmax

KC
and equation (2.36) by Rτ

KC
and applying

the above transformations, we obtain

∂t̂m̂+
τsmax

ξ
∇x · (v̂m̂) + k−τ∂ŷ

(
Ĝ(ŷ)m̂

)
+ a2τ∇v̂ ·

(
Ŝ(v̂, ŷ, ĥ, Q̂, Ĉ)m̂

)
= µP τŵpm(m̂, p̂)− µP τŵmp(m̂, p̂)

(2.42)
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and

∂t̂p̂+ k−τ∂ŷ

(
Ĝ(ŷ)p̂

)
=µP τ β̂(p̂) + µP τ

∫
V̂

ŵmp(m̂, p̂) dv̂

− µP τ

∫
V̂

ŵpm(m̂, p̂) dv̂,

(2.43)

where

Ĝ(ŷ, Q̂) = k̂(1− ŷ)Q̂− ŷ, k̂ =
KQk

+

k−
,

Ŝ(v̂, ŷ, ĥ, Q̂, Ĉ) = ĝ − v̂,

ĝ(ŷ, ĥ, Q̂, Ĉ) =
(1− Ĉ)

αmax
DW b̂,

b̂(ŷ, ĥ, Q̂, Ĉ) =(1− ρ1 − ρ2)
−∇ĥ√
1 + |∇ĥ|2

+ ρ1(1− ŷ)
∇Q̂√

1 + |∇Q̂|2

+ ρ2
−∇Ĉ√
1 + |∇Ĉ|2

β̂(ŷ, p̂, ĥ, Ĉ) = (1− Ĉ)η̂(ĥ)

∫
Ŷ

ŷ′(1− ŷ′)χ̂(ŷ)p̂(ŷ′) dŷ′,

η̂(ĥ) =
1

1 + ĥ
, χ̂(ŷ) = Rχ(ŷR),

ŵmp(m̂, p̂) = α̂1(1− |ĝ|2)m̂, ŵpm(m̂, p̂) = α̂2|ĝ|2δ(|v̂|)p̂,

α̂1 =
α1a

2
1α

2
max

µP
, α̂2 =

α2a
2
1α

2
max

µP
.

Note, that it still holds
∫
Ŷ
χ̂(ŷ) dŷ =

∫
Ŷ
Rχ(ŷR) dŷ =

∫
Y
Rχ(y) 1

R dy = 1.

With µ̂Q = τµQ and δ̂Q = τδQ, equation (2.39) is rescaled as

∂t̂Q̂ = µ̂QQ̂(1− Q̂)− δ̂Q
ĥ

1 + ĥ
Q̂ with i.c. Q̂(0) = 1−

√
tr(DW )

3dref
. (2.44)

From (2.40), we obtain

∂t̂ĥ = D̂h∆ĥ+ µ̂h(1− ĥ)
P̂

1 + P̂
− δ̂hĥê, (2.45)

where D̂h = Dhτ
ξ2 , µ̂h = τ µh

Kh
, δ̂h = τδhKe.

Finally, we obtain from equation (2.41)

∂t̂ê = D̂e∆ê− ς̂e∇ ·
(
ê(1− ê)∇ĥ

)
+ Ĝe(ĥ, P̂ )ê(1− ê), (2.46)

where D̂e =
Deτ
ξ2 , ς̂e =

ςeKhτ
ξ2 , Ĝe(ĥ, P̂ ) = µ̂e

ĥP̂
1+ĥP̂

, µ̂e = µeτ.

Choosing τ = 1
µP

and ξ = smax

µP
and dropping the hats, we find the non-
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dimensionalized system

∂tm+∇x · (vm)+
k−

µP
∂y(G(y,Q)m) +

a2
µP
∇v · (S(v, y, h,Q,C)m)

= wpm(y,m, p, h,Q,C)− wmp(y, v,m, p, h,Q,C),

(2.47a)

∂tp+
k−

µP
∂y(G(y,Q)p) =β(y, p, h, C) +

∫
V

wmp(y, v,m, p, h,Q,C) dv

−
∫
V

wpm(y,m, p, h,Q,C) dv,

(2.47b)

∂tQ = µQQ(1−Q)− δQ
h

1 + h
Q, (2.47c)

∂th = Dh∆h+ µh(1− h)
P

1 + P
− δhhe, (2.47d)

∂te = De∆e− ςe∇ · (e(1− e)∇h) +Ge(h, P )e(1− e), (2.47e)

with

G(y,Q) = κ(1− y)Q− y, (2.47f)

S(v, y, h,Q,C) =
a1

a2smax
(1− C)DW b(y, h,Q,C)− v, (2.47g)

b(y, h,Q,C) =(1− ρ1 − ρ2)
−∇h√
1 + |∇h|2

+ ρ1(1− y)
∇Q√

1 + |∇Q|2

+ ρ2
−∇C√
1 + |∇C|2

,

(2.47h)

β(y, p, h, C) = (1− C)η(h)

∫
Y

y′(1− y′)χ(y)p(y′) dy′, η(h) =
1

1 + h
, (2.47i)

wmp(y, v,m, p, h,Q,C) = α1(1− |g|2)m, (2.47j)

wpm(y,m, p, h,Q,C) = α2|g|2δ(|v|)p, (2.47k)

Ge(h, P ) = µe
hP

1 + hP
. (2.47l)

2.3.3 Derivation of a fully macroscopic system

Assumptions and notations

In analogy to subsection 2.1.5 we make the following simplifying assumptions:∫
V

∫
Y

(v − v∗)(y − y∗)mdy dv ≈ 0,

∫
V

∫
Y

(y − y∗)2p dy dv ≈ 0,∫
V

∫
Y

(y − y∗)2mdy dv ≈ 0,

∫
V

∫
Y

(vi − v∗i )(v − v∗)m dy dv ≈ 0,

∇x ·
∫
V

∫
Y

(vi − v∗i )(v − v∗)mdy dv ≈ 0,

where again vi is the i-th component of the vector v, and y∗ = κQ
1+κQ and

v∗ = (1− C) a1

a2smax
DW b are the quasi-stationary states of (2.37) and (2.38).
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We will use the following notations:

M(t, x) :=

∫
V

∫
Y

m dy dv, My(t, x) :=

∫
V

∫
Y

ymdy dv,

Mv
i (t, x) :=

∫
V

∫
Y

vimdy dv, Mv(t, x) :=

∫
V

∫
Y

vmdy dv = (Mv
i )

n
i=1 ,

P (t, x) :=

∫
V

∫
Y

p dy dv, P y(t, x) :=

∫
V

∫
Y

ypdy dv.

Boundary conditions

Due to the performed non-dimensionalization, the domains Y and V are given
by

Y = (0, 1) and V = B1(0) ⊂ R3.

We assume m and p to be compactly supported in the V × Y space and in the
Y space, respectively.

Remark 2.3.1. Again, equations (2.47a) and (2.47b) are of transport type with
respect to y and v (y, respectively). Hence, boundary conditions can only be
prescribed at the inflow boundary of Y and V (Y ). We proceed analogously to
the foregoing section:

� Inflow boundary of Y : The dynamics of y is described by ẏ = k−

µP
G(y,Q) =

k−

µP
(κ(1−y)Q−y). A binding state y ∈ ∂Y is part of the inflow boundary,

if G(y) · ν < 0, where ν is the outward normal vector on the boundary.
On ∂Y = {0, 1} it holds

G(0) · ν(0) = κQ · (−1) < 0 and G(1) · ν(1) = −1 · 1 < 0.

Hence, the inflow boundary of Y coincides with ∂Y . Thus, boundary
conditions can be prescribed on the whole of ∂Y.

� Inflow boundary of V : The dynamics of v is determined by v̇ = a2

µP
S(v) =

k−

µP

(
a1

a2smax
(1− C)DW b− v

)
, where |b| < 1. Now let v ∈ ∂B1(0), so |v| =

1. The corresponding outward normal vector is then given by ν = v, and
we obtain

S(v) · ν =

〈
a1

a2smax
(1− C)DW b, v

〉
− ⟨v, v⟩

=
a1

a2smax
(1− C)

〈
3∑

i=1

αiωi ⟨ωi, b⟩ , v

〉
− |v|2

≤ a1
a2smax

(1− C)

∣∣∣∣∣
3∑

i=1

αiωi ⟨ωi, b⟩

∣∣∣∣∣− 1

≤ a1
a2smax

αmax |b|︸︷︷︸
<1

−1

<
a1

a2smax

a2
a1

smax − 1 = 0.

The used boundedness of C by its carrying capacity is shown later on
in the analysis section. Hence, V only has an inflow boundary, therefore
boundary conditions can be prescribed on the whole of ∂V .
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Equations for the moments

To derive a macroscopic system we proceed as in subsection 2.1.5. For simplicity
of writing, in the following computations the dependencies of the coefficient
functions on the macroscopic density functions h,Q, P,M and e are dropped.
First, we integrate (2.47a) with respect to y and v:

∂tM +∇x ·Mv +
k−

µP

∫
V

∫
Y

∂y(G(y)m) dy dv +
a2
µP

∫
V

∫
Y

∇v · (S(v, y)m) dy dv

=

∫
V

∫
Y

wpm dy dv −
∫
V

∫
Y

wmp dy dv.

The third and fourth term on the left hand side are zero due to the chosen
boundary conditions. Setting again g = g(1)+ yg(2), we find for the integrals on
the right hand side

1

α2

∫
V

∫
Y

wpm dy dv =

∫
V

∫
Y

δ(|v|)|g|2pdy dv

=

∫
V

δ(|v|) dv
∫
Y

|g|2p dy

=

∫
Y

|g(1) + yg(2)|2p dy

=

∫
Y

|g(1)|2p+ y2|g(2)|2p+ 2y⟨g(1), g(2)⟩p dy

= |g(1)|2P + 2⟨g(1), g(2)⟩P y + |g(2)|2(−(y∗)2P + 2y∗P y)

and

1

α1

∫
V

∫
Y

wmp dy dv

=

∫
V

∫
Y

(1− |g(1) + yg(2)|2)m dy dv

=

∫
V

∫
Y

(1− |g(1)|2)m− y2|g(2)|2m− 2y⟨g(1), g(2)⟩m dy dv

= (1− |g(1)|2)M −
∫
V

∫
Y

(y − y∗)2|g(2)|2m dy dv

+

∫
V

∫
Y

(y∗)2|g(2)|2m dy dv − 2y∗
∫
V

∫
Y

y|g(2)|2m dy dv − 2⟨g(1), g(2)⟩My

= (1− |g(1)|2)M + (y∗)2|g(2)|2M − 2y∗|g(2)|2My − 2⟨g(1), g(2)⟩My.

Hence, we obtain the macroscopic equation

∂tM +∇x ·Mv

= α2

(
|g(1)|2P + 2⟨g(1), g(2)⟩P y + |g(2)|2(−(y∗)2P + 2y∗P y)

)
− α1

(
(1− |g(1)|2)M + (y∗)2|g(2)|2M − 2y∗|g(2)|2My − 2⟨g(1), g(2)⟩My

)
.

(2.48)

We repeat the procedure for (2.47b), now integrating only with respect to y:

∂tP +
k−

µP

∫
Y

∂y(G(y)p) dy =

∫
Y

β(y, p) dy +

∫
V

∫
Y

wmp dy dv −
∫
V

∫
Y

wpm dy dv.

29



CHAPTER 2. MODELING

Again, the second integral on the left hand side is zero due to boundary con-
ditions. Analogously to the computation in section 2.1.5, for the first term on
the right hand side we obtain∫

Y

β(y, p) dy =
1− C

1 + h

∫
Y

χ(y) dy

∫
V

∫
Y

y′(1− y′)p(y′) dy′

=
1− C

1 + h
(P y − 2y∗P y + (y∗)2P ).

The second and third term on the right hand side were derived above, so we
find

∂tP =
1− C

1 + h

(
P y − 2y∗P y + (y∗)2P

)
+ α1

(
(1− |g(1)|2)M + (y∗)2|g(2)|2M − 2y∗|g(2)|2My − 2⟨g(1), g(2)⟩My

)
− α2

(
|g(1)|2P + 2⟨g(1), g(2)⟩P y + |g(2)|2(−(y∗)2P + 2y∗P y)

)
.

(2.49)

For a closed system, we further need equations for the moments My, P y and
Mv. To this aim, we multiply (2.47a) by y and again integrate with respect to
y and v:

∂tM
y+∇x ·

∫
Y

∫
V

vymdy dv +
k−

µP

∫
V

∫
Y

y∂y(G(y)m) dy dv

+
a2
µP

∫
V

∫
Y

y∇v · (S(v, y)m) dy dv

=

∫
V

∫
Y

ywpm dy dv −
∫
V

∫
Y

ywmp dy dv.

Again, the fourth term is zero due to the chosen boundary conditions. For the
second and third integral on the left hand side, we obtain as in section 2.1.5

∇x ·
∫
V

∫
Y

vymdy dv = ∇x · (y∗Mv + v∗My − y∗v∗M)

and ∫
V

∫
Y

y
∂

∂y
(G(y)m) dy dv = (κQ+ 1)My − κQM.

For the terms on the right hand side we find

1

α2

∫
V

∫
Y

ywpm dy dv =

∫
Y

y|g|2p dy
∫
V

δ(|v|) dv

=
(
−2⟨g(1), g(2)⟩(y∗)2 − 2|g(2)|2(y∗)3

)
P

+
(
|g(1)|2 + 4⟨g(1), g(2)⟩y∗ + 3|g(2)|2(y∗)2

)
P y

and

1

α1

∫
V

∫
Y

ywmp dy dv =

∫
V

∫
Y

y(1− |g|2)mdy dv

=
(
2⟨g(1), g(2)⟩(y∗)2 + 2|g(2)|2(y∗)3

)
M

+
(
1− |g(1)|2 − 4⟨g(1), g(2)⟩y∗ − 3|g(2)|2(y∗)2

)
My.
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Altogether, we find

∂tM
y+∇x · (y∗Mv + v∗My − y∗v∗M) +

k−

µP
((κQ+ 1)My − κQM)

= α2

((
−2⟨g(1), g(2)⟩(y∗)2 − 2|g(2)|2(y∗)3

)
P

+
(
|g(1)|2 + 4⟨g(1), g(2)⟩y∗ + 3|g(2)|2(y∗)2

)
P y
)

− α1

((
2⟨g(1), g(2)⟩(y∗)2 + 2|g(2)|2(y∗)3

)
M

+
(
1− |g(1)|2 − 4⟨g(1), g(2)⟩y∗ − 3|g(2)|2(y∗)2

)
My
)
.

(2.50)

To find an equation for P y we multiply (2.47b) by y and integrate with respect
to y:

∂tP
y +

k−

µP

∫
V

∫
Y

y
∂

∂y
(G(y)p) dy dv

=

∫
V

∫
Y

yβ(y, p) dy dv +

∫
V

∫
Y

ywmp dy dv −
∫
V

∫
Y

ywpm dy dv.

The second term on the left hand side is given by∫
Y

y
∂

∂y
(G(y)p) dy = (κQ+ 1)P y − κQP.

For the first term on the right hand side we find∫
Y

yβ(p, y, C) dy =
1− C

1 + h

∫
Y

yχ(y) dy

∫
Y

y′(1− y′)p(y′) dy′

=
1− C

1 + h
y∗(P y − 2y∗P y + (y∗)2P ).

The second and third term on the right hand side were already computed above.
Altogether, we find

∂tP
y +

k−

µP
((κQ+ 1)P y − κQP )

=
1− C

1 + h
y∗(P y − 2y∗P y + (y∗)2P )

+ α1

((
2⟨g(1), g(2)⟩(y∗)2 + 2|g(2)|2(y∗)3

)
M

+
(
1− |g(1)|2 − 4⟨g(1), g(2)⟩y∗ − 3|g(2)|2(y∗)2

)
My
)

− α2

((
−2⟨g(1), g(2)⟩(y∗)2 − 2|g(2)|2(y∗)3

)
P

+
(
|g(1)|2 + 4⟨g(1), g(2)⟩y∗ + 3|g(2)|2(y∗)2

)
P y
)
.

(2.51)

To find an equation for Mv, we repeat the computations from above, now
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multiplying (2.47a) by vi instead of y. Integration w.r.t. v yields

∂tM
v
i +

∫
V

∫
Y

vi∇x · (vm) dy dv +
k−

µP

∫
V

∫
Y

vi
∂

∂y
(G(y)m) dy dv

+
a2
µP

∫
V

∫
Y

vi∇v · (S(v, y)m) dy dv

=

∫
V

∫
Y

viwpm dy dv −
∫
V

∫
Y

viwmp dy dv.

The third term on the right hand side is again zero due to boundary conditions.
The other terms are computed as follows:

∫
V

∫
Y

vi∇x · (vm) dy dv = ∇x ·
∫
V

∫
Y

vivmdy dv

= ∇x ·
∫
V

∫
Y

(vi − v∗i )(v − v∗)m dy dv

+∇x ·
∫
V

∫
Y

(viv
∗ + v∗i v − v∗i v

∗)m dy dv

= ∇x · (v∗Mv
i + v∗i M

v − v∗i v
∗M),

∫
V

∫
Y

vi∇v · (S(v, y)m) dy dv

=

∫
Y

∫
V

vi∂vi(Si(v, y)m) dv +

n∑
j=1,j ̸=i

∫
V

vi∂vj (Sj(v, y)m) dv

 dy

=

∫
Y

∫
V \Vi

∫
Vi

vi∂vi(Si(v, y)m) dvi dṽi dy

+

n∑
j=1,j ̸=i

∫
Y

∫
V \Vj

vi

∫
Vj

∂vj (Sj(v, y)m) dvj dṽj dy

=

∫
Y

∫
V \Vi

vi Si(v, y)m|∂Vi︸ ︷︷ ︸
=0

−
∫
Vi

Si(v, y)m dvi

 dṽi dy

+

n∑
j=1,j ̸=i

∫
Y

∫
V \Vj

vi Sj(v, y)m|∂Vj︸ ︷︷ ︸
=0

dṽj dy

= −
∫
Y

∫
V

Si(v, y)m dv dy = −
∫
Y

∫
V

(g
(1)
i m+ yg

(2)
i m− vim) dv dy

= −g(1)i M − g
(2)
i My +Mv

i ,

1

α2

∫
V

∫
Y

viwpm dy dv =

∫
V

viδ(v) dv

∫
Y

|g|2p dy = 0,
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1

α1

∫
V

∫
Y

viwmp dy dv

=

∫
V

∫
Y

vi(1− |g(1) + yg(2)|2)m dy dv

=

∫
V

∫
Y

vim dy dv −
∫
V

∫
Y

|g(1)|2vim dy dv − 2

∫
V

∫
Y

viy⟨g(1), g(2)⟩m dy dv

−
∫
V

∫
Y

viy
2|g(2)|2m dy dv

= Mv
i − |g(1)|2Mv

i − 2⟨g(1), g(2)⟩
(∫

V

∫
Y

(vi − v∗i )(y − y∗)m dy dv

+

∫
V

∫
Y

(viy
∗ + v∗i y)m dy dv −

∫
V

∫
Y

v∗i y
∗mdy dv

)
− |g(2)|2

(∫
V

∫
Y

vi(y − y∗)2m dy dv +

∫
V

∫
Y

2y∗yvim dy dv

−
∫
V

∫
Y

(y∗)2vimdy dv

)
= (1− |g(1)|2)Mv

i − 2⟨g(1), g(2)⟩ (y∗Mv
i + v∗i M

y − y∗v∗i M)

− |g(2)|2
(
2y∗

∫
V

∫
Y

(vi − v∗i )(y − y∗)m dy dv

+2y∗
∫
V

∫
Y

(v∗i y + viy
∗)mdy dv − 2y∗

∫
V

∫
Y

y∗v∗i mdy dv − (y∗)2Mv
i

)
=
(
1− |g(1)|2 − 2⟨g(1), g(2)⟩y∗ − |g(2)|2(y∗)2

)
Mv

i

+
(
−2⟨g(1), g(2)⟩v∗i − 2|g(2)|2y∗v∗i

)
My

+
(
2⟨g(1), g(2)⟩v∗i y∗ + 2|g(2)|2(y∗)2v∗i

)
M.

Hence, we find the equation

∂tM
v
i +∇x · (v∗Mv

i + v∗i M
v − v∗i v

∗M) +
a2
µP

(
Mv

i − g
(1)
i M − g

(2)
i My

)
= −α1

(
1− |g(1)|2 − 2⟨g(1), g(2)⟩y∗ − |g(2)|2(y∗)2

)
Mv

i

− α1

(
−2⟨g(1), g(2)⟩v∗i − 2|g(2)|2y∗v∗i

)
My

− α1

(
2⟨g(1), g(2)⟩v∗i y∗ + 2|g(2)|2(y∗)2v∗i

)
M.

(2.52)

for i = 1, 2, .... Together, (2.48) - (2.52) form a closed macroscopic system.

Upscaling

In this section we derive single macroscopic equations for M and P from system
(2.48) - (2.52) by scaling methods. We proceed analogously to subsection 2.1.5.
Additionally to the parameter values presented there, we need estimates on
α1, α2. Since no specific data are available, we simply assume that the decision
to switch between migrating and proliferating state is made about once during
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the time of a cell cycle. Hence, due to the chosen non-dimensionalization we find
α1, α2 ∼ 1. Applying the parameter estimates of section 2.1.5 to the equations
(2.48) - (2.52), we find

∂tM +∇x ·Mv =−
(
−|g(1)|2 + (y∗)2|g(2)|2

)
(α2P + α1M)

+
(
2⟨g(1), g(2)⟩+ 2y∗|g(2)|2

)
(α2P

y + α1M
y)− α1M,

(2.53)

∂tP =
1− C

1 + h

(
(1− 2y∗)P y + (y∗)2P

)
+
(
−|g(1)|2 + (y∗)2|g(2)|2

)
(α2P + α1M)

−
(
2⟨g(1), g(2)⟩+ 2y∗|g(2)|2

)
(α2P

y + α1M
y) + α1M,

(2.54)

ϵ∂tM
y + ϵ∇x · (y∗Mv + v∗My − y∗v∗M) + ((κQ+ 1)My − κQM)

=− ϵ
(
2⟨g(1), g(2)⟩(y∗)2 + 2|g(2)|2(y∗)3

)
(α1M + α2P )

+ ϵ
(
|g(1)|2 + 4⟨g(1), g(2)⟩y∗ + 3|g(2)|2(y∗)2

)
(α1M

y + α2P
y)− ϵα1M

y,

(2.55)

ϵ∂tP
y + ((κQ+ 1)P y − κQP )

=ϵ
1− C

1 + h
y∗(P y − 2y∗P y + (y∗)2P )

+ ϵ
(
2⟨g(1), g(2)⟩(y∗)2 + 2|g(2)|2(y∗)3

)
(α1M + α2P )

− ϵ
(
|g(1)|2 + 4⟨g(1), g(2)⟩y∗ + 3|g(2)|2(y∗)2

)
(α1M

y + α2P
y) + ϵα1M

y,

(2.56)

ϵ∂tM
v
i + ϵ∇x · (v∗Mv

i + v∗i M
v − v∗i v

∗M) +
(
Mv

i − g
(1)
i M − g

(2)
i My

)
=− ϵ

(
1− |g(1)|2 − 2⟨g(1), g(2)⟩y∗ − |g(2)|2(y∗)2

)
α1M

v
i

+ ϵ
(
2⟨g(1), g(2)⟩v∗i + 2|g(2)|2y∗v∗i

)
α1M

y

+ ϵ
(
−2⟨g(1), g(2)⟩y∗v∗i − 2|g(2)|2(y∗)2v∗i

)
α1M.

(2.57)

Again, we consider Hilbert expansions

M = M0 + ϵM1 + ...,

P = P0 + ϵP1 + ...,

My = My
0 + ϵMy

1 + ...,

P y = P y
0 + ϵP y

1 + ...,

Mv = Mv
0 + ϵMv

1 + ...,

plug this into (2.53)-(2.57) and sort by orders of ϵ. From equations (2.55) and
(2.56) we deduce by collecting leading order terms

(κQ+ 1)My
0 = κQM0 ⇒ My

0 =
κQ

κQ+ 1
M0 = y∗M0 (2.58)
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and

(κQ+ 1)P y
0 = κQP0 ⇒ P y

0 =
κQ

κQ+ 1
P0 = y∗P0. (2.59)

Equation (2.57) yields

Mv
0i − g

(1)
i M0 − g

(2)
i My

0 = 0,

where g
(j)
i = g

(j)
i (M0), j = 1, 2. Plugging in (2.58) we find

Mv
0i = (g

(1)
i + y∗g

(2)
i )M0 = gi(y

∗)M0. (2.60)

Collecting zero order terms in (2.53) and using (2.58) and (2.60), we find

∂tM0 +∇x · (g(y∗)M0) = |g(y∗)|2(α1M0 + α2P0)− α1M0, (2.61)

where

g(y∗) =
a1

a2smax
(1− C0)DW b(y∗),

b(y∗) = (1− ρ1 − ρ2)
−∇h√
1 + |∇h|2

+ ρ1(1− y∗)
∇Q√

1 + |∇Q|2
+ ρ2

−∇C0√
1 + |∇C0|2

,

C0 = M0 + P0.

Analogously, we collect zero order terms in (2.54) and, using (2.59), we find

∂tP0 = GP (h, y
∗)(1− C0)P0 − |g(y∗)|2(α2P0 + α1M0) + α1M0, (2.62)

with GP (h, y
∗) =

y∗ − (y∗)2

1 + h
.

Choosing boundary conditions in correspondence to subsection 2.1.5, and drop-
ping the indices in M0 and P0, we summarize the full macroscopic system:

Model 2.3: Go-or-grow

∂tM +∇x · (g(h,Q,M,P, y∗)M)

= |g(h,Q,M,P, y∗)|2(α1M + α2P )− α1M
in R+ × Ω, (2.63a)

∂tP = GP (h, y
∗)(1−M − P )P

− |g(h,Q,M,P, y∗)|2(α1M + α2P ) + α1M
in R+ × Ω, (2.63b)

∂tQ = µQQ(1−Q)− δQ
h

1 + h
Q in R+ × Ω̄, (2.63c)

∂th = Dh∆h+ µh(1− h)
P

1 + P
− δhhe in R+ × Ω, (2.63d)

∂te = De∆e− ςe∇x · (e(1− e)∇xh)

+Ge(h, P )e(1− e)
in R+ × Ω, (2.63e)
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with

g(h,Q,M,P, y∗) =
a1

a2smax
(1−M − P )DW b(h,Q,M,P, y∗), (2.64a)

b(h,Q,M,P, y∗) =(1− ρ1 − ρ2)
−∇h√
1 + |∇h|2

+ ρ1(1− y∗)
∇Q√

1 + |∇Q|2

+ ρ2
−∇(M + P )√
1 + |∇(M + P )|2

,

(2.64b)

GP (h, y
∗) =

y∗ − (y∗)2

1 + h
, (2.64c)

Ge(h, P ) = µe
hP

1 + hP
, (2.64d)

y∗ =
κQ

1 + κQ
, (2.64e)

boundary conditions

g(h,Q,M,P, y∗)M · ν = 0 on ∂Ω, t > 0, (2.65a)

∇h · ν = 0 on ∂Ω, t > 0, (2.65b)

(De∇e− ςee(1− e∇h) · ν = 0 on ∂Ω, t > 0, (2.65c)

and nonnegative initial data

M(0, x) = M0(x), P (0, x) = P0(x),

h(0, x) = h0(x), e(0, x) = e0(x)
for x ∈ Ω, (2.66a)

Q(0, x) = Q0(x) for x ∈ Ω̄, (2.66b)

bounded by their carrying capacities, i.e.

0 ≤M0(x), P0(x),M0(x) + P0(x), Q0(x), h0(x), e0(x) ≤ 1.

2.4 Therapy approaches

There are several possible therapy approaches to slow down the spread of a
glioma. The most common one is a combination of surgical resection with radi-
ation and/or classical chemotherapy. There already exists a variety of models
for radiation and chemotherapy, see for example [32, 49, 64]. Therefore, we want
to focus on a different therapy approach. Gliadel Wafers are a locally acting
form of chemotherapy for which only few mathematical models exist [5, 23].

We will start this section by introducing a model for therapy by gliadel
wafers, which refines and expands the model presented by Fleming et al in [23].
From the mesoscopic modeling we will derive a macroscopic system based on
the one obtained in section 2.1, now containing therapy terms and a reaction
diffusion equation for the chemotherapeutic agent.
A simple modeling approach for classical chemotherapy is shortly introduced,
so that in the simulations in chapter 4 we can compare the effects of gliadel
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wafers with classical chemotherapy.

2.4.1 Gliadel wafers

Gliadel wafers are biodegradable polymers containing the chemotherapeutic
agent carmustine. Placed around the cavity after surgical resection of the tu-
mor, the carmustine bound in the polymer matrix starts to solute after a short
time and diffuses into the surrounding tissue and cavity [23]. The advantage
when compared to classical chemotherapy lies in the local action of the agent
and circumvention of the need to cross the blood brain barrier [2]. For patients
with recurrent glioblastoma, it is indicated as additional therapy to surgical
resection [1, 2].

Modeling

Let C be the concentration of soluted carmustine. Then the diffusion process
was described by Fleming et al [23] as

Ct = D∆C − δCC.

Here, D is a diffusion constant and δC is the decay rate of carmustine. There
are two major drawbacks of this model: First, the model contains no source
term describing the release of carmustine from the wafers. Second, the model
neglects the brain structure. Therefore, we change the model by adding a source
term r(C), which is specified later on, and by replacing the diffusion constant
D by a multiple DCDW of the water diffusion tensor.
Furthermore, in the model by Fleming et al the decay rate δC is assumed to be a
constant. Since we explicitly model angiogenesis, we can include the information
about vascularization into the decay term, modeling removal of the drug by the
blood stream as well as chemical decay. Taking all these into account, we make
the following ansatz for the description of carmustine concentration dynamics:

Ct = DC∇ · (DW∇C)− δC(e)C + r(C). (2.67)

The decay and source terms are chosen as follows:

� Modeling of the decay rate δC(e) : In the model for drug decay we
want to take into account two effects: first, the removal of drug from the
brain via the blood stream across the blood-brain-barrier, and second,
chemical decay. This leads to the following expression:

δC(e) = kbbbe+ kd.

