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Zusammenfassung

Wir entwickeln ein Modell zur Berechnung des in die eigenen Firmenaktien

investierten Anteils und des Arbeitsaufwandes von leitenden Angestellten.

Der leitende Angestellte - charakterisiert durch Risikoaversions- und Ar-

beitseffektivitätsparameter - investiert sein Vermögen ohne Einschränkun-

gen in den Finanzmarkt einschließlich der Aktie der eigenen Firma, deren

Wert er durch seinen Arbeitsaufwand beeinflussen kann. Die nutzenmaxi-

mierende Investitions- und Arbeitsaufwandsstrategie wird in geschlossener

Form hergeleitet und mit einem Nutzenindifferenzargument die angemessene

Entlohnung bestimmt. Der leitende Angestellte ist bei der Vertragserfüllung

nicht eingeschränkt. Jedoch stellt die berechnete Arbeitsaufwandsstrategie

einen Basisfall dar, der einen Einblick darin gibt, wie man die finanziellen

Leistungen von leitenden Angestellten bemessen könnte und wie sie auf Ein-

schränkungen bei der Vertragserfüllung reagieren könnten. Zudem betrach-

ten wir ein hochqualifiziertes Individuum, das die Wahl zwischen zwei Kar-

riereoptionen hat. Das Individuum kann zwischen einer mittleren Manage-

mentposition in einer großen Firma und einer leitenden Position in einer

kleineren börsennotierten Gesellschaft wählen, in der es die Möglichkeit hat,

den Wert der Aktie der eigenen Gesellschaft zu beeinflussen. Das Individuum

investiert in den Finanzmarkt einschließlich der Aktie der kleineren börsen-

notierten Gesellschaft. Die nutzenmaximierende Konsum-, Investitions- und

Arbeitsaufwandsstrategie wird in geschlossener Form hergeleitet. Es werden

Bedingungen in Form eines Einkommensunterschiedes angegeben, bei denen

das Individuum die Karriere in der kleineren börsennotierten Gesellschaft

fortführt. Diese kann ein geringeres Einkommen anbieten. Das Einkommens-

defizit wird durch die Möglichkeit, von einem gesteigerten Arbeitsaufwand

durch Ankauf von eigenen Firmenaktien zu profitieren, kompensiert. Diese

Ergebisse geben einen Einblick in das optimale Design von Verträgen.
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Abstract

In this work, we develop a framework for analyzing an executive’s own-

company stockholding and work effort preferences. The executive, character-

ized by risk aversion and work effectiveness parameters, invests his personal

wealth without constraint in the financial market, including the stock of his

own company whose value he can directly influence with work effort. The

executive’s utility-maximizing personal investment and work effort strategy

is derived in closed form for logarithmic and power utility and for exponential

utility for the case of zero interest rates. Additionally, a utility indifference

rationale is applied to determine his fair compensation. Being unconstrained

by performance contracting, the executive’s work effort strategy establishes

a base case for theoretical or empirical assessment of the benefits or other-

wise of constraining executives with performance contracting. Further, we

consider a highly-qualified individual with respect to her choice between two

distinct career paths. She can choose between a mid-level management po-

sition in a large company and an executive position within a smaller listed

company with the possibility to directly affect the company’s share price.

She invests in the financial market including the share of the smaller listed

company. The utility maximizing strategy from consumption, investment,

and work effort is derived in closed form for logarithmic utility and power

utility. Conditions for the individual to pursue her career with the smaller

listed company are obtained. The participation constraint is formulated in

terms of the salary differential between the two positions. The smaller listed

company can offer less salary. The salary shortfall is offset by the possibility

to benefit from her work effort by acquiring own-company shares. This gives

insight into aspects of optimal contract design. Our framework is applicable

to the pharmaceutical and financial industry, as well as the IT sector.
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Introduction

The first two chapters of this work will deal with a topic with a quite actual

background. Share-based payments are frequently used and discussed very

controversially in recent time and they have meanwhile become a puplic in-

terest. This topic has been widely discussed in the finance and economics

theory in the so called ’principal-agent-problem’, where the principal repre-

sents a share holder and the agent an executive. A natural question arising

from that theory is how share-based payments, like for instance executive

stock options, do increase the executive’s incentive or work effort. Usually a

’constrained executive’ is considered in the theory, since the common prac-

tice to incorporate executive stock options in the executive’s compensation

manipulates already the risk-taking in the own-company’s stock. Our idea is

to analyze an ’unconstrained executive’ without any contraints on his com-

pensation. This base case will then give us an insight how the agent can be

influenced or even controlled by the principal.

Stemming from the agency theory fundamentals of Ross (1973), Jensen and

Meckling (1976), Holmstrom (1979) and others, there has been much con-

cern for the ‘incentivization’ link from equity-based executive compensation

to corporate financial performance. The associated academic literature is

extensive.1 Counterpoint to past research, we consider the motivation for an

executive with unconstrained (unincentivized) compensation to voluntarily

link his personal wealth to his management success for the company. We de-

velop a model framework that identifies the joint own-company stockholding

and work effort strategy of a utility-maximizing executive. The executive’s

1The summaries of Murphy (1999) and Core, Guay and Larcker (2003) are useful

references.
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compensation is assumed to be incorporated into his up-front total personal

wealth, which he invests variously in a risk-free money market account, a

diversified market portfolio, or his own company’s stock. The executive is

able to beneficially influence the value of his company via work effort; he

gains utility from the increased value of his direct stockholding (within his

overall personal portfolio), but loses utility for his work effort. The executive

is characterized by a parameter of constant relative risk aversion (γ) or of

constant absolute risk aversion (η), respectively, and two work effectiveness

parameters (κ, representing inverse work productivity, and α, representing

disutility stress).

A feature of our framework is that the executive’s work effort, specified in

terms of two control variables, non-systematic expected return and volatility

(µ and σ), can be restated in terms of a single control variable, the non-

systematic Sharpe ratio (λ = (µ−r)/σ, where r is the risk-free rate of return).

This reduces the dimensions of the problem and introduces a parametrization

based on the well-known Sharpe ratio performance measure. The executive’s

optimal personal investment strategy (π⋆ and Π⋆, respectively) and work

effort strategy (λ⋆) is then derived in closed form using stochastic control

theory and the corresponding Hamilton-Jacobi-Bellman equations. Other

technical papers similarly concerned with dynamic principal-agent models

include Cadenillas, Cvitanic and Zapatero (2004), Korn and Kraft (2008)

and Ou-Yang (2003), for example.

Our closed-form results demonstrate that an executive with superior work

effectiveness (i.e. higher quality) will undertake more work effort for his

company. But the extent to which any level of work effectiveness is put to

use via work effort depends prominently on the executive’s risk aversion; only

if he has sufficiently low risk aversion to take on a substantial own-company

stockholding he will have the incentive to apply substantial work effort. The

results also provide guidance for identifying the executive’s quality and risk

aversion from demonstrated work effort. Or given identification of executive
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quality and risk aversion, the results indicate the own-company stockholding

and work effort of an executive unconstrained by performance contracting,

which establishes a base case for theoretical or empirical assessment of the

benefits or otherwise of constraining the executive with performance con-

tracting.

Freeing executives to self-incentivize may be a reasonable ‘path of least re-

sistance’ in the light of some recent and not so recent research. For exam-

ple, Dittmann and Maug (2007) were unable to rationalize observed execu-

tive compensation. Using a ‘standard’ principal-agent efficient contracting

model, their analysis indicated that executives should not, in general, be

compensated with options, and that it would commonly be optimal for ex-

ecutives to use private savings to purchase additional stock in their own

companies. Bettis, Bizjak and Lemmon (2001) found that high-ranking cor-

porate insiders use collars and swaps to cover a significant proportion of

their own-company stockholdings, allowing them to unwind the constraint of

equity-based compensation. Ross (2004) repudiated the folklore that giving

options to agents makes them more willing to take risks (also see Carpen-

ter (2000)). And Jensen and Murphy (1990) proposed that private political

forces in the managerial labor market constrain pay-performance sensitivity,

leading most CEOs to hold trivial fractions of their firms’ stock. However,

Hall and Liebman (1998) and Core and Larcker (2002), for example, found

support for a link from equity-based executive compensation to corporate

performance.

Whether subject to constrained or unconstrained (i.e. incentivized or un-

incentivized) compensation, an executive’s actualized performance incentive

will reflect a total personal wealth perspective. Ofek and Yermack (2000)

found that once managers reach a certain own-company ownership level,

they actively rebalance their personal portfolios when awarded equity com-

pensation. And Garvey and Milbourn (2003) found that market risk has

little effect on the use of stock-based pay for the average executive, sug-
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gesting that executives can undo any undesired market exposure from their

incentive contracts by adjusting their personal portfolios. We thus maximize

our risk averse executive’s utility with respect to his total wealth investable

across his own company’s stock, a diversified market portfolio and a risk-free

money market account. Our approach has parallels with Jin (2002), but uses

a continuous-time setting with arguably a more intuitively appealing speci-

fication of work effort and its disutility. Also see Cvitanic (2008) for a more

general continuous-time framework emphasizing incentive effects when the

executive can hedge equity-based compensation. A natural future extension

for our framework is to specify a constrained executive subject to an imposed

own-company stockholding representative of performance contracting, and to

contrast his work effort strategy with that of our unconstrained executive.

Chapter 3 will deal with another interesting applied problem which arises

from observations that can be made at the employment market. That is,

highly-qualified individuals have often the choice between different career

paths.

We restate that the remuneration of managers should be linked to perfor-

mance, see, e.g., Ross (1973), Jensen and Meckling (1976), Holmstrom (1979)

and others, for the fundamentals of agency theory, and the summaries of

Murphy (1999) and Core, Guay and Larcker (2003).