� Modeling of the source term r(C) : For the source term we have to
model dissolution of the drug from the gliadel wafer. According to [23],
the ratio of dissoluted carmustine and carmustine in total is given by

Cdissoluted

Ctotal

= 4

√
Defft

πL2
, as long as

Cdissoluted

Ctotal

≤ 0.6,

where Deff is the effective diffusion coefficient of carmustine in the polymer
matrix of the wafer and L is the half-thickness of the polymer disc. In the
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Figure 2.1: In vivo release kinetics of carmustine from GLIADEL® wafers in
normal rat brains. (a) Cumulative amount of carmustine (% of total loaded)
released as a function of implantation time. (b) Cumulative amount of carmus-
tine (% of total loaded) released as a function of the square root of time; the
solid line is a linear fit to the data points (figure and description from [23] with
permission from Springer Nature, original data from [17] with permission from
Elsevier).

paper of Fleming and Saltzman it remains unclear, what happens after dis-
solution of 60% of carmustine. An exponential growth, abruptly stopping
when the polymer is completely soluted, is proclaimed, this assumption
being based on only three data points. Beside the assumption of expo-
nential growth, the measured curve has to be interpreted carefully. The
data, which are illustrated in figure 2.1 by [23], were produced by Dang et
al in [17]. They measured the concentration of dissoluted carmustine dis-
persed in the brain, not the concentration of dissoluted carmustine in the
wafer itself (which is the concentration of interest). As was already men-
tioned in [17], the square-root-like behavior suggests a diffusive process.
Therefore, it stands to reason that about 60% of the contained carmus-
tine can be interpreted as more or less freely diffusive substance. The
remaining carmustine Cremaining is released from the wafer as the polymer
matrix degrades [17, 23, 58]. The degradation of the polymer matrix is an
autocatalytic process [58]. Assuming that the wafer is homogenous and
thus the release of catalytic enzymes and carmustine during degradation
of the wafer are proportional, we obtain

r(C) = aCremainingC. (2.68)

Let Ctotal(x) be the amount of carmustine contained (in bound or disso-
luted form) in the wafer at position x at t = 0. It is important to note
that in general Cremaining(t, x) ̸= Ctotal(x) − C(t, x) due to the diffusivity
of C. Instead, we have to introduce an additional equation for the remain-
ing concentration of carmustine. The remaining concentration is bound
in the wafer’s polymer matrix and does not diffuse. Hence, we obtain the
ODE

∂tCremaining = −aCremainingC,
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which can be solved explicitly by

Cremaining(t, x) = Cremaining(0, x)e
−a

∫ t
0
C(s,x) ds =

2

5
Ctotal(x)e

−a
∫ t
0
C(s,x) ds.

Hence, we find

∂tC = DC∇ · (DW∇C)− δC(e)C +
2a

5
CCtotal(x)e

−a
∫ t
0
C(s,x) ds,

(2.69)

C(0, x) =
3

5
Ctotal(x). (2.70)

Let ΩW denote the domain, where the wafer is placed. Then it is nearby
to set

Ctotal(x) = C̃total · 1ΩW
. (2.71)

It can be assumed that the wafers boundary is not completely sharp.
Hence, we smoothen Ctotal(x) from above and replace (2.71) by

Ctotal(x) = C̃total · 1ΩW
∗ j(x), (2.72)

where

j(x) =
c

qN
exp

− 1

1−
∣∣∣xq ∣∣∣2

 .

The smaller the choice of 0 < q < 1, the sharper the boundary is. The
constant c has to satisfy

∫
[−q,q]N

j(x) dx = 1.

Finally, it remains to model the influence of carmustine on the cancer cell
population and the surrounding tissue.
The simplest way to model chemotherapeutic effects is saturated decay with
some decay rate δM for tumor degradation and a decay rate δQC for tissue
degradation, respectively, leading to reaction terms of the form −δM C

KC+CM in

the M -equation and −δQC
C

KC+CQ in the Q-equation. As carmustine kills cells
in a specific phase of the cell cycle, it exclusively effects proliferating cells [45].
Starting the modeling on the mesoscopic scale, we can refine the degradation
term for tumor cells by taking into account this dependence of drug efficiency
on the proliferative activity. This kind of dependence was modeled for example
by [49], where tumor cells were divided into proliferating and migrating (hence
non-proliferating) subpopulations. In the current model we do not define tu-
mor subpopulations but still assume that the efficiency of the drug depends on
proliferative activity, which in turn depends on the migrational speed of the
cells (see section 2.1.2). Hence, in the above reaction term for the M -equation
we choose δM not to be a constant but to depend on cell speed s. Same as in
subsection 2.1.2, we simplify by using the quasi-steady state s∗ instead of s. We
choose

δM (s∗) = σ
smax − s∗

smax
.

Furthermore, we incorporate the fact that high cell concentrations impede pro-

liferation, by adding the factor
(
1− M

KM

)
. On the mesoscopic level, this leads
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to the reaction term −δM (s∗)
(
1− M

KM

)
C

KC+C p in the mesoscopic equation for

p, hence

∂p

∂t
+∇x · (vp) +

∂

∂y
(G(y,Q)p) +∇v · (S(v, y, h,Q,M)p)

= β(y, p, h,M, s∗)− δM (s∗)

(
1− M

KM

)
C

KC + C
p,

(2.73)

where all coefficient functions are chosen as in section 2.1.

Non-dimensionalization and Scaling

We non-dimensionalize equations (2.69), (2.4) complemented by the above re-
action term for Q, and (2.73) analogously to subsection 2.1.4, further choosing
KC = maxx∈Ω̄ Ctotal(x), â = aKC

µM
, Ĉtotal =

Ctotal

KC
, Ĉ = C

KC
, D̂C = µM

s2max
DC ,

k̂bbb = kbbbKe

µM
, k̂d = kd

µM
, σ̂ = σ

µM
, µ̂Q =

µQ

µM
, δ̂Q =

δQ
µM

, δ̂QC =
δQC

µM
, and -

dropping the hats - obtain

∂tC = DC∇ · (DW∇C)− (kbbbe+ kd)C +
2a

5
Ctotal(x)Ce−a

∫ t
0
C(s,x) ds, (2.74)

∂tQ = µQQ(1−Q)− δQ
h

1 + h
Q− δQC

C

1 + C
Q (2.75)

and

∂tp+∇x · (vp) +
k−

µM
∂y(G(y,Q)p) +

a2
µM
∇v · (S(v, y, h,Q,M)p)

= β(y, p, h,M, s∗)− σ(1− s∗)
C

1 + C
p(1−M).

Assuming σ to be of order 1, we repeat the procedure from subsection 2.1.5.
Computing moment equations and sorting terms by order of ϵ in the same way,
we obtain the macroscopic equation

∂tM +∇x · (g(h,Q,M, y∗)M)

= GM (h, s∗, y∗)M(1−M)− δM (s∗)
C

1 + C
M(1−M),

(2.76)

where now

δM (s∗) = σ(1− s∗). (2.77)

The model (2.74)-(2.77) is completed by (2.24c),(2.24d),(2.25), (2.26) as well as
zero-flux boundary conditions

DCDW∇C · ν = 0 on ∂Ω, t > 0 (2.78)

for C, and initial data to be specified later (cf. remark 3.2.6).
We summarize the macroscopic model:
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Model 2.4: Therapy by gliadel wafers

∂tM +∇x · (g(h,Q,M, y∗)M)

= GM (h, s∗, y∗)(1−M)M − δM (s∗)
C

1 + C
M(1−M),

(2.79a)

∂tQ = µQQ(1−Q)− δQ
h

1 + h
Q− δQC

C

1 + C
Q, (2.79b)

∂th = Dh∆h+ µh(1− h)
M

1 +M
− δhhe, (2.79c)

∂te = De∆e− ςe∇x · (e(1− e)∇xh) +Ge(h,M)e(1− e), (2.79d)

∂tC = DC∇ · (DW∇C)− (kbbbe+ kd)C +
2a

5
Ctotal(x)Ce−a

∫ t
0
C(s,x) ds

(2.79e)

in R+ × Ω (in R+ × Ω̄ for equation (2.79b)), with

g(h,Q,M, y∗) =
a1

a2smax
(1−M)DW b(h,Q,M, y∗), (2.80a)

b(h,Q,M, y∗) =(1− ρ1 − ρ2)
−∇h√
1 + |∇h|2

+ ρ1(1− y∗)
∇Q√

1 + |∇Q|2

+ ρ2
−∇M√
1 + |∇M |2

,

(2.80b)

GM (h, s∗, y∗) =
(1− s∗)(y∗ − (y∗)2)

1 + h
, (2.80c)

δM (s∗) = σ(1− s∗), (2.80d)

Ge(h,M) = µe
hM

1 + hM
, (2.80e)

s∗ = |g(h,Q,M, y∗)|, (2.80f)

y∗ =
κQ

1 + κQ
, (2.80g)

boundary conditions

g(h,Q,M, y∗)M · ν = 0 on ∂Ω, t > 0, (2.81a)

Dh∇h · ν = 0 on ∂Ω, t > 0, (2.81b)

(De∇e− ςee(1− e)∇h) · ν = 0 on ∂Ω, t > 0, (2.81c)

DCDW∇C · ν = 0 on ∂Ω, t > 0, (2.81d)

and nonnegative initial data

M(0, x) = M0(x), h(0, x) = h0(x),

e(0, x) = e0(x), C(0, x) =
3

5
Ctotal(x)

for x ∈ Ω, (2.82a)

Q(0, x) = Q0(x) for x ∈ Ω̄, (2.82b)
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bounded by their carrying capacities, i.e.

0 ≤M0(x), Q0(x), h0(x), e0(x) ≤ 1.

2.4.2 Classical chemotherapy

Surgery with subsequent radiation and/or chemotherapy with temozolomide
is the standard treatment of glioblastoma [51]. There are different concepts
for chemotherapy planning. Patients treated with so called maximum toler-
ated dose are given high doses of chemotherapeutic agent followed by some
drug-free interval for regeneration before the next high-level dose is adminis-
tered. In metronomic chemotherapy, a low dose of chemotherapeutic agent is
administered frequently without drug-free breaks. In the standard scheme for
chemotherapy, recommended i.e. by the University Medical Center Munich, a
metronomic chemotherapy with daily doses of temozolomide is administered for
about six weeks, followed by six cycles of maximum tolerated dose (one cycle
consisting of five consecutive days of high daily doses followed by a break of 23
days) [66]. Still, the best way to dose chemotherapy is yet unclear. There are
several studies analyzing the effects of different dosing schemes beyond stan-
dard therapy. Beside studies about the effect of metronomic chemotherapy (e.g.
[34, 37, 60, 71]) with different results regarding prolongation of life time, also
further schemes are analyzed (e.g. one week of daily doses and one week of
break in turn [26, 73]).
For modeling, up to some parameter values there is no difference between
these schemes. Although metronomic chemotherapy is also called continuous
chemotherapy, there are of course still time intervals between the administra-
tion of drug, even though smaller than in the case of maximum tolerated dose
treatment. The difference between the schemes lies in the time interval between
administration of drugs and the given dose. Hence, it is sufficient to set up one
model. We will show simulation results for both maximum tolerated dose and
metronomic scheme in chapter 4.

Modeling

The chemotherapeutic agent is transported to the brain by blood vessels. As-
suming that it can be further transported by diffusion outside the blood vessels,
we make the following ansatz:

∂C

∂t
= DC∇ · (DW∇C) + s(t)e− dCC.

Here, s(t) describes the administration of the drug and dC denotes its decay.
Drug is administered at fixed times t1 < t2 < ... < tn. Assuming an oral
administration, according to the absorption curves measured in [6] we model
the dose given at time ti by

si(t) =

{
die

− σi
b2
i
−(ti−t)2 for |ti − t| < bi,

0 otherwise,

where bi is the time span in which the brain obtains new drug during a single
administration (for example this could be the time needed for absorption of the
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drug substance from a temozolomide tablet), and σi is chosen such that∫ bi+ti

−bi+ti

e
− σi

b2
i
−(ti−t)2 = 1.

Then the source term s is given by

s(t) =
1

Ke

n∑
i=1

si(t).

Compared to metronomic therapy, the administered doses di and the differences
between the ti are larger for therapy with maximum tolerated dose.

The effect of chemotherapy on the tumor and the surrounding tissue is mod-
eled as in section 2.4.1, with possibly different decay rates σ, δQC due to the
different chemotherapeutic agents, leading on the macroscopic level to the re-
action rates −δM (s∗) C

KC+CM with δM (s∗) = σ(1− s∗) for the M -equation and

−δQC
C

KC+CQ for the Q-equation.

Non-dimensionalization and scaling

Choosing d̂C = dC

µM
, d̂i = di

µMKC
, b̂i = biµM , σ̂i = σiµ

2
M , t̂i = tiµM addition-

ally to the notations for non-dimensionalization in subsection 2.4.1, we obtain
in complete analogy to subsection 2.4.1 the following macroscopic system via
scaling methods:

Model 2.5: Classical chemotherapy

∂tM +∇x · (g(h,Q,M, y∗)M)

= GM (h, s∗, y∗)(1−M)M − δM (s∗)
C

1 + C
M(1−M),

(2.83a)

∂tQ = µQQ(1−Q)− δQ
h

1 + h
Q− δQC

C

1 + C
Q, (2.83b)

∂th = Dh∆h+ µh(1− h)
M

1 +M
− δhhe, (2.83c)

∂te = De∆e− ςe∇x · (e(1− e)∇xh) +Ge(h,M)e(1− e), (2.83d)

∂tC = DC∇(DW∇C) + s(t)e− dCC (2.83e)

in R+ × Ω (in R+ × Ω̄ for equation (2.83b)), with

g(h,Q,M, y∗) =
a1

a2smax
(1−M)DW b(h,Q,M, y∗), (2.84a)

b(h,Q,M, y∗) =(1− ρ1 − ρ2)
−∇h√
1 + |∇h|2

+ ρ1(1− y∗)
∇Q√

1 + |∇Q|2

+ ρ2
−∇M√
1 + |∇M |2

,

(2.84b)
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GM (h, s∗, y∗) =
(1− s∗)(y∗ − (y∗)2)

1 + h
, (2.84c)

δM (s∗) = σ(1− s∗), (2.84d)

Ge(h,M) = µe
hM

1 + hM
, (2.84e)

s(t) =

n∑
i=1

si(t), si(t) =

{
die

− σi
b2
i
−(ti−t)2 for |ti − t| < bi,

0 otherwise,
(2.84f)

s∗ = |g(h,Q,M, y∗)|, (2.84g)

y∗ =
κQ

1 + κQ
, (2.84h)

boundary conditions

g(h,Q,M, y∗)M · ν = 0 on ∂Ω, t > 0, (2.85a)

Dh∇h · ν = 0 on ∂Ω, t > 0, (2.85b)

(De∇e− ςee(1− e)∇h) · ν = 0 on ∂Ω, t > 0, (2.85c)

DCDW∇C · ν = 0 on ∂Ω, t > 0, (2.85d)

and nonnegative initial data

M(0, x) = M0(x), h(0, x) = h0(x),

e(0, x) = e0(x), C(0, x) = 0
for x ∈ Ω, (2.86a)

Q(0, x) = Q0(x) for x ∈ Ω̄, (2.86b)

bounded by their carrying capacities, i.e.

0 ≤M0(x), Q0(x), h0(x), e0(x) ≤ 1.
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Chapter 3

Analysis

In this chapter, the models developed in chapter 2 are analyzed regarding the
existence of weak solutions. In section 3.1, existence of a global weak solution
to a simplified version of the basic model developed in section 2.1 is proven. In
section 3.2, this proof is adapted to the model variations presented in sections
2.2 and 2.4.

3.1 Analysis of the basic model

In this section we consider a simplified version of model 2.1 developed in sec-
tion 2.1. Dropping the flux limitation in the diffusion term of M , we obtain
a PDE-ODE system with strongly degenerate diffusion, hapto- and chemotaxis
and flux saturation in the taxis terms. The main challenge lies in the degen-
eracy of the diffusion term, leading to the common regularity problems. In
[80, 81, 82, 85, 86], existence of solutions to degenerate diffusion-haptotaxis-
systems have been analyzed. Similar to these works, we approximate the prob-
lem by a regularized version, additionally decoupling the system in order to
handle the flux saturation. By this approximation we obtain nonnegativity and
boundedness of the solution by its carrying capacity. The boundedness of the
gradient is obtained by splitting the domain into a (time-dependent) part where
no degeneracy occurs and a part of degeneracy, proving that the gradient equals
zero on the latter domain.

Remark 3.1.1. The problems arising in the original model from flux saturation
in the diffusion term of M as well as a possible approach for solving them are
addressed in the end of this section (cf. subsection 3.1.5).

We consider the following system:
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Model 3.1: Simplified basic model

∂tQ = µQQ(1−Q)− δQ
h

1 + h
Q, (3.1a)

∂th = Dh∆h+ µh(1− h)
M

1 +M
− δhhe, (3.1b)

∂te = De∆e− ςe∇ · (e(1− e)∇h) +Ge(h,M)e(1− e), (3.1c)

∂tM +∇x · (g(h,Q,M, y∗)M) = GM (h, s∗, y∗)(1−M)M (3.1d)

in R+ × Ω (in R+ × Ω̄ for equation (3.1a)), where

g(h,Q,M, y∗) =
a1

a2smax
(1−M)DW b(h,Q,M, y∗), (3.2a)

b(h,Q,M, y∗) = (1− ρ1)
−∇h√
1 + |∇h|2

+ ρ1(1− y∗)
∇Q√

1 + |∇Q|2
− ρ2∇M,

(3.2b)

GM (h, s∗, y∗) =
(1− s∗)(y∗ − (y∗)2)

1 + h
, (3.2c)

Ge(h,M) = µe
hM

1 + hM
, (3.2d)

s∗ =

∣∣∣∣∣ a1
a2smax

(1−M)DW

(
(1− ρ1)

−∇h√
1 + |∇h|2

+ρ1(1− y∗)
∇Q√

1 + |∇Q|2

)∣∣∣∣∣ ,
(3.2e)

y∗ =
κQ

κQ+ 1
, (3.2f)

with zero flux boundary conditions

(g(h,Q,M, y∗)M) · ν = 0 on ∂Ω, t > 0, (3.3a)

Dh∇h · ν = 0 on ∂Ω, t > 0, (3.3b)

(De∇e− ςee(1− e)∇h) · ν = 0 on ∂Ω, t > 0, (3.3c)

and initial data

Q(0, x) = Q0(x) ∈ C1(Ω̄) ∩W 2,2(Ω), h(0, x) = h0(x) ∈W 1,4(Ω),

e(0, x) = e0(x) ∈W 1,4(Ω), M(0, x) = M0(x) ∈W 1,4(Ω)
(3.4)

with Q0(x), h0(x), e0(x),M0(x) ∈ [0, 1] for all x ∈ Ω, and ∇Q0(x) · ν = 0
for all x ∈ ∂Ω, where Ω is a sufficiently smooth bounded domain of RN

with N ≤ 3.

Remark 3.1.2. The flux limitation in the original basic model ensured bound-
edness of s∗ by 1. Dropping the flux limitation for the diffusion term, this
boundedness is lost. To ensure that the proliferation term GM is still nonnega-
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tive, we simplify s∗ by dropping ∇M, hence choosing (3.2e). The proliferation
term GM is the only term affected by this simplification.

Remark 3.1.3. Adapting the initial condition, we could also choose N > 3.
In this case, for the subsequent proofs to work we have to set h0, e0,M0 ∈
W 1,N+1(Ω). Since the case N > 3 is from a biological point of view not of
interest, we stick to N ≤ 3 for simplicity of writing.

The aim of this section is to prove the existence of a global weak solution to
model 3.1:

Theorem 3.1.4. There exists a global weak solution to system (3.1)-(3.4) in
the sense of definition 3.1.5 given below.

Definition 3.1.5. We call (Q, h, e,M) : R+
0 ×Ω̄→ [0, 1]4 a global weak solution

to system (3.1)-(3.4), if for all T ∈ (0,∞) it holds

Q, h ∈ L∞(0, T ;W 1,2(Ω)), e,M ∈ L∞([0, T )× Ω) ∩ L2(0, T ;W 1,2(Ω))

and

−
∫ T

0

∫
Ω

ϕt Qdxdt−
∫
Ω

ϕ(0, ·)Q0 dx

=

∫ T

0

∫
Ω

ϕ

(
µQQ(1−Q)− δQ

h

1 + h
Q

)
dx dt,

(3.5a)

−
∫ T

0

∫
Ω

ϕt hdxdt−
∫
Ω

ϕ(0, ·)h0 dx

= −
∫ T

0

∫
Ω

Dh∇ϕ · ∇hdx dt

+

∫ T

0

∫
Ω

ϕ

(
µh(1− h)

M

1 +M
− δhhe

)
dx dt,

(3.5b)

−
∫ T

0

∫
Ω

ϕt edxdt−
∫
Ω

ϕ(0, ·) e0 dx

= −
∫ T

0

∫
Ω

De∇ϕ · ∇edxdt+
∫ T

0

∫
Ω

ςee(1− e)∇ϕ · ∇hdxdt

+

∫ T

0

∫
Ω

ϕGe(h,M)e(1− e) dx dt,

(3.5c)

−
∫ T

0

∫
Ω

ϕt M dxdt−
∫
Ω

ϕ(0, ·)M0 dx

=

∫ T

0

∫
Ω

M∇ϕ · g(h,Q,M, y∗) dxdt

+

∫ T

0

∫
Ω

ϕGM (h, s∗, y∗)M(1−M) dxdt

(3.5d)

for all ϕ ∈ C∞
0 ([0, T )× Ω).

Remark 3.1.6. For the remaining chapter, we will assume that DW (x) is positive
definite for all x ∈ Ω̄, and sufficiently smooth. The minimum and maximum
eigenvalues of DW (x) on Ω̄ are denoted by αmin and αmax.

47



CHAPTER 3. ANALYSIS

The outline of the proof is as follows:
We start by regularizing and decoupling system (3.1) iteratively. For the decou-
pled system a priori estimates are derived. Next, using theory by Amann [4],
we show that there exists a unique classical solution to the decoupled system.
Finally, we prove that the constructed sequence of solutions to the decoupled
system converges to a weak solution of the original system.

3.1.1 Decoupled and regularized system

We start our existence proof by decoupling and regularizing system (3.1). The
decoupling is not complete; basically, we decouple the ODE from the rest of the
PDE system and temporarily eliminate the dependency of M on ∇h. The equa-
tion for the cancer cells is regularized by an additional diffusion term. Further,
we regularize the initial data for Q.
Let Q1, h1, e1,M1 be some functions in (C∞((0,∞)×Ω̄)∩C([0,∞)×Ω̄))4 fulfill-
ing the initial condition (3.4). Let (Q

(k)
0 )k be a sequence of functions in C∞(Ω̄),

fulfilling Q
(k)
0 (x) ∈ [0, 1] for all x ∈ Ω and ∇Q(k)

0 (x) · ν(x) = 0 for all x ∈ ∂Ω,

such that Q
(k)
0 → Q0 in C1(Ω̄)∩W 2,2(Ω). Let (ϵk)k∈N be a monotone decreasing

null sequence with ϵk ̸= 0 for all k. Then for k = 2, 3, ... we define the following
decoupled and regularized system:

∂tQk = µQQk(1−Qk)− δQ
hk−1

1 + hk−1
Qk, (3.6a)

∂thk = Dh∆hk + µh(1− hk)
Mk

1 +Mk
− δhhkek, (3.6b)

∂tek = De∆ek − ςe∇ · (ek(1− ek)∇hk) +Ge(hk,Mk)ek(1− ek), (3.6c)

∂tMk +∇ · (gkMk)− ϵk∆Mk = GM (hk−1, s
∗
k, y

∗
k)Mk(1−Mk) (3.6d)

in R+ × Ω (in R+ × Ω̄ for equation (3.6a)), where

gk =
a1

a2smax
(1−Mk)DW bk, (3.7a)

bk = (1− ρ1)
−∇hk−1√
1 + |∇hk−1|2

+ ρ1(1− y∗k)
∇Qk√

1 + |∇Qk|2
− ρ2∇Mk, (3.7b)

y∗k =
κQk

κQk + 1
, (3.7c)

s∗k =

∣∣∣∣∣ a1
a2smax

Mk(1−Mk)DW

(
(1− ρ1)

−∇hk−1√
1 + |∇hk−1|2

+ρ1(1− y∗k)
∇Qk√

1 + |∇Qk|2

)∣∣∣∣∣ ,
(3.7d)

with corresponding boundary conditions

(gkMk − ϵk∇Mk) · ν = 0 on ∂Ω , t > 0, (3.8a)

Dh∇hk · ν = 0 on ∂Ω , t > 0, (3.8b)

(De∇ek − ςeek(1− ek)∇hk) · ν = 0 on ∂Ω , t > 0, (3.8c)
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and fulfilling the initial data in (3.4), but with regularized data for Qk:

Qk(0, x) = Q
(k)
0 (x) ∈ C∞(Ω̄), hk(0, x) = h0(x) ∈W 1,4(Ω),

ek(0, x) = e0(x) ∈W 1,4(Ω), Mk(0, x) = M0(x) ∈W 1,4(Ω)
(3.9)

with Q
(k)
0 (x), h0(x), e0(x),M0(x) ∈ [0, 1] for all x ∈ Ω, and ∇Q(k)

0 (x) · ν = 0 for
all x ∈ ∂Ω.

3.1.2 A priori estimates

In this subsection we want to find a priori estimates on the solutions of the
decoupled system.

Lemma 3.1.7. Let T > 0 and

(Qk−1, hk−1, ek−1,Mk−1) ∈ (C∞((0, T )× Ω̄) ∩ C([0, T )× Ω̄))4

and let

(Qk, hk, ek,Mk) ∈ (C∞((0, T )× Ω̄) ∩ C([0, T )× Ω̄))4

be a corresponding solution to system (3.6)-(3.9). Then there exist constants
cQ(T ), ch(T ), ce(T ), cM (T ), cQQ(T ), chh(T ), depending on time and initial data
only, such that the following implication holds: If Qk−1, hk−1, ek−1,Mk−1 fulfill

0 ≤ Qk−1, hk−1, ek−1,Mk−1 ≤ 1,

∥∇Qk−1∥L∞((0,T );L4(Ω)) ≤ cQ(T ), ∥∇hk−1∥L∞((0,T );L4(Ω)) ≤ ch(T ),

∥∇ek−1∥L2((0,T );L2(Ω)) ≤ ce(T ), ∥∇Mk−1∥L2((0,T );L2(Ω)) ≤ cM (T ),

∥∆Qk−1∥L∞((0,T );L2(Ω)) ≤ cQQ(T ), ∥∆hk−1∥L2((0,T );L2(Ω)) ≤ chh(T ),

then it holds

0 ≤ Qk, hk, ek,Mk ≤ 1,

∥∇Qk∥L∞((0,T );L4(Ω)) ≤ cQ(T ), ∥∇hk∥L∞((0,T );L4(Ω)) ≤ ch(T ),

∥∇ek∥L2((0,T );L2(Ω)) ≤ ce(T ), ∥∇Mk∥L2((0,T );L2(Ω)) ≤ cM (T ),

∥∆Qk∥L∞((0,T );L2(Ω)) ≤ cQQ(T ), ∥∆hk∥L2((0,T );L2(Ω)) ≤ chh(T ).

Proof. ss

� 0 ≤ Qk ≤ 1. Consider equation (3.6a):

∂tQk = µQQk(1−Qk)− δQ
hk−1

1 + hk−1
Qk.

As by assumption hk−1 is nonnegative, Qk = 1 is a supersolution. Fur-
thermore, Qk = 0 is obviously a subsolution. Hence,

0 ≤ Qk ≤ 1.
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� 0 ≤Mk ≤ 1. Consider equation (3.6d):

∂tMk +
a1

a2smax
∇ · (Mk(1−Mk)DW bk)− ϵk∆Mk

= GM (hk−1, s
∗
k, y

∗
k)Mk(1−Mk).

We want to prove 0 ≤Mk ≤ 1. To this aim, we check the assumptions of
theorem A.1.6. Denoting the system coefficients ai, bi, g from that theorem
temporarily by ãi, b̃i, g̃ to avoid confusion with the constants a1, a2 and
the functions bk, g from our model, we find

aij =
a1ρ2

a2smax
u(1− u)(DW )ij + ϵkIij for i, j = 1, ..., N,

ãi =
a1(1− ρ1)

a2smax

1− u√
1 + ∥∇hk−1∥2

(DW∇hk−1)i

− a1ρ1
a2smax

(1− y∗k)
1− u√

1 + ∥∇Qk∥2
(DW∇Qk)i for i = 1, ..., N,

a0 = −y∗k(1− y∗k)
1− s∗k

1 + hk−1
(1− u),

b̃i = 0 for i = 1, ..., N,

f = 0,

g̃ = 0.

Let D0 := (− 1
2 ,

3
2 ). Then all coefficients of A and B in (A.1) are C∞-

smooth w.r.t. x, t and u. Further note, that the set D ⊂ D0 in (A.2) is
nonempty: For example, a1ρ2

a2smax
u(1 − u)DW + ϵkI is positive definite for

u = 0. Choosing p = 4, the condition N
p < 1 < (1+ 1

p )∧ (2−
N
p ) is fulfilled

with N ≤ 3.
Choosing D0 as above, we find that the first condition of theorem A.1.6
is fulfilled. The assumptions on f and g̃ are trivially fulfilled. Then due
to u(0, x) = M0(x) ≥ 0, we conclude Mk(t, x) = u(t, x) ≥ 0.

To show Mk(t, x) ≤ 1, we first note that with u = 1 − Mk equation
(3.6d) is equivalent to

∂tu+
a1

a2smax
∇ · (u(1− u)DW ck)− ϵk∆u = −GM (hk−1, s

∗
k, y

∗
k)u(1− u)

with ck = (1− ρ1)
∇hk−1√

1+|∇hk−1|2
+ ρ1(1− y∗k)

−∇Qk√
1+|∇Qk|2

− ρ2∇u.
Hence, the application of theorem A.1.6 works as described above (the only
difference lies in the signs of ãi and a0), and due to u(0, x) = 1−M0(x) ≥ 0,
we conclude 1−Mk(t, x) = u(t, x) ≥ 0, so Mk(t, x) ≤ 1.

� ∥∇Qk∥L∞(0,T;L4(Ω)) ≤ cQ(T). To find a bound on ∇Qk, we differentiate
equation (3.6a) with respect to x:

∂

∂t
(∇Qk) = µQ(1− 2Qk)∇Qk − δQ

hk−1

1 + hk−1
∇Qk − δQ

∇hk−1

(1 + hk−1)2
Qk.
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Multiplication with |∇Qk|2∇Qk and integration over Ω yields

1

4

∂

∂t

(∫
Ω

|∇Qk|4 dx
)

=µQ

∫
Ω

(1− 2Qk)|∇Qk|4 dx

− δQ

∫
Ω

hk−1

1 + hk−1
|∇Qk|4 dx

− δQ

∫
Ω

Qk|∇Qk|2

(1 + hk−1)2
∇hk−1 · ∇Qk dx.

Using 0 ≤ Qk, hk−1 ≤ 1 we conclude∣∣∣∣ ∂∂t (∥∇Qk∥4L4(Ω)

)∣∣∣∣ ≤ 4(µQ + δQ)∥∇Qk∥4L4(Ω)

+ 4δQ∥∇hk−1∥L4(Ω)∥∇Qk∥3L4(Ω)

≤ 4(µQ + δQ)∥∇Qk∥4L4(Ω)

+ 4δQch(T )(1 + ∥∇Qk∥4L4(Ω)).

Then ∣∣∣∣ ∂∂t (∥∇Qk∥4L4(Ω)

)∣∣∣∣ ≤ (4(µQ + δQ) + 4δQch(T )) ∥∇Qk∥4L4(Ω)

+ 4δQch(T ),

and we conclude by Gronwall’s inequality

∥∇Qk(t, ·)∥4L4(Ω) ≤ ∥∇Qk(0, ·)∥4L4(Ω)e
(4(µQ+δQ)+4δQch(T ))t

+

∫ t

0

4δQch(T )e
(4(µQ+δQ)+4δQch(T ))(t−s) ds

≤ ∥∇Q(k)
0 ∥4L4(Ω)e

(4(µQ+δQ)+4δQch(T ))T

+ 4δQch(T )Te
(4(µQ+δQ)+4δQch(T ))T

≤ c4Q(T )

for all t ∈ (0, T ) and some constant cQ independent of k. Hence,

∥∇Qk∥L∞(0,T ;L4(Ω)) ≤ cQ(T ).

� 0 ≤ ek ≤ 1. Consider equation (3.6c):

∂tek = De∆ek − ςe∇ · (ek(1− ek)∇hk) +Ge(hk,Mk)ek(1− ek).

To apply theorem A.1.1, we need the equation in non-divergence form:

∂tek = De∆ek−ςe(1−2ek)∇hk ·∇ek+ek(1−ek) (−ςe∆hk +Ge(hk,Mk)) .

Then, due to the C∞-smoothness of ek, hk and Mk, the assumptions of
theorem A.1.1 are fulfilled with

aij(t, x) = De, ai(t, x) = ςe(1− 2ek)∂xihk
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and

a(t, x) = −(1− ek) (−ςe∆hk +Ge(hk,Mk))

= −(1− ek)

(
−ςe∆hk + µe

hkMk

1 + hkMk

)
.

Hence, we obtain 0 ≤ ek. To show ek ≤ 1, we set u = 1− ek, leading to

∂tu−De∆u+ ςe(1− 2ek)∇hk · ∇u+ eku (−ςe∆hk +Ge(hk,Mk)) = 0.

Furthermore, for initial data e0 ≤ 1 we find u0 ≥ 0 and the boundary
condition for u is given by ∇u · ν = ∇(1 − ek) · ν = 0 on ∂Ω. Hence, we
can again apply theorem A.1.1 to obtain 0 ≤ u = 1− ek, thus ek ≤ 1.

� 0 ≤ hk ≤ 1. Consider equation (3.6b):

∂thk = Dh∆hk + µh(1− hk)
Mk

1 +Mk
− δhhkek.

By applying theorem A.1.1, we directly obtain hk ≥ 0. hk ≤ 1 is obtained
analogously to ek ≤ 1: With u = 1− hk, we find

∂tu−Dh∆u+ µhu
Mk

1 +Mk
+ δheku = δhek ≥ 0.

Hence, we can again apply theorem A.1.1 to obtain 0 ≤ u = 1− hk, thus
hk ≤ 1.

� ∥∇hk∥L∞((0,T);L4(Ω)) ≤ ch(T). Consider once more equation (3.6b):

∂thk = Dh∆hk + µh(1− hk)
Mk

1 +Mk
− δhhkek.

We want to prove the claimed boundedness of ∥∇hk∥L∞((0,T );L4) indepen-
dently of k. For shortness, we set

fk(t, x) = µh(1− hk)
Mk

1 +Mk
− δhhkek.

Note that for given functions hk, ek and Mk we can interpret fk as a
function of t and x rather than a function of hk, ek and Mk. Using the
Neumann heat semigroup, we find

hk(t, x) = etDh∆h0(x) +

∫ t

0

e(t−s)Dh∆fk(s, x) ds.
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Using theorem A.1.10 and the boundedness of fk, we conclude

∥∇hk(t, ·)∥L4(Ω)

≤ ∥∇
(
etDh∆h0(·)

)
∥L4(Ω) +

∫ t

0

∥∇
(
e(t−s)Dh∆fk(s, ·)

)
∥L4(Ω) ds

≤ C1e
−λ1Dht∥∇h0∥L4(Ω)

+ C2

∫ t

0

(1 + (Dh(t− s))−
1
2 )e−λ1(t−s)Dh∥fk(s, ·)∥L4(Ω) ds

≤ C1∥∇h0∥L4(Ω) + C3

∫ t

0

(1 + (Dh(t− s))−
1
2 )e−λ1(t−s)Dh ds

≤ C1∥∇h0∥L4(Ω) + C4(T )

=: ch(T ),

λ1 > 0 being the first nonzero eigenvalue of −∆ under Neumann boundary
conditions. Hence,

∥∇hk∥L∞((0,T );L4(Ω)) ≤ ch(T ).

� ∥∇ek∥L2((0,T);L2(Ω)) ≤ ce(T). Now consider again equation (3.6c):

∂tek = De∆ek − ςe∇ · (ek(1− ek)∇hk) +Ge(hk,Mk)ek(1− ek).

We will use the results obtained so far to prove boundedness of
∥∇ek∥L2((0,T );L2(Ω)). To this aim, we multiply equation (3.6c) by ek and
integrate over Ω:

1

2
∂t

∫
Ω

e2k dx+De

∫
Ω

|∇ek|2 dx = ςe

∫
Ω

ek(1− ek)∇hk∇ek dx

+

∫
Ω

Ge(hk,Mk)e
2
k(1− ek) dx

⇔ 1

2
∂t∥ek∥2L2(Ω) +De∥∇ek∥2L2(Ω) = ςe

∫
Ω

ek(1− ek)∇hk∇ek dx

+ µe

∫
Ω

hkMk

1 + hkMk
e2k(1− ek) dx.

Next, we integrate with respect to time:

1

2
∥ek(·, T )∥2L2(Ω) +De∥∇ek∥2L2((0,T );L2(Ω))

=
1

2
∥ek(·, 0)∥2L2(Ω) + ςe

∫ T

0

∫
Ω

ek(1− ek)∇hk∇ek dxdt

+ µe

∫ T

0

∫
Ω

hkMk

1 + hkMk
e2k(1− ek) dxdt.
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Young´s inequality yields

1

2
∥ek(·, T )∥2L2(Ω) +De∥∇ek∥2L2((0,T );L2(Ω))

≤1

2
∥ek(·, 0)∥2L2(Ω)

+ ςe

(
ϵ

2
∥∇ek∥2L2((0,T );L2(Ω)) +

1

2ϵ
∥∇hk∥2L2((0,T );L2(Ω))

)
+ T |Ω|µe

for arbitrary ϵ > 0. It follows(
De −

ϵ

2
ςe

)
∥∇ek∥2L2((0,T );L2(Ω)) ≤

1

2
∥e0∥2L2(Ω) + ςe

1

2ϵ
∥∇hk∥2L2((0,T );L2(Ω))

+ T |Ω|µe.

For ϵ small enough, it holds De − ϵ
2 ςe > 0, so we can divide by this

coefficient to obtain

∥∇ek∥2L2((0,T );L2(Ω))

≤
(
De −

ϵ

2
ςe

)−1
(
1

2
∥e0∥2L2(Ω) + ςe

1

2ϵ
∥∇hk∥2L2((0,T );L2(Ω)) + T |Ω|µe

)
.

As ∥∇hk∥L∞((0,T );L4(Ω)) is bounded independently of k, so is
∥∇hk∥L2((0,T );L2(Ω)). Hence, ∥∇ek∥L2((0,T );L2(Ω)) ≤ ce(T ), where ce(T ) is
a constant independent of k.

� ∥∇Mk∥L2((0,T);L2(Ω)) ≤ cM(T). Consider once more equation (3.6d):

∂tMk +
a1

a2smax
∇ · (Mk(1−Mk)DW bk)− ϵk∆Mk

= GM (hk−1, s
∗
k, y

∗
k)Mk(1−Mk).

We have to prove boundedness of the gradient of Mk independently of k.
To find a bound independently of ϵk, the methods used above cannot be
applied here. Instead, let 0 < δ < 1

2 and define the function

fδ(M) :=



ln
(

δ
1−δ

)
for M = 0,

f
(1)
δ for 0 < M ≤ δ,

ln
(

M
1−M

)
for δ < M < 1− δ,

f
(2)
δ for 1− δ ≤M < 1,

ln
(
1−δ
δ

)
for M = 1,

where

f
(1)
δ : (0, δ]→

[
ln

(
δ

1− δ

)
− 1, ln

(
δ

1− δ

)]
and

f
(2)
δ : [1− δ, 1)→

[
ln

(
1− δ

δ

)
, ln

(
1− δ

δ

)
+ 1

]
are chosen such that fδ is sufficiently smooth and satisfies

|f ′
δ(M)| ≤ 2

δ(1− δ)
and f ′

δ(M) ≥ −1.
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Figure 3.1: Illustration of the functions fδ, f0, Fδ, F0.

We further define

f0(M) := ln

(
M

1−M

)
for 0 < M < 1.

For an illustration of fδ and f0 see figure 3.1. We multiply equation (3.6d)
by fδ(Mk) and integrate over Ω:∫

Ω

fδ(Mk)∂tMk dx+
a1

a2smax

∫
Ω

fδ(Mk)∇ · (Mk(1−Mk)DW bk) dx

−
∫
Ω

ϵkfδ(Mk)∆Mk dx

=

∫
Ω

fδ(Mk)GM (hk−1, s
∗
k, y

∗
k)Mk(1−Mk) dx.

For the first term on the left hand side, we find∫
Ω

fδ(Mk)∂tMk dx =

∫
Ω

∂tFδ(Mk) dx = ∂t

∫
Ω

Fδ(Mk) dx,

where F ′
δ = fδ, hence

Fδ(M) =

{
(1−M) ln(1−M) +M ln (M) for δ < M < 1− δ,

smooth and bounded otherwise.

Fδ and its limit function F0, defined later on in this proof, are illustrated
in figure 3.1.

Now for each time t ∈ (0, T ), we define a domain where δ < Mk < 1− δ :

Ωt
δ := {x ∈ Ω : δ < Mk(t, x) < 1− δ}.
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The idea is now, to split the integral into an integral over Ωt
δ and an

integral over Ω\Ωt
δ, and to show that the latter converges to zero for

δ → 0 :

∂t

∫
Ω

Fδ(Mk) dx+
a1

a2smax

∫
Ωt

δ

fδ(Mk)∇ · (Mk(1−Mk)DW bk) dx

+
a1

a2smax

∫
Ω\Ωt

δ

fδ(Mk)∇ · (Mk(1−Mk)DW bk) dx

− ϵk

∫
Ω

fδ(Mk)∆Mk dx

=

∫
Ωt

δ

fδ(Mk)GM (hk−1, s
∗
k, y

∗
k)Mk(1−Mk) dx

+

∫
Ω\Ωt

δ

fδ(Mk)GM (hk−1, s
∗
k, y

∗
k)Mk(1−Mk) dx.

Partial integration yields

∂t

∫
Ω

Fδ(Mk) dx−
a1

a2smax

∫
Ωt

δ

∇MkDW bk dx+ ϵk

∫
Ω

f ′
δ(Mk)|∇Mk|2 dx

− a1
a2smax

∫
Ω\Ωt

δ

Mk(1−Mk)(fδ(Mk))
′∇Mk · DW bk dx

=

∫
Ωt

δ

fδ(Mk)GM (hk−1, s
∗
k, y

∗
k)Mk(1−Mk) dx

+

∫
Ω\Ωt

δ

fδ(Mk)GM (hk−1, s
∗
k, y

∗
k)Mk(1−Mk) dx.

where we used

∇fδ(Mk) = (fδ(Mk))
′∇Mk, (fδ(Mk))

′ =
1

Mk(1−Mk)
onΩt

δ.

Note that the boundary terms on ∂Ωt
δ\∂Ω of the second and fourth term,

arising from partial integration, cancel each other. Integrating w.r.t. time
on the interval (γ, T − γ) for γ ∈ (0, T

2 ), we obtain∫
Ω

Fδ(Mk(T − γ, ·)) dx−
∫
Ω

Fδ(Mk(γ, ·)) dx

− a1
a2smax

∫ T−γ

γ

∫
Ωt

δ

∇MkDW bk dxdt

− a1
a2smax

∫ T−γ

γ

∫
Ω\Ωt

δ

Mk(1−Mk)(fδ(Mk))
′∇Mk · DW bk dx dt

+ ϵk

∫ T−γ

γ

∫
Ω

f ′
δ(Mk)|∇Mk|2 dxdt

=

∫ T−γ

γ

∫
Ωt

δ

fδ(Mk)GM (hk−1, s
∗
k, y

∗
k)Mk(1−Mk) dx dt

+

∫ T−γ

γ

∫
Ω\Ωt

δ

fδ(Mk)GM (hk−1, s
∗
k, y

∗
k)Mk(1−Mk) dx dt.

(3.10)
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Now, we aim to take the limit of this equation for δ → 0. As Mk, hk−1

and Qk are C∞, it holds

lim
δ→0

∫ T−γ

γ

∫
Ωt

δ

∇MkDW bk dx dt =

∫ T−γ

γ

∫
Ωt

0

∇MkDW bk dxdt

as well as

lim
δ→0

∫ T−γ

γ

∫
Ωt

δ

fδ(Mk)GM (hk−1, s
∗
k, y

∗
k)Mk(1−Mk) dxdt

=

∫ T−γ

γ

∫
Ωt

0

f0(Mk)GM (hk−1, s
∗
k, y

∗
k)Mk(1−Mk) dxdt.

For the latter, we used the uniform continuity of fδ(Mk)Mk(1−Mk) (note

that ln
(

M
1−M

)
M(1−M) converges to 0 for both M → 0 and M → 1).

Defining

F0(M) =

{
(1−M) ln(1−M) +M ln (M) for 0 < M < 1,

0 otherwise,

we find that Fδ → F0 uniformly as δ → 0, hence

lim
δ→0

∫
Ω

Fδ(Mk(T − γ, ·)) dx =

∫
Ω

F0(Mk(T − γ, ·)) dx

and

lim
δ→0

∫
Ω

Fδ(Mk(γ, ·)) dx =

∫
Ω

F0(Mk(γ, ·)) dx.

The remaining task for taking the limit is now to show that the integral
terms over Ω\Ωt

δ vanish. First, we consider the integral

∫ T−γ

γ

∫
Ω\Ωt

δ

Mk(1−Mk)(fδ(Mk))
′∇Mk · DW bk dxdt.

Splitting bk into its three components with Mk, hk−1 and Qk, we have to
compute three integrals. Using |f ′

δ(Mk)| ≤ 2
δ(1−δ) , we make the following
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estimate, where we drop constants for simplicity:∣∣∣∣∣
∫ T−γ

γ

∫
Ω\Ωt

δ

Mk(1−Mk)(fδ(Mk))
′∇Mk · DW∇Mk dx dt

∣∣∣∣∣
≤
∫ T−γ

γ

∫
Ω\Ωt

δ

Mk(1−Mk) |(fδ(Mk))
′|αmax |∇Mk|2 dx dt

≤
∫ T−γ

γ

∫
Ω\Ωt

δ

Mk(1−Mk)
2αmax

δ(1− δ)
|∇Mk|2 dxdt

=

∫ T−γ

γ

∫
Ω\Ωt

0

Mk(1−Mk)
2αmax

δ(1− δ)
|∇Mk|2 dx dt

+

∫ T−γ

γ

∫
Ωt

0\Ωt
δ

Mk(1−Mk)
2αmax

δ(1− δ)
|∇Mk|2 dxdt

≤
∫ T−γ

γ

∫
Ω\Ωt

0

2αmax

δ(1− δ)
Mk(1−Mk) |∇Mk|2 dx dt

+

∫ T−γ

γ

∫
Ωt

0\Ωt
δ

2αmax

1− δ
|∇Mk|2 dx dt,

where we used

Mk(1−Mk) ≤ δ on Ωt
0\Ωt

δ = {x ∈ Ω : Mk(t, x) ∈ (0, δ] ∪ [1− δ, 1)}.

Since Mk is a C∞-function, ∇Mk is bounded on (γ, T − γ) × Ω̄ (though
at this point of our computations the bound may depend on k, of course).
As further Ωt

δ → Ωt
0 for δ → 0, the second term vanishes in the limit. Now

Ω\Ωt
0 is the set where Mk = 0 or Mk = 1. Hence,∫ T−γ

γ

∫
Ω\Ωt

0

2αmax

δ(1− δ)
Mk(1−Mk) |∇Mk|2 dx dt = 0.

The computations for the other components of bk work analogously, so we
finally obtain

lim
δ→0

∫ T−γ

γ

∫
Ω\Ωt

δ

Mk(1−Mk)(fδ(Mk))
′∇Mk · DW bk dxdt = 0.

Now consider the integral∫ T−γ

γ

∫
Ω\Ωt

δ

fδ(Mk)GM (hk−1, s
∗
k, y

∗
k)Mk(1−Mk) dxdt.

For shortness, we will drop the factor GM (hk−1, s
∗
k, y

∗
k) - it is sufficiently

smooth and bounded. Again, we split the integral:

T−γ∫
γ

∫
Ω\Ωt

δ

fδ(Mk)Mk(1−Mk) dxdt

=

T−γ∫
γ

∫
Ω\Ωt

0

fδ(Mk)Mk(1−Mk) dx dt+

T−γ∫
γ

∫
Ωt

0\Ωt
δ

fδ(Mk)Mk(1−Mk) dxdt.
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On the domain of the first integral it holds either Mk = 0 or Mk = 1.
Hence, we find

∫ T−γ

γ

∫
Ω\Ωt

0

fδ(Mk)Mk(1−Mk) dxdt = 0 for all δ > 0,

and thus

lim
δ→0

∫ T−γ

γ

∫
Ω\Ωt

0

fδ(Mk)Mk(1−Mk) dxdt = 0.

On the domain Ωt
0\Ωt

δ of the second integral, it holds either 0 < Mk ≤ δ
or 1− δ ≤Mk < 1. Splitting the integral again, we find∣∣∣∣∣

∫ T−γ

γ

∫
Ωt

0\Ωt
δ

fδ(Mk)Mk(1−Mk) dxdt

∣∣∣∣∣
≤

∣∣∣∣∣∣∣
T−γ∫
γ

∫
Ωt

0\Ωt
δ,Mk≤δ

f
(1)
δ (Mk)Mk(1−Mk) dxdt

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
T−γ∫
γ

∫
Ωt

0\Ωt
δ,Mk≥1−δ

f
(2)
δ (Mk)Mk(1−Mk) dxdt

∣∣∣∣∣∣∣
≤

T−γ∫
γ

∫
Ωt

0\Ωt
δ,Mk≤δ

∣∣∣∣ln( δ

1− δ

)
− 1

∣∣∣∣Mk(1−Mk) dxdt

+

T−γ∫
γ

∫
Ωt

0\Ωt
δ,Mk≥1−δ

∣∣∣∣ln(1− δ

δ

)
+ 1

∣∣∣∣Mk(1−Mk) dxdt

≤
T−γ∫
γ

∫
Ωt

0\Ωt
δ,Mk≤δ

(− ln(δ) + ln(1− δ) + 1) δ dxdt

+

T−γ∫
γ

∫
Ωt

0\Ωt
δ,Mk≥1−δ

(− ln(δ) + ln(1− δ) + 1) δ dxdt

=

∫ T−γ

γ

∫
Ωt

0\Ωt
δ

(−δ ln(δ) + δ ln(1− δ) + δ) dxdt.

This integral is bounded independently of δ. Furthermore, the integrand
converges to 0 as δ → 0. Hence,

lim
δ→0

∫ T−γ

γ

∫
Ωt

0\Ωt
δ

fδ(Mk)Mk(1−Mk) dx dt = 0
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and also

lim
δ→0

∣∣∣∣∣
∫ T−γ

γ

∫
Ω\Ωt

δ

fδ(Mk)GM (hk−1, s
∗
k, y

∗
k)Mk(1−Mk) dxdt

∣∣∣∣∣
= lim

δ→0

∣∣∣∣∣∣∣
∫ T−γ

γ

∫
Ωt

0\Ωt
δ

fδ(Mk) GM (hk−1, s
∗
k, y

∗
k)︸ ︷︷ ︸

≥0 and bounded by 1

Mk(1−Mk) dx dt

∣∣∣∣∣∣∣
≤ lim

δ→0

∣∣∣∣∣
∫ T−γ

γ

∫
Ωt

0\Ωt
δ

fδ(Mk)Mk(1−Mk) dx dt

∣∣∣∣∣
= 0.

This leaves

lim
δ→0

ϵk

∫ T−γ

γ

∫
Ω

f ′
δ(Mk)|∇Mk|2 dxdt

=

∫ T−γ

γ

∫
Ωt

0

f0(Mk)GM (hk−1, s
∗
k, y

∗
k)Mk(1−Mk) dxdt

−
∫
Ω

F0(Mk(·, T − γ)) dx+

∫
Ω

F0(Mk(·, γ)) dx

+
a1

a2smax

∫ T−γ

γ

∫
Ωt

0

∇MkDW bk dx dt.

Hence, the limit exists, and we can make the following estimate:∫ T−γ

γ

∫
Ω

f ′
δ(Mk)|∇Mk|2 dxdt

=

∫ T−γ

γ

∫
Ω\Ωt

δ

f ′
δ(Mk)|∇Mk|2 dxdt+

∫ T−γ

γ

∫
Ωt

δ

f ′
δ(Mk)|∇Mk|2 dxdt

≥ −
∫ T−γ

γ

∫
Ω\Ωt

δ

|∇Mk|2 dxdt,

where we used the nonnegativity of f ′
δ on Ωt

δ as well as f ′
δ ≥ −1 on Ω\Ωt

δ.
Now we split the remaining term:

−
∫ T−γ

γ

∫
Ω\Ωt

δ

|∇Mk|2 dxdt

= −
∫ T−γ

γ

∫
Ω\Ωt

0

|∇Mk|2 dx dt−
∫ T−γ

γ

∫
Ωt

0\Ωt
δ

|∇Mk|2 dxdt.

Since Ω\Ωt
0 is the set where Mk = 0 or Mk = 1, on the interior of this set

it holds ∇Mk = 0. Since the boundary of Ω\Ωt
0 is a nullset, this implies∫

Ω\Ωt
0
|∇Mk|2 dx = 0 for all t > 0. The second term converges to zero for

δ → 0 since ∇Mk is bounded. Hence, we find

lim
δ→0

ϵk

∫ T−γ

γ

∫
Ω

f ′
δ(Mk)|∇Mk|2 dxdt ≥ 0.

60



3.1. ANALYSIS OF THE BASIC MODEL

Altogether, this leads to the inequality

∫
Ω

F0(Mk(·, T − γ)) dx−
∫
Ω

F0(Mk(·, γ)) dx

− a1
a2smax

∫ T−γ

γ

∫
Ωt

0

∇MkDW bk dx dt

≤
∫ T−γ

γ

∫
Ωt

0

f0(Mk)GM (hk−1, s
∗
k, y

∗
k)Mk(1−Mk) dxdt.

Now for γ → 0, we find

∫
Ω

F0(Mk(·, T )) dx−
∫
Ω

F0(Mk(·, 0)) dx−
a1

a2smax

T∫
0

∫
Ωt

0

∇MkDW bk dxdt

≤
T∫

0

∫
Ωt

0

f0(Mk)GM (hk−1, s
∗
k, y

∗
k)Mk(1−Mk) dxdt.

From this inequality, we now aim to find an estimate on
∥∇Mk∥L2((0,T );L2(Ω)). Since ∇Mk = 0 on Ω\Ωt

0 except a nullset, it holds∫
Ω\Ωt

0
∇MkDW bk dx = 0 for all t > 0. Further, since Mk, hk−1, s

∗
k and y∗k

are bounded independently of k, there is a constant c > 0 such that

a2smax

a1ρ2

(∫ T

0

∫
Ωt

0

f0(Mk)GM (hk−1, s
∗
k, y

∗
k)Mk(1−Mk) dxdt

−
∫
Ω

F0(Mk(·, T )) dx+

∫
Ω

F0(Mk(·, 0)) dx
)

≤ c(T ).

(3.11)

Hence, we find

∫ T

0

∫
Ω

∇Mk DW∇Mk dxdt

=

∫ T

0

∫
Ωt

0

∇Mk DW∇Mk dxdt

≤ c(T )− 1− ρ1
ρ2

∫ T

0

∫
Ωt

0

∇Mk DW∇hk−1√
1 + |∇hk−1|2

dxdt

+

∫ T

0

∫
Ωt

0

ρ1(1− y∗k)

ρ2

∇Mk DW∇Qk√
1 + |∇Qk|2

dxdt,

(3.12)
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from which we conclude∫ T

0

∫
Ω

αmin|∇Mk|2 dx dt

≤ c(T ) +
1− ρ1
ρ2

∫ T

0

∫
Ωt

0

αmax|∇Mk||∇hk−1|√
1 + |∇hk−1|2

dx dt

+

∫ T

0

∫
Ωt

0

ρ1(1− y∗k)

ρ2

αmax|∇Mk||∇Qk|√
1 + |∇Qk|2

dxdt

≤ c(T ) +
1− ρ1
ρ2

∫ T

0

∫
Ω

αmax|∇Mk||∇hk−1|√
1 + |∇hk−1|2

dxdt

+

∫ T

0

∫
Ω

ρ1(1− y∗k)

ρ2

αmax|∇Mk||∇Qk|√
1 + |∇Qk|2

dxdt

≤ c(T ) +
1− ρ1
ρ2

∫ T

0

∫
Ω

αmax|∇Mk|dx dt+
ρ1
ρ2

∫ T

0

∫
Ω

αmax|∇Mk|dxdt

=c(T ) +
1

ρ2

∫ T

0

∫
Ω

αmax|∇Mk|dxdt

≤c(T ) + αmax

ρ2

ϵ

2
∥∇Mk∥2L2(0,T ;L2(Ω)) +

αmax

ρ2

1

2ϵ
T |Ω|.

It follows(
αmin −

αmax

ρ2

ϵ

2

)
∥∇Mk∥2L2(0,T ;L2(Ω)) ≤ c(T ) +

αmax

ρ2

1

2ϵ
T |Ω|

and hence

∥∇Mk∥2L2(0,T ;L2(Ω)) ≤
1

αmin − αmax

ρ2

ϵ
2

(
c(T ) +

αmax

ρ2

1

2ϵ
T |Ω|

)
=: c2M (T ),

(3.13)

where we choose ϵ small enough, such that αmin − αmax

ρ2

ϵ
2 > 0.

� ∥∆hk∥L2(0,T;L2(Ω)) ≤ chh(T). Consider once more equation (3.6b). Mul-
tiplication of (3.6b) by ∆hk and integration yields

T∫
0

∫
Ω

∂thk ∆hk dx dt =Dh

T∫
0

∫
Ω

(∆hk)
2 dxdt

+

T∫
0

∫
Ω

(
µh(1− hk)

Mk

1 +Mk
− δhhkek

)
∆hk dx dt.

Setting fk := µh(1− hk)
Mk

1+Mk
− δhhkek and using partial integration, we

find

−1

2

T∫
0

∫
Ω

∂t (|∇hk|)2 dxdt = Dh

T∫
0

∫
Ω

(∆hk)
2 dx dt−

T∫
0

∫
Ω

∇fk∇hk dx dt,
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which implies

Dh∥∆hk∥2L2(0,T ;L2(Ω)) = −
1

2
∥∇hk(T, ·)∥2L2(Ω) +

1

2
∥∇hk(0, ·)∥2L2(Ω)

+

∫ T

0

∫
Ω

∇fk∇hk dxdt.