In contrast to past research, we investigate the motivation for an individual

to voluntarily performance-link her private wealth by acquiring shares of the

own-company. We consider a highly-qualified individual with respect to her

choice between two distinct career paths. She can choose between a mid-

level management position in a large company and an executive position in a

smaller listed company with the possibility to directly affect the company’s

share price. The individual is assumed to be utility maximizing, deriving

utility from terminal wealth and intertemporal consumption, and negative

utility (disutility or cost) from work effort. The investment opportunities
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include the share of the smaller listed company and thus the individual can

capitalize on her work effort by investing in own-company shares. Taking

up the mid-level management position with the large company is the outside

option in our setting. The outside option rules out the possibility to affect

the share price of the smaller company. The individual is characterized by

two time preference parameters (ρ, discount rate for utility from consump-

tion, and ρ̃, discount rate for the disutility from work effort), and two work

effectiveness parameters (κ, representing inverse work productivity, and α,

representing disutility stress).

First, we analyze the individuals optimal control problem under the assump-

tion that she takes up the offer from the smaller listed company. The optimal

investment strategy (π⋆), consumption (k⋆), and work effort (λ⋆), respec-

tively, are derived in closed form in the log-utility setting using stochastic

control theory and the corresponding Hamilton-Jacobi-Bellman equations.

We demonstrate that an executive with higher work effectiveness (quality)

undertakes more work effort. Additionally, the broader constant relative risk

aversion setting is explored. By imposing a sensible parameter restriction

we are able to reduce the problem to a Riccati equation which we can solve

in closed form. As second step, we identify conditions for the individual to

work for the smaller listed company. The participation constraint is given in

terms of the salary differential of the two job alternatives. In particular, we

derive the minimal required salary δ⋆ that needs to be offered by the smaller

company to attract the individual and thereby characterize the participation

constraint. In general, we find that a more talented individual requires a

lower salary to be attracted to the smaller listed company. The salary short-

fall is offset by the possibility to benefit from her work effort by acquiring

shares of the company. This salary pattern can be observed in practice, e.g.,

in the pharmaceutical industry, the IT sector, and the financial industry.

The thesis is organized as follows. Chapter 1 establishes the framework of

an unconstrained executive as described above with constant relative risk
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aversion. Section 1.1 introduces the notation and terminology, and as a first

result the optimality problem is reformulated and simplified. In Section 1.2

the Hamilton-Jacobi-Bellman equations characterizing the utility maximiza-

tion problem are derived, and closed-form solutions for the log-utility and

the power-utility case are established. The results are illustrated and the

executive’s up-front fair compensation is given in Section 1.3.

Chapter 2 gives the framework of an unconstrained executive with constant

absolute risk-aversion. Section 2.1 introduces the optimization problem, re-

formulates and simplifies it. In Section 2.2 the Hamilton-Jacobi-Bellman

equation characterizing the utility maximization problem is derived, and a

closed-form solution for the exponential-utility case assuming zero interest

rates is established. The results are discussed and the executive’s up-front

fair compensation is given in Section 2.3.

In Chapter 3 we investigate the decision problem of the highly-qualified in-

dividual as stated above. Section 3.1 introduces the notation and terminol-

ogy. In Section 3.2 the Hamilton-Jacobi-Bellman equations characterizing

the utility and consumption maximization problem are derived, and closed-

form solutions for the log-utility and the power-utility case are established.

The participation constraint is derived for the case of logarithmic utility. The

results are illustrated in Section 3.3.

Finally, we conclude and give an outlook for future research. A technical

proof is moved into the Appendix.
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Chapter 1

Own-Company Stockholding and Work

Effort Preferences of an Unconstrained

Executive with Constant Relative Risk

Aversion

We now turn our focus to the framework of an unconstrained executive with

constant relative risk aversion. This chapter follows the lines of Desmettre,

Gould and Szimayer (2010).

1.1 Notation and Set-up

The financial market is defined on a filtered probability space

(Ω,F , P, (Ft)t≥0) satisfying the usual hypothesis and large enough to sup-

port two independent standard Brownian motions, W P = (W P
t )t≥0 and

W = (Wt)t≥0, where t indicates time. We consider a company executive that

invests in the financial market. Specifically, the investment opportunities

available to our executive are a risk-free money market account, a diversified

market portfolio and his own company’s stock. The risk-free money market

account has the price process B = (Bt)t≥0, with dynamics

dBt = r Bt dt , B0 = 1 , (1.1)
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where r is the instantaneous risk-free rate of return, hence Bt = er t. The

price process of the market portfolio, P = (Pt)t≥0, follows the stochastic

differential equation (SDE)

dPt = Pt (µ
P dt+ σP dW P

t ) , P0 ∈ R+ , (1.2)

where µP and σP are respectively the expected return and volatility of the

market portfolio. The company’s stock price process, Sµ,σ = (Sµ,σ
t )t≥0, is a

controlled diffusion with SDE

dSµ,σ
t = Sµ,σ

t

(
µt dt+ β

[
dPt

Pt

− rdt

]
+ σt dWt

)
, Sµ,σ

0 ∈ R+ , (1.3)

where β ∈ R is the company’s beta (i.e. the standardized covariance between

the company’s rate of return and that of the market portfolio, indicating sys-

tematic risk); µ is the company’s expected rate of return for non-systematic

risk (i.e. the expected return in excess of the beta-adjusted market portfo-

lio’s expected excess return); and σ is the company’s non-systematic volatil-

ity. Both µ and σ are controlled by the executive. The company’s stock

price process and the market portfolio are dependent with the instantaneous

correlation ρt = β σP /
√

σ2
t + (β σP )2.

The executive influences the company’s stock price dynamics by choice of the

control strategy (µ,σ), which is specified to be associated with work effort.

The control strategy can be conceptualized as deriving from the executive’s

corporate investment or financing strategy. For example, identifying and

initiating positive net present value projects and optimal debt versus equity

financing entails work effort that adds value and affects volatility. Value

is added if µ is greater than r, indicating excess return compensation for

non-systematic risk. To ensure sensible solutions we require µ ≥ r, which

effectively bars the executive from destroying company value (µ < r) and

potentially profiting by shorting the company’s stock.

The executive’s instantaneous disutility of work effort at time t is represented

by the disutility rate c(t,Vt,µt,σt) for control strategy (µt,σt), where Vt is the
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executive’s wealth. We assume that the disutility rate c : [0,T ]×R+×[r,∞)×
R+ → R+

0 is a continuous and suitably differentiable function where T is the

executive’s time horizon.

The executive’s starting wealth inclusive of his compensation, V0 > 0, is

invested in the financial market. Ongoing continuous-time portfolio adjust-

ment is assumed to be free of short-selling constraints, and to be self-financing

(i.e. no funds are added to or withdrawn from the executive’s portfolio). The

portfolio is allocated with fraction πP = (πP
t )t≥0 invested in the market port-

folio, fraction πS = (πS
t )t≥0 in the company’s stock, and the remainder in the

risk-free account. For investment strategy π = (πP , πS), and control strat-

egy (µ,σ), we collect all controls in the vector process u = (πP , πS,µ,σ). The

executive’s wealth process, V u = (V u
t )t≥0, is then

dV u
t = V u

t

(
(1− πP

t − πS
t )

dBt

Bt

+ πP
t

dPt

Pt

+ πS
t

dSµ,σ
t

Sµ,σ
t

)
, V u

0 ∈ R+ . (1.4)

This equation can be rewritten using the equations (1.1), (1.2) and (1.3) for

the money market account, the market portfolio and the company’s stock

respectively as

dV u
t = V u

t

([
r + (πP

t + β πS
t )(µ

P − r) + πS
t (µt − r)

]
dt

+
[
πP
t + β πS

t

]
σPdW P

t + πS
t σt dWt

)
, V u

0 ∈ R+ .
(1.5)

The executive is assumed to maximize the expected terminal utility of his

wealth for time horizon T , subject to some utility function which will be

specified when deriving closed-form solutions.

Assuming that the control of the company’s stock price behavior (µ,σ) is

determined exogenously, the executive’s optimal investment decision is then

described by

Φ̂(t, v) = sup
π∈Â(t,v)

Et,v[U(V π
T )] , (t,v) ∈ [0,T ]× R+,
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where Â(t,v) denotes the set of all admissible portfolio strategies π at time

t corresponding to portfolio value (i.e. wealth) v = V π
t > 0, U is a utility

function, and Et,v denotes the expectation conditional on t and v. See for

example Korn and Korn (2001), where we note that in this classical set-up

the wealth process V π = (V π
t )t≥0 > 0 does not depend on the exogenously

given control strategy (µ,σ).

Definition 1.1.1

Let 0 ≤ t ≤ T , t fixed. Further let (µ,σ) take values in [r,∞) × (0,∞). By

A(t,v) we denote the set of all admissible strategies u =
(
πP ,πS,µ,σ

)
corre-

sponding to portfolio value v = V u
t > 0 at time t, which are {Fs ; t ≤ s ≤ T}-

predictable processes, such that

(i) the company’s stock price process

dSµ,σ
s = Sµ,σ

s

(
µs ds+ β

[
dPs

Ps

− rds

]
+ σs dWs

)
, Sµ,σ

t ∈ R+ ,

has a unique non-negative solution and satisfies

∫ T

t

(Sµ,σ
s )2

(
(βσP )2 + (σs)

2
)
du < ∞ P − a.s. ;

(ii) the wealth equation

dV u
s = V u

s

(
(1− πP

s − πS
s )

dBs

Bs

+ πP
s

dPs

Ps

+ πS
s

dSµ,σ
s

Sµ,σ
s

)
, V u

t ∈ R+ ,

has a unique non-negative solution and satisfies

∫ T

t

(V u
s )

2 ((πP
s + β πS

s )
2(σP )2 + (πS

s σs)
2
)
ds < ∞ P − a.s. ;

(iii) and the utility of wealth and the disutility of control satisfy

E

[
U (V u

T )
− +

∫ T

t

c(s, V u
s ,µs,σs) ds

]
< ∞ .
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The optimal investment and control decision is then the solution of

Φ(t, v) = sup
u∈A(t,v)

Et,v

[
U (V u

T )−
∫ T

t

c(s, V u
s ,µs,σs) ds

]
, (1.6)

where (t,v) ∈ [0,T ]× R+.

1.1.1 Restating the Set-up

A decomposition result for the optimal investment and control problem in

(1.6) is derived. To do this we respecify the executive’s control strategy

in terms of a target non-systematic Sharpe ratio λ = (µ − r)/σ; this sup-

poses the executive makes investment or financing decisions with regard for

their expected return to risk trade-off. Now the original four-dimensional

maximization problem can be solved in two steps. The first step entails

minimizing the disutility rate for the target non-systematic Sharpe ratio to

obtain c⋆(t,v,λ). The proof of Lemma 1.1.1 demonstrates that this is achiev-

able given Assumption 1.1.1. For the second step, Theorem 1.1.3 shows

that the optimal investment and control problem given by (1.6) can be re-

stated and solved as a maximization problem over the reduced control vector

u′ = (πP ,πS,λ), with c replaced by c⋆.

The non-systematic expected return to risk trade-off represented by λ indi-

cates the quality of the executive’s control decision, which is associated with

work effort and thereby disutility. Given λ, minimized disutility c⋆ is asso-

ciated with the non-systematic volatility choice σ⋆ (see Lemma 1.1.1). That

is, for a given level of control strategy quality represented by λ, σ⋆ is the

non-systematic volatility associated with the ‘easiest’ control strategy from

the executive’s perspective.

Assumption 1.1.1 gives the conditions required for existence and uniqueness

of c⋆ and σ⋆.
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Assumption 1.1.1

The function c : [0,T ]× R+ × [r,∞)× R+ → R+
0 , (t,v,µ,σ)

7→ c(t,v,µ,σ) satisfies:

(i) c is continuous in t and v, and twice continuously differentiable in µ

and σ;

(ii) fix (t,v,λ) ∈ [0,T ]× R+ × R+
0 , then

lim sup
σց0

λ
∂c

∂µ
(t,v,r + λσ,σ) +

∂c

∂σ
(t,v,r + λσ,σ) < 0 ,

and

sup
σ>0

λ
∂c

∂µ
(t,v,r + λσ,σ) +

∂c

∂σ
(t,v,r + λσ,σ) > 0 ;

(iii) it holds that

(µ− r)2
∂2c

∂µ2
+ 2σ (µ− r)

∂2c

∂µ ∂σ
+ σ2 ∂2c

∂σ2
> 0 ;

(iv) for all (t,v): infσ>0 c(t,v, r, σ) = 0.

In Assumption 1.1.1, (i) is a natural smoothness condition, (ii) and (iii)

respectively ensure uniqueness and existence of the disutility c⋆(t,v,λ) de-

pending on the non-systematic Sharpe ratio λ, and (iv) is a natural norming

condition that specifies a lower bound of zero disutility (i.e. zero work effort)

when expected excess return is zero (µ = r).

As an example, a disutility function that fulfills the conditions of Assump-

tion 1.1.1 is

c(t,v,µ,σ) = κ

(
µ− r

σ

)α

+ ν (σ − σ0)
2 = κλα + ν (σ − σ0)

2 ,

where µ ≥ r, σ > 0, κ ≥ 0, ν > 0, α > 0; and σ0 > 0 is the company’s

base-level non-systematic risk. Here c is proportional to λ depending on
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parameters κ and α (i.e. the executive’s work effort is proportional to the

quality of his control decision); and c increases with deviation of control

choice σ from σ0 depending on parameter ν (i.e. given λ, the executive’s

easiest control decision is to make investment or financing decisions that do

not disrupt the company’s base-level non-systematic volatility, which might

be conceptualized as a preference for maintaining the status quo of the com-

pany’s business model).

The following lemma establishes the first step of the decomposition result.

Lemma 1.1.1

Suppose Assumption 1.1.1 holds, then the minimization problem

min
{σ>0:µ=r+λσ}

c(t,v,µ,σ) , for (t,v,λ) ∈ [0,T ]× R+ × R+
0 , (1.7)

admits a unique solution σ⋆(t,v,λ).

Proof. Fix (t,v,λ) ∈ [0,T ] × R+ × R+
0 and define the function f by f(σ) =

c(t,v,r + λσ, σ), for λ ≥ 0. We need to show for f that a minimizing σ⋆ =

σ⋆(t,v,λ) exists and is unique. Computing the first and second derivatives

gives

f ′(σ) = λ
∂c

∂µ
(t,v,r + λσ, σ) +

∂c

∂σ
(t,v,r + λσ, σ) ,

and

f ′′(σ) = λ2 ∂2c

∂µ2
(t,v,r+λσ, σ)+2λ

∂2c

∂σ∂µ
(t,v,r+λσ, σ)+

∂2c

∂σ2
(t,v,r+λσ, σ) .

By the differentiability assumption for c, f ′ is continuous and differentiable

and f ′′ is continuous. Using elementary calculus rationale, the minimization

problem minσ>0 f(σ) admits a unique solution if f ′(σ⋆) = 0 has a solution

and f is strictly convex.

For f ′(σ⋆) = 0 to admit a solution that locally minimizes f , it is sufficient

that f ′ starts below zero, f ′(0+) < 0, and that f ′ takes on a positive value

for some σ > 0+. This is given by Assumption 1.1.1 (ii). Moreover the
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condition f is strictly convex, f ′′ > 0, implies the solution is a unique global

minimizer. Assumption 1.1.1 (iii) gives the strict convexity of f .

Changing the parameters of the optimal investment and control problem in

(1.6) from u = (πP ,πS,µ,σ) to u′ = (πP ,πS,λ), and replacing c by c⋆, requires

adapting Def. 1.1.1 to the new setting. Before we present the new framework,

observe that the company’s stock price with respect to λ (and σ⋆(λ)) has the

dynamics

dSλ
t = Sλ

t

([
r + λtσ

⋆(t,V u′

t ,λt)
]
dt+ β

[
dPt

Pt

− rdt

]
+ σ⋆(t,V u′

t ,λt) dWt

)
,

Sλ
0 ∈ R+ .

(1.8)

Accordingly, the wealth equation will change to

dV u′

t = V u′

t

(
(1− πP

t − πS
t )

dBt

Bt

+ πP
t

dPt

Pt

+ πS
t

dSλ
t

Sλ
t

)
, V u′

0 ∈ R+ , (1.9)

which implies the following rewritten representation using the equations

(1.1), (1.2) and now (1.8) for the money market account, the market portfolio

and the restated company’s stock respectively:

dV u′

t =V u′

t

([
r + (πP

t + β πS
t )(µ

P − r) + πS
t λt σ

⋆(t,V u′

t ,λt)
]
dt

+
[
πP
t + β πS

t

]
σPdW P

t + πS
t σ⋆(t,V u′

t ,λt) dWt

)
, V u′

0 ∈ R+ .
(1.10)

Further, we define the minimized disutility c⋆ corresponding to portfolio value

v > 0 at time t via

c⋆(t,v,λ) := c(t,v,r + λσ⋆(t,v,λ), σ⋆(t,v,λ)) = min
{σ>0:µ=r+λσ}

c(t,v,µ,σ) .

(1.11)
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For the stock price process Sλ
t defined in (1.8) we have to impose a technical

condition similar to Def. 1.1.1 (i). The change of control from vector from

u = (πP ,πS,µ,σ) to u′ = (πP ,πS,λ) is driven by the disutility function c, i.e.

σ⋆(t,v,λ) is determined by the form of c (see Lemma 1.1.1). The following

assumption guarantees that the most cost efficient strategies are admissible.

Assumption 1.1.2

For a given control u = (πP ,πS,µ,σ) ∈ A(t,v), the value process V u′

t , λt =

(µt−r)/σt and σ⋆(t,V u′

t ,λt) are determined in accordance with Lemma 1.1.1.

The process Sλ
t defined in (1.8) is assumed to satisfy

∫ T

t

(Sλ
s )

2
(
(βσP )2 + (σ⋆(s,V u′

s ,λs))
2
)
ds < ∞ P − a.s. .

Definition 1.1.2

Let 0 ≤ t ≤ T , t fixed, and let further λ take values in [0,∞). Then we denote

by A′(t,v) the set of admissible strategies u′ =
(
πP ,πS,λ

)
corresponding to

portfolio value v = V u′

t > 0 at time t, which are {Fs ; t ≤ s ≤ T}-predictable
processes, such that

(i) the company’s stock price process

dSλ
s = Sλ

s

(
[r + λsσ

⋆
s ] dt+ β

[
dPs

Ps

− rds

]
+ σ⋆

s dWs

)
, Sλ

t ∈ R+ ,

has a unique non-negative solution and satisfies
∫ T

t

(Sλ
s )

2
(
(βσP )2 + (σ⋆

s)
2
)
ds < ∞ P − a.s. ;

(ii) the wealth equation

dV u′

s = V u′

s

(
(1− πP

s − πS
s )

dBs

Bs

+ πP
s

dPs

Ps

+ πS
s

dSλ
s

Sλ
s

)
, V u′

t ∈ R+ ,

has a unique non-negative solution and satisfies
∫ T

t

(
V u′

s

)2 (
(πP

s + β πS
s )

2(σP )2 + (πS
s σ

⋆
s)

2
)
ds < ∞ P − a.s. ;
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(iii) and the utility of wealth and the minimized disutility of control satisfy

E

[
U
(
V u′

T

)−
+

∫ T

t

c⋆(s, V u′

s ,λs) ds

]
< ∞ .

Theorem 1.1.3 (Correspondence Result)

Suppose (1.6) admits a solution Φ, then this solution coincides with the value

function of the optimal investment and control problem

Φ′(t,v) = sup
u′∈A′(t,v)

Et,v

[
U
(
V u′

T

)
−
∫ T

t

c⋆
(
s,V u′

s ,λs

)
ds

]
, (t,v) ∈ [0,T ]× R+ ,

(1.12)

where A′(t,v) is given in Def. 1.1.2.

Proof. Let

J(t,v; u) := Et,v

[
U(V u

T )−
∫ T

t

c(s,V u
s ,µ(s,V

u
s ),σ(s,V

u
s )) ds

]

and

J ′(t,v; u′) := Et,v

[
U(V u′

T )−
∫ T

t

c⋆(s,V u′

s ,λ(s,V u′

s )) ds

]
.