(3.14)

The first two terms on the right hand side are bounded by |Ω| 12 c2h(T ) due
to ∥∇hk∥L∞(0,T ;L4(Ω)) ≤ ch(T ). For the third term on the right hand side,
we find∣∣∣∣∣
∫ T

0

∫
Ω

∇fk∇hk dx dt

∣∣∣∣
≤

∣∣∣∣∣
∫ T

0

∫
Ω

∂fk
∂ek
∇ek∇hk dxdt

∣∣∣∣∣+
∣∣∣∣∣
∫ T

0

∫
Ω

∂fk
∂hk
∇hk∇hk dxdt

∣∣∣∣∣
+

∣∣∣∣∣
∫ T

0

∫
Ω

∂fk
∂Mk

∇Mk∇hk dxdt

∣∣∣∣∣
=

∣∣∣∣∣
∫ T

0

∫
Ω

−δhhk∇ek∇hk dxdt

∣∣∣∣∣
+

∣∣∣∣∣
∫ T

0

∫
Ω

(
−µh

Mk

1 +Mk
− δhek

)
|∇hk|2 dxdt

∣∣∣∣∣
+

∣∣∣∣∣
∫ T

0

∫
Ω

µh
1− hk

(1 +Mk)2
∇Mk∇hk dxdt

∣∣∣∣∣
≤ δh∥∇ek∥L2(0,T ;L2(Ω))∥∇hk∥L2(0,T ;L2(Ω)) + (µh + δh)∥∇hk∥2L2(0,T ;L2(Ω))

+ µh∥∇Mk∥L2(0,T ;L2(Ω))∥∇hk∥L2(0,T ;L2(Ω))

≤ δhce(T )T
1
2 |Ω| 14 ch(T ) + (µh + δh)T |Ω|

1
2 c2h(T ) + µhcM (T )T

1
2 |Ω| 14 ch(T ).

Hence, equation (3.14) implies

∥∆hk∥L2(0,T ;L2(Ω)) ≤ chh(T )

for some constant chh(T ), which is independent of k.

� ∥∆Qk(t, ·)∥L∞(0,T;L2(Ω)) ≤ cQQ(T). Finally, consider equation (3.6a) again.
Apply ∆ to (3.6a):

∂t(∆Qk) =− 2µQ|∇Qk|2 + µQ(1− 2Qk)∆Qk − δQ
hk−1

1 + hk−1
∆Qk

− 2δQ
∇hk−1∇Qk

(1 + hk−1)2
− δQ

Qk

(1 + hk−1)2
∆hk−1

+ 2δQ
Qk

(1 + hk−1)3
|∇hk−1|2.
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Multiplication with ∆Qk and integration w.r.t. x yields

1

2

∫
Ω

∂t(∆Qk)
2 dx

= − 2µQ

∫
Ω

|∇Qk|2∆Qk dx+ µQ

∫
Ω

(1− 2Qk)(∆Qk)
2 dx

− δQ

∫
Ω

hk−1

1 + hk−1
(∆Qk)

2 dx− 2δQ

∫
Ω

∇hk−1∇Qk

(1 + hk−1)2
∆Qk dx

− δQ

∫
Ω

Qk

(1 + hk−1)2
∆hk−1∆Qk dx

+ 2δQ

∫
Ω

Qk

(1 + hk−1)3
|∇hk−1|2∆Qk dx.

Using Qk, hk−1 ∈ [0, 1], this implies∣∣∣∣ ∂∂t ∥∆Qk∥2L2(Ω)

∣∣∣
≤ 4µQ∥∇Qk∥2L4(Ω)∥∆Qk∥L2(Ω) + 2(µQ + δQ)∥∆Qk∥2L2(Ω)

+ 4δQ∥∇hk−1∥L4(Ω)∥∇Qk∥L4(Ω)∥∆Qk∥L2(Ω)

+ 2δQ∥∆hk−1∥L2(Ω)∥∆Qk∥L2(Ω) + 4δQ∥∇hk−1∥2L4(Ω)∥∆Qk∥L2(Ω)

≤ 2(µQ + δQ)∥∆Qk∥2L2(Ω) + 2δQ∥∆hk−1∥L2(Ω)∥∆Qk∥L2(Ω)

+ 4
(
µQ∥∇Qk∥2L4(Ω) + δQ∥∇hk−1∥L4(Ω)∥∇Qk∥L4(Ω)

+δQ∥∇hk−1∥2L4(Ω)

)
∥∆Qk∥L2(Ω)

≤ 2(µQ + δQ)∥∆Qk∥2L2(Ω) + 2δQ∥∆hk−1∥L2(Ω)(∥∆Qk∥2L2(Ω) + 1)

+ 4
(
µQc

2
Q(T ) + δQch(T )cQ(T ) + δQc

2
h(T )

)
(∥∆Qk∥2L2(Ω) + 1)

= (C1(T ) + C2∥∆hk−1∥L2(Ω))∥∆Qk∥2L2(Ω) + C3∥∆hk−1∥L2(Ω) + C4(T ),

where we used
∥∆Qk∥L2(Ω) ≤ ∥∆Qk∥2L2(Ω) + 1.

Applying Gronwall´s inequality yields

∥∆Qk(T, ·)∥2L2(Ω)

≤ ∥∆Q
(k)
0 ∥2L2(Ω)e

∫ T
0

(C1(T )+C2∥∆hk−1∥L2(Ω)) ds

+

∫ T

0

(C3∥∆hk−1∥L2(Ω) + C4(T ))e
∫ T
s

(C1(T )+C2∥∆hk−1∥L2(Ω)) dτ ds

≤ ∥∆Q
(k)
0 ∥2L2(Ω)e

C1(T )T+C2∥∆hk−1∥L1(0,T ;L2(Ω))

+

∫ T

0

(C3∥∆hk−1∥L2(Ω) + C4(T ))e
C1(T )T+C2∥∆hk−1∥L1(0,T ;L2(Ω)) ds

≤ ∥∆Q
(k)
0 ∥2L2(Ω)C5(T ) +

∫ T

0

(C3∥∆hk−1∥L2(Ω) + C4(T ))C5(T ) ds

≤ ∥∆Q
(k)
0 ∥2L2(Ω)C5(T ) + C6(T )

≤ c2QQ(T )
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for some constant cQQ independent of k. Hence,

∥∆Qk(t, ·)∥L∞(0,T ;L2(Ω)) ≤ cQQ(T ).

3.1.3 Existence of a solution to the decoupled system

Lemma 3.1.8. Let M0, h0, e0 ∈W 1,4(Ω), Q
(k)
0 ∈ C∞(Ω̄) with

0 ≤M0, h0, e0, Q
(k)
0 ≤ 1.

Let further

(Qk−1, hk−1, ek−1,Mk−1) ∈ (C∞((0,∞)× Ω̄) ∩ C([0,∞)× Ω̄))4

fulfill the bounds from lemma 3.1.7. Then system (3.6)-(3.9) has a unique global
solution

(Qk, hk, ek,Mk) ∈ (C∞((0,∞)× Ω̄) ∩ C([0,∞)× Ω̄))4,

which fulfills again the bounds from lemma 3.1.7.

Proof. Global existence of Qk is obtained from equation (3.6a) by applying stan-
dard theory for ODEs, using the boundedness of Qk. The postulated smoothness
properties can be deduced from remark A.1.9.
Now consider system (3.6b)-(3.6d). Using the notations of theorem A.1.2 with

uk =

 hk

ek
Mk

, the system coefficients are as follows:

� From equation (3.6b)

a11ii = Dh for i = 1, ..., N

a11ij = 0 for i ̸= j,

a12ij = a13ij = 0 for i, j = 1, ..., N,

a1ri = b1ri = 0 for i = 1, ..., N, r = 1, 2, 3,

a120 = a130 = 0,

a110 = δhu
k
2 ,

f1 = µh(1− uk
1)

uk
3

1 + uk
3

,
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� From equation (3.6c)

a22ii = De for i = 1, ..., N,

a22ij = 0 for i ̸= j,

a21ii = −ςeuk
2(1− uk

2) for i = 1, ..., N,

a21ij = 0 for i ̸= j,

a23ij = 0 for i, j = 1, ..., N,

a2ri = b2ri = 0 for i = 1, ..., N, r = 1, 2, 3,

a210 = a230 = 0,

a220 = −µe
uk
1u

k
3

1 + uk
1u

k
3

(1− uk
2),

f2 = 0,

� From equation (3.6d)

a33ij =
a1ρ2

a2smax
uk
3(1− uk

3)(DW )ij + ϵkIij for i, j = 1, ..., N,

a31ij = a32ij = 0 for i, j = 1, ..., N,

a31i = a32i = 0 for i = 1, ..., N,

b3ri = 0 for i = 1, ..., N, r = 1, 2, 3,

a33i =
a1(1− ρ1)

a2smax

1− uk
3√

1 + ∥∇uk−1
1 ∥2

(DW∇uk−1
1 )i

− a1ρ1
a2smax

(1− y∗k)
1− uk

3√
1 + ∥∇Qk∥2

(DW∇Qk)i for i = 1, ..., N,

a310 = a320 = 0,

a330 = −y∗k(1− y∗k)
1− s∗k

1 + uk−1
1

(1− uk
3),

f3 = 0.

We check the assumptions of theorem A.1.2: Let D0 := (− 1
2 ,

3
2 )

3. Then all
coefficients of A and B are C∞-smooth w.r.t. x, t and u. Further note, that the
set D ⊂ D0 is nonempty: For example consider

aij(0, 0, 0) =

DhIij 0 0
0 DeIij 0
0 0 ϵkIij

 ,

where due to the positivity of Dh, De and ϵk we find that N∑
i,j=1

aklij (0, 0, 0)ξiξj

3

k,l=1

is positive definite for all ξ ∈ RN\{0}. Hence, (0, 0, 0) ∈ D. f is C∞-smooth on
((R+

0 × Ω̄×D0)× R3×N , R3), hence also on ((R+
0 × Ω̄×D)× R3×N , R3). Fur-

thermore, f is independent of the gradient of u. Choosing p = 4, the condition
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N
p < 1 < (1 + 1

p ) ∧ (2− N
p ) is fulfilled with N ≤ 3. Since it further holds g = 0

and the initial data are all at least in W 1,4(Ω), by theorems A.1.2, A.1.3 and
A.1.4 there exists a unique solution uk ∈ C∞((0, t+)× Ω̄, R3) for some t+ > 0.
Due to the positivity of ϵk, there is some δ > 0 such that (a33ij )ij is positive

definite for uk
3 ∈ (−δ, 1 + δ), hence by 0 ≤ hk, ek,Mk ≤ 1, uk is bounded away

from ∂D. Then by theorem A.1.5 we find t+ =∞.
The bounds on Qk, hk, ek and Mk are given by lemma 3.1.7.

Remark 3.1.9. In the proof of lemma 3.1.8 above, we needed N ≤ 3 in order to
fulfill the condition N

p < 1 < (1 + 1
p ) ∧ (2 − N

p ) for p = 4. Choosing stronger

assumptions on the initial data (i.e. h0, e0,M0 ∈ W 1,N+1(Ω)), the theorem
works also for the (biologically irrelevant) case N > 3.

Starting with some arbitrary functions Q1, h1, e1,M1 ∈ C∞((0,∞) × Ω̄) ∩
C([0,∞)×Ω̄), fulfilling the assumptions on (Qk−1, hk−1, ek−1,Mk−1) from lemma
3.1.7, lemma 3.1.8 ensures the existence of an iteratively defined sequence of
unique global solutions (Qk, hk, ek,Mk)k≥2 to system (3.6)-(3.9), fulfilling the
bounds of lemma 3.1.7.

3.1.4 Existence of a global weak solution

Finally, we have to show that the constructed sequence of solutions to system
(3.6)-(3.9) converges to a weak solution of the original system (3.1).

Lemma 3.1.10. Let (Qk, hk, ek,Mk)k be the sequence of global solutions to
system (3.6)-(3.9) constructed in section 3.1.3. Then there exist

M,h, e,Q : R+
0 × Ω̄→ [0, 1],

such that for all T > 0 it holds

M, e ∈ L2(0, T ;W 1,2(Ω)), h,Q ∈ L∞(0, T ;W 1,2(Ω)),

and there exists a subsequence (Qkn
, hkn

, ekn
,Mkn

)n such that

Mkn
→M in L2(0, T ;L2(Ω)), hkn

→ h in L∞(0, T ;L2(Ω)),

ekn
→ e in L2(0, T ;L2(Ω)), Qkn

→ Q in L∞(0, T ;L2(Ω)),

and

Mkn
⇀ M in L2(0, T ;W 1,2(Ω)), ekn

⇀ e in L2(0, T ;W 1,2(Ω)),

hkn ⇀ h in L2(0, T ;W 1,2(Ω)), hkn

∗
⇀ h in L∞(0, T ;W 1,2(Ω)),

Qkn
⇀ Q in L2(0, T ;W 1,2(Ω)), Qkn

∗
⇀ Q in L∞(0, T ;W 1,2(Ω)).

Proof. For the proof of this lemma, we will use the theorem of Aubin-Lions
(theorem A.1.11).

In theorem A.1.11, let X = W 1,2(Ω), B = L2(Ω), and Y = W−1,2(Ω),
and let T > 0. The boundedness of (Mk)k in L2(0, T ;W 1,2(Ω)) is given by
lemma 3.1.7. To check the boundedness of (∂tMk)k in L2(0, T ;W−1,2(Ω)) =
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(L2(0, T ;W 1,2
0 (Ω)))∗, let ϕ ∈ L2(0, T ;W 1,2

0 (Ω)). We multiply (3.6d) by ϕ and
integrate over (0, T )× Ω:∣∣∣∣∣
∫ T

0

∫
Ω

∂tMk · ϕ dx dt

∣∣∣∣∣
≤ ϵk

∣∣∣∣∣
∫ T

0

∫
Ω

∇Mk · ∇ϕdxdt

∣∣∣∣∣
+

a1
a2smax

·

(
ρ2

∣∣∣∣∣
∫ T

0

∫
Ω

(Mk(1−Mk)DW∇Mk) · ∇ϕdx dt

∣∣∣∣∣
+ (1− ρ1)

∣∣∣∣∣
∫ T

0

∫
Ω

(
Mk(1−Mk)DW

∇hk−1√
1 + |∇hk−1|2

)
· ∇ϕ dx dt

∣∣∣∣∣
+ρ1

∣∣∣∣∣
∫ T

0

∫
Ω

(
(1− y∗k)Mk(1−Mk)DW

∇Qk√
1 + |∇Qk|2

)
· ∇ϕ dxdt

∣∣∣∣∣
)

+

∣∣∣∣∣
∫ T

0

∫
Ω

GM (hk−1, s
∗
k, y

∗
k)Mk(1−Mk)ϕ dxdt

∣∣∣∣∣
≤ ϵk

∫ T

0

∫
Ω

|∇Mk||∇ϕ|dxdt

+
a1

a2smax

(
ρ2

∫ T

0

∫
Ω

αmaxMk(1−Mk)|∇Mk||∇ϕ|dx dt

+ (1− ρ1)

∫ T

0

∫
Ω

αmaxMk(1−Mk)

∣∣∣∣∣ ∇hk−1√
1 + |∇hk−1|2

∣∣∣∣∣ |∇ϕ|dx dt
+ρ1

∫ T

0

∫
Ω

αmax(1− y∗k)Mk(1−Mk)

∣∣∣∣∣ ∇Qk√
1 + |∇Qk|2

∣∣∣∣∣ |∇ϕ|dx dt
)

+

∫ T

0

∫
Ω

|GM (hk−1, s
∗
k, y

∗
k)Mk(1−Mk)||ϕ|dxdt

≤ c

(∫ T

0

∫
Ω

|∇Mk||∇ϕ|dxdt+
∫ T

0

∫
Ω

∣∣∣∣∣ ∇hk−1√
1 + |∇hk−1|2

∣∣∣∣∣ |∇ϕ|dx dt
+

∫ T

0

∫
Ω

∣∣∣∣∣ ∇Qk√
1 + |∇Qk|2

∣∣∣∣∣ |∇ϕ|dxdt+
∫ T

0

∫
Ω

|ϕ|dxdt

)

≤ c

∥∇Mk∥L2(0,T ;L2(Ω)) +

∥∥∥∥∥ ∇hk−1√
1 + |∇hk−1|2

∥∥∥∥∥
L2(0,T ;L2(Ω))

+

∥∥∥∥∥ ∇Qk√
1 + |∇Qk|2

∥∥∥∥∥
L2(0,T ;L2(Ω))

 ∥∇ϕ∥L2(0,T ;L2(Ω)) + c∥ϕ∥L1(0,T ;L1(Ω))

≤ C(T )∥ϕ∥L2(0,T ;W 1,2(Ω)).

Hence, (∂tMk)k is bounded in L2(0, T ;W−1,2(Ω)) and by theorem A.1.11 there
exists a subsequence (Mkn

)n with Mkn
→M in L2(0, T ;L2(Ω)).

The boundedness of (Mkn
)n in L2(0, T ;W 1,2(Ω)) implies the existence of a fur-
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ther subsequence (Mknl
)l with Mknl

⇀ M in L2(0, T ;W 1,2(Ω)).

Next, we show convergence of a subsequence of (hk)k. To be precise, we
should be looking for a subsequence of (hknl

)l, (knl
)l being the sequence from

above, in order to find a convergent subsequence of both (Mk)k and (hk)k. For
simplicity of writing, we drop the subindex nl in the following. Choosing X =
W 1,2(Ω), B = L2(Ω) and Y = W−1,2(Ω), we have to check the boundedness
of (∂thk)k in L2(0, T ;W−1,2(Ω)) = (L2(0, T ;W 1,2

0 (Ω)))∗ (the boundedness of
(hk)k in L∞(0, T ;W 1,2(Ω)) is given by lemma 3.1.7). To this aim, let ϕ ∈
L2(0, T ;W 1,2

0 (Ω)). Multiplying (3.6b) by ϕ and integrating over Ω yields

∣∣∣∣∫
Ω

∂thk · ϕdx

∣∣∣∣
≤ Dh

∣∣∣∣∫
Ω

∆hk · ϕ dx

∣∣∣∣+ ∣∣∣∣∫
Ω

µh(1− hk)
Mk

1 +Mk
ϕdx

∣∣∣∣+ ∣∣∣∣∫
Ω

δhhkekϕ dx

∣∣∣∣
≤ Dh

∫
Ω

|∇hk||∇ϕ|dx+ µh∥ϕ∥L1(Ω) + δh∥ϕ∥L1(Ω)

≤ Dh∥∇hk∥L2(Ω)∥∇ϕ∥L2(Ω) + (µh + δh)∥ϕ∥L1(Ω)

≤ Dhch∥∇ϕ∥L2(Ω) + (µh + δh)∥ϕ∥L1(Ω)

≤ C∥ϕ∥W 1,2(Ω).

Hence, (∂thk)k is bounded in L2(0, T ;W−1,2(Ω)) and by theorem A.1.11 we con-
clude the existence of a subsequence (hkn

)n with hkn
→ h in L∞(0, T ;L2(Ω)).

By boundedness of (hkn)n in L∞(0, T ;W 1,2(Ω)), there exists a subsubsequence

(hknl
)l with hknl

⇀ h in L2(0, T ;W 1,2(Ω)) and hknl

∗
⇀ h in L∞(0, T ;W 1,2(Ω)).

To show convergence of a subsequence of (ek)k, we repeat the procedure
from above. Again, let X = W 1,2(Ω), B = L2(Ω) and Y = W−1,2(Ω). The
boundedness of (ek)k in L2(0, T ;W 1,2(Ω)) is given by lemma 3.1.7. Let ϕ ∈
L2(0, T ;W 1,2

0 (Ω)). Multiplying (3.6c) by ϕ and integrating over (0, T )×Ω yields

∣∣∣∣∣
∫ T

0

∫
Ω

∂tek · ϕ dxdt

∣∣∣∣∣
≤
∫ T

0

(
De

∣∣∣∣∫
Ω

∆ek · ϕdx

∣∣∣∣+ ςe

∣∣∣∣∫
Ω

∇ · (ek(1− ek)∇hk)ϕ dx

∣∣∣∣
+

∣∣∣∣∫
Ω

Ge(hk,Mk)ek(1− ek)ϕdx

∣∣∣∣) dt

≤ De

∫ T

0

∫
Ω

|∇ek||∇ϕ|dx dt+ ςe

∫ T

0

∫
Ω

|∇hk||∇ϕ|dxdt+ µe

∫ T

0

∫
Ω

|ϕ|dxdt
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≤ De

∫ T

0

∥∇ek∥L2(Ω)∥∇ϕ∥L2(Ω) dt+ ςe

∫ T

0

∥∇hk∥L2(Ω)∥∇ϕ∥L2(Ω) dt

+ µe

∫ T

0

∥ϕ∥L1(Ω) dt

≤ De∥∇ek∥L2(0,T ;L2(Ω))∥∇ϕ∥L2(0,T ;L2(Ω))

+ ςe∥∇hk∥L2(0,T ;L2(Ω))∥∇ϕ∥L2(0,T ;L2(Ω)) + µe∥ϕ∥L1(0,T ;L1(Ω))

≤ C(T )∥ϕ∥L2(0,T ;W 1,2(Ω)).

Again, by theorem A.1.11 we conclude the existence of a subsequence (ekn)n
with ekn

→ e in L2(0, T ;L2(Ω)).
The boundedness of (ekn

)n in L2(0, T ;W 1,2(Ω)) implies the existence of a fur-
ther subsequence (eknl

)l with eknl
⇀ e in L2(0, T ;W 1,2(Ω)).

Finally, we repeat the procedure for (Qk)k. Again, letX = W 1,2(Ω), B = L2(Ω)
and Y = W−1,2(Ω). The boundedness of (Qk)k in L∞(0, T ;W 1,2(Ω)) is given
by lemma 3.1.7. Let ϕ ∈ L2(0, T ;W 1,2

0 (Ω)). By multiplying (3.6c) by ϕ and
integrating over Ω, we obtain∣∣∣∣∫

Ω

∂tQk · ϕ dx

∣∣∣∣ ≤ µQ

∣∣∣∣∫
Ω

Qk(1−Qk)ϕdx

∣∣∣∣+ δQ

∣∣∣∣∫
Ω

hk−1

1 + hk−1
Qkϕdx

∣∣∣∣
≤ µQ∥ϕ∥L1(Ω) + δQ∥ϕ∥L1(Ω)

≤ C∥ϕ∥W 1,2(Ω).

Hence, (∂tQk)k is bounded in L2(0, T ;W−1,2(Ω)) and by theorem A.1.11 we can
conclude the existence of a subsequence (Qkn

)n withQkn
→ Q in L∞(0, T ;L2(Ω)).

By boundedness of (Qkn
)n in L∞(0, T ;W 1,2(Ω)), there exists a subsubsequence

(Qknl
)l withQknl

⇀ Q in L2(0, T ;W 1,2(Ω)) andQknl

∗
⇀ Q in L∞(0, T ;W 1,2(Ω)).

To show M(t, x), h(t, x), e(t, x), Q(t, x) ∈ [0, 1] a.e., we note that

∥Mk∥L∞((0,T )×Ω), ∥hk∥L∞((0,T )×Ω), ∥ek∥L∞((0,T )×Ω), ∥Qk∥L∞((0,T )×Ω) ≤ 1

implies
Mkn

∗
⇀ M, hkn

∗
⇀ h, ekn

∗
⇀ e, Qkn

∗
⇀ Q

in L∞((0, T )× Ω) for some subsequences, and it holds

∥M∥L∞((0,T )×Ω), ∥h∥L∞((0,T )×Ω), ∥e∥L∞((0,T )×Ω), ∥Q∥L∞((0,T )×Ω) ≤ 1.

Since 0 ≤Mk, hk, ek, Qk ≤ 1 implies ∥1−Mk∥L∞((0,T )×Ω), ∥1−hk∥L∞((0,T )×Ω),
∥1 − ek∥L∞((0,T )×Ω), ∥1 − Qk∥L∞((0,T )×Ω) ≤ 1, we conclude as above ∥1 −
M∥L∞((0,T )×Ω), ∥1−h∥L∞((0,T )×Ω), ∥1−e∥L∞((0,T )×Ω), ∥1−Q∥L∞((0,T )×Ω) ≤ 1.
Hence, 0 ≤M,h, e,Q ≤ 1 almost everywhere.

Next, we show that M,h, e,Q is indeed a weak solution to the given problem.

Theorem 3.1.11. The limit functions M,h, e,Q constructed in the proof of
lemma 3.1.10 are a global weak solution to (3.1)-(3.4) in the sense of definition
3.1.5.

For the proof of this theorem, we will often use the following result:
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Corollary 3.1.12. 1 Let m,n,N ∈ N, let E ⊂ RN be a bounded domain, and
let D ⊂ Rm be closed. Let further p ∈ [1,∞], r ∈ [1,∞) and let f : D → Rn

be bounded in L∞(D) and continuous. If a sequence of Lp-functions (ak)k with
ak : RN → D converges strongly to some a in Lp(E), then f(akl

) → f(a) in
Lr(E) for some subsequence (akl

)l.

Proof. Strong convergence of (ak)k in measure implies convergence of a subse-
quence almost everywhere. Together with continuity of f , this implies almost
everywhere convergence of a subsequence of f(ak) to f(a). Using the domi-
nated convergence theorem, we find a converging subsequence f(akl

)→ f(a) in
Lr(Ω).

Proof of theorem 3.1.11. Let T > 0 and ϕ ∈ C∞
0 ([0, T ) × Ω). First, consider

equation (3.6a). It holds

−
∫ T

0

∫
Ω

ϕtQk dx dt−
∫
Ω

ϕ(0, ·)Q(k)
0 dx

=

∫ T

0

∫
Ω

ϕ

(
µQQk(1−Qk)− δQ

hk−1

1 + hk−1
Qk

)
dx dt.

(3.15)

As Qk → Q in L∞(0, T ;L2(Ω)) (or at least, this holds for a subsequence of Qk)
and ϕt ∈ C∞

0 ([0, T )× Ω), we find∣∣∣∣∣
∫ T

0

∫
Ω

ϕt(Q−Qk) dxdt

∣∣∣∣∣ ≤ c

∫ T

0

∫
Ω

|Q−Qk|dxdt→ 0. (3.16)

By Q
(k)
0 → Q0 in W 2,2(Ω), we further obtain∣∣∣∣∫

Ω

ϕ(0, ·)(Q0 −Q
(k)
0 )

∣∣∣∣→ 0 (3.17)

By boundedness and continuity of f(Qk, hk−1) := µQQk(1−Qk)− δQ
hk−1

1+hk−1
Qk

(remember, that 0 ≤ hk−1, Qk ≤ 1) and the strong convergence of (subsequences
of) (Qk)k and (hk)k, we conclude by corollary 3.1.12 f(Qk, hk−1)→ f(Q, h) in
L1(0, T ;L1(Ω)). Hence, it holds∣∣∣∣∣∣

T∫
0

∫
Ω

ϕ

(
µQQk(1−Qk)− δQ

hk−1

1 + hk−1
Qk − µQQ(1−Q) + δQ

h

1 + h
Q

)
dxdt

∣∣∣∣∣∣
≤ ∥ϕ∥C([0,T ]×Ω̄)

T∫
0

∫
Ω

|f(Qk, hk−1)− f(Q, h)|dx dt

→ 0.

(3.18)

Combining (3.15)-(3.18) yields

−
T∫

0

∫
Ω

ϕtQdxdt−
∫
Ω

ϕ(0, ·)Q0 dx =

T∫
0

∫
Ω

ϕ

(
µQQ(1−Q)− δQ

h

1 + h
Q

)
dxdt.

1The result should be well known; since no suitable source could be found, we give the
statement together with the corresponding proof.

71



CHAPTER 3. ANALYSIS

Next, consider equation (3.6b). It holds

−
T∫

0

∫
Ω

ϕthk dxdt−
∫
Ω

ϕ(0, ·)h0 dx

=−
T∫

0

∫
Ω

Dh∇ϕ · ∇hk dx dt+

T∫
0

∫
Ω

ϕ

(
µh(1− hk)

Mk

1 +Mk
− δhhkek

)
dxdt.

(3.19)

As we did for equation (3.16), we find∣∣∣∣∣
∫ T

0

∫
Ω

ϕt(h− hk) dxdt

∣∣∣∣∣ ≤ c

∫ T

0

∫
Ω

|h− hk|dxdt→ 0. (3.20)

It further holds ∫ T

0

∫
Ω

Dh∇ϕ(∇h−∇hk) dxdt→ 0, (3.21)

since ∇ϕ ∈ L2(0, T ;L2(Ω)) and (∇h−∇hk) ⇀ 0 in L2(0, T ;L2(Ω)).
Using the same argumentation as for (3.18) above, now with f(Mk, hk, ek) :=
µh(1− hk)

Mk

1+Mk
− δhhkek, we find∫ T

0

∫
Ω

ϕ

(
µh(1− hk)

Mk

1 +Mk
− δhhkek − µh(1− h)

M

1 +M
+ δhhe

)
dxdt→ 0.

(3.22)

Combining (3.19)-(3.22), we obtain

−
∫ T

0

∫
Ω

ϕthdx dt−
∫
Ω

ϕ(0, ·)h0 dx

=−
∫ T

0

∫
Ω

Dh∇ϕ · ∇hdxdt+
∫ T

0

∫
Ω

ϕ

(
µh(1− h)

M

1 +M
− δhhe

)
dxdt.

We repeat the procedure for equation (3.6c). It holds

−
∫ T

0

∫
Ω

ϕt ek dxdt−
∫
Ω

ϕ(0, ·) e0 dx =−
∫ T

0

∫
Ω

De∇ϕ · ∇ek dxdt

+

∫ T

0

∫
Ω

ςeek(1− ek)∇ϕ · ∇hk dxdt

+

∫ T

0

∫
Ω

ϕGe(hk,Mk)ek(1− ek) dxdt.