The assertion is proven if we show that

sup
u∈A(t,v)

J(t,v; u) = sup
u′∈A′(t,v)

J ′(t,v; u′) , (1.13)

i.e. the performance functionals J and J ′ admit the same value function

Φ(t,v).

First, we are given a control vector u = (πP , πS, µ, σ) ∈ A(t,v) (and the

resulting non-systematic Sharpe ratio λ = (µ − r)/σ), and show that there

exists a control vector ũ = (π̃P ,π̃S,λ̃) ∈ Ã(t,v) such that J(t,v; u) ≤ J ′(t,v; ũ).

Note that replacing the controls µ and σ by λ and replacing the disutility c by

c⋆ leads to two different systems of controlled SDEs describing the executive’s



CHAPTER 1. THE CRRA UNCONSTRAINED EXECUTIVE 19

utility-maximizing behavior. For control vector ũ = (π̃P , π̃S, λ̃), we write the

dynamics of the resulting price processes as follows

dB̃t = B̃t r dt , dP̃t = P̃t

([
r + λPσP

]
dt+ σPdW P

t

)
,

dS̃t = S̃t

([
r + λ̃t σ

⋆(t,Ṽ ũ
t , λ̃t)

]
dt+ β

[
dP̃t

P̃t

− rdt

]
+ σ⋆(t,Ṽ ũ

t , λ̃t) dWt

)
,

dṼ ũ
t = Ṽ ũ

t

([
r + π̃P

t λP σP + π̃S
t

(
λ̃t σ

⋆(t,Ṽ ũ
t , λ̃t) + β(µP − r)

)]
dt

+π̃P
t σP dW P

t + π̃S
t βσ

PdW P
t + π̃S

t σ⋆(t,Ṽ ũ
t , λ̃t) dWt

)
.

The system (B̃,P̃ , S̃, Ṽ ũ) is specified on the same probability space as the

original system (B,P,S,V u). We now choose the controls

λ̃t := λt , π̃P
t := πP

t + πS
t β

(
1− σ(t,V u

t )

σ⋆(t,Ṽ ũ
t , λ̃t)

)
, π̃S

t := πS
t

σ(t,V u
t )

σ⋆(t,Ṽ ũ
t , λ̃t)

.

This yields that the integrands of the stochastic integrals (or, coefficients of

the SDEs) defining dV u and dṼ ũ coincide almost-surely for each t. Noting

that there exist continuous versions of the resulting processes V u and Ṽ ũ, we

obtain uniformly on [0,T ]

Ṽ ũ = V u , and λ̃ = λ , P − a.s. . (1.14)

We remark here that by definition we also have B̃ = B and P̃ = P .

However, in general S̃ 6= S. Continuing the proof, by c⋆(t,v,λ) :=

c(t,v,r+λσ⋆(t,v,λ),σ⋆(t,v,λ)) = min{σ>0:µ=r+λσ} c(t,v,µ,σ) and recalling that

λ = (µ− r)/σ we have:

J(t,v; u) ≤ Et,v

[
U(V u

T )−
∫ T

t

c⋆(s,V u
s ,λs) ds

]

(1.14)
= Et,v

[
U(Ṽ ũ

T )−
∫ T

t

c⋆
(
s,Ṽ ũ

s , λ̃s

)
ds

]
= J ′ (t, v; ũ) .

To finish the first part of the proof, we have to ensure ũ ∈ A′(t,v). This can

be done by recalling that u ∈ A(t,v) and checking conditions (i),(ii) and (iii)

of Def. 1.1.2. First note that (i) is satisfied due to Assumption 1.1.2. To
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verify (ii) note that

Ṽ ũ
s = V u

s , P − a.s. ,

π̃P
s + β π̃S

s = πP
s + β πS

s , P − a.s. ,

π̃S
s σ⋆(s,Ṽ ũ

s ,λ̃s) = πS
s σs , P − a.s. ,

for t ≤ s ≤ T , and recall Def. 1.1.1 (ii). To verify (iii), check that

c⋆s(s,Ṽ
ũ
s ,λ̃s) ≤ c(s,V u

s ,µs,σs), for t ≤ s ≤ T , and then recall Def. 1.1.1 (iii) to

obtain an integrable upper bound.

To conclude the proof we have to show that for a given control ũ =

(π̃P ,π̃S,λ̃) ∈ A′(t,v) there is a corresponding control u = (πP ,πS,µ,σ) ∈
A(t,v) s.t. J ′(t,v; ũ) ≤ J(t,v; u). To do so, set σs = σ⋆(s,Ṽ ũ

s ,λ̃s), µs =

r + λ̃s σs, as well as π̃P
s = πP

s and π̃S
s = πS

s , for t ≤ s ≤ T , to obtain

J ′(t,v; ũ) = J(t,v; u). Finally, u ∈ A(t,v) is verified directly by checking

Def. 1.1.1 using ũ ∈ A′(t,v) and Def. 1.1.2.

1.2 Optimal Strategies

In this section we use stochastic control techniques to derive closed-form so-

lutions to the investment and control decision problem in (1.12), for special

choices of the utility and disutility functions. In particular we specify con-

stant relative risk aversion. For the relative risk aversion parameter γ > 0,

the utility function U is

U(v) =





v1−γ

1− γ
, for γ > 0 and γ 6= 1

log(v) , for γ = 1 ,

(1.15)

and the disutility of control (i.e. work effort) c⋆ is

c⋆(t,v,λ) = κ v1−γ λα

α
, γ > 0 , (1.16)
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where κ > 0 and α > 2 are the executive’s work effectiveness parameters,

respectively termed ‘inverse work productivity’ and ‘disutility stress’. κ di-

rectly relates the executive’s work effort disutility to the quality of his control

decision as indicated by the non-systematic Sharpe ratio λ, and α indicates

how rapidly his work effort disutility will rise for the sake of an improved

λ. The requirement α > 2 is a consequence of our set-up that ensures the

executive’s disutility grows with work effort, i.e. λ, at a rate that offsets (at

some level of λ) the rate of his utility gain due to the flow-on from his work

effort to the value of his own-company stockholding; this becomes evident

with derivation of the solution to (1.12). A higher quality executive is able

to achieve a given λ with lower disutility, and is able to improve λ with lower

incremental disutility. That is, higher executive quality (i.e. higher work

effectiveness) is implied by lower values of κ and α.

In (1.16), the scaling factor v1−γ relates the executive’s disutility of work

effort to his wealth (v) with a formulation based on the constant relative risk

aversion formulation of the utility function in (1.15). Given a low (high) value

of the relative risk aversion parameter, 0 < γ < 1 (γ > 1), the executive’s

work effort disutility increases (decreases) with his wealth at a decreasing

rate; and for γ = 1, work effort disutility is unrelated to wealth.

Remark 1.2.1

Our specification for the disutility of work effort is economically reasonable

for the case 0 < γ < 1. For γ > 1, our specification produces decreasing

disutility of work effort for an increasing level of wealth, keeping work effort

constant. This is economically counter-intuitive.

But it is very important for this utility/disutility set-up that the utility of

wealth and the disutility of work effort are normed to take values on the

same scale w.r.t. the wealth v.

A possible rationalization is to consider γ to be positively related to the ex-

ecutive’s work ethic, such that a high work ethic executive has comparatively
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low aversion to work effort at outset and will become further less averse to

work effort if past effort or chance brings success as indicated by increased

wealth. Whereas a low work ethic executive has comparatively high aversion

to work effort and will become further more averse to work effort if his wealth

increases. So in what follows we solve nevertheless our executive’s investment

and control problem for all values of γ > 0.

For the remainder of the chapter we assume that the optimal investment and

control problem (1.12) admits a value function Φ ∈ C1,2.

To guarantee that the candidates we will derive for the executive’s optimal

investment and control strategy (i.e. the choices for own-company stockhold-

ing, market portfolio holding and non-systematic Sharpe ratio) and value

function are indeed optimal, we have to consider a more restrictive class of

admissible strategies as follows.

Definition 1.2.1

Let 0 ≤ t ≤ T , t fixed, and let λ take values in [0,∞). Further choose

ǫ̃ ∈ (0,∞) as close to zero as possible. Then by A′
γ(t,v) we denote the set of

admissible strategies u′ =
(
πP ,πS,λ

)
∈ A′(t,v), such that

(i) for γ > 0 and γ 6= 1:

∫ T

t

(πP
s + βπS

s )
2+ǫ̃(σP )2+ǫ̃ +

(
πS
s σ

⋆
s

)2+ǫ̃
ds ≤ C1 < ∞, for some C1 ∈R+

0 ;

(1.17)
∫ T

t

∣∣πS
s σ

⋆
sλs

∣∣ du ≤ C2 < ∞ , for some C2 ∈ R+
0 ; (1.18)

(ii) for γ = 1:

E

[∫ T

t

(πP
s + β πS

s )
2(σP )2 + (πS

s σ
⋆
s)

2 ds

]
< ∞ . (1.19)
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Restating the optimal investment and control problem:

Φ(t, v) = sup
u′∈A′

γ(t,v)

Et,v

[
U(V u′

T )−
∫ T

t

c⋆(s,V u′

s ,λs) ds

]
, (1.20)

where (t,v) ∈ [0,T ]× R+.

Remark 1.2.2

The results previously derived for A′(t,v) remain valid for A′
γ(t,v) since

A′
γ(t,v) is obviously a subset of A′(t,v).

1.2.1 Hamilton-Jacobi-Bellman Equation

Having formulated the optimal investment and control decision problem with

respect to the parameter set u′ = (πP ,πS,λ) as given by (1.20), we can write

down the corresponding Hamilton-Jacobi-Bellman equation (HJB); note that

we formulate this equation with respect to a general utility function U and

a general disutility function c⋆:

0 = sup
u′∈R2×[0,∞)

[
(Lu′

Φ)(t,v)− c⋆(t,v, λ)
]
, for (t,v) ∈ [0,T )× R+,

U(v) = Φ(T,v) , for v ∈ R+ ,

(1.21)

where the differential operator Lu′

is given by

(Lu′

g)(t,v) =
∂g

∂t
(t,v) +

∂g

∂v
(t,v) v

(
r + πSλσ⋆(t,v,λ) + πSβ[µP − r]

+ πP [µP − r]
)
+

1

2

∂2g

∂v2
(t,v) v2

([
πSσ⋆(t,v,λ)

]2
+
[
(πP + πSβ)σP

]2)
.