(3.23)

As was done above, we find∣∣∣∣∣
∫ T

0

∫
Ω

ϕt(e− ek) dxdt

∣∣∣∣∣ ≤ c

∫ T

0

∫
Ω

|e− ek|dxdt→ 0. (3.24)
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Analogously to equation (3.21), we obtain∫ T

0

∫
Ω

De∇ϕ(∇e−∇ek) dxdt→ 0. (3.25)

As ek → e in L2(0, T ;L2(Ω)) and ek ∈ [0, 1], corollary 3.1.12 implies the exis-
tence of a subsequence (ekn

)n with ekn
(1− ekn

)→ e(1− e) in L2(0, T ;L2(Ω)).
For shortness, we drop the subindex, and with ∇hk ⇀ ∇h in L2(0;T ;L2(Ω))
we obtain∣∣∣∣∣

∫ T

0

∫
Ω

(e(1− e)∇h− ek(1− ek)∇hk)∇ϕdxdt

∣∣∣∣∣
≤

∣∣∣∣∣
∫ T

0

∫
Ω

(e(1− e)− ek(1− ek))∇hk∇ϕdxdt

∣∣∣∣∣
+

∣∣∣∣∣
∫ T

0

∫
Ω

e(1− e) (∇h−∇hk)∇ϕ dxdt

∣∣∣∣∣
≤ ∥e(1− e)− ek(1− ek)∥L2(0,T ;L2(Ω))∥∇hk∥L2(0,T ;L2(Ω))∥∇ϕ∥C([0,T ]×Ω̄)

+

∣∣∣∣∣
∫ T

0

∫
Ω

∇ϕe(1− e)(∇h−∇hk) dxdt

∣∣∣∣∣
→ 0

(3.26)

Finally, with f(hk, ek,Mk) := Ge(hk,Mk)ek(1 − ek) = µe
hkMk

1+hkMk
ek(1 − ek) we

conclude in the same way as we did for (3.18)∫ T

0

∫
Ω

ϕ

(
µe

hM

1 + hM
e(1− e)− µe

hkMk

1 + hkMk
ek(1− ek)

)
dx dt→ 0. (3.27)

Combining (3.23)-(3.27) yields

−
∫ T

0

∫
Ω

ϕt edx dt−
∫
Ω

ϕ(0, ·) e0 dx =−
∫ T

0

∫
Ω

De∇ϕ · ∇edx dt

+

∫ T

0

∫
Ω

ςee(1− e)∇ϕ · ∇hdx dt

+

∫ T

0

∫
Ω

ϕGe(h,M)e(1− e) dx dt.

(3.28)

So far, we proved that (M,Q,h,e) fulfills (3.5a)-(3.5c). To prove, that it is also
a solution to (3.5d), we will need the following convergence result:

Lemma 3.1.13. Let Ω ⊂ RN be a bounded domain, let T > 0, and let (fk)k
be a sequence of functions in C(0, T ;W 2,2(Ω)) with ∇fk · ν = 0 on (0, T )× ∂Ω.
Let further

fk → f in L2(0, T ;L2(Ω)) and ∇fk ⇀ ∇f in L2(0, T ;L2(Ω)),

and let ∥∆fk∥L2(0,T ;L2(Ω)) ≤ c for some constant c, which is independent of
k. Then there exists a subsequence (fkn

)n of (fk)k, such that ∇fkn
→ ∇f in

L2(0, T ;L2(Ω)).
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Proof. By weak convergence of (∇fk)k to ∇f in L2(0, T ;L2(Ω)), it holds∫ T

0

∫
Ω

∇fk∇f dxdt→
∫ T

0

∫
Ω

|∇f |2 dxdt. (3.29)

Now consider the following difference of integrals:∣∣∣∣∣
∫ T

0

∫
Ω

|∇fk|2 dxdt −
∫ T

0

∫
Ω

∇fk∇f dxdt

∣∣∣∣∣
=

∣∣∣∣∣
∫ T

0

∫
Ω

∇fk(∇fk −∇f) dxdt

∣∣∣∣∣
=

∣∣∣∣∣
∫ T

0

∫
Ω

∆fk(fk − f) dx dt

∣∣∣∣∣
≤ ∥∆fk∥L2(0,T ;L2(Ω))︸ ︷︷ ︸

≤c

∥fk − f∥L2(0,T ;L2(Ω))︸ ︷︷ ︸
→0

→ 0.

(3.30)

Hence, ∫ T

0

∫
Ω

|∇fk|2 dx dt−
∫ T

0

∫
Ω

∇fk∇f dxdt→ 0,

which implies ∫ T

0

∫
Ω

|∇fk|2 dxdt→
∫ T

0

∫
Ω

|∇f |2 dxdt

due to (3.29). Applying the theorem of Radon-Riesz,∇fk ⇀ ∇f in L2(0, T ;L2(Ω))
together with ∥∇fk∥L2(0,T ;L2(Ω)) → ∥∇f∥L2(0,T ;L2(Ω)) implies the existence of a
strongly convergent subsequence (∇fkn

)n with ∇fkn
→ ∇f in L2(0, T ;L2(Ω)).

Continuation of the proof of theorem 3.1.11. Consider equation (3.6d). We find

−
∫ T

0

∫
Ω

ϕt Mk dxdt−
∫
Ω

ϕ(0, ·)M0 dx

=

∫ T

0

∫
Ω

Mk∇ϕ · gk dxdt− ϵk

∫ T

0

∫
Ω

∇ϕ · ∇Mk dx dt

+

∫ T

0

∫
Ω

ϕGM (hk−1, s
∗
k, y

∗
k)Mk(1−Mk) dxdt.

(3.31)

As was done above, we find∣∣∣∣∣
∫ T

0

∫
Ω

ϕt(M −Mk) dxdt

∣∣∣∣∣ ≤ c

∫ T

0

∫
Ω

|M −Mk|dxdt→ 0. (3.32)

For the third term on the right hand side, we need

s∗k → s∗, y∗k → y∗ in L2(0, T ;L2(Ω)).

Using lemma 3.1.13, we obtain strong convergence of (a subsequence of) (∇hk)k.
For strong convergence of a subsequence of (∇Qk)k, we have to check ∇Qk(x) ·
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ν(x) = 0 on ∂Ω in order to apply lemma 3.1.13:
Let x ∈ ∂Ω and consider the gradient of equation (3.6a). Remember that the
ODE (3.6a) was defined on Ω̄. Multiplication by the outward unit normal vector
ν(x) yields

∂t(∇Qk · ν) = µQ(1− 2Qk)∇Qk · ν − δQ
hk−1

1 + hk−1
∇Qk · ν − δQ

∇hk−1 · ν
(1 + hk−1)2

Qk

with initial condition ∇Qk(0, x) ·ν(x) = 0. Setting u(t) = ∇Qk(t, x) ·ν(x) (note
that x ∈ ∂Ω was fixed) and using ∇hk−1 · ν = 0 by boundary condition, we find
the ODE

∂tu = µQ(1− 2Qk)u− δQ
hk−1

1 + hk−1
u,

u(0) = 0.

This linear ODE has a unique solution, which is given by u(t) = 0 for all t > 0.
Hence, ∇Qk(t, x) · ν(x) = 0 on ∂Ω, and we can conclude strong convergence of
(a subsequence of) (∇Qk)k by applying lemma 3.1.13. Then by corollary 3.1.12,
it holds

s∗k → s∗, y∗k → y∗ in L2(0, T ;L2(Ω))

and hence

GM (hk−1, s
∗
k, y

∗
k)Mk(1−Mk)→ GM (h, s∗, y∗)M(1−M) in L2(0, T ;L2(Ω)),

so∫ T

0

∫
Ω

ϕ (GM (hk−1, s
∗
k, y

∗
k)Mk(1−Mk)−GM (h, s∗, y∗)M(1−M)) dx dt→ 0.

(3.33)

By ϵk → 0 and boundedness of ∇Mk in L2(0, T ;L2(Ω)), we find

ϵk

∫ T

0

∫
Ω

∇ϕ · ∇Mk dx dt→ 0.

We multiply the remaining integral by a2smax

a1
and split it into three terms:

a2smax

a1

∫ T

0

∫
Ω

∇ϕ(Mg −Mkgk) dx dt

=− ρ2

∫ T

0

∫
Ω

∇ϕ (M(1−M)DW∇M −Mk(1−Mk)DW∇Mk) dx dt (A)

−(1− ρ1)

∫ T

0

∫
Ω

∇ϕ

(
M(1−M)DW

∇h√
1 + |∇h|2

−Mk(1−Mk)DW
∇hk−1√

1 + |∇hk−1|2

)
dxdt

(B)

+ρ1

∫ T

0

∫
Ω

∇ϕ

(
(1− y∗)M(1−M)DW

∇Q√
1 + |∇Q|2

−(1− y∗k)Mk(1−Mk)DW
∇Qk√

1 + |∇Qk|2

)
dxdt.

(C)
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For (A), we observe that Mk(1 −Mk) → M(1 −M) in L2(0, T ;L2(Ω)) due to
corollary (3.1.12) (or at least this holds for a subsequence). With ∇Mk ⇀ ∇M
in L2(0, T ;L2(Ω)), this implies (cf. (3.26))∫ T

0

∫
Ω

∇ϕMk(1−Mk)DW∇Mk dxdt→
∫ T

0

∫
Ω

∇ϕM(1−M)DW∇M dxdt.

Hence, (A)→ 0.
For (B), we use the strong convergence of (a subsequence of) (∇hk)k obtained
by lemma 3.1.13. Together with corollary 3.1.12, this implies

Mk(1−Mk)
∇hk−1√

1 + |∇hk−1|2
→M(1−M)

∇h√
1 + |∇h|2

in L2(0, T ;L2(Ω)).

Hence, (B)→ 0.
For the last term, we find analogously to the argumentation above

(1− y∗k)Mk(1−Mk)
∇Qk√

1 + |∇Qk|2
→ (1− y∗)M(1−M)

∇Q√
1 + |∇Q|2

in L2(0, T ;L2(Ω)), hence (C)→ 0. This proves

−
∫ T

0

∫
Ω

ϕt M dxdt−
∫
Ω

ϕ(0, ·)M0 dx

=

∫ T

0

∫
Ω

M∇ϕ · g(y∗) dxdt+
∫ T

0

∫
Ω

ϕGM (h, s∗, y∗)M(1−M) dxdt.

Since this holds for all T ∈ (0,∞), the functions M,h, e,Q are a global weak
solution in the sense of definition 3.1.5. The claimed bounds on M,h, e,Q are
given by lemma 3.1.10.

By theorem 3.1.11, we also proved theorem 3.1.4.

3.1.5 Remark: Flux saturation in the diffusion term

For the presented analysis to work, we needed to drop the flux saturation in the
diffusion term of M . Here, we shortly want to discuss the problems arising from
the original model 2.1. Choosing the same decoupling as before, but choosing
in bk instead of ρ2∇Mk now ρ2

∇Mk√
1+|∇Mk−1|2

and in sk the additional term

−ρ2 ∇Mk−1√
1+|∇Mk−1|2

, the proof for the a priori estimates given in lemma 3.1.7 works

completely analogously up to inequality (3.12), which is now given by

T∫
0

∫
Ω

∇Mk DW∇Mk√
1 + |∇Mk−1|2

dx dt ≤ c− 1− ρ1 − ρ2
ρ2

T∫
0

∫
Ωt

0

∇Mk DW∇hk−1√
1 + |∇hk−1|2

dxdt

+

T∫
0

∫
Ωt

0

ρ1(1− y∗k)

ρ2

∇Mk DW∇Qk√
1 + |∇Qk|2

dxdt,

(3.34)
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In difference to (3.12), from (3.34) we cannot conclude an L2-bound on ∇Mk,
but only obtain an L1-bound under the additional assumption ρ2 > αmax

αmax+αmin
,

where αmax and αmin denote the maximum and minimum of the eigenvalues
of DW (x). So in lemma 3.1.7, we only assume ∥∇Mk−1∥L1(0,T ;L1(Ω)) ≤ cM (T ),
aiming to conclude ∥∇Mk∥L1(0,T ;L1(Ω)) ≤ cM (T ). As in the modeling chapter,
we assume that ρ1, ρ2 ∈ (0, 1) fulfill ρ1 + ρ2 < 1. Then from (3.34) it follows

∫ T

0

∫
Ω

αmin√
1 + |∇Mk−1|2

|∇Mk|2 dxdt

≤ c+
1− ρ1 − ρ2

ρ2

∫ T

0

∫
Ωt

0

αmax|∇Mk||∇hk−1|√
1 + |∇hk−1|2

dxdt

+
ρ1(1− y∗k)

ρ2

∫ T

0

∫
Ωt

0

αmax|∇Mk||∇Qk|√
1 + |∇Qk|2

dx dt

= c+
1− ρ1 − ρ2

ρ2

∫ T

0

∫
Ω

αmax|∇Mk||∇hk−1|√
1 + |∇hk−1|2

dxdt

+
ρ1(1− y∗k)

ρ2

∫ T

0

∫
Ω

αmax|∇Mk||∇Qk|√
1 + |∇Qk|2

dx dt,

where we used again ∇Mk = 0 on the interior of Ω\Ωt
0 (cf. proof of lemma

3.1.7). Furthermore, it holds

(∫ T

0

∫
Ω

|∇Mk|dx dt
)2

=

(∫ T

0

∫
Ω

|∇Mk|
4
√

1 + |∇Mk−1|2
· 4
√

1 + |∇Mk−1|2 dx dt

)2

≤
∫ T

0

∫
Ω

|∇Mk|2√
1 + |∇Mk−1|2

dxdt ·
∫ T

0

∫
Ω

√
1 + |∇Mk−1|2 dx dt,

from which we conclude

(∫ T

0

∫
Ω
|∇Mk|dxdt

)2
∫ T

0

∫
Ω

√
1 + |∇Mk−1|2 dxdt

≤
∫ T

0

∫
Ω

|∇Mk|2√
1 + |∇Mk−1|2

dxdt.

Together with

∥∇Mk∥2L1(0,T ;L1(Ω))∫ T

0

∫
Ω

√
1 + |∇Mk−1|2 dxdt

≥
∥∇Mk∥2L1(0,T ;L1(Ω))∫ T

0

∫
Ω
(1 + |∇Mk−1|) dxdt

=
∥∇Mk∥2L1(0,T ;L1(Ω))

|Ω|T + ∥∇Mk−1∥L1(0,T ;L1(Ω))
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it follows

αmin

∥∇Mk∥2L1(0,T ;L1(Ω))

|Ω|T + ∥∇Mk−1∥L1(0,T ;L1(Ω))

≤ c+
1− ρ1 − ρ2

ρ2

∫ T

0

∫
Ω

αmax|∇Mk||∇hk−1|√
1 + |∇hk−1|2

dx dt

+
ρ1(1− y∗k)

ρ2

∫ T

0

∫
Ω

αmax|∇Mk||∇Qk|√
1 + |∇Qk|2

dxdt

≤ c+
1− ρ1 − ρ2

ρ2

∫ T

0

∫
Ω

αmax|∇Mk|dxdt

+
ρ1(1− y∗k)

ρ2

∫ T

0

∫
Ω

αmax|∇Mk|dxdt

≤ c+
1− ρ1 − ρ2

ρ2
αmax∥∇Mk∥L1(0,T ;L1(Ω))

+
ρ1(1− y∗k)

ρ2
αmax∥∇Mk∥L1(0,T ;L1(Ω)).

Using y∗k ≤ 1 and hence 1− ρ2 − ρ1y
∗
k > 0, we conclude(

∥∇Mk∥L1(0,T ;L1(Ω)) −
αmax

2αmin

1− ρ2 − ρ1y
∗
k

ρ2
(T |Ω|+ ∥∇Mk−1∥L1(0,T ;L1(Ω)))

)2

≤ α2
max

4α2
min

(1− ρ2 − ρ1y
∗
k)

2

ρ22

(
T |Ω|+ ∥∇Mk−1∥L1(0,T ;L1(Ω))

)2
+

c

αmin

(
T |Ω|+ ∥∇Mk−1∥L1(0,T ;L1(Ω))

)
≤ α2

max

4α2
min

(1− ρ2 − ρ1y
∗
k)

2

ρ22
(T |Ω|+ cM (T ))2 +

c

αmin
(T |Ω|+ cM (T )),

which implies

∥∇Mk∥L1(0,T ;L1(Ω))

≤ αmax

2αmin

1− ρ2 − ρ1y
∗
k

ρ2
(T |Ω|+ ∥∇Mk−1∥L1(0,T ;L1(Ω)))

+

√
α2
max

4α2
min

(1− ρ2 − ρ1y∗k)
2

ρ22
(T |Ω|+ cM (T ))2 +

c

αmin
(T |Ω|+ cM (T ))

≤ αmax

2αmin

1− ρ2 − ρ1y
∗
k

ρ2
(T |Ω|+ cM (T ))

+

√
α2
max

4α2
min

(1− ρ2 − ρ1y∗k)
2

ρ22
(T |Ω|+ cM (T ))2 +

c

αmin
(T |Ω|+ cM (T ))

≤ αmax

2αmin

1− ρ2
ρ2

(T |Ω|+ cM (T ))

+

√
α2
max

4α2
min

(1− ρ2)2

ρ22
(T |Ω|+ cM (T ))2 +

c

αmin
(T |Ω|+ cM (T ))
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≤ αmax

2αmin

1− ρ2
ρ2

(T |Ω|+ cM (T )) +
αmax

2αmin

1− ρ2
ρ2

(T |Ω|+ cM (T ))

+

√
c

αmin
(T |Ω|+ cM (T ))

≤ αmax

αmin

1− ρ2
ρ2

cM (T ) +

√
c

αmin
cM (T ) +

αmax

αmin

1− ρ2
ρ2

T |Ω|

+

√
c

αmin
T |Ω|.

Due to our additional assumption ρ2 > αmax

αmax+αmin
, it holds αmax

αmin

1−ρ2

ρ2
< 1.

Hence, cM (T ) can be chosen large enough such that

∥∇Mk∥L1(0,T ;L1(Ω)) ≤
αmax

αmin

1− ρ2
ρ2

cM (T ) +

√
c

αmin
cM (T ) +

αmax

αmin

1− ρ2
ρ2

T |Ω|

+

√
c

αmin
T |Ω|

≤ cM (T ).

Note, that the choice of cM (T ) does not depend on k.

Due to the missing L2 bound on the gradient of Mk, the theorem of Aubin-
Lions cannot be applied on the same spaces as in the foregoing proof. Instead,
we can define the space

W−1,1(Ω) :=

{
u = u0 +

3∑
k=1

∂xi
ui for someui ∈ L1(Ω)

}
with corresponding norm

∥u∥W−1,1(Ω) := inf

{
3∑

k=0

∥ui∥L1(Ω) : u = u0 +

3∑
k=1

∂xiui, ui ∈ L1(Ω)

}
,

as was done in [86], and choose in theorem A.1.11 X = W 1,1(Ω), B = L1(Ω)
and Y = W−1,1(Ω). Proving boundedness of (∂tMk)k in L1(0, T ;W−1,1(Ω)),
we find the existence of a convergent subsequence (Mkn

)n with Mkn
→ M in

L1(0, T ;L1(Ω)).
Now, there remain two problems to be solved in order to show that the limit
function M is indeed a weak solution: Since L1 is not reflexive, from the bound-
edness of ∥Mk∥L1(0,T ;W 1,1(Ω)) we cannot conclude the existence of a weakly con-
vergent subsequence Mkn

⇀ M in L1(0, T ;W 1,1(Ω)). For this, we would need
a slightly stronger bound on ∇Mk. Further, for the convergence of the flux
saturated taxis terms we used not only the L2-convergence of (Qk)k and (hk)k
but also the weak convergence of their gradients as well as the boundedness
of (∆Qk)k and (∆hk)k, which ensured strong convergence of the gradients and
hence gave the convergence of the flux-saturated terms. For the flux saturated
diffusion term, we can here only conclude

∇Mkn√
1+|∇Mkn−1|2

⇀ f in L2(0, T ;L2(Ω))

for some unknown function f . The proof for f = ∇M√
1+|∇M |2

is a non-trivial task

remaining for the completion of the existence proof for the original model with
flux saturation in all diffusion and taxis terms of M .
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3.2 Adaptations of the existence proof to the
model variations presented in sections 2.2-
2.4

The aim of this section is to adapt the existence proof presented in the fore-
going section to the model variations presented in sections 2.2-2.4. For the
go-or-grow model developed in section 2.3 we will confine ourselves to prove the
boundedness of cancer cell density in case of an existing solution.

3.2.1 Analysis of the basic model with endothelial cells
following ∇M/∇(hM)

We consider a simplified version of model 2.2, where again we drop the flux
saturation in the diffusion term of M and adapt s∗ accordingly (cf. remark

3.1.2). As ς
(1)
e and ς

(2)
e are both constants, we will drop (i) in ς

(i)
e for simplicity

of writing.
The first thing to be adapted is the definition of the weak solution. In definition
3.1.5 we simply replace equation (3.5c) by

−
∫ T

0

∫
Ω

ϕt edxdt−
∫
Ω

ϕ(0, ·) e0 dx =−
∫ T

0

∫
Ω

De∇ϕ · ∇edxdt

+

∫ T

0

∫
Ω

ςee(1− e)∇ϕ · ∇f (i)(h,M) dx dt

+

∫ T

0

∫
Ω

ϕGe(h,M)e(1− e) dxdt.

(3.35)

Theorem 3.2.1. There exists a global weak solution of the simplified version
of model 2.2 in the sense of definition 3.1.5, where (3.5c) is replaced by (3.35).

Proof. As the proof of this theorem is in large parts identical to the one pre-
sented in section 3.1, we will only respond to the differences.
The decoupling in section 3.1.1 is basically maintained, replacing equation (3.6c)
by

∂tek = De∆ek − ςe∇x ·
(
ek(1− ek)∇xf

(i)(hk,Mk−1)
)

+Ge(hk,Mk)ek(1− ek)
in R+ × Ω, (3.36)

and correspondingly (3.8c) by

(De∇ek − ςeek(1− ek)∇f (i)(hk,Mk−1)) · ν = 0 on R+ × ∂Ω. (3.37)

Here, it is important to use the decoupling f (i)(hk,Mk−1) rather than f (i)(hk,Mk)
in order to get a bound on ∥∇ek∥L2((0,T ),L2(Ω)).

Lemma 3.2.2. Let T > 0 and (Qk−1, hk−1, ek−1,Mk−1) ∈ (C∞((0, T ) × Ω̄) ∩
C([0, T )× Ω̄))4 and let (Qk, hk, ek,Mk) ∈ (C∞((0, T )× Ω̄)∩C([0, T )× Ω̄))4 be a
corresponding solution to system (3.6)-(3.9), where (3.6c) is replaced by (3.36)
and (3.8c) by (3.37), respectively. Let further the assumptions from lemma 3.1.7
on the boundedness of Qk−1, hk−1, ek−1,Mk−1 be fulfilled. Then the estimates
on Qk, hk, ek,Mk stated in lemma 3.1.7 still hold.
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Proof. In the proof of this lemma, there are two points to be adapted:

� In the application of theorem A.1.1, we set for j = 1, 2

ai(t, x) = ςe(1− 2ek)∂xi
f (j)(hk,Mk−1),

a(t, x) = −(1− ek)
(
−ςe∆f (j)(hk,Mk−1) +Ge(hk,Mk)

)
,

and the assumptions of the theorem are still fulfilled. Hence, we find
0 ≤ ek ≤ 1.

� For the bound on ∥∇ek∥L2(0,T ;L2(Ω)), we estimate in the same way as was
done in the proof of 3.1.7, leading to

∥∇ek∥2L2(0,T ;L2(Ω)) ≤
(
De −

ϵ

2
ςe

)−1
(
1

2
∥e0∥2L2(Ω)

+ςe
1

2ϵ
∥∇f (i)(hk,Mk−1)∥2L2(0,T ;L2(Ω)) + T |Ω|µe

)
.

Hence, by

∥f (1)(hk,Mk−1)∥L2(0,T ;L2(Ω)) = ∥∇Mk−1∥L2(0,T ;L2(Ω)) ≤ cM (T ),

∥f (2)(hk,Mk−1)∥L2(0,T ;L2(Ω)) = ∥∇(hkMk−1)∥L2(0,T ;L2(Ω))

≤ ∥hk∇Mk−1∥L2(0,T ;L2(Ω))

+ ∥Mk−1∇hk∥L2(0,T ;L2(Ω))

≤ ∥∇Mk−1∥L2(0,T ;L2(Ω))

+ ∥∇hk∥L2(0,T ;L2(Ω))

≤ cM (T ) + T
1
2 |Ω| 14 ch(T )

we can find a bound ce(T ) for ∥∇ek∥2L2(0,T ;L2(Ω)) analogously to the proof
of lemma 3.1.7.

Also lemma 3.1.8 can be maintained almost unchanged:

Lemma 3.2.3. Let M0, h0, e0 ∈W 1,4(Ω), Q
(k)
0 ∈ C∞(Ω̄) with

0 ≤M0, h0, e0, Q
(k)
0 ≤ 1.

Let further (Qk−1, hk−1, ek−1,Mk−1) ∈ (C∞((0,∞)×Ω̄)∩C([0,∞)×Ω̄))4 fulfill
the bounds from lemma 3.2.2. Then system (3.6)-(3.9) with (3.6c) and (3.8c)
replaced by (3.36) and (3.37), respectively, has a unique global solution
(Qk, hk, ek,Mk) ∈ (C∞((0,∞) × Ω̄) ∩ C([0,∞) × Ω̄)4, which fulfills again the
bounds from lemma 3.2.2.

Proof. To adapt the proof to the new system, we change the definitions of the
following system coefficients, where we have to distinguish between f (1) and
f (2):

� f (1)(Mk−1) = Mk−1:

a21ii = 0 and a22i = −ςe(∇xu
k−1
3 )(1− uk

2),
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� f (2)(hk,Mk−1) = hkMk−1:

a21ii = −ςeuk
2(1− uk

2)u
k−1
3 and a22i = −ςe(∇xu

k−1
3 )(1− uk

2)u
k
1 .

With these coefficients, theorems A.1.2, A.1.3, A.1.4 and A.1.5 can be applied
in the same way as in section 3.1.3, so lemma 3.1.8 still holds true.

Hence, we find an iterative sequence (Qk, hk, ek,Mk)k with Qk, hk, ek,Mk ∈
C∞((0,∞) × Ω̄) ∩ C([0,∞) × Ω̄) of global solutions to system (3.6)-(3.9) with
(3.6c) and (3.8c) replaced by (3.36) and (3.37).
Next, in lemma 3.1.10 it was shown that the sequence of solutions converges.
The statement for the adapted system is formulated analogously:

Lemma 3.2.4. Let (Qk, hk, ek,Mk)k be the sequence of global solutions to sys-
tem (3.6)-(3.9), where (3.6c) and (3.8c) are replaced by (3.36) and (3.37), re-
spectively, constructed above. Then there exist

M,h, e,Q : R+
0 × Ω̄→ [0, 1]

such that for all T > 0 it holds

M, e ∈ L2(0, T ;W 1,2(Ω)), h,Q ∈ L∞(0, T ;W 1,2(Ω))

and there exists a subsequence (Qkn
, hkn

, ekn
,Mkn

)n such that

Mkn →M in L2(0, T ;L2(Ω)), hkn → h in L∞(0, T ;L2(Ω)),

ekn
→ e in L2(0, T ;L2(Ω)), Qkn

→ Q in L∞(0, T ;L2(Ω))

and

Mkn
⇀ M in L2(0, T ;W 1,2(Ω)), ekn

⇀ e in L2(0, T ;W 1,2(Ω)),

hkn
⇀ h in L2(0, T ;W 1,2(Ω)), hkn

∗
⇀ h in L∞(0, T ;W 1,2(Ω)),

Qkn
⇀ Q in L2(0, T ;W 1,2(Ω)), Qkn

∗
⇀ Q in L∞(0, T ;W 1,2(Ω)).

Proof. The difference in the proof of this lemma between the original system
and the varied system considered here lies in the estimate of the taxis term. For
the varied system, we have to find a bound on

ςe∥∇f (i)(hk,Mk−1)∥L2(0,T ;L2(Ω))∥∇ϕ∥L2(0,T ;L2(Ω))

instead of

ςe∥∇hk∥L2(0,T ;L2(Ω))∥∇ϕ∥L2(0,T ;L2(Ω)).

Due to the boundedness of ∥∇hk∥L2(0,T ;L2(Ω)), ∥∇Mk−1∥L2(0,T ;L2(Ω)) and 0 ≤
hk,Mk−1 ≤ 1, we easily find boundedness by C∥ϕ∥L2(0,T ;W 1,2(Ω)).

Finally, there remains to adapt the proof of theorem 3.1.11, where we have
to show that the limits from lemma 3.2.4 are indeed a weak solution to the given
system.

Theorem 3.2.5. The limit functions M,h, e,Q constructed in the proof of
lemma 3.2.4 are a global weak solution in the sense of definition 3.1.5, where
(3.5c) is replaced by (3.35).
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3.2. ADAPTATION TO THE MODEL VARIATIONS

Proof. � For f (1)(hk,Mk−1) = Mk−1 the proof works completely analo-
gously to the proof for the original system, replacing in the argumentation
followed by equation (3.26) ∇hk ⇀ ∇h in L2(0, T ;L2(Ω)) by ∇Mk−1 ⇀
∇M in L2(0, T ;L2(Ω)).

� For f (2)(hk,Mk−1) = hkMk−1, we have to prove∣∣∣∣∣
∫ T

0

∫
Ω

(e(1− e)∇(hM)− ek(1− ek)∇(hkMk−1))∇ϕdxdt

∣∣∣∣∣→ 0.