(1.22)

Potential maximizers πP ⋆
, πS⋆

and λ⋆ of the HJB (1.21) can be calculated

by establishing the first order conditions:

πP ⋆

(t,v) = −(µP − r)

v(σP )2
Φv(t,v)

Φvv(t,v)
− β πS⋆

(t,v) ,

πS⋆

(t,v) = − λ⋆(t,v)

vσ⋆(t,v,λ⋆(t,v))

Φv(t,v)

Φvv(t,v)
,

(1.23)
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where λ⋆ is the solution of the implicit equation

λ
Φ2

v(t,v)

Φvv(t,v)
+

∂c⋆

∂λ
(t,v,λ) = 0 for all (t,v) ∈ [0,T ]× R+ , (1.24)

where we have already used (1.23) to simplify the equation.

From (1.23), the executive’s optimal wealth allocation to his own company’s

stock πS⋆
depends on his optimal control decision for the stock price dynamics

λ⋆. However, the executive’s overall preference for investment exposure to

systematic risk is independent of λ⋆. Therefore his optimal wealth allocation

to the market portfolio πP ⋆
incorporates a deduction for the systematic risk

exposure entailed by πS⋆
; because of this, πP ⋆

also depends on λ⋆ via πS⋆

factored by the company’s beta β.

Substituting the maximizers (1.23) in the HJB (1.21) yields:

0 = Φt(t,v) + Φv(t,v) v r −
1

2
(λ⋆(t,v))2

Φ2
v(t,v)

Φvv(t,v)
− 1

2
(λP )

2 Φ2
v(t,v)

Φvv(t,v)

−c⋆(t,v,λ⋆(t,v)) , (1.25)

where λP :=
µP − r

σP
is the Sharpe ratio of the market portfolio.

In the following section we solve (1.25) with choices (1.15) and (1.16) for the

utility and disutility functions.

1.2.2 Closed-Form Solutions

Closed-form solutions are obtained for the optimal investment and control

problem in (1.20) using the utility and disutility functions (1.15) and (1.16),

first for the power-utility case (γ > 0 and γ 6= 1), and then for the log-utility

case (γ = 1).

Theorem 1.2.1 (The power-utility case: γ > 0 and γ 6= 1)

The full solution of the maximization problem (1.20) can be summarized by
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the strategy

λ⋆(t,v) =

(
1

κ γ
f(t)

) 1
α−2

,

πP ⋆
(t,v) =

µP − r

γ (σP )2
− β πS⋆

(t,v) , πS⋆
(t,v) =

λ⋆(t,v)

γ σ⋆(t,v,λ⋆(t,v))
,

(1.26)

and value function

Φ(t,v) =
v1−γ

1− γ
f(t) , (1.27)

where

f(t) = e
(1−γ)

(
r+ 1

2

λ2P
γ

)
(T−t)

×


1−

(α− 2)
(

1
κ γ

) 2
α−2

α (2 γ r + λ2
P )

(
e

1−γ
α−2

(
2 r+

λ2P
γ

)
(T−t) − 1

)


−α−2
2

.

(1.28)

Proof. First observe that a function F of the form F (λ) = a λ2 − b λα,

λ ≥ 0, for given constants a, b > 0 and α > 2, has a unique maximizer λ⋆

and maximized value F (λ⋆) given by

λ⋆ =

(
2 a

α b

) 1
α−2

, and F (λ⋆) = (α− 2)α− α
α−2 2

2
α−2 a

α
α−2 b−

2
α−2 . (1.29)

Using this insight the first order condition for λ⋆ in (1.24) is now solved. Set

a =
1

2

Φ2
v

−Φvv

, and b =
κ

α
v1−γ ,

then (1.29) gives

λ⋆ =

(
1

κ v1−γ

Φ2
v

−Φvv

) 1
α−2

, F (λ⋆) =
α− 2

2α

(
κ v1−γ

)− 2
α−2

(
Φ2

v

−Φvv

) α
α−2

.

Now (1.25) reads

0 = Φt + Φv v r +
1

2

Φ2
v

−Φvv

(
µP − r

σP

)2

+
α− 2

2α

(
κ v1−γ

)− 2
α−2

(
Φ2

v

−Φvv

) α
α−2

.

(1.30)
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Using the separation ansatz Φ(t,v) = f(t) v1−γ

1−γ
with f(T ) = 1 results in

Φt = ḟ
v1−γ

1− γ
, Φv = f v−γ , Φvv = −γ f v−γ−1 , and

Φ2
v

−Φvv

=
f v1−γ

γ
.

Thus (1.30) becomes

0 =ḟ
v1−γ

1− γ
+ f v1−γ r +

1

2

f v1−γ

γ

(
µP − r

σP

)2

+
α− 2

2α

(
κ v1−γ

)− 2
α−2

(
f v1−γ

γ

) α
α−2

.

Dividing by v1−γ

1−γ
and recalling λP = (µP − r)/σP gives

ḟ = f

[
−(1− γ)

(
r +

1

2

λ2
P

γ

)]
+ f

α
α−2

[
−(1− γ)

κ

2

α− 2

α

(
1

κ γ

) α
α−2

]
.

(1.31)

This is a Bernoulli ordinary differential equation (ODE) of the form ḟ =

a1 f + aν f
ν , with solution

f(t)1−ν = C eG(t) + (1− ν) eG(t)

∫ t

0

e−G(s) aν ds ,

where G(t) = (1 − ν)
∫ t

0
a1(s) ds and C is an arbitrary constant. In our

setting we have ν = α
α−2

and (1− ν) = −2
α−2

implying

a1 = −(1− γ)

(
r +

1

2

λ2
P

γ

)
, aν = −(1− γ)

κ

2

α− 2

α

(
1

κ γ

) α
α−2

.

The formal solution f(t)1−ν is explicitly calculated in three steps. First,

compute

G(t) = − 2 a1 t

α− 2
, and

∫ t

0

e−G(s) aν(s) ds =
α− 2

2

aν
a1

(
e

2 a1 t
α−2 − 1

)
,

then

f(t) = ea1 t
(
C − aν

a1

(
e

2 a1 t
α−2 − 1

))−α−2
2

.

Finally, solve for C by using f(T ) = 1 so that

C = e
2 a1 T
α−2 +

aν
a1

(
e

2 a1 T
α−2 − 1

)
.
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Note also that f(0) = C−α−2
2 . Now

f(t) = e−a1 (T−t)

(
1− aν

a1

(
e−

2 a1
α−2

(T−t) − 1
))−α−2

2

.

Substituting for a1 and aν then yields the result for f(t). Using Φv

Φvv
= − v

γ
and

the first order conditions in (1.23) we obtain the claimed optimal strategy λ⋆,

πP ⋆
and πS⋆

. Finally note that our claimed optimal strategies are admissible,

i.e. u′⋆ = (πS⋆
,πP ⋆

,λ⋆) ∈ A′
γ(t,v). A sufficient condition for admissibility is

that λ⋆, πP ⋆
σP , and πS⋆

σ⋆ be uniformly bounded (see Def. 1.2.1); because

these expressions are deterministic and continuous functions in u on [t,T ],

they are hence uniformly bounded.

Theorem 1.2.2 (The log-utility case: γ = 1)

The full solution of the maximization problem (1.20) can be summarized by

the strategy

λ⋆(t,v) = κ− 1
α−2 ,

πP ⋆
(t,v) =

µP − r

(σP )2
− β πS⋆

(t,v) , πS⋆
(t,v) =

λ⋆(t,v)

σ⋆(t,v,λ⋆(t,v))
,

(1.32)

and value function

Φ(t,v) = log(v) +

[
r +

1

2

(
µP − r

σP

)2

+
α− 2

2α
κ− 2

α−2

]
(T − t) . (1.33)

Proof. As in the power-utility case, first the implicit first order condition

for λ⋆ in (1.24) is made explicit. This time set

a =
1

2

Φ2
v

−Φvv

, and b =
κ

α
,

then (1.29) gives

λ⋆ =

(
1

κ

Φ2
v

−Φvv

) 1
α−2

, and F (λ⋆) =
α− 2

2α
κ− 2

α−2

(
Φ2

v

−Φvv

) α
α−2

.

The partial differential equation (PDE) for log-utility now reads

0 = Φt + Φv v r +
1

2

Φ2
v

−Φvv

(
µP − r

σP

)2

+
α− 2

2α
κ− 2

α−2

(
Φ2

v

−Φvv

) α
α−2

. (1.34)
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Using the ansatz Φ(t,v) = log(v) + ϕ(T − t) results in

Φt = −ϕ , Φv =
1

v
, Φvv = − 1

v2
, and Φ(T,v) = log(v) = U(v) .

Then (1.34) reduces to

ϕ = r +
1

2

(
µP − r

σP

)2

+
α− 2

2α
κ− 2

α−2 .

Finally, noting Φ2
v/Φvv = −1 and using the first order conditions in (1.23)

establishes the claimed optimal strategy. Using identical rationale as in the

proof of Theorem 1.2.1, we see that u′⋆ = (πS⋆
,πP ⋆

,λ⋆) ∈ A′
1(t,v). Note that

we also obtain the form of the optimal strategy by formally setting γ = 1 in

Theorem 1.2.1.

1.2.3 Verification Theorem

The solutions of the maximization problems given in Theorems 1.2.1 and

1.2.2 are candidates for the optimal investment and control choices for the

problem in (1.20). In this section we verify that under sufficient assumptions

these solutions are indeed optimal.