We find∣∣∣∣∣
∫ T

0

∫
Ω

(e(1− e)∇(hM)− ek(1− ek)∇(hkMk−1))∇ϕdxdt

∣∣∣∣
≤

∣∣∣∣∣
∫ T

0

∫
Ω

(e(1− e)h∇M − ek(1− ek)hk∇Mk−1)∇ϕdxdt

∣∣∣∣∣︸ ︷︷ ︸
(A)

+

∣∣∣∣∣
∫ T

0

∫
Ω

(e(1− e)M∇h− ek(1− ek)Mk−1∇hk)∇ϕ dx dt

∣∣∣∣∣︸ ︷︷ ︸
(B)

.

We estimate the first term:

(A) ≤

∣∣∣∣∣
∫ T

0

∫
Ω

(e(1− e)h− ek(1− ek)hk)∇Mk−1∇ϕ dxdt

∣∣∣∣∣
+

∣∣∣∣∣
∫ T

0

∫
Ω

(e(1− e)h(∇M −∇Mk−1)∇ϕdxdt

∣∣∣∣∣
≤∥e(1− e)h− ek(1− ek)hk∥L2(0,T ;L2(Ω))︸ ︷︷ ︸

→0by corollary 3.1.12

· ∥∇Mk−1∥L2(0,T ;L2(Ω))︸ ︷︷ ︸
≤cM (T )

∥∇ϕ∥C([0,T ]×Ω̄)

+

∣∣∣∣∣∣∣
∫ T

0

∫
Ω

∇ϕe(1− e)h︸ ︷︷ ︸
∈L2(0,T ;L2(Ω))

(∇M −∇Mk−1)︸ ︷︷ ︸
⇀0 in L2(0,T ;L2(Ω))

 dxdt

∣∣∣∣∣∣∣
→ 0.

Analogously, we find (B)→ 0.

Hence, for the varied system in this subsection, there exists a global weak
solution in the sense of definition 3.1.5, where (3.5c) is replaced by (3.35), which
proves theorem 3.2.1.
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3.2.2 Remarks about the analysis for the go-or-grow model

We do not show existence of a solution to the go-or-grow model 2.3. The
adaptation of the proof from section 3.1 to model 2.3 comes up with several
difficulties, beneath others the choice of a suitable decoupling such that bounds
on Mk and Pk can be found, and the problem to extract a bound on ∇Pk

from equation (2.63b), which does not contain diffusion but transport terms via
|g(h,Q,M,P, y∗)|2.
Still, we want to point out that a positive solution - if it exists and is sufficiently
smooth - fulfills the biologically relevant bound C = M + P ≤ 1, meaning that
the carrying capacity KC introduced in subsection 2.3.1 is indeed the maximum
density of tumor cells. To this aim, we assume that the initial condition for C
fulfills 0 ≤ C0(x) < 1. Adding (2.63a) and (2.63b), we find

∂tC +∇ · (g(h,Q,M,P, y∗)M) = GP (h, y
∗)(1− C)P,

g(h,Q,M,P, y∗) =
a1

a2smax
(1− C)DW b(h,Q,M,P, y∗),

b(h,Q,M,P, y∗) = (1− ρ1 − ρ2)
−∇h√
1 + |∇h|2

+ ρ1(1− y∗)
∇Q√

1 + |∇Q|2

+ ρ2
−∇C√
1 + |∇C|2

.

With u = 1− C, we obtain

∂tu−∇ ·
(
(aij)

N
i,j=1∇u

)
−∇ ·

(
(ãi)

N
i=1u

)
+ a0u = 0,

where

aij =
a1ρ2

a2smax

M√
1 + |∇C|2

u(DW )ij ,

ãi =
a1

a2smax
M

(
DW

(
(1− ρ1 − ρ2)

−∇h√
1 + |∇h|2

+ ρ1(1− y∗)
∇Q√

1 + |∇Q|2

))
i

,

a0 = GP (h, y
∗)P =

y∗(1− y∗)

1 + h
P, y∗ =

κQ

1 + κQ
.

Let D0 =
(
− 1

2 ,
3
2

)
. Then we find that D =

(
0, 3

2

)
is nonempty and it holds

tη ∈ D0 for all η ∈ D, t ∈ [0, 1]. Further, due to the supposed nonnegativity of h
and Q we find that all coefficients are sufficiently smooth. Hence, by application
of theorem A.1.6 we find that for u(0, x) = 1 − C0(x) > 0 it holds u ≥ 0, i.e.
C ≤ 1.

3.2.3 Analysis of the basic model with therapy by gliadel
wafers

In this subsection, we prove existence of a global weak solution to a simplified
version of model 2.4, where we drop again the diffusion limitation for M . We
further make a technical simplification, replacing the diffusion tensor in the
equation for carmustine by a scalar diffusion constant. The considered system
is then given by
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Model 3.2: Therapy by gliadel wafers, simplified

∂tQ = µQQ(1−Q)− δQ
h

1 + h
Q− δQC

C

1 + C
Q, (3.38a)

∂th = Dh∆h+ µh(1− h)
M

1 +M
− δhhe, (3.38b)

∂te = De∆e− ςe∇ · (e(1− e)∇h) +Ge(h,M)e(1− e), (3.38c)

∂tC = DC∆C − (kbbbe+ kd)C +
2a

5
Ctotal(x)Ce−a

∫ t
0
C(s,x) ds, (3.38d)

∂tM +∇ · (g(h,Q,M, y∗)M)

= GM (h, s∗, y∗)(1−M)M − δM (s∗)
C

1 + C
M(1−M)

(3.38e)

in R+ × Ω (in R+ × Ω̄ for equation (3.38a)), where

g(h,Q,M, y∗) =
a1

a2smax
(1−M)DW b(h,Q,M, y∗), (3.39a)

b(h,Q,M, y∗) = (1− ρ1)
−∇h√
1 + |∇h|2

+ ρ1(1− y∗)
∇Q√

1 + |∇Q|2

− ρ2∇M,

(3.39b)

GM (h, s∗, y∗) =
(1− s∗)(y∗ − (y∗)2)

1 + h
, (3.39c)

Ge(h,M) = µe
hM

1 + hM
, (3.39d)

δM (s∗) = σ(1− s∗), (3.39e)

s∗ =

∣∣∣∣∣ a1
a2smax

(1−M)DW

(
(1− ρ1)

−∇h√
1 + |∇h|2

+ρ1(1− y∗)
∇Q√

1 + |∇Q|2

)∣∣∣∣∣ ,
(3.39f)

y∗ =
κQ

1 + κQ
, (3.39g)

with zero flux boundary conditions

Mg(h,Q,M, y∗) · ν = 0 on ∂Ω, t > 0, (3.40a)

Dh∇h · ν = 0 on ∂Ω, t > 0, (3.40b)

(De∇e− ςee(1− e)∇h) · ν = 0 on ∂Ω, t > 0, (3.40c)

DC∇C · ν = 0 on ∂Ω, t > 0 (3.40d)
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and initial data

Q(0, x) = Q0(x) ∈ C1(Ω̄) ∩W 2,2(Ω), h(0, x) = h0(x) ∈W 1,4(Ω),

e(0, x) = e0(x) ∈W 1,4(Ω), M(0, x) = M0(x) ∈W 1,4(Ω),

C(0, x) = C0(x) ∈W 1,4(Ω),

(3.41)

withQ0(x), h0(x), e0(x),M0(x) ∈ [0, 1], C0(x) ∈ [0, H], H := max
x∈Ω̄

Ctotal(x),

for all x ∈ Ω, and ∇Q0(x) · ν = 0 for all x ∈ ∂Ω, where Ω is a sufficiently
smooth bounded domain of RN with N ≤ 3.

Remark 3.2.6. In simulations later on, the initial data describe the situation di-
rectly after surgery. Hence, initial data as well as the water diffusion tensor DW

are supposed to differ from those in the foregoing models. For the subsequent
analysis, however, we will assume a certain regularity of coefficients and initial
data. This assumption can be justified by the idea, that in practice a surgical
cut is not arbitrarily sharp, so we expect some smoothening effect on the cell
densities at the border of the cavity. (In practice, of course, all cell densities
have to be discrete at a very close look, no matter what the initial situation
is.) We further suppose that the same holds true for the water diffusion tensor,
which is in the following supposed to be sufficiently smooth.

We aim to show that there exists a global weak solution in the following sense:

Definition 3.2.7. We call

(Q, h, e, C,M) : R+
0 × Ω̄→ [0, 1]3 × [0, H]× [0, 1]

a global weak solution to system (3.38)-(3.41), if for all T ∈ (0,∞) it holds

Q, h,C ∈ L∞(0, T ;W 1,2(Ω)), e,M ∈ L∞([0, T )× Ω) ∩ L2(0, T ;W 1,2(Ω))
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and

−
∫ T

0

∫
Ω

ϕt Qdxdt−
∫
Ω

ϕ(0, ·)Q0 dx

=

∫ T

0

∫
Ω

ϕ

(
µQQ(1−Q)− δQ

h

1 + h
Q− δQC

C

1 + C
Q

)
dxdt,

(3.42a)

−
∫ T

0

∫
Ω

ϕt hdxdt−
∫
Ω

ϕ(0, ·)h0 dx

= −
∫ T

0

∫
Ω

Dh∇ϕ · ∇hdxdt

+

∫ T

0

∫
Ω

ϕ

(
µh(1− h)

M

1 +M
− δhhe

)
dx dt,

(3.42b)

−
∫ T

0

∫
Ω

ϕt e dx dt−
∫
Ω

ϕ(0, ·) e0 dx

= −
∫ T

0

∫
Ω

De∇ϕ · ∇edxdt+
∫ T

0

∫
Ω

ςee(1− e)∇ϕ · ∇hdxdt

+

∫ T

0

∫
Ω

ϕµe
hM

1 + hM
e(1− e) dx dt,

(3.42c)

−
∫ T

0

∫
Ω

ϕt C dxdt−
∫
Ω

ϕ(0, ·)C0 dx

= −
∫ T

0

∫
Ω

DC∇ϕ · ∇C dxdt

+

∫ T

0

∫
Ω

ϕ

(
2a

5
Ctotal(x)Ce−a

∫ t
0
C(s,x) ds − (kbbbe+ kd)C

)
dxdt,

(3.42d)

−
∫ T

0

∫
Ω

ϕt M dxdt−
∫
Ω

ϕ(0, ·)M0 dx

=

∫ T

0

∫
Ω

M∇ϕ · g(y∗) dx dt

+

∫ T

0

∫
Ω

ϕGM (h, s∗)M(1−M)− δM (s∗)
C

1 + C
M(1−M) dxdt,

(3.42e)

for all ϕ ∈ C∞
0 ([0, T )× Ω).

Remark 3.2.8. On DW (x) we make the same assumptions as in section 3.1, i.e.
DW (x) is positive definite for all x ∈ Ω̄ and sufficiently smooth.
Further, we assume kd ≥ 2a

5 H.

Theorem 3.2.9. There exists a global weak solution to model 3.2 in the sense
of definition 3.2.7.

Again, we follow the proof presented in section 3.1 and constrain on present-
ing the differences. As before, we start by regularizing and decoupling system
(3.38) iteratively. The a priori estimates of lemma 3.1.7 are adjusted to the
new system and complemented by estimates on Ck. The proof of the existence
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of a unique solution to the decoupled system is adapted. Finally, the proof of
convergence of the sequences of the solutions components to a weak solution of
the original system is adapted/complemented.

Proof of theorem 3.2.9. Choosing (Q
(k)
0 )k and (ϵk)k as in section 3.1, we define

the decoupling as follows:

∂tQk = µQQk(1−Qk)− δQ
hk−1

1 + hk−1
Qk − δQC

Ck−1

1 + Ck−1
Qk, (3.43a)

∂thk = Dh∆hk + µh(1− hk)
Mk

1 +Mk
− δhhkek, (3.43b)

∂tek = De∆ek − ςe∇ · (ek(1− ek)∇hk) +Ge(hk,Mk)ek(1− ek), (3.43c)

∂tCk = DC∆Ck − (kbbbek + kd)Ck +
2a

5
Ctotal(x)Cke

−a
∫ t
0
Ck−1 ds, (3.43d)

∂tMk +∇ · (gkMk)− ϵk∆Mk

= GM (hk−1, s
∗
k, y

∗
k)Mk(1−Mk)− δM (s∗k)

Ck−1

1 + Ck−1
Mk(1−Mk),

(3.43e)

in R+ × Ω (in R+ × Ω̄ for equation (3.43a)), where

gk =
a1

a2smax
(1−Mk)DW bk, (3.44a)

bk = (1− ρ1)
−∇hk−1√
1 + |∇hk−1|2

+ ρ1(1− y∗k)
∇Qk√

1 + |∇Qk|2
− ρ2∇Mk, (3.44b)

y∗k =
κQk

κQk + 1
, (3.44c)

s∗k =

∣∣∣∣∣ a1
a2smax

Mk(1−Mk)DW

(
(1− ρ1)

−∇hk−1√
1 + |∇hk−1|2

+ρ1(1− y∗k)
∇Qk√

1 + |∇Qk|2

)∣∣∣∣∣
(3.44d)

with corresponding boundary conditions

(Mkgk − ϵk∇Mk) · ν = 0 on ∂Ω, t > 0, (3.45a)

Dh∇hk · ν = 0 on ∂Ω, t > 0, (3.45b)

(De∇ek − ςeek(1− ek)∇hk) · ν = 0 on ∂Ω, t > 0, (3.45c)

DC∇Ck · ν = 0 on ∂Ω, t > 0, (3.45d)

and fulfilling the initial data in (3.41) (forQk(0, x) we consider the approximated

initial data Q
(k)
0 (x)):

Qk(0, x) = Q
(k)
0 (x) ∈ C∞(Ω̄), hk(0, x) = h0(x) ∈W 1,4(Ω),

ek(0, x) = e0(x) ∈W 1,4(Ω), Mk(0, x) = M0(x) ∈W 1,4(Ω),

Ck(0, x) = C0(x) ∈W 1,4(Ω),

(3.46)
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with Q
(k)
0 (x), h0(x), e0(x),M0(x) ∈ [0, 1], C0(x) ∈ [0, H] for all x ∈ Ω, and

∇Q(k)
0 (x) · ν = 0 for all x ∈ ∂Ω.

For the proof of existence, we first have to find a priori estimates. We expand
lemma 3.1.7:

Lemma 3.2.10. Let T > 0 and (Qk−1, hk−1, ek−1, Ck−1,Mk−1) ∈ (C∞((0, T )×
Ω̄)∩C([0, T )× Ω̄))5 and let (Qk, hk, ek, Ck,Mk) ∈ (C∞((0, T )× Ω̄)∩C([0, T )×
Ω̄))5 be a corresponding solution to system (3.43)-(3.46). Then there exist con-
stants cQ(T ), ch(T ), ce(T ), cC(T ), cM (T ), cQQ(T ), chh(T ), cCC(T ), depending on
time and initial data only, such that the following implication holds:
If Qk−1, hk−1, ek−1, Ck−1,Mk−1 fulfill

0 ≤ Qk−1, hk−1, ek−1,Mk−1 ≤ 1, 0 ≤ Ck−1 ≤ H,

∥∇Qk−1∥L∞((0,T );L4(Ω)) ≤ cQ(T ), ∥∇hk−1∥L∞((0,T );L4(Ω)) ≤ ch(T ),

∥∇ek−1∥L2((0,T );L2(Ω)) ≤ ce(T ), ∥∇Ck−1∥L∞(0,T ;L4(Ω)) ≤ CC(T ),

∥∇Mk−1∥L2((0,T );L2(Ω)) ≤ cM (T ), ∥∆Qk−1∥L∞((0,T );L2(Ω)) ≤ cQQ(T ),

∥∆hk−1∥L2((0,T );L2(Ω)) ≤ chh(T ), ∥∆Ck−1∥L2((0,T );L2(Ω)) ≤ cCC(T ),

then it holds

0 ≤ Qk, hk, ek,Mk ≤ 1, 0 ≤ Ck ≤ H,

∥∇Qk∥L∞((0,T );L4(Ω)) ≤ cQ(T ), ∥∇hk∥L∞((0,T );L4(Ω)) ≤ ch(T ),

∥∇ek∥L2((0,T );L2(Ω)) ≤ ce(T ), ∥∇Ck∥L∞(0,T ;L4(Ω)) ≤ CC(T ),

∥∇Mk∥L2((0,T );L2(Ω)) ≤ cM (T ), ∥∆Qk∥L∞((0,T );L2(Ω)) ≤ cQQ(T ),

∥∆hk∥L2((0,T );L2(Ω)) ≤ chh(T ), ∥∆Ck∥L2((0,T );L2(Ω)) ≤ cCC(T ).

Proof. The proof of the bounds on hk and ek and their derivatives remains
unchanged. The proof of the bounds on Qk and its derivatives works completely
analogously to the proof of lemma 3.1.7, since the loss term by carmustine is
identical to that by acidity. The bound on Mk can be computed similarly as we
did in the proof of lemma 3.1.7: Theorem A.1.6 is still applicable, so we find
0 ≤Mk ≤ 1.
For the boundedness of Ck, we apply theorem A.1.1: In the notations of the
theorem, replacing a by ã to avoid confusion, we have

aij = DCIij , aj = 0, ã = (kbbbek + kd)−
2a

5
Ctotal(x)e

−a
∫ t
0
Ck−1(s,x) ds,

and Ck(t, x) ≥ 0 follows directly from Ck(0, x) ≥ 0. To obtain Ck(t, x) ≤ H, we
set u = H − Ck and find the equation

∂tu−DC∆u+ ãu = ãH ≥ 0

due to the assumption kd ≥ 2a
5 H = 2a

5 max
x∈Ω̄

Ctotal(x) in remark 3.2.8. Hence, we

can conclude u ≥ 0, i.e. Ck(t, x) ≤ H.

Next, we aim to find a bound on ∇Ck. Interpreting

fk(t, x) = −(kbbbek + kd)Ck +
2a

5
Ctotal(x)Cke

−a
∫ t
0
Ck−1(s,x) ds
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as a function of t and x rather than a function of ek and Ck, we use again the
Neumann heat semigroup to find

Ck(t, x) = etDC∆C0(x) +

∫ t

0

e(t−s)DC∆fk(s, x) ds.

By boundedness of fk and theorem A.1.10, we conclude

∥∇Ck(t, ·)∥L4(Ω) ≤ ∥∇
(
etDC∆C0(·)

)
∥L4(Ω)

+

∫ t

0

∥∇
(
e(t−s)DC∆fk(s, ·)

)
∥L4(Ω) ds

≤ c1e
−λ1DCt∥∇C0∥L4(Ω)

+ c2

∫ t

0

(1 + ((t− s)DC)
− 1

2 )e−λ1(t−s)DC∥fk(s, ·)∥L4(Ω) ds

≤ c1∥∇C0∥L4(Ω) + c3

∫ t

0

(1 + ((t− s)DC)
− 1

2 )e−λ1(t−s)DC ds

≤ c1∥∇C0∥L4(Ω) + c4(T )

=: cC(T ),

where λ1 > 0 denotes the first nonzero eigenvalue of −∆ under Neumann bound-
ary conditions. Hence, ∥∇Ck∥L∞(0,T ;L4(Ω)) ≤ cC(T ).
The proof of the bound on ∇Mk works analogously to its proof in lemma 3.1.7:
In equation (3.10), we have to add on the right hand side the term

−σ
∫ T−γ

γ

∫
Ωt

δ

fδ(Mk)(1− s∗k)
Ck−1

1 + Ck−1
Mk(1−Mk) dxdt

− σ

∫ T−γ

γ

∫
Ω\Ωt

δ

fδ(Mk)(1− s∗k)
Ck−1

1 + Ck−1
Mk(1−Mk) dxdt.

Now we have to derive the limit of these additional terms for δ → 0. With the
same argumentation as in the proof of 3.1.7, we find

lim
δ→0

∫ T−γ

γ

∫
Ωt

δ

fδ(Mk)(1− s∗k)
Ck−1

1 + Ck−1
Mk(1−Mk) dxdt

=

∫ T−γ

γ

∫
Ωt

0

f0(Mk)(1− s∗k)
Ck−1

1 + Ck−1
Mk(1−Mk) dxdt.

For the other term, we estimate∣∣∣∣∣ limδ→0

∫ T−γ

γ

∫
Ω\Ωt

δ

fδ(Mk)(1− s∗k)
Ck−1

1 + Ck−1
Mk(1−Mk) dxdt

∣∣∣∣∣
≤ lim

δ→0

∫ T−γ

γ

∫
Ω\Ωt

δ

|fδ(Mk)Mk(1−Mk)| dxdt

= lim
δ→0

∫ T−γ

γ

∫
Ω\Ωt

0

|fδ(Mk)Mk(1−Mk)| dxdt

+ lim
δ→0

∫ T−γ

γ

∫
Ωt

0\Ωt
δ

|fδ(Mk)Mk(1−Mk)| dxdt,
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which was already proven to be zero in the proof of 3.1.7. Hence, we find

lim
δ→0

∫ T−γ

γ

∫
Ω\Ωt

δ

fδ(Mk)(1− s∗k)
Ck−1

1 + Ck−1
Mk(1−Mk) dxdt = 0.

For γ → 0, we obtain the following limit inequality:∫
Ω

F0(Mk(·, T )) dx−
∫
Ω

F0(Mk(·, 0)) dx−
a1

a2smax

∫ T

0

∫
Ωt

0

∇MkDW bk dx dt

≤
∫ T

0

∫
Ωt

0

f0(Mk)GM (hk−1, s
∗
k, y

∗
k)Mk(1−Mk) dx dt

− σ

∫ T

0

∫
Ωt

0

f0(Mk)(1− s∗k)
Ck−1

1 + Ck−1
Mk(1−Mk) dxdt.

As was done in (3.11), we estimate the right hand side of the limit equation,
now obtaining(∫ T

0

∫
Ωt

0

f0(Mk)GM (hk−1, s
∗
k, y

∗
k)Mk(1−Mk) dx dt−

∫
Ω

F0(Mk(·, T )) dx

+

∫
Ω

F0(Mk(·, 0)) dx
)
− σ

∫ T

0

∫
Ωt

0

f0(Mk)(1− s∗k)
Ck−1

1 + Ck−1
Mk(1−Mk) dxdt

≤ c(T ).

Proceeding then as in the original proof, we obtain

∥∇Mk∥L2(0,T ;L2(Ω)) ≤ cM (T ).

Finally, we need to show the boundedness of ∥∆Ck∥L2(Ω). To this aim, we
multiply equation (3.43d) by ∆C and integrate with respect to t and x. Using
partial integration, we find

DC∥∆Ck∥2L2(0,T ;L2(Ω))

= −1

2
∥∇Ck(T, ·)∥2L2(Ω) +

1

2
∥∇Ck(0, ·)∥2L2(Ω)

−
∫ T

0

∫
Ω

∇Ck · ∇((kbbbek + kd)Ck) dxdt︸ ︷︷ ︸
A

+

∫ T

0

∫
Ω

∇Ck · ∇
(
2a

5
Ctotal(x)Cke

−a
∫ t
0
Ck−1(s,·) ds

)
dx dt︸ ︷︷ ︸

B

.

We estimate the third and fourth term on the right hand side:

(A) =

∫ T

0

∫
Ω

∇Ck · ∇((kbbbek + kd)Ck) dxdt

≤
∫ T

0

∫
Ω

|∇Ck|2(kbbbek + kd) dxdt+

∫ T

0

∫
Ω

kbbbCk∇Ck · ∇ek dxdt

≤ c∥∇Ck∥2L2(0,T ;L2(Ω)) + c∥∇Ck∥L2(0,T ;L2(Ω))∥∇ek∥L2(0,T ;L2(Ω)),

≤ c(T )
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and

(B) =

∫ T

0

∫
Ω

∇Ck · ∇
(
2a

5
Ctotal(x)Cke

−a
∫ t
0
Ck−1(s,·) ds

)
dxdt

≤ 2a

5

∫ T

0

∫
Ω

|∇Ck|2Ctotal(x)e
−a

∫ t
0
Ck−1(s,·) ds dxdt

+
2a

5

∫ T

0

∫
Ω

∇Ck · ∇Ctotal(x)Cke
−a

∫ t
0
Ck−1(s,·) ds dxdt

− 2a2

5

∫ T

0

∫
Ω

Ctotal(x)Ck∇Ck ·
∫ t

0

∇Ck−1(s, ·) ds e−a
∫ t
0
Ck−1(s,·) ds dxdt

≤ c∥∇Ck∥2L2(0,T ;L2(Ω)) + c∥∇Ck∥L2(0,T ;L2(Ω))∥∇Ctotal∥L2(0,T ;L2(Ω))

+ c∥∇Ck∥L2(0,T ;L2(Ω))∥T sup
t∈(0,T )

|∇Ck−1(t, ·)|∥L2(0,T ;L2(Ω))

≤ c+ c∥∇Ck∥L2(0,T ;L2(Ω))T
3
2 ∥∇Ck−1∥L∞(0,T ;L2(Ω))

≤ c(T ).

Hence, we find

∥∆Ck∥L2(0,T ;L2(Ω)) ≤ cCC(T ).

Next, we have to adapt lemma 3.1.8:

Lemma 3.2.11. Let M0, h0, e0, C0 ∈W 1,4(Ω), Q
(k)
0 ∈ C∞(Ω̄) with

0 ≤M0, h0, e0, Q
(k)
0 ≤ 1, 0 ≤ C0 ≤ H.

Let further (Qk−1, hk−1, ek−1, Ck−1,Mk−1) ∈ (C∞((0,∞)×Ω̄)∩C([0,∞)×Ω̄))5
fulfill the bounds from lemma 3.2.10. Then system (3.43)-(3.46) has a unique
global solution (Qk, hk, ek, Ck,Mk) ∈ (C∞((0,∞)× Ω̄)∩C([0,∞)× Ω̄))5, which
fulfills again the bounds from lemma 3.2.10.

Proof. Again, global existence of Qk is obtained from equation (3.43a) by ap-
plying standard theory for ODEs, using the boundedness of Qk. The postulated
smoothness properties can be deduced from remark A.1.9.
Now consider system (3.43b)-(3.43e). Using the notations of theorem A.1.2 with

uk =


hk

ek
Ck

Mk

, the system coefficients are as follows:
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� From equation (3.43b)

a11ii = Dh for i = 1, ..., N,

a11ij = 0 for i ̸= j,

a12ij = a13ij = a14ij = 0 for i, j = 1, ..., N,

a1ri = b1ri = 0 for i = 1, ..., N, r = 1, 2, 3, 4,

a120 = a130 = a140 = 0,

a110 = δhu
k
2 ,

f1 = µh(1− uk
1)

uk
4

1 + uk
4

.

� From equation (3.43c)

a22ii = De for i = 1, ..., N,

a22ij = 0 for i ̸= j,

a21ii = −ςeuk
2(1− uk

2) for i = 1, ..., N,

a21ij = 0 for i ̸= j,

a23ij = a24ij = 0 for i, j = 1, ..., N,

a2ri = b2ri = 0 for i = 1, ..., N, r = 1, 2, 3, 4,

a210 = a230 = a240 = 0,

a220 = −µe
uk
1u

k
4

1 + uk
1u

k
4

(1− uk
2),

f2 = 0.

� From equation (3.43d)

a33ii = DC for i = 1, ..., N,

a33ij = 0 for i ̸= j,

a31ij = a32ij = a34ij = 0 for i, j = 1, ..., N,

a3ri = b3ri = 0 for i = 1, ..., N, r = 1, 2, 3, 4

a310 = a320 = a340 = 0,

a330 = kbbbu
k
2 + kd,

f3 =
2a

5
Ctotal(x)u

k
3e

−a
∫ t
0
uk−1
3 ds.
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� From equation (3.43e)

a44ij =
a1ρ2

a2smax
uk
4(1− uk

4)(DW )ij + ϵkIij for i, j = 1, ..., N,

a41ij = a42ij = a43ij = 0 for i, j = 1, ..., N,

a41i = a42i = a43i = 0 for i = 1, ..., N,

b4ri = 0 for i = 1, ..., N, r = 1, 2, 3, 4,

a44i =
a1(1− ρ1)

a2smax

1− uk
4√

1 + ∥∇uk−1
1 ∥2

(DW∇uk−1
1 )i

− a1ρ1
a2smax

(1− y∗k)
1− uk

4√
1 + ∥∇Qk∥2

(DW∇Qk)i for i = 1, ..., N,

a410 = a420 = a430 = 0,

a440 = −y∗k(1− y∗k)
1− s∗k

1 + uk−1
1

(1− uk
4) + σ(1− s∗k)

uk−1
3

1 + uk−1
3

(1− uk
4),

f4 = 0.

We check the assumptions of theorem A.1.2:
Let D0 := (− 1

2 ,
3
2 )

2×(− 1
2 , H+1)×(− 1

2 ,
3
2 ). Then all coefficients of A and B are

C∞-smooth w.r.t. x, t and u. Further note, that the set D ⊂ D0 is nonempty:
For example consider

aij(0, 0, 0, 0) =


DhIij 0 0 0
0 DeIij 0 0
0 0 DCIij 0
0 0 0 ϵkIij

 ,

where due to the positivity of Dh, De, DC and ϵk we find that N∑
i,j=1

aklij (0, 0, 0, 0)ξiξj

4

k,l=1

is positive definite for all ξ ∈ RN\{0}. Hence, (0, 0, 0, 0) ∈ D. f is C∞-
smooth on ((R+

0 × Ω̄ × D0) × R4×N , R4), hence also on ((R+
0 × Ω̄ × D) ×

R4×N , R4). Furthermore, f is independent of the gradient of u. Choosing p = 4,
the condition N

p < 1 < (1+ 1
p )∧ (2−

N
p ) is fulfilled with N ≤ 3. Since it further

holds g = 0 and the initial data are all at least in W 1,4(Ω), by theorems A.1.2,
A.1.3 and A.1.4 there exists a unique solution uk ∈ C∞((0, t+) × Ω̄, R4) for
some t+ > 0. Due to the positivity of ϵk, there is some δ > 0 such that (a44ij )ij
is positive definite for uk

4 ∈ (−δ, 1 + δ), hence by 0 ≤ hk, ek,Mk ≤ 1 and
0 ≤ Ck ≤ H, uk is bounded away from ∂D. Then by theorem A.1.5 we find
t+ =∞.
The proclaimed bounds are given by lemma 3.2.10.