Theorem 1.2.3 (Verification Result)

Let κ > 0 and α > 2. Assume the executive’s utility and disutility func-

tions are given by (1.15) and (1.16). Then the candidates given in (1.26)

- (1.28) are the optimal investment and control strategy (i.e. own-company

stockholding, market portfolio holding and non-systematic Sharpe ratio strat-

egy) and value function of the optimal control problem (1.20) for the case

γ > 0 and γ 6= 1; and the candidates given in (1.32) and (1.33) are the opti-

mal investment and control strategy and value function of the optimal control

problem (1.20) for the case γ = 1.
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Proof. Define the performance functional of our optimal investment and

control decision by

J(t,v; u′) := Et,v

[
U
(
V u′

T

)
−
∫ T

t

c⋆(s, V u′

s ,λs) ds

]
,

where (t,v) ∈ [0,T ] × R+ and u′ = (πP ,πS,λ) ∈ A′
γ(t,v). Recall the claimed

optimal value function Φ ∈ C1,2, for γ > 0, and apply Ito’s formula to obtain:

U
(
V u′

T

)
−
∫ T

t

c⋆(s, V u′

s ,λs) ds = Φ(T,V u′

T )−
∫ T

t

κ
(
V u′

s

)1−γ λα
s

α
ds = Φ(t,v)

+

∫ T

t

(
Φt(s,V

u′

s ) + Φv(s,V
u′

s )V u′

s

[
r + πS

s λσ⋆
s + (πP

s + β πS
s )(µ

P − r)
]

+ 1/2Φvv(s,V
u′

s )
(
V u′

s

)2 [
((πP

s + β πS
s )σ

P )2 + (πS
s σ

⋆
s)

2
]
− κ

(
V u′

s

)1−γ λα
s

α

)
ds

+

∫ T

t

Φv(s,V
u′

s )V u′

s (πP
s + β πS

s )σ
P dW P

s +

∫ T

t

Φv(s,V
u′

s )V u′

s πS
s σ

⋆
s dWs .

(1.35)

The remainder of the proof is divided into two parts. Part (a) establishes that

the value function Φ coincides with the performance functional J evaluated

at the claimed maximizers u′⋆ = (πS⋆
,πP ⋆

,λ⋆), γ > 0. Part (b) shows the

optimality of the candidate u′⋆, i.e.: J(t,v; u′) ≤ Φ(t,v), for u′ ∈ A′
γ(t,v).

Part (a): We establish that J(t,v; u′⋆) = Φ(t,v). To do this we show that

in the right hand side (RHS) of (1.35) the drift vanishes by the HJB (1.21)

and that the local martingale component is a true martingale and hence

disappears in expectation. And finally, it is verified that indeed u′⋆ ∈ A′
γ(t,v).

By construction, Φ with control u′⋆ satisfies the HJB-PDE in (1.21), that is,

0 = Φt + Φv v (r + πS⋆ λ⋆ σ⋆ + (πP⋆ + β πS⋆)[µP − r])

+(1/2)Φvv v
2([πS⋆ σ⋆]2 + [(πP⋆ + β πS⋆) σP ]2)− c⋆ .

This eliminates the drift (Lebesgue integral) in (1.35) and we obtain

U
(
V u′⋆

T

)
−
∫ T

t

c⋆(s, V u′⋆

s ,λ⋆
s) ds = Φ(t,v)+

∫ T

t

Φv(s,V
u′⋆

s )V u′⋆

s (πP⋆
s + β πS⋆

s )σP dW P
s +

∫ T

t

Φv(s,V
u′⋆

s )V u′⋆

s πS⋆
s σ⋆

s dWs .
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For J(t,v; u′⋆) = Φ(t,v), it remains to prove that the local martingale com-

ponent disappears in expectation. A sufficient condition is the square-

integrability of the local martingale component

E

[∫ T

t

(
Φv(s,V

u′⋆

s )V u′⋆

s

)2 (
[πP ⋆

s + β πS⋆

s ]2(σP )2 + [πS⋆

s σ⋆
s ]

2
)
ds

]
< ∞ .

Using the explicit form of the candidates in (1.26), for γ > 0 and γ 6= 1, and

in (1.32), for γ = 1, gives

(
Φv(s,V

u′⋆

s )V u′⋆

s

)2 (
[πP ⋆

s + β πS⋆

s ]2(σP )2 + [πS⋆

s σ⋆
s ]

2
)

=

(
V u′⋆

s

)2(1−γ)
f(s)2

γ2

[
(µP − r)2

(σP )2
+

(
1

κγ
f(s)

) 2
α−2

]
,

where we set f = 1, for γ = 1. The RHS is
(
V u′⋆

s

)2(1−γ)
times a deterministic

and continuous function on the compact set [t,T ]. The deterministic part

is uniformly bounded. Therefore, it is sufficient to focus on the stochastic

component: V u′⋆
satisfies

dV u′⋆

s = V u′⋆

s

[
r ds+

λ2
P

γ
ds+

(λ⋆(s,V u′⋆

s ))2

γ
ds +

λP

γ
dW P

s +
λ⋆(s,V u′⋆

s )

γ
dWs

]
.

Recalling that λ⋆(s,v) is a continuous function in s and does not depend on

v, we see that V u′⋆

s follows a log-normal distribution with parameters being

uniformly bounded, for all s ∈ [t,T ]. Since all moments of a log-normally

distributed random variable exist, it follows that the local martingale is a

square-integrable martingale. This establishes J(t,v; u′⋆) = Φ(t,v). Finally,

u′⋆ ∈ A′
γ(t,v) follows from the fact that πP⋆, πS⋆ σ⋆, and λ⋆ are uniformly

bounded on [t,T ], each γ > 0.

Part (b): Now we show the optimality, i.e. J(t,v; u′) ≤ Φ(t,v), for u′ ∈
A′

γ(t,v). As in (a), this is also based on the analysis of (1.35). The HJB (1.21)

is applied to show that the drift component is bounded from above by zero.

Then it is shown that the conditions in Def. 1.2.1 are sufficient for the local

martingale component on the RHS of (1.35) to vanish in expectation.
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By the HJB (1.21), Φ with arbitrary u′ = (πP ,πS,λ) ∈ R× R× R+
0 satisfies

0 ≥ Φt + Φv v (r + πS λσ⋆ + (πP + β πS)[µP − r])

+(1/2)Φvv v
2([πS σ⋆]2 + [(πP + β πS) σP ]2)− c⋆ ,

for (s,v) ∈ [t,T ]×R+. This provides the point-wise upper bound zero for the

drift in (1.35) and we obtain

U
(
V u′

T

)
−
∫ T

t

c⋆(s, V u′

s ,λs) ds ≤ Φ(t,v)+

∫ T

t

Φv(s,V
u′

s )V u′

s (πP
s + β πS

s )σ
P dW P

s +

∫ T

t

Φv(s,V
u′

s )V u′

s πS
s σ

⋆(s,V u′

s ,λs) dWs

︸ ︷︷ ︸
=:Mt

T

.

(1.36)

We discuss two separate cases: (b1): 0 < γ < 1 and γ > 1, and (b2): γ = 1.

Part (b1): 0 < γ < 1 and γ > 1. Recall Φv(t,v) = f(t) v−γ and calculate the

quadratic variation of M t

〈M t〉T =

∫ T

t

(V u′

s )2(1−γ)f 2(s)
(
[πP

s + β πS
s ]

2(σP )2 + [σ⋆
sπ

S
s ]

2
)
ds

≤ ǫ
ǫ

1+ǫ

1 + ǫ
sup

0≤s≤T
f(s)2

[∫ T

t

(
V u′

s

)2 (1−γ) (1+ 1
ǫ )

ds

+

∫ T

t

(
[πP

s + β πS
s ]

2(σP )2 + [σ⋆
sπ

S
s ]

2
)1+ǫ

ds
]
, ǫ > 0 ,

(1.37)

where the upper bound in the second line was achieved using inequality

(A.1.2) given in Lemma 0.1.1 setting

x := (V u′

s )2(1−γ) and y :=
(
[πP

s + β πS
s ]

2(σP )2 + [σ⋆
sπ

S
s ]

2
)
.

We show that M t is a martingale by deriving the integrability of the quadratic

variation 〈M t〉T . First we use once more that f is a continuous function on

the compact set [0,T ] and is uniformly bounded, and thus sup0≤s≤T f(s)2 is

finite. We are left to deal with the two expressions in the brackets of (1.37).

The second expression is bounded in expectation by assumption, see (1.17)
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in Def. 1.2.1, setting ǫ = 1
2
ǫ̃. In what follows we establish that the first

expression is finite by showing that

Et,v[(V π
s )

ξ] < ∞ uniformly , (1.38)

with ξ = 2 (1 − γ)
(
1 + 1

ǫ

)
, where ξ > 0 for 0 < γ < 1 and ξ < 0 for γ > 1.

Note further that |ξ| < ∞, since ǫ > 0.

The solution of the wealth equation (1.10) starting at t with initial wealth v

applying variation of constants is

V u′

s = v er(s−t)+
∫ s
t (π

P
s̃ +β πS

s̃ )λ
P σP+πS

s̃ λs̃σ
⋆
s̃ ds̃ eL

t
s− 1

2〈Lt〉
s ,

where Lt
s =

∫ s

t
(πP

s̃ + β πS
s̃ )σ

PdW P
s̃ +

∫ s

t
πS
s̃ σ

⋆
s̃dWs̃ and 〈Lt〉s =

∫ s

t
(πP

s̃ +

β πS
s̃ )

2(σP )2 + (πS
s̃ σ

⋆
s̃)

2ds̃. Then

(V u′

s )ξ = vξ eξ [r(s−t)+
∫ s
t (π

P
s̃ +β πS

s̃ )λ
P σP+πS

s̃ λs̃σ
⋆
s̃ ds̃]

︸ ︷︷ ︸
=:Rt

s

× eξ L
t
s− 1

2
ξ 〈Lt〉

s︸ ︷︷ ︸
=:Zt

s

Thus, condition (1.38) is for example fulfilled when

Et,v[(Rt
s)

2] < ∞ and Et,v[(Zt
s)

2] < ∞ .