Now, we have to prove that the constructed sequence of solutions converges,
i.e.
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3.2. ADAPTATION TO THE MODEL VARIATIONS

Lemma 3.2.12. Let (Qk, hk, ek, Ck,Mk)k be the sequence of global solutions to
system (3.43)-(3.46) constructed above. Then there exist

M,h, e,Q : R+
0 × Ω̄→ [0, 1], C : R+

0 × Ω̄→ [0, H],

such that for all T > 0 it holds

M, e ∈ L2(0, T ;W 1,2(Ω)), h,Q,C ∈ L∞(0, T ;W 1,2(Ω)),

and there exists a subsequence (Qkn
, hkn

, ekn
, Ckn

,Mkn
)n such that

Mkn
→M in L2(0, T ;L2(Ω)), hkn

→ h in L∞(0, T ;L2(Ω)),

ekn
→ e in L2(0, T ;L2(Ω)), Qkn

→ Q in L∞(0, T ;L2(Ω)),

Ckn → C in L∞(0, T ;L2(Ω)),

and

Mkn ⇀ M in L2(0, T ;W 1,2(Ω)), ekn ⇀ e in L2(0, T ;W 1,2(Ω)),

hkn ⇀ h in L2(0, T ;W 1,2(Ω)), hkn

∗
⇀ h in L∞(0, T ;W 1,2(Ω)),

Qkn
⇀ Q in L2(0, T ;W 1,2(Ω)), Qkn

∗
⇀ Q in L∞(0, T ;W 1,2(Ω)),

Ckn
⇀ C in L2(0, T ;W 1,2(Ω)), Ckn

∗
⇀ C in L∞(0, T ;W 1,2(Ω)).

Proof. We adapt the proof of lemma 3.1.10. The adaptation of the proof
for (Mk)k and (Qk)k is straightforward. What is left to do, is the proof of

Ckn
→ C in L∞(0, T ;L2(Ω)), Ckn

⇀ C in L2(0, T ;W 1,2(Ω)), and Ckn

∗
⇀ C in

L∞(0, T ;W 1,2(Ω)).
To this aim, we choose X = W 1,2(Ω), B = L2(Ω) and Y = W−1,2(Ω). We have
to check the boundedness of (∂tCk)k in L2(0, T ;W−1,2(Ω)) = (L2(0, T ;W 1,2

0 (Ω)))∗

(the boundedness of (Ck)k in L∞(0, T ;W 1,2(Ω)) is given by the estimates above).
Let ϕ ∈ L2(0, T ;W 1,2

0 (Ω)). Multiplying (3.43d) by ϕ and integrating over Ω
yields∣∣∣∣∫

Ω

∂tCk · ϕdx

∣∣∣∣ ≤ ∣∣∣∣∫
Ω

DC∆Ckϕ dx

∣∣∣∣+ ∣∣∣∣∫
Ω

kC(ek)Ckϕ dx

∣∣∣∣
+

∣∣∣∣∫
Ω

2a

5
Ctotal(x)Cke

−a
∫ t
0
Ck−1 dsϕdx

∣∣∣∣
≤ DC

∫
Ω

|∇Ck||∇ϕ|dx+

∫
Ω

(kbbbek + kd)Ck|ϕ|dx

+
2a

5
H2

∫
Ω

|ϕ|dx

≤ DC∥∇Ck∥L2(Ω)∥∇ϕ∥L2(Ω) + (kbbb + kd)H|ϕ|L1(Ω)

+
2a

5
H2∥ϕ∥L1(Ω)

≤ C(T )∥ϕ∥W 1,2(Ω).

Hence, (∂tCk)k is bounded in L2(0, T ;W−1,2(Ω)) and by theorem A.1.11 we con-
clude the existence of a subsequence (Ckn

)n with Ckn
→ C in L∞(0, T ;L2(Ω)).

By boundedness of (Ckn)n in L∞(0, T ;W 1,2(Ω)), there exists a subsubsequence

(Cknl
)l with Cknl

⇀ C in L2(0, T ;W 1,2(Ω)) and Cknl

∗
⇀ C in L∞(0, T ;W 1,2(Ω)).
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Finally, it has to be proven that the constructed limit functions are indeed
a weak solution to the given problem.

Theorem 3.2.13. The limit functions M,h, e, C,Q constructed in the proof
of theorem 3.2.12 are a global weak solution to (3.38)-(3.41) in the sense of
definition 3.2.7.

Proof. The main part of the proof of theorem 3.1.11 remains unchanged. In
equation (3.31) we have to add the term

−
∫ T

0

∫
Ω

σ(1− s∗k)
Ck−1

1 + Ck−1
Mk(1−Mk)ϕdxdt

on the right hand side. By corollary 3.1.12 and lemma 3.1.13, we find

(1− s∗k)
Ck−1

1 + Ck−1
Mk(1−Mk)→ (1− s∗)

C

1 + C
M(1−M) inL2(0, T ;L2(Ω)),

hence ∫ T

0

∫
Ω

σ(1− s∗k)
Ck−1

1 + Ck−1
Mk(1−Mk)ϕdxdt

→
∫ T

0

∫
Ω

σ(1− s∗)
C

1 + C
M(1−M)ϕ dx dt.

Now consider equation (3.43d). It holds

−
∫ T

0

∫
Ω

ϕtCk dxdt−
∫
Ω

ϕ(0, ·)C0 dx

= −
∫ T

0

∫
Ω

DC∇ϕ · ∇Ck dxdt

+

∫ T

0

∫
Ω

ϕ

(
2a

5
Ctotal(x)Cke

−a
∫ t
0
Ck−1 ds − (kbbbek + kd)Ck

)
dx dt.

(3.47)

As we did for equation (3.16), we find∣∣∣∣∣
∫ T

0

∫
Ω

ϕt(C − Ck) dxdt

∣∣∣∣∣ ≤ c

∫ T

0

∫
Ω

|C − Ck|dxdt→ 0. (3.48)

It further holds ∫ T

0

∫
Ω

DC∇ϕ(∇C −∇Ck) dxdt→ 0, (3.49)

since ∇ϕ ∈ L2(0, T ;L2(Ω)) and (∇C −∇Ck) ⇀ 0 in L2(0, T ;L2(Ω)).
For the decay terms, we find∫ T

0

∫
Ω

ϕ (−(kbbbe+ kd)C + (kbbbek + kd)Ck) dxdt

= −
∫ T

0

∫
Ω

ϕkbbb(eC − ekCk) dxdt−
∫ T

0

∫
Ω

ϕkd(C − Ck) dx dt

→ 0,

(3.50)
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where we used the same argumentation as for equation (3.18).
Finally, we have to show that∫ T

0

∫
Ω

ϕ

(
2a

5
Ctotal(x)Ce−a

∫ t
0
C ds − 2a

5
Ctotal(x)Cke

−a
∫ t
0
Ck−1 ds

)
dx dt

converges to zero. Due to Ck → C in L∞(0, T ;L2(Ω)) and hence also in

L1(0, T ;L1(Ω)), it holds
∫ t

0
Ck ds→

∫ t

0
C ds in L∞(0, T ;L1(Ω)) :

sup
t∈(0,T )

∥∥∥∥∫ t

0

Ck(s, ·) ds −
∫ t

0

C(s, ·) ds
∥∥∥∥
L1(Ω)

≤ sup
t∈(0,T )

∫
Ω

∫ t

0

|Ck(s, x)− C(s, x)| dsdx

= ∥Ck − C∥L1(0,T ;L1(Ω))

→ 0.

Together with continuity and boundedness of Ctotal(x), it follows by corollary
3.1.12 (for simplicity, we drop the subindices for the subsequence as before)

2a

5
Ctotal(x)Cke

−a
∫ t
0
Ck−1 ds → 2a

5
Ctotal(x)Ce−a

∫ t
0
C ds in L2(0, T ;L2(Ω)),

which implies∫ T

0

∫
Ω

ϕ

(
2a

5
Ctotal(x)Ce−a

∫ t
0
C ds − 2a

5
Ctotal(x)Cke

−a
∫ t
0
Ck−1 ds

)
dx dt→ 0.

(3.51)

Combining (3.47)-(3.51), we obtain

−
∫ T

0

∫
Ω

ϕtC dxdt−
∫
Ω

ϕ(0, ·)C0 dx

= −
∫ T

0

∫
Ω

DC∇ϕ · ∇C dxdt

+

∫ T

0

∫
Ω

ϕ

(
2a

5
Ctotal(x)Ce−a

∫ t
0
C ds − (kbbbe+ kd)C

)
dxdt.

This proves the existence of a global weak solution as stated in theorem
3.2.9.

3.2.4 Analysis of the basic model with classical chemother-
apy

Making the same simplifications as before, i.e. dropping the flux saturation in
the diffusion term of M and replacing DW in the temzolomide-equation by a
scalar diffusion constant, the analysis for this modeling approach is a simpler
version of the analysis for the model of gliadel wafers. The only difference lies in
the source term s(t) in the description of temozolomide, which is here given by
a bounded C∞-function. Hence, we confine ourselves here to state the result:
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Theorem 3.2.14. There exists a global weak solution to the simplified version

of model 2.5 in the sense of definition 3.2.7, where now H := sup
t∈(0,∞)

s(t)
dC

, and

(3.42d) is replaced by

−
∫ T

0

∫
Ω

ϕt C dx dt−
∫
Ω

ϕ(0, ·)C0 dx

= −
∫ T

0

∫
Ω

DC∇ϕ · ∇C dxdt+

∫ T

0

∫
Ω

ϕ (s(t)e− dCC) dxdt

with

s(t) =

n∑
i=1

si(t), si(t) =

{
die

− σi
b2
i
−(ti−t)2 for |ti − t| < bi,

0 otherwise.

Remark 3.2.15. In the same way as we proved C ≤ H in the foregoing section,

we can show C ≤ sup
t∈(0,∞)

s(t)
dC

.

98



Chapter 4

Simulation results

In this section, the macroscopic evolution of a tumor according to the different
modeling approaches presented in chapter 2 is simulated.
The code for the models developed in sections 2.1 and 2.2 was implemented by
Niklas Kolbe and Nikolaos Sfakianakis [18]. Within the scope of this thesis,
some changes and extensions of the code were made in order to adapt it to the
models presented in sections 2.3 and 2.4.
The code by Kolbe and Sfakianakis is based on a second order finite volume
scheme, using the minimized-central slope limiter [74], and the implicit-explicit
midpoint scheme from [57] for time stepping [18]. For more details about the
code see [18]. All algorithms were originally implemented in MATLAB R2019b,
adaptation of the code and generation of the figures was done in MATLAB
R2021b.
We want to consider the following settings:

1. untreated glioblastoma

� according to model 2.1 with dominating haptotaxis

� according to model 2.1 with dominating pH-taxis

� according to model 2.1, but dropping the flux limiter in the diffusion
of M in (2.25a)

� according to model 2.1, but dropping all flux limiters in (2.25a)

� with endothelial cells following ∇M/∇(hM) according to model 2.2

� according to the go-or-grow model 2.3

2. glioblastoma according to model 2.1 treated by surgery

3. glioblastoma treated by surgery and gliadel wafers (model 2.4)

4. glioblastoma treated by surgery and classical chemotherapy (model 2.5)

� for standard dosing scheme applied by the University Medical Center
Munich

� for metronomic chemotherapy

� for the dosing scheme one-week-on-one-week-off
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Parameter value source
acid diffusion Dh 10−5 estimated1

endothelial cell diffusion De 10−6 [11]
acidotaxis of endothelial cells ζe 1 [11]
weight of haptotaxis in glioma migration ρ1 7.5× 10−1 estimated1

weight of diffusion in glioma migration ρ2 1.5× 10−2 estimated1

tissue proliferation µQ 3× 10−4 estimated1

acid production by glioma µh 10−3 [47]
endothelial cell proliferation µe 1 [54]
acid degradation of tissue δQ 5× 10−3 estimated1

acid uptake by endothelial cells δh 8× 10−3 estimated1

Table 4.1: Non-dimensionalized parameters

4.1 Evolution of glioblastoma without treatment

In the first section we want to consider the evolution of an untreated glioblas-
toma in different settings. For the macroscopic basic model 2.1, we study the
influence of the taxis terms by comparing simulations for dominating hapto-
taxis with simulations for dominating pH-taxis. In the setting of dominating
haptotaxis, we examine further variations of the basic model: Dropping the flux
limiter for the diffusion of M , we compare the differences between the simu-
lations of the basic model 2.1 and the simplified basic model 3.1 used in the
analysis section. Next, we drop all flux limitations (hence now also the limita-
tions in the taxis terms) for M in the basic model and compare the result with
the original basic model. Further, we examine the taxis term in the equation
for endothelial cells. Here, we compare the basic model containing pH-taxis of
endothelial cells with taxis along the gradients of M (hM , respectively) accord-
ing to model 2.2. Finally, we consider a splitting of the cancer population into
migrating and proliferating cells according to the go-or-grow dichotomy (model
2.3).
If not stated otherwise, the parameters used in this section are given by table
4.1. Simulations are made for t ∈ [0, 5]. For the chosen non-dimensionalization
of time, this corresponds to a time interval of approximately ten weeks. All
simulations are performed over the spatial domain Ω = [0, 1] × [0, 1.2155]. Ini-
tial data are chosen as follows: For the tumor, we choose a symmetric initial
distribution:

M0(x) =
1

2
e−

(x−0.3)2+(y−0.65)2

0.0008 .

Since it is not clear how initial data for h should be chosen according to the given
initial data of the tumor, we set h0 to be the pH-value present in average in a
healthy brain. Due to acid production by the tumor, pH-value is not supposed
to be constant in the initial situation. One could choose for example an initial
condition like h0(x) = a ·M0(x)+10−2.8 for some a > 0 as was done in [18]. The
effect on tumor evolution compared to a constant initial pH is small, though.
Hence, instead of guessing some pH-level fitting to the initial tumor, we choose

1Estimated in correspondence to [18].
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4.1. GLIOBLASTOMA WITHOUT TREATMENT

Figure 4.1: Cutout of the simulation domain

a constant level in order to see better how acidity production by the tumor
happens according to our developed models. Thus, we choose

h0(x) = 10−2.8 for x ∈ Ω. (4.1)

Choosing Kh = 10−4.6mol
l for non-dimensionalization, this corresponds to pH =

− log10(Kh · h0) = 7.4 in healthy brain tissue [44].
A realistic initial condition for endothelial cells is difficult to obtain. There are
several large arteries supplying the brain with nutrients and oxygen, which could
be modeled in the initial data. The exact position of single blood vessels around
the tumor, though, remains unclear. Since we have no such data available, we
simply choose three spots near the tumor with an accumulation of endothelial
cells, such that we can qualitatively examine the proclaimed spread of blood
vessels into the tumor. We choose

e0(x) = e−
(x−0.35)2+(y−0.65)2

0.00008 + e−
(x−0.25)2+(y−0.65)2

0.00008 + e−
(x−0.3)2+(y−0.6)2

0.00008 for x ∈ Ω.
(4.2)

Initial data for Q are given by equation (2.5).
The figures presented in this chapter show a cutout of the simulation domain
Ω, which is given by [0.0991, 0.5129]× [0.4095, 0.8233] (cf. figure 4.1).
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4.1.1 Experiment 1: The basic model 2.1 with dominant
haptotaxis

We consider model 2.1. Parameters are given in table 4.1. To see more details
in the evolution of tissue, for t = 1 and t = 5 the difference in tissue density to
the initial density at t = 0 is plotted.

In figure 4.2, the spread of the tumor according to the brain structure can
be seen. pH in the region of the tumor is significantly decreased. The pH level
in the inner part of the tumor coincides with the one known from literature [44].
As expected, the endothelial cells spread into direction of low pH, i.e. into the
tumor. For a realistic vascularization of the tumor we would need appropriate
initial data. Still, we can qualitatively observe the process of vascularization.
Tissue is degraded in the acidic regions. The tissue growth observed in the
simulation in regions of low density is due to the constantly chosen carrying
capacity. Here, a space dependent carrying capacity could give a more precise
prognosis of tissue development.

4.1.2 Experiment 2: The basic model 2.1 with dominant
pH-taxis

Again, we consider model 2.1. Except the parameter ρ1, which is here chosen
as ρ1 = 0.25, all parameters coincide with those from experiment 1, which are
given in table 4.1.

As can be seen in figure 4.3, the spread of cancer cells in experiment 2 proves
to be much more diffusive than observed in experiment 1. Due to the diffusive
behavior of the protons, a dominant pH-taxis in the description of cancer cells
leads to a more diffusive behavior of the tumor, i.e. a larger tumor volume with
reduced density. In the consequence, maximal pH decrease is smaller than in
experiment 1, while the region of decreased pH is larger. The same behavior
can be observed for the changes in tissue density. The behavior of endothelial
cells is similar to experiment 1.

4.1.3 Experiment 3: The simplified basic model 3.1

In this experiment, we consider model 3.1, used in the first section of the analysis
chapter. Remember, that model 3.1 coincides with the basic model 2.1 without
flux limitation in the diffusion term of M : Instead of (2.25b), we choose

b(h,Q,M, y∗) = (1− ρ1 − ρ2)
−∇h√
1 + |∇h|2

+ ρ1(1− y∗)
∇Q√

1 + |∇Q|2
− ρ2∇M,

and s∗ = |g(h,Q,M, y∗)| is adapted according to the new b(h,Q,M, y∗). The
parameters are given in table 4.1. In figure 4.4 we observe that compared with
experiment 1 the tumor is less compact, due to the stronger diffusion. As was
to be expected, in comparison with experiment 1 the structure of brain tissue
is less cognizable in the form of the glioma as here diffusion dominates hapto-
and chemotaxis. Again, we observe that as a consequence of the less compact
tumor, maximal pH decrease is smaller than in experiment 1, while the region of
decreased pH is larger. The effect observed here is stronger than in experiment
2. The same behavior is observed for tissue evolution. For the endothelial cells,
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4.1. GLIOBLASTOMA WITHOUT TREATMENT

Figure 4.2: Experiment 1: Basic model 2.1 with dominant haptotaxis. For
t = 1 and t = 5, instead of tissue density, the changes Q(t, x)−Q(0, x) in tissue
density are plotted.
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Figure 4.3: Experiment 2: Basic model 2.1 with dominant pH-taxis. For t = 1
and t = 5, instead of tissue density, the changes Q(t, x)−Q(0, x) in tissue density
are plotted.
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4.1. GLIOBLASTOMA WITHOUT TREATMENT

Figure 4.4: Experiment 3: Simplified basic model 3.1. For t = 1 and t = 5,
instead of tissue density, the changes Q(t, x) − Q(0, x) in tissue density are
plotted.

105



CHAPTER 4. SIMULATION RESULTS

we observe a slower spread than in experiment 1. This is caused by weaker
pH-taxis due to the more evenly distributed proton concentration.

4.1.4 Experiment 4: The basic model 2.1 with no flux
limitation

In this experiment, we consider another variation of the basic model 2.1. In
(2.25b) now all flux limitations are dropped. Hence, instead of (2.25b) we
choose

b(h,M, q, y∗) = −(1− ρ1 − ρ2)∇h+ ρ1(1− y∗)∇Q− ρ2∇M.

s∗ = |g(h,Q,M, y∗)| is adapted according to the new b(h,Q,M, y∗). The param-
eters are given in table 4.1. As was to be expected, the drift of the tumor cells
observed in figure 4.5 is stronger than in experiment 1, leading to a larger tumor
volume with decreased density. In contrast to experiment 3, where diffusion was
the dominating process, diffusion and haptotaxis are now more balanced. On
the tumor density plot, the effect of brain structure is well observable, which
suggests that haptotaxis is a relevant factor for the behavior of the glioma cells
in this model. Similar to experiment 3, due to the reduced compactness of the
tumor, we observe a wider region of decreased pH and tissue than in experiment
1, while at the same time observing less maximal decrease. Also the behavior
of the endothelial cells is similar to that in experiment 3.

4.1.5 Experiment 5: Endothelial cells following ∇M (∇(hM))
(model 2.2)

In experiment 5, we consider model 2.2, where the endothelial cells now follow
the gradient of M , respectively hM , instead of h. Again, the parameters are
given in table 4.1. It is not obvious how the taxis sensitivity parameter ςe should
be chosen. Note, that it does not make sense to simply multiply the original pa-
rameter by KM

Kh
, as might be intuitive with regard to the non-dimensionalization

in section 2.2. The model for endothelial growth is not developed from single
cell dynamics but set up phenomenologically on the macroscopic scale. Hence,
the parameter ςe does not have a clear biological interpretation with a fixed
value. It is chosen heuristically in dependence on the chosen model such that
the latter covers biological observations. Hence, the parameters ςe in section 2.1
and section 2.2 differ. In the following, ςe is chosen such that the velocity of
endothelial spread is similar in experiments 1, 5a and 5b, such that a qualitative
comparison between the model variants is possible.

Experiment 5a: f1 = M

In experiment 5a, we choose f1 = M in equation (2.29), meaning that the
endothelial cells follow the gradient of M . As the spread of cancer cells is
less diffusive than the dispersion of protons, the gradient of M is supposed
to be considerably larger. Hence, to obtain comparable results, we have to
lower ςe. All other parameters coincide with those of experiment 1. We choose
ςe = 3 · 10−3.
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4.1. GLIOBLASTOMA WITHOUT TREATMENT

Figure 4.5: Experiment 4: No flux limitation in the basic model 2.1. For t = 1
and t = 5, instead of tissue density, the changes Q(t, x)−Q(0, x) in tissue density
are plotted.
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Experiment 5b: f2 = hM

In experiment 5b, we choose f2 = hM , i.e. the endothelial cells follow the
gradient of hM. Again, we use the parameters given in table 1 (including ζe = 1).

Results

The results of experiment 5a and 5b are summarized in figure 4.6. In both
experiments we observe a sharper localization of endothelial cells than in exper-
iment 1. Since tumor cells are less diffusive than protons, taxis along M and hM
leads to a less homogeneous spread of the endothelial cells than taxis along h.
Qualitatively, the spread of endothelial cells in experiment 5a and experiment
5b is similar.
As was already mentioned in the modeling section 2.2, from a biological point
of view, endothelial cells follow neither the gradient of M nor of hM nor of h.
Instead, endothelial spread is expected along gradients of VEGF. We discussed
the pros and cons of approximating VEGF by h,M or hM : By replacing in
the taxis term of the endothelial cells VEGF by h, we can expect that the dif-
fusive behavior of VEGF is approximated well. On the other hand, choosing
hM instead of h gives a more precise modeling of the production of VEGF by
tumor cells in contact with low pH. While taxis of endothelial cells along the
gradient of M seems to be a too strong simplification, representing neither the
diffusivity of VEGF nor its production, the two other modeling approaches are
both possible choices. However, we have to be aware that even those two are
only approximations for the real tactic process, both having their assets and
drawbacks as described above. For a more precise description, we would have
to model VEGF in a separate equation, where we can combine diffusion with a
large diffusion coefficient as given for h with a proliferation term including the
product hM.

4.1.6 Experiment 6: The go-or-grow model 2.3

In experiment 6, we consider model 2.3, where the population of glioma cells is
split into a migrating and a proliferating subpopulation. For the non-dimensional-
ized switch parameters α1 and α2, we choose α1 = 0.2 and α2 = 4 in corre-
spondence to [22]. All other parameters are given in table 4.1. For the initial
conditions of migrating and proliferating cells, we each choose half of the initial
density of cancer cells considered so far, i.e.

M0(x) =
1

4
e−

(x−0.3)2+(y−0.65)2

0.0008 ,

P0(x) =
1

4
e−

(x−0.3)2+(y−0.65)2

0.0008 .

Considering figure 4.7, we observe for the migrating subpopulation M the
expected invasive behavior, where the density in the inner of the tumor decreases
while the surrounding tissue is invaded. For the proliferative subpopulation we
observe increasing density of the tumor as a consequence of cell proliferation.
At the same time, though, we see that the area, where proliferative cells are
found, increases. This is due to the switch of part of the migrational population
back to proliferative stage as a consequence of weaker tactic signals received at
the peripheral region of the tumor.
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Figure 4.6: Comparison between experiment 1 and experiment 5a/b: Endothe-
lial cells following ∇h\∇M\∇(hM) (model 2.2)
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Figure 4.7: Experiment 6: The go-or-grow model 2.3. For t = 1 and t = 5,
instead of tissue density, the changes Q(t, x) − Q(0, x) in tissue density are
plotted.
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4.2 Evolution of glioblastoma with therapy

In this section, we want to consider the evolution of a glioblastoma under differ-
ent therapies. We consider surgery alone, surgery with implantation of gliadel
wafers, and surgery followed by classical chemotherapy in different settings. The
not therapy-specific parameters used in this section are again given by table 4.1.
Therapy-specific parameter values are given in the respective subsections.
Simulation time is adapted to the therapy periods and hence prolonged to [0, 20],
which corresponds to approximately 40 weeks, the time needed for the standard
dosing scheme of classical chemotherapy [66]. As before, all simulations are per-
formed over the spatial domain Ω = [0, 1] × [0, 1.2155]. All initial data, except
those for endothelial cells, are chosen as in section 4.1. So far, we considered
initial data for endothelial cells such that their growth and taxis behavior be-
came visible. Since we do not consider therapy by anti-angiogenic factors here,
the growth of blood vessels is not object of closer observation in this section.
Instead, we have to choose a more realistic network of blood vessels, which is
responsible for the transport of chemotherapeutic agent. Since no data about
the initial distribution of blood vessels are available, we choose a normal dis-
tribution of endothelial cell densities in the range [0, 0.1]. Surgery is performed
at time t = 2.5. The background of this choice is that the invasive shape of
the tumor leads to problems regarding the complete removal; after a simulation
period of five weeks (t = 2.5), such an invasive shape can be expected. Note
that the time span of five weeks is chosen only for the technical reason stated
above. It is not to be interpreted as the time between diagnosis and resection,
which should be considerably smaller [62].
Again, the figures presented in this chapter show a cutout of the simulation
domain Ω, which is given by [0.0991, 0.5129]× [0.4095, 0.8233] (see figure 4.1).
A table with a direct comparison between the effectivity of the different treat-
ment approaches according to our simulations is presented at the end of this
section.

4.2.1 Experiment 7: The basic model 2.1 with therapy by
partial removal of the tumor

We repeat experiment 1 on the time interval [0, 2.5]. At t = 2.5, part of the
tumor is removed. Afterwards, the simulation is resumed on the time interval
[2.5, 20].
The removal of the tumor is simulated as follows: In experiment 7a, at t = 2.5
all parts of the tumor with densities of more than 0.05 are removed. In exper-
iment 7b, additionally, all tumor cells within a radius of 0.5 cm of those high
density locations are removed (a procedure called supramaximal or supratotal
resection, which is to ensure that also tumor cells not visible during surgery
are resected [33, 83]). In both experiments, tissue and blood vessels at the
respective locations are removed as well.

The results are summarized in figures 4.8 and 4.9. Clearly, supramaximal
resection lowers the tumor density not only directly but also 35 weeks after
resection. Still, it has to be taken into account that the removed healthy brain
tissue is appreciably larger for supramaximal resection. Comparing tumor and
tissue mass directly before and after surgery, we find that in experiment 7a by
resection the tumor mass is decreased by 89.1% and the tissue mass by 1.0%,
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Figure 4.8: Experiment 7a: Basic model 2.1 with removal of glioblastoma at t =
2.5 with surgery threshold 0.05. For t = 10 and t = 20, instead of tissue density,
the changes Q(t, x)−Q(2.5, x) in tissue density after resection are plotted.
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Figure 4.9: Experiment 7b: Basic model 2.1 with removal of glioblastoma at
t = 2.5 with surgery threshold 0.05 and safety radius 0.5 cm. For t = 10 and
t = 20, instead of tissue density, the changes Q(t, x)−Q(2.5, x) in tissue density
after resection are plotted.
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Figure 4.10: Experiment 7: Total masses of tumor and tissue in relation to total
masses immediately after surgery at t = 2.5

respectively. In contrast, in experiment 7b the tumor mass is removed almost
completely (by 99.9%), but also the tissue is reduced by 2.5%. Depending on the
location of the tumor, there has to be a profound consideration of the medical
advantages and disadvantages of those options [62]. In our simulations, the tis-
sue does not reenter the resection cavity. This is due to our modeling approach,
which suggests an ODE for tissue evolution.
The evolution of total masses of tumor and tissue in relation to the reference val-
ues of total masses of tumor and tissue immediately after surgery in experiments
7a and 7b, which can be seen in figure 4.10, are almost identical. In relation to
the reference values, we observe a slightly faster regrowth of tumor mass in ex-
periment 7b. This behavior has its origin in the lower cell density after surgery
combined with the logistic growth of the cancer cells. Note, though, that the
almost identical curves in figure 4.10 only describe the evolution of the total
masses in relation to the total masses at t = 2.5, which differ in experiments
7a and 7b. There is, of course, a considerable difference between the non-scaled
total masses in experiment 7a and experiment 7b (cf. the values stated above).