The square of Rt is given by

(Rt
s)

2 = e2 ξ[r(s−t)+
∫ s
t (π

P
s̃ +β πS

s̃ )λ
P σP+πS

s̃ λs̃σ
⋆
s̃ ds̃] ,

which is uniformly bounded by a constant, see Def. 1.2.1, (1.17) and (1.18),

and recalling that ξ > 0 for 0 < γ < 1 and ξ < 0 for γ > 1 as well as |ξ| < ∞,

since ǫ > 0. This directly implies the square integrability of Rt.

The square of Zt is given by

(Zt
s)

2 = e2 ξ L
t
s− 1

2
2 ξ 〈Lt〉

s

= e2 ξ L
t
s−(2 ξ)2 〈Lt〉

s × e(2 ξ)
2 〈Lt〉

s
− 1

2
2 ξ 〈Lt〉

s

= e2 ξ L
t
s−4 ξ2 〈Lt〉

s × eξ (4ξ−1) 〈Lt〉
s

≤ 1

2

[
e4 ξ L

t
s− 1

2
16 ξ2 〈Lt〉

s︸ ︷︷ ︸
=:Z̃t

s

+ e2 ξ (4ξ−1) 〈Lt〉
s︸ ︷︷ ︸

=:R̃t
s

]
,
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where the last line is again a straight forward upper bound.

The second factor R̃t is uniformly bounded by a constant by condition (1.17)

of Def. 1.2.1. To finally obtain the square integrability of Zt, it remains to

prove that the first factor Z̃t
s = e4 ξ L

t
s− 1

2
16 ξ2 〈Lt〉

s , t ≤ s ≤ T , is integrable.

However, Z̃t is a strictly positive local martingale since it is the stochas-

tic exponential of the local martingale 4 ξ Lt. The Novikov condition holds

by (1.17), i.e. Et,v(e
1
2
16 ξ2〈Lt〉

T ) < ∞, and hence Z̃t is a true martingale and

Et,v(Z̃t
s) = 1, t ≤ s ≤ T . In summary, the local martingale M t is therefore

a martingale vanishing in expectation in (1.36), and taking the conditional

expectation of (1.36) gives the desired result

J(t,v; u′) = Et,v

[
U(V u′

T )−
∫ T

t

c⋆(s,V u′

s ,λs) ds

]
≤ Φ(t,v) , u′ ∈ A′

γ(t,v).

Part (b2): γ = 1. From Φv(t,v) = v−1 we obtain

M t
T =

∫ T

t

(πP
s + β πS

s ) σ
P dW P

s +

∫ T

t

πS
s σ⋆(s,V u′

s ,λs) dWs .

Def. 1.2.1 (ii) ensures the square-integrability. The local martingale M t is

therefore a martingale vanishing in expectation in (1.36), and J(t,v; u′) ≤
Φ(t,v), for u′ ∈ A′

1(t,v).

1.3 Discussion and Implications of Results

Theorems 1.2.1, 1.2.2 and 1.2.3 indicate our unconstrained executive’s max-

imized utility and associated optimal behavior in terms of personal portfolio

selection and choice of work effort, subject to the constant relative risk aver-

sion set-up. We now investigate the sensitivity of this optimal behavior to

variation of the executive’s risk aversion and work effectiveness characteris-

tics. Additionally, we derive the fair compensation for the executive’s work
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effort using a utility indifference approach (following the vein of, for example,

Lambert, Larcker and Verrecchia (1991)).

The executive is characterized by the relative risk aversion coefficient (γ >

0) and the two work effectiveness parameters work productivity (1/κ, with

κ > 0), and disutility stress (α > 2). To produce results that have relativity

to a base-level of work effort, as indicated by a base-level non-systematic

Sharpe ratio control decision λ0 > 0, the disutility c⋆ given by (1.16) is

reparameterized by choosing

κ̃ := κ (λ0)
α , (1.39)

such that the CRRA utility/disutility set-up becomes

U(v) =





v1−γ

1− γ
, for γ > 0 and γ 6= 1

log(v) , for γ = 1

and

c⋆(t,v,λ) =
κ̃

α
v1−γ

(
λ

λ0

)α

, for λ ≥ 0 , γ > 0 .

In regard to the executive’s optimal personal investment decisions π⋆, the

optimal own-company stockholding πS⋆
is a function of the optimal work

effort choice, and the associated optimal volatility σ⋆ (see Lemma 1.1.1)

which we do not explicitly specify. The optimal market portfolio allocation

πP ⋆
considered in conjunction with the systematic risk exposure associated

with πS⋆
coincides with the results from classical utility maximization in the

constant relative risk aversion setting, and is therefore of limited interest.

We now turn to the relationship between the executive’s optimal work ef-

fort/control choice λ⋆, his characteristics 1/κ̃ and α, and his utility indiffer-

ence compensation, for log-utility and power-utility cases. It is worth reiter-

ating that κ̃ (1/κ̃) directly (inversely) relates the executive’s work effort disu-

tility to the quality of his control decision as indicated by the non-systematic
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Sharpe ratio λ, and α indicates how rapidly his work effort disutility will rise

for the sake of an improved λ.

1.3.1 The Log-Utility Case

With assumption of log-utility (γ = 1), the executive’s optimal choice of

work effort for the new disutility parameterization is

λ⋆ = λ
α

α−2

0 (1/κ̃)
1

α−2

(see Theorem 1.2.2 for the optimal choice under the original parameteriza-

tion). We assume work productivity satisfies

1/κ̃ > λ−2
0

to ensure optimal work effort is not less than the base-level, i.e. λ⋆ ≥ λ0 > 0.

Consequently, for λ⋆ = λ⋆(1/κ̃,α), the optimal work effort sensitivities to the

work effectiveness parameters are

∂λ⋆

∂(1/κ̃)
=

κ̃

α− 2
λ⋆ > 0 ,

∂λ⋆

∂α
= −

ln
(

1/κ̃

λ−2
0

)

(α− 2)2
λ⋆ < 0, for α > 2 and 1/κ̃ > λ−2

0 .

That is, the executive’s optimal work effort choice is positively related to

his work productivity (∂λ⋆/∂(1/κ̃) > 0), and negatively related to his disu-

tility stress (∂λ⋆/∂α < 0). This result is illustrated by Figure 1.1, which

graphs optimal work effort versus work productivity and disutility stress,

with λ0 = 0.10. Furthermore Figure 1.1 indicates that, for moderate and

large values of disutility stress α, optimal work effort is mainly driven by

work productivity 1/κ̃; and optimal work effort is most sensitive to low val-

ues of work productivity close to the boundary value (1/κ̃ ' λ−2
0 = 100).

The limiting cases for work productivity are

lim
1/κ̃ցλ−2

0

λ⋆(1/κ̃, α) = λ0 and lim
1/κ̃ր∞

λ⋆(1/κ̃, α) = +∞ , for all α > 2 ,
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indicating that the limit for deteriorating work productivity is base-level work

effort λ0, and ever increasing work productivity yields ever increasing work

effort (to infinity).

Taking disutility stress to its limiting cases gives

lim
αց2

λ⋆(1/κ̃, α) = +∞ and lim
αր∞

λ⋆(1/κ̃, α) = λ0 , for all 1/κ̃ > λ−2
0 ,

indicating that the executive will deliver ever increasing work effort as disutil-

ity stress diminishes, and the totally stressed executive will deliver base-level

work effort.

The value function specifying the executive’s maximized utility can be writ-

ten as the difference between the utility from his optimal personal investment

decision and the disutility from his optimal work effort (see Theorem 1.2.2

for the value function under the original disutility parameterization):

Φ(0,v) = log(v) +

[
r +

1

2
(λP )2 +

1

2
(λ⋆)2

]
T

︸ ︷︷ ︸
=E0,v [U(V u′⋆

T )]

− 1

α
(λ⋆)2 T

︸ ︷︷ ︸
=E0,v

∫ T
0 c⋆(t,V u′⋆

t ,λ⋆(t,V u′⋆
t )) dt

. (1.40)

We assume that the executive’s fair compensation for the disutility of work

effort is paid up-front with cash or marketable (unconstrained) securities of

value ∆v. Applying a utility indifference argument, the fair level of compen-

sation satisfies

Φ(0, v +∆v) = Φ(0,v) + E0,v

[∫ T

0

c⋆(t, V u′⋆

t , λ⋆(t,V u′⋆

t )) dt

]
, (1.41)

which gives the following expression for the fair compensation rate:

Proposition 1.3.1

The fair compensation rate of the log-utility executive applying the indiffer-

ence utility argument (1.41) is given by

∆v = v

(
e

(λ⋆)2 T
α − 1

)
= v


e

λ20 T

α

(
1/κ̃

λ−2
0

) 2
α−2

− 1


 .
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Proof. Subtituting the representation (1.40) of the value function in (1.41)

we see that the fair compensation rate satisfies

log(v +∆ v) = log(v) + E0,v

[∫ T

0

c⋆(t, V u′⋆

t , λ⋆(t,V u′⋆

t )) dt

]
,

which is equivalent to

∆v = v

(
e
E0,v

[∫ T
0 c⋆(t,V u′⋆

t ,λ⋆(t,V u′⋆

t )) dt
]

− 1

)
.

Thus we are left with the calculation of the conditional expectation of the

integrated minimized disutility rate:

E0,v

[∫ T

0

c⋆(t, V u′⋆

t , λ⋆(t,V u′⋆

t )) dt

]
= E0,v

[∫ T

0

κ

α

(
κ− 1

α−2

)α
dt

]

=
κ− 2

α−2

α
T =

λ
2α
α−2

0 κ̃− 2
α−2

α
T ,

where we note that (λ∗)2 = λ
2α
α−2

0 κ̃− 2
α−2 . Plugging in this result finishes the

proof.