4.2.2 Experiment 8: Therapy by partial removal of the
tumor and implantation of gliadel wafers (model 2.4)

We repeat experiment 1 on the time interval [0, 2.5]. At t = 2.5, part of the tumor
is removed as in experiment 7a and gliadel wafers are implanted. Afterwards,
the simulation is resumed for model 2.4 on the time interval [2.5, 20].
For the simulation, wafers are implanted around the border of the resection
cavity with a thickness of 1.5 mm. For therapy by gliadel wafers, no reliable
data sets are available, hence many of the parameters given in table 4.2 are
only estimates. We lay the focus here on a qualitative comparison between the
different therapy approaches, choosing similar parameters for experiments 8 and
9. Since carmustine as well as temozolomide, used for classical chemotherapy in
experiment 9, attack cells during the cell cycle, we assume a larger degradation
rate for the fast proliferating tumor cells than for normal tissue. Not therapy-
specific parameters are again given in table 4.1.
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Parameter value source
carmustine diffusion DC 10 [50]
tumor degradation by carmustine σ 102 estimated
tissue degradation by carmustine δQC 10 estimated
carmustine uptake by endothelial cells kbbb 5 estimated
natural decay of carmustine kd 5 estimated
degradation of wafer a 1 estimated
maximum carmustine concentration maxCtotal(x) 8× 10−2 [1]

Table 4.2: Non-dimensionalized parameters

In figure 4.11 we observe a local degradation of tumor cells as well as of
healthy brain tissue by the carmustine diffusing from the gliadel wafers. In figure
4.12, we see that the loss of brain tissue due to carmustine is small against the
loss of tumor mass, though. In comparison with experiment 7a (same setting for
resection, but no implantation of wafers), total tumor mass at t = 20 is 20.0%
lower, while tissue mass is only 0.024% lower. Interestingly, the maximal tumor
cell density at a single spot in experiment 8 is larger than in experiment 7a.
This could be due to the local destruction of tissue, leading to larger gradients
∇Q and hence a more stringent haptotactic behavior of the tumor cells, which
in turn leads to locally high accumulations of tumor cells.

4.2.3 Experiment 9: Therapy by partial removal of the
tumor and classical chemotherapy according to dif-
ferent dosing schemes (model 2.5)

Again, we repeat experiment 1 on the time interval [0, 2.5]. At t = 2.5, part
of the tumor is removed as in experiment 7a. Afterwards, the simulation is
resumed for model 2.5 in different settings on the time interval [2.5, 20].
The parameters are given in table 4.1 and 4.3.

Parameter value source
temozolomide diffusion DC 10 estimated1

tumor degradation by temozolomide σ 102 estimated1

tissue degradation by temozolomide δQC 10 estimated1

natural decay of temozolomide dC 5 estimated1

administration width bi for all i 5× 10−3 [6]

Table 4.3: Non-dimensionalized parameters

Experiment 9a: Standard dosing scheme

We consider the standard dosing scheme [66] of six weeks with daily dose 75 mg
temozolomide per m2 body surface, followed by four weeks of break, followed
by six five-days-on-23-days-off cycles. In the first cycle, the daily dose amounts
to 150 mg temozolomide per m2 body surface, in the consequent cycles 200 mg

1Again, due to a lack of reliable data, paramaters can only be estimated. For a better qual-
itative comparison of the two therapy approaches, we choose these parameters in accordance
to those for carmustine.
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Figure 4.11: Experiment 8: Removal of glioblastoma at t = 2.5 with simultane-
ous implantation of gliadel wafers (model 2.4). For t = 10 and t = 20, instead
of tissue density, the changes Q(t, x)−Q(2.5, x) in tissue density after resection
are plotted.

Figure 4.12: Experiment 8: Total masses of tumor and tissue in relation to total
masses immediately after surgery at t = 2.5, total mass of carmustine
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temozolomide per m2 body surface. Assuming a body surface area of 2 m2[76]
and choosing KC = 100 mg, we find for the non-dimensionalized administration
parameters

di = 10.4 for i = 1, 2, ..., 42,

di = 20.8 for i = 71, ..., 75,

di = 27.7 for i = j + 28k, j = 99, ..., 103, k = 1, ..., 4,

di = 0 otherwise

with ti ≈ i
14 .

In figure 4.13, we see that in contrast to experiment 8 the tissue and the
tumor are not reduced locally but over the whole simulation domain, depend-
ing on the density of drug-transporting blood vessels. At the first glance, the
figures for temozolomide concentration appear unexpected. Remember that the
initial distribution of endothelial cell density is given by a normal distribution
as plotted in figures 4.8 and 4.9. Since temozolomide is transported to the brain
via these blood vessels, the plot of its concentration has a similar appearance,
though blurred due to the diffusivity of the chemotherapeutic agent.
In figure 4.14, we observe tumor growth with decreased growth rate in compar-
ison to experiment 7a (on the time interval [2.5, 20] the tumor mass increases
by 12.3% in experiment 9a in comparison to 67.6% in experiment 7a, respec-
tively). At the same time, the tissue mass is degraded by 0.40% in contrast
to an increase of 0.03% in experiment 7a. In the six cycles following daily ad-
ministration, after some decay during the first five days of drug administration,
tumor mass increases with each cycle. In our experiments, tumor growth is
slowed down but not stopped.

Experiment 9b: Metronomic scheme

We consider a metronomic scheme with daily doses. For a better comparison of
the different dosing schemes applied in experiments 9a, 9b and 9c, we choose the
totally administered dose to be the same in each experiment. For a daily dose
of 75 mg per m2 body surface, this gives 58 days of dose administration without
break. This leads to the non-dimensionalized administration parameters

di = 10.4 for i = 1, 2, ..., 58,

di = 0 for i = 59, 60, ...,

with ti ≈ i
14 . The results are given in figures 4.15 and 4.16. Though at time

t = 10 in experiment 9b therapy is already finished, we observe a barely smaller
tumor mass than in experiment 9a (on [2.5, 10] we find a gain in tumor mass
of 3.5% in contrast to 3.6%). After the complete interval of observation, the
standard dosing scheme proves to attack the cancer cells more efficiently (on
[2.5, 20] we find a gain in tumor mass of 39.8% in experiment 9b and a gain
of 12.3% in experiment 9a). Here, the treatment with high doses proves to be
more effective. On the other hand, it must not be neglected that less tumor
growth comes along with increased tissue degradation (while in experiment 8a
0.4% of healthy tissue are lost, the degradation in experiment 9b amounts only
to 0.17%).
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Figure 4.13: Experiment 9a: Removal of glioblastoma at t = 2.5 followed by
chemotherapy (model 2.5) with standard dosing scheme. For t = 10 and t = 20,
instead of tissue density, the changes Q(t, x) −Q(2.5, x) in tissue density after
resection are plotted.

Figure 4.14: Experiment 9a: Total masses of tumor and tissue in relation to
total masses immediately after surgery at t = 2.5, total mass of temozolomide

118



4.2. GLIOBLASTOMA WITH THERAPY

Figure 4.15: Experiment 9b: Removal of glioblastoma at t = 2.5 followed by
chemotherapy (model 2.5) with metronomic dosing scheme. For t = 10 and
t = 20, instead of tissue density, the changes Q(t, x)−Q(2.5, x) in tissue density
after resection are plotted.

Figure 4.16: Experiment 9b: Total masses of tumor and tissue in relation to
total masses immediately after surgery at t = 2.5, total mass of temozolomide
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Experiment 9c: One-week-on-one-week-off

Finally, we consider the scheme studied in [26, 73], which is one-week-on-one-
week-off. Again, we choose the totally administered dose to be the same as in
the experiments before. Assuming that the weakly breaks allow a slightly higher
daily dose than in experiment 9b, we choose 100 mg per m2 body surface for
days of drug administration. To obtain the same dose in total as before, we apply
this scheme for six weeks. We obtain the non-dimensionalized administration
parameters

di = 13.9 for i = j + 14k, j = 1, ..., 7, k = 0, ..., 5,

di = 0 otherwise.

In figure 4.17, we see the evolution of the tumor. In figure 4.18, we observe the
decrease of tumor mass during the time span of the six therapy cycles with small
ascents in the drug free weeks. The pattern we observe in total mass in figure
4.17 is similar to that in the 5-days-on-23-days-off cycles of experiment 9a, but
due to the shorter drug free intervals with a decrease in tumor mass in each
treatment cycle. This leads, however, also to a stronger degradation of tissue
during the administration cycles. Further, due to the shorter therapy period
(after eleven weeks, no further temozolomide is applied), the resulting tumor
mass 35 weeks after therapy start is with an increase of 38.5% considerably
larger than in experiment 9a.

4.2.4 Comparison of the different treatment approaches

In table 4.4, the gain and loss of tumor and tissue mass are compared for the
different therapies. To this aim, we choose experiment 7a (surgery without
further treatment) as a reference. In the first two columns of table 4.4, gain
and loss of total mass in relation to the state immediately after surgery are
summarized, i.e.∫

Ω
M(20, x)−M(2.5, x) dx∫

Ω
M(2.5, x) dx

and

∫
Ω
Q(20, x)−Q(2.5, x) dx∫

Ω
Q(2.5, x) dx

.

In the third and fourth column, we present the relative differences in total mass
between experiment 7a and the other experiments, i.e.∫

Ω
Mex i(20, x)−Mex 7a(20, x) dx∫

Ω
Mex 7a(20, x) dx

and

∫
Ω
Qex i(20, x)−Qex 7a(20, x) dx∫

Ω
Qex 7a(20, x) dx

.

All values are measured at t = 20.

gain in relation to state after surgery changes in relation to ex 7a
tumor mass tissue mass tumor mass tissue mass

ex 7a 67.6% +0.03% − −
ex 8 34.1% +0.006% −20.0% −0.024%
ex 9a 12.3% −0.40% −33.0% −0.43%
ex 9b 39.8% −0.17% −16.6% −0.20%
ex 9c 38.5% −0.18% −17.4% −0.21%

Table 4.4: Comparison of the different therapy strategies
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Figure 4.17: Experiment 9c: Removal of glioblastoma at t = 2.5 followed by
chemotherapy (model 2.5) with one-week-on-one-week-off dosing scheme. For
t = 10 and t = 20, instead of tissue density, the changes Q(t, x) − Q(2.5, x) in
tissue density after resection are plotted.

Figure 4.18: Experiment 9c: Total masses of tumor and tissue in relation to
total masses immediately after surgery at t = 2.5, total mass of temozolomide
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Comparing the ratios of the loss of tumor mass and tissue mass, each mea-
sured in relation to experiment 7a, i.e. the entries of the third column divided
by the entries of the fourth column, we find that in experiment 9a, 9b and 9c
the relative losses of tumor mass divided by the relative losses of tissue mass are
almost equal, experiment 9a providing a slightly better result than experiments
9b and 9c (cf. table 4.5).

ex 8 ex 9a ex 9b ex 9c
rel. loss in tumor mass
rel. loss in tisue mass

833.3 76.7 83.0 82.9

Table 4.5: Ratios of the loss of tumor mass and tissue mass, each measured in
relation to experiment 7a

This result suggests that from a mathematical point of view, there is no
clear preference for one of the dosing schemes - higher degradation of tumor
mass comes along with similarly higher degradation of healthy brain tissue. A
higher total degradation can always be reached by an increase of the adminis-
tration dose. However, in the decision of the individually suitable dosing scheme
also other effects like side effects of high doses have to be considered.
For therapy by gliadel wafers, the ratio of decreased tumor mass and lost brain
tissue looks promising at the first glance. The reduced degradation of tissue is
due to the local action of the chemotherapeutic agent, which is the clear ad-
vantage of gliadel wafers over classical chemotherapy. In the standard therapy
by temozolomide, the drug acts on the whole brain, so mainly in regions where
no tumor cells are to be expected, damaging tissue unnecessarily. What must
not be neglected when drawing a comparison between therapy by gliadel wafers
and therapy by classical chemotherapy, though, are the high risks of adverse
reactions after implantation of gliadel wafers like cerebral edema, wound heal-
ing abnormalities, or depression [1]. Further, invasive tumor cells in a certain
distance from the resected tumor can not be reached, which might be one of
the reasons why therapy by surgery and gliadel wafers alone is indicated only
in case of recurrent glioma. For newly diagnosed glioma, it is indicated only as
an adjunct to surgery and radiation [1].
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Chapter 5

Discussion

Modeling

Multiscale modeling facilitates the combination of microscopic dynamics, de-
scribing for example processes in the cancer cell or on its surface, with macro-
scopic processes like the evolution of the tumor environment. Thereby, it en-
ables a far more detailed description than the modeling on a single (usually
macroscopic) scale. Especially for the description of cancer invasion, where at-
tachment to the ECM plays a major role, many effects cannot be modeled on a
macroscopic level alone.
In the presented multiscale model, we combined the dynamics of tissue binding
cell surface receptors as well as velocity dynamics with a macroscopic descrip-
tion of the tumor environment. A closed system of momentum equations was
developed, from which an equation for the macroscopic tumor cell density was
derived via scaling methods. In the resulting system, consisting of equations
for the tumor cell density as well as different components of the tumor environ-
ment (pH, tissue density and endothelial cell density), the effects of microscopic
cell behavior are still contained via the coefficient functions in the equation for
cancer cell density. At the same time, the equation can be handled numerically
without the problems arising for equations with different scales and a higher
dimension.
Approaches similar to the model presented in this thesis have been made, e.g.
[13, 14, 15, 20, 21, 22, 32, 41, 55]. In difference to these works, we described
changes in direction of cancer cells not by a turning kernel but directly modeled
the velocity dynamics by an ODE. This has the advantage that not only changes
in direction are possible but also in speed, which opens new possibilities of mod-
eling. We used this approach to include effects of population density pressure
into the velocity dynamics by decreasing speed in crowded regions. In view of
the interpretation of corresponding simulations, the resulting boundedness of
cancer cell density by the biological carrying capacity is of great practical inter-
est. A similar approach based on the publication of chapter 2 was done in [42].
Also from an analytical point of view, this proceeding leads to interesting equa-
tions, in our case causing degeneracy and flux saturation of diffusion and taxis
terms. For the derivation of a macroscopic equation, we made as usual some
approximating assumptions on the second order moments. While in earlier mod-
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els no closed system of moment equations was developed but the macroscopic
equation was derived via scaling methods (see e.g. [13, 14, 15, 20, 21, 22, 32]
again), by an additional assumption on the divergence of one of the second order
moments we could derive a closed system of moment equations. The subsequent
scalings for the derivation of a single macroscopic equation for tumor density
are naturally given by the biological parameters.
There are many possible extensions of the presented model. So far, we consid-
ered only one activity variable, the state of cell surface receptor binding to the
extracellular matrix. The effect of pH on cell proliferation was modeled by a
macroscopic term. Since acidification plays a major role in tumor progression, it
could be interesting to include a further activity variable describing intracellular
pH of the single cancer cells or modeling the transmembrane units mediating
the exchange between outer and inner pH, e.g. as in [41]. However, this will
lead to an even more complex model on the micro-meso-level. Challenges are to
be expected for the derivation of a macroscopic model, especially since also the
so far macroscopic equation describing extracellular pH will be concerned by
the microscopic dynamics. A further possible extension could be the modeling
of necrotic tissue as was done for example in [13, 15, 48]
Some extensions of the basic model were made in sections 2.2-2.4. While the
discussion of the best taxis term for endothelial cells is a question of detail and
could be circumvented by introducing a further equation for vascular endothelial
growth factor, the definition of subpopulations of migrating and proliferating
cancer cells facilitates a more detailed description of the tumor dynamics, how-
ever leading to several problems regarding the analysis.
The benefit of extending the basic model by therapy terms is obvious. While
there already exists a variety of models for radiation and classical chemother-
apy, the focus in this work was laid upon therapy by gliadel wafers, an approach
that has rarely been modeled yet. Here, we focused on the therapy by resection
of the tumor with subsequent implantation of gliadel wafers without further
therapies, as is indicated for patients with recurrent glioblastoma. In case of
newly diagnosed high-grade glioma, the implantation of gliadel wafers is recom-
mended in adjunction with radiation. Since the latter is not supposed to effect
carmustine concentration, for a corresponding extension of the model radiation
terms could simply be added in the equation describing glioma cell density.
Also for the modeling of therapy by gliadel wafers or classical chemotherapy,
the introduction of an additional activity variable could be of interest. In our
models, the microscopic dynamics are included via the cell speed into the macro-
scopic decay terms of cancer cell density by carmustine and temozolomide (which
was due to the idea that fast migrating cells do not proliferate and are hence
less affected by chemotherapeutic agents). A description of different classes of
cell surface receptors binding not only to ECM but also to soluble components
would facilitate a more precise description of drug absorption by the cancer
cells (however, with the above mentioned drawbacks regarding additional activ-
ity variables).

Analysis

We proved the existence of a global weak solution to a simplified version of the
basic model developed in section 2.1, dropping the flux limitation in the diffu-
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sion term of M but still retaining it in the taxis terms. The major challenge
of the analysis lay in handling the strongly degenerate diffusion term in the
equation for M and the nonlinear coupling of the PDE-ODE-system, including
flux saturation in the taxis terms. After regularizing the system, as was done
for example in [80, 81, 82, 85, 86], and decoupling it, a sequence of solutions
was constructed using theory by Amann. The bounds on the gradients of Mk

needed for convergence of the sequence could be found by choosing a suitable
set of multiplier functions fδ and considering domains of degeneracy and nonde-
generacy separately. Beneath the existence of a global weak solution, we could
verify that the components of the solution are nonnegative and do not exceed
the biologically expected values. What remains open is the question of unique-
ness of the weak solution.
The next step would be the existence of a weak solution to the original problem,
i.e. model 2.1 with flux limited diffusion. By flux saturation in the diffusion
term, problems arise concerning the regularity of M . We already addressed this
topic in subsection 3.1.5.
While the existence of a global weak solution to a simplified version of the
models developed in sections 2.2 and 2.4 could be shown, the existence of a so-
lution to the go-or-grow model from section 2.3 remains an open topic. Beyond
the problems addressed above, arising from flux limitation and degeneracy, the
model comes up with several analytical challenges. Trying to adapt our original
proof, first problems arise with the choice of a suitable decoupling, such that
boundedness and nonnegativity of Mk and Pk are ensured. While this problem
might be circumvented by a different approach not based on a decoupling of
the system, the major challenge lies in the equation for the proliferating cells P.
Due to the signal dependent switch terms on the microscale, the macroscopic
equation for P depends on the function g, which contains gradients of M,P, h
and Q. Hence, we have an equation including a transport-like term but contain-
ing no diffusion, which could ensure regularity. Especially if the flux saturation
in the diffusion term is dropped to simplify the equation for M , this further
complicates the problem, as it makes the term g even more irregular.

Simulations

In simulations we illustrated the resulting cell densities for different settings of
the basic model, using a code developed by N. Kolbe and N. Sfakianakis. The
effects of dominating haptotaxis versus dominating pH-taxis were compared,
showing the expected differences in anisotropy of the spread. We further illus-
trated the differences between the original model developed in section 2.1, the
simplified version used in the analysis section, and a version without any flux
saturation. As expected, we observed a more diffusive behavior of the simplified
model when compared to the original version and the version without flux satu-
ration, and saw that without flux limitation the tumor spread is more invasive.
For the tissue, we observed in all settings a slight increase in the density in
regions not concerned with tumor growth. This from a biological point of view
unexpected growth is due to the carrying capacity having been chosen constant.
A proper knowledge of a spatially variant carrying capacity would solve this
inaccuracy but is difficult to realize in a quantitative manner. Apart from that,
the simulations coincide with the expected behavior of the tumor and its envi-
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ronment.
The code was adapted to the model variations, including different tactic behav-
ior of endothelial cells as well as the go-or-grow model. We observed that taxis
of endothelial cells along M leads to a more distinct formation of blood vessels,
while taxis along h or hM leads to a wider spread of vasculature.
Finally, we compared the different therapies, considering gliadel wafers as well as
various dosing schemes for classical chemotherapy. Here, especially the advan-
tages of the local action of gliadel wafers in comparison with classical chemother-
apy became obvious, while the comparison between the dosing schemes only re-
vealed quantitative differences, which can - from a mathematical point of view
- easily be adjusted by lowering or raising the administered dose. In order to
choose the best treatment for single patients, knowledge about the individual
dose limitation by medical aspects would be needed.
Further, for a prognostic simulation near to reality, refillment of the resection
cavity has to be modeled. However, this needs a completely different modeling
approach, where tissue is not described by an ODE anymore but changes its
location as a consequence of surrounding pressure. Beside this, a precise mod-
eling of resection has to take into account further aspects like the formation of
edema.
To get more realistic simulations, beside the problem of resection modeling, data
about the initial distribution of blood vessels are needed, as they are responsible
for the transport of drug into the tumor and away from it and hence play an
important role for therapy outcome. Though essential for a precise prognosis of
drug distribution in the brain, these kind of data are unfortunately very difficult
to obtain.
The next step would be the validation of our simulations with real patient data.
Confirming our modeling approach by medical data would be another small step
in the understanding and modeling of glioma dynamics and therapy effects.
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Appendix A

A.1 Theorems

Theorem A.1.1 ([16, theorem 13.5]). Let u ∈W 1,2
p ([0, T ]× Ω) for some

p > n+ 2, where

W 1,2
p ([0, T ]× Ω) := {u ∈ Lp([0, T ]× Ω) : ∂tu, ∂

α
x u ∈ Lp([0, T ]× Ω) for |α| ≤ 2} ,

such that

ut −
n∑

i,j=1

aij(t, x)uxixj
+

n∑
i=1

ai(t, x)uxi
+ a(t, x)u ≥ 0 in (0, T ]× Ω,

∂νu ≥ 0 on (0, T ]× ∂Ω,

u(0, ·) ≥ 0 in Ω,

where ν denotes the outward unit normal, and aij = aji, ai, a ∈ C([0, T ] × Ω̄)

and
∑n

i,j=1 aij(t, x)ξiξj ≥ α |ξ|2 for some α > 0.

Then u ≥ 0 in [0, T ]× Ω̄.

Theorem A.1.2 ([4, theorem 14.4 with remark 12.2 a)]). Let D0 be a nonempty
open subset of Rn and assume that

aij , ai, bi, a0 ∈ C2−(R+
0 × Ω̄×D0, Rn×n), 1 ≤ i, j ≤ N,

where for k ∈ N

Ck−(X,E) := {u ∈ Ck−1(X,E) : Dαu is Lipschitz continuous for |α| ≤ k − 1}.

Then we consider the following quasilinear parabolic boundary value problem:

∂tu+A(u)u = f(·, ·, u, ∂u) in R+ × Ω,

B(u)u = g(·, ·, u) on R+ × ∂Ω,

u(·, 0) = u0 on Ω,

(A.1)

where

A(η)u = −
N∑

i,j=1

∂i (aij(·, ·, η)∂ju)−
N∑
i=1

∂i (ai(·, ·, η)u) +
N∑
i=1

bi(·, ·, η)∂iu+ a0(·, ·, η)u,

B(η)u =

N∑
i,j=1

νiγ∂ (aij(·, ·, η)∂ju+ ai(·, ·, η)u) ,
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γ∂ denoting the trace operator for ∂Ω. Assume that

D =

η ∈ D0 :

 N∑
i,j=1

aklij (·, ·, η)ξiξj

n

k,l=1

is positive definite for all ξ ∈ RN\{0}


(A.2)

is nonempty. Further, suppose that

f ∈ C1−,2−((R+
0 × Ω̄×D)× Rn×N , Rn)

and that for each compact subset K of D there exists a constant cK s.t.

|∂ζf(t, x, η, ζ)| ≤ cK(1 + |ζ|) for all (t, x, η, ζ) ∈ R+
0 × Ω̄×K × Rn×N .

Finally, assume that

g ∈ C1−(R+
0 × ∂Ω×D, Rn).

If N
p < 1 < (1 + 1

p ) ∧ (2 − N
p ) and f is independent of the gradient, then the

boundary value problem (A.1) has for each u0 ∈ W 1,p(Ω, D) a unique weak
solution u ∈ C(J ;W 1,p(Ω)), J = [0, t+) for some t+ > 0.

Theorem A.1.3 ([4, theorem 14.6]). Suppose the assumptions of theorem A.1.2
are fulfilled. Additionally, let g = 0. Then u is a classical solution of (A.1), that
is,

u ∈ C(J × Ω̄, D) ∩ C1,2(J̇ × Ω̄, Rn),

where J̇ = J\{0}, and u satisfies (A.1) pointwise.

Theorem A.1.4 ([4, corollary 14.7]). Let the assumptions of theorem A.1.2 be
fulfilled. If g = 0 and f and all coefficients of (A,B) are C∞-smooth, then

u ∈ C∞(J̇ × Ω̄, Rn).

The following theorem is a special case of theorem 15.5, [4].

Theorem A.1.5 ([4, theorem 15.5]). Suppose that (A,B) is lower triangular
and that either

� each aij is a diagonal matrix and

|fr(u, ∂u)| ≤ c(|u|)(1 + |∇ur|), 1 ≤ r ≤ n

or

� the r-th row of each aij is independent of us for s > r, and

|fr(u, ∂u)| ≤ c(|u|)(1 + |∇ur|+
∑
s<r

|∇us|2), 1 ≤ r ≤ n.

Also suppose, that

∥u(t)∥L∞ ≤ c(T ), 0 ≤ t ≤ T <∞, t < t+.

Then t+ =∞ if u|[0,T ] is bounded away from ∂D for each T > 0.
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The following comparison principle is a special case of theorem 15.1, [4].

Theorem A.1.6 ([4, theorem 15.1]). Consider the parabolic boundary value
problem (A.1) from theorem A.1.2 for n = 1. Let all assumptions of theorem
A.1.2 be fulfilled. Further, let tη ∈ D0 for all η ∈ D, t ∈ [0, 1], let f ∈ C1(Ω̄ ×
D0, R), g ∈ C1(∂Ω×D0, R) with f(·, 0), g(·, 0) ≥ 0 and let u(0, ·) ≥ 0.
Then for the solution u from theorem A.1.2 it holds u(t, ·) ≥ 0 for t ∈ J.

Theorem A.1.7 ([59, chapter 2.3, theorem 2]). Let E be an open subset of
Rn+m containing the point (u0, µ0), where u0 ∈ Rn and µ0 ∈ Rm, and assume
that f ∈ C1(E). Then there exist a, δ > 0such that for all y ∈ Bδ(u0), µ ∈ Bδ(µ0)
the initial value problem

u̇ = f(u, µ), u(0) = y

has a unique solution u(t, y, µ) ∈ C1(G), where G = [−a, a]×Bδ(y0)×Bδ(µ0).

Remark A.1.8. In case of a nonautonomous problem u̇ = f(t, u, µ), we set
ũ = (t, u)T and obtain the equation ˙̃u = (1, f(t, u, µ))T =: f̃(ũ, µ). Hence, the
theorem can also be applied to nonautonomous equations.

Remark A.1.9. By [59, chapter 2.3, remark 1], the solution u(t, y, µ) from the-
orem A.1.7 has the same smoothness properties as f .

Theorem A.1.10 ([79, lemma 1.3 (ii) and (iii)]). Let (er∆)r≥0 be the Neumann
heat semigroup in Ω and let λ1 > 0 denote the first nonzero eigenvalue of −∆
in Ω under Neumann boundary conditions. Then, there exists C > 0 depending
on Ω only with the following property:

(i) For 1 ≤ p ≤ ∞ it holds for all w ∈ Lp(Ω)

∥∇er∆w∥Lp(Ω) ≤ C(1 + r−
1
2 )e−λ1r∥w∥Lp(Ω) ∀ r > 0.

(ii) For 2 ≤ p <∞ it holds for all w ∈W 1,p(Ω)

∥∇er∆w∥Lp(Ω) ≤ Ce−λ1r∥∇w∥Lp(Ω) ∀ r > 0.

Theorem A.1.11 ([52]). Let I ⊂ R be some interval and let Ω ⊂ Rn be an
open bounded set. Let further B be some Banach space of functions defined on
Ω. If

1. (un)n is bounded in Lp(I,X),

2. (∂tun)n is bounded in Lr(I, Y ),

3. X embeds compactly in B, which embeds continuously in Y ,

then (un)n has a strongly convergent subsequence in Lp(I;B), provided p < ∞
or r > 1.
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and G. Haensgen. Tumor hypoxia and systemic levels of vascular endothe-
lial growth factor (vegf) in head and neck cancers. Strahlentherapie und
Onkologie, 177(9):469–473, 2001.

[20] C. Engwer, T. Hillen, M. Knappitsch, and C. Surulescu. Glioma follow
white matter tracts: a multiscale dti-based model. Journal of Mathematical
Biology, 71(3):551–582, 2015.

[21] C. Engwer, A. Hunt, and C. Surulescu. Effective equations for anisotropic
glioma spread with proliferation: a multiscale approach. Mathematical
Medicine and Biology: A Journal of the IMA, 33(4):435, 2016.

[22] C. Engwer, M. Knappitsch, and C. Surulescu. A multiscale model for glioma
spread including cell-tissue interactions and proliferation. Mathematical
Biosciences & Engineering, 13(2):443, 2016.

132



BIBLIOGRAPHY

[23] A. B. Fleming and W. M. Saltzman. Pharmacokinetics of the carmustine
implant. Clinical pharmacokinetics, 41(6):403–419, 2002.

[24] P. Friedl and K. Wolf. Tube travel: the role of proteases in individual and
collective cancer cell invasion. Cancer research, 68(18):7247–7249, 2008.

[25] S. M. Frisch and H. Francis. Disruption of epithelial cell-matrix interactions
induces apoptosis. The Journal of cell biology, 124(4):619–626, 1994.

[26] N. Galldiks, T. Berhorn, T. Blau, V. Dunkl, G. R. Fink, and M. Schroeter.
“one week on–one week off”: efficacy and side effects of dose-intensified
temozolomide chemotherapy: experiences of a single center. Journal of
neuro-oncology, 112(2):209–215, 2013.

[27] A. Giese and M. Westphal. Glioma invasion in the central nervous system.
Neurosurgery, 39(2):235–252, 1996.

[28] R. Goldbrunner, M. Ruge, M. Kocher, C. W. Lucas, N. Galldiks, and
S. Grau. Behandlung von Gliomen im Erwachsenenalter. Deutsches
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