For ∆v = ∆v(1/κ̃,α), the utility indifference compensation sensitivities to

the work effectiveness parameters are

∂∆v

∂(1/κ̃)
=

2κ̃

α− 2

(λ⋆)2T

α
(∆v + v) > 0 , for α > 2 and 1/κ̃ > λ−2

0 ,

and

∂∆v

∂α
= −


 1

α
+

2 ln
(

1/κ̃

λ−2
0

)

(α− 2)2


 (λ⋆)2T

α
(∆v+v) < 0 , for α > 2 and 1/κ̃ > λ−2

0 ,

indicating the sensible result that the executive’s utility indifference compen-

sation increases with work productivity and decreases with disutility stress.

This result is illustrated by Figure 1.2, which graphs the executive’s fair up-

front compensation, based on the utility indifference rationale, versus work

productivity and disutility stress, for the case where the executive’s initial
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wealth is v = $5 million, time horizon is T = 10 years, and base-level work

effort is λ0 = 0.10.

The limiting cases for work productivity are

lim
1/κ̃ցλ−2

0

∆v(1/κ̃, α) = v

(
e

λ20 T

α − 1

)
, and lim

1/κ̃ր∞
∆v(1/κ̃, α) = +∞ ,

for all α > 2, and the limiting cases for disutility stress are

lim
αց2

∆v(1/κ̃, α) = +∞ , and lim
αր∞

∆v(1/κ̃, α) = 0 , for all 1/κ̃ > λ−2
0 .

That is, with ever improving work effectiveness (1/κ̃ ր ∞ or α ց 2), the

executive’s fair compensation is ever increasing (to infinity). And with ever

diminishing work effectiveness (1/κ̃ ց λ−2
0 or α ր ∞), the executive’s work

effort decreases towards base-level (λ0), for which the commensurate fair

compensation is v(eλ
2
0 T/α − 1); however, for the case where the executive

becomes totally stressed (α ր ∞), the fair compensation limit is zero.

1.3.2 The Power-Utility Case

Now with assumption of power-utility, the executive’s optimal choice of work

effort is

λ⋆(t) = λ
α

α−2

0

(
1

κ̃ γ

) 1
α−2

f(t)
1

α−2 ,

with

f(t) = e
(1−γ)

(
r+ 1

2

λ2P
γ

)
(T−t)

×


1−

(α− 2)
(

λα
0

κ̃ γ

) 2
α−2

α (2 γ r + λ2
P )

(
e

1−γ
α−2

(
2 r+

λ2P
γ

)
(T−t) − 1

)


−α−2
2

,

(see Theorem 1.2.1 for the optimal choice under the original disutility pa-

rameterization). To ensure optimal work effort is not less than the base-level,
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we assume for the risk-free rate of return (in f)

r > −λ2
P/(2γ)

(recalling that λP is the Sharpe ratio of the market portfolio), and for work

productivity

1/κ̃ >





γ λ−2
0 , for 0 < γ < 1 ,

γ λ−2
0 f(0)−1 , for γ > 1 .

These conditions follow from the properties of the function f given by the

equation above, where we keep in mind that (1 − γ) > 0 for 0 < γ < 1,

(1 − γ) < 0 for γ > 1 and that f(T ) = 1 and from the fact that f is the

solution of a Bernoulli ODE, which is decreasing in time for 0 < γ < 1 and

increasing in time for γ > 1, when we additionally fulfill that r > −λ2
P/(2γ)

(therefore see equation (1.31) of Theorem 1.2.1). Also note that f(0) reads

f(0) = e
(1−γ)

(
r+ 1

2

λ2P
γ

)
T

×


1−

(α− 2)
(

λα
0

κ̃ γ

) 2
α−2

α (2 γ r + λ2
P )

(
e

1−γ
α−2

(
2 r+

λ2P
γ

)
T − 1

)


−α−2
2

.

As in the log-utility case we calculate the fair compensation rate of the ex-

ecutive:

Proposition 1.3.2

Applying the indifference utility argument (1.41), the power-utility executive’s

utility indifference (fair) up-front compensation ∆v is

∆v = v

(
e

1
2γ

∫ T
0 λ⋆(t)2 dt

×


1−

(α− 2)
(

λα
0

κ̃ γ

) 2
α−2

α (2 γ r + λ2
P )

(
e

1−γ
α−2

(
2 r+

λ2P
γ

)
T − 1

)


(α−2)
2(1−γ)

− 1

)
.
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Proof. The solution presented for ∆v is derived using the structural proper-

ties of the executive’s optimal control vector u′⋆ = (πP ⋆
,πS⋆

,λ⋆). An outside

investor with knowledge of the work effort exercised by the executive (i.e.

with knowledge of λ⋆) and his optimal investment strategies πP ⋆
and πS⋆

,

will choose a control vector û′⋆ = (π̂P ⋆
,π̂S⋆

,λ̂⋆) identical to the executive’s

control vector u′⋆. Denote Φ̂(0,v) to be the maximized utility of the outside

investor, then it follows that

Φ̂(0,v) = Φ(0,v) + E0,v

[∫ T

0

c⋆(t, V u′⋆

t , λ⋆(t,V u′⋆

t )) dt

]
.

Applying the utility indifference principle (1.41) we can then solve

Φ̂(0,v) = Φ(0,v +∆v) (1.42)

to obtain ∆v. So first, we have to calculate the value function Φ̂(0,v) of the

outside investor. An outside investor with knowledge of the optimal control

vector u′⋆ does not suffer from disutility and is characterized by the following

Hamilton-Jacobi-Bellmann equation:

0 = Φ̂t(t,v) + Φ̂v(t,v) v r −
1

2
(λ⋆(t))2

Φ̂2
v(t,v)

Φ̂vv(t,v)
− 1

2
(λP )2

Φ̂2
v(t,v)

Φ̂vv(t,v)
,

where we have set λ⋆(t,v) = λ⋆(t), since we already know from (1.26) that

the optimal work effort does not depend on v.

Applying the ansatz Φ̂(t,v) = f̂(t) v1−γ

1−γ
with f̂(T ) = 1 results in the ODE

˙̂
f = −(1− γ)

[
r +

1

2 γ
(λ⋆(t))2 +

1

2 γ
λ2
P

]
f̂ , f̂(T ) = 1 ,

which has the solution

f̂(t) = e
(1−γ)

[
r(T−t)+

λ2P
2 γ

(T−t)+ 1
2 γ

∫ T
t (λ⋆(s))2ds

]

.

From (1.42) we then get that

(v)1−γ

1− γ
f̂(0) =

(v +∆ v)1−γ

1− γ
f(0) ⇔ ∆ v = v



[
f̂(0)

f(0)

] 1
1−γ

− 1


 .

Plugging in the representations of f̂ and f , respectively, and simplifying gives

the result.
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In contrast to the log-utility case, the sensitivities of the executive’s optimal

work effort λ⋆ and fair compensation ∆v with respect to variations in his

work effectiveness parameters cannot be shown with compact expressions.

Instead we limit ourselves to graphical representations of the relationships,

with additional consideration of the executive’s risk aversion parameter γ.

Figure 1.3 displays optimal work effort over time for varying risk aversion (i.e.

λ⋆ versus t and γ, for fixed values of 1/κ̃, α and λ0). The executive’s disutility

from work effort depends on his wealth v and risk aversion γ via the scaling

factor v1−γ, which is effectively a work aversion measure. For a given level

of wealth, an executive with low risk aversion (0 < γ < 1) has higher work

aversion than an executive with high risk aversion (γ > 1); furthermore, with

increasing wealth, work aversion increases for a low risk aversion executive

but decreases for a high risk aversion executive. If we suggest that a high

risk aversion executive has high work ethic and a low risk aversion executive

has low work ethic, our set-up assumes that: a high work ethic executive has

comparatively low aversion to work effort and will become further less averse

to work effort if past effort or chance brings success as indicated by increased

wealth; and a low work ethic executive has comparatively high aversion to

work effort and will become further more averse to work effort if his wealth

increases. Nevertheless, a low risk aversion (i.e. low work ethic) executive

is more willing to take on the risk associated with a larger own-company

stockholding, and thus with more personal stake in his own company he

always applies more work effort than a high risk aversion executive, ceteris

paribus. These aspects are observable in Figure 1.3: a low risk aversion

executive with 0 < γ < 1 starts with a (comparatively) high level of work

effort, which is expected to reduce over time (given that his wealth is expected

to increase over time); whereas a high risk aversion executive with γ > 1

starts with a far lower level of work effort, which is expected to increase over

time. Therefore observing the executive’s work effort over time potentially

reveals his risk aversion.
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Figures 1.4 and 1.5 fix the executive’s risk aversion at a relatively low level of

γ = 0.5 and show optimal work effort over time for varying work effectiveness

(i.e. respectively λ⋆ versus t and 1/κ̃, and λ⋆ versus t and α). The executive’s

work effort increases with work effectiveness (but decreases over time given

γ = 0.5). That is, work effort is positively related to work productivity 1/κ̃,

and negatively related to disutility stress α. The implication is that, for a

given level of risk aversion, work effort distinguishes the work effectiveness

(quality) of the executive.

The relationship between the executive’s optimal work effort and his risk

aversion and work effectiveness characteristics is reflected in his fair up-front

compensation. Figures 1.6 and 1.7 show fair compensation versus pairings

of risk aversion with each of work productivity and disutility stress (i.e. re-

spectively ∆v versus γ and 1/κ̃, and ∆v versus α and γ). Any combina-

tion of decreasing risk aversion, increasing work productivity, and decreasing

disutility stress leads to higher work effort and commensurately higher fair

compensation. The level of fair compensation is particularly prominently de-

pendent on risk aversion: fair compensation sensitivity to work productivity

and disutility stress is highest when risk aversion is low (γ ≈ 0.5 or lower,

see Figures 1.6 and 1.7). This result stems from the fact that, regardless of

whether the executive has high work effectiveness or not, the company can

only substantially benefit from the executive’s quality if he has sufficiently

low risk aversion to take on a substantial own-company stockholding and

thereby have incentive to apply substantial work effort. Note that Figure 1.7

extends only to a minimum value of disutility stress α = 5; not shown is that

for lower disutility stress α ≈ 4 and below, fair compensation increases even

more steeply.
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Figure 1.1: The log-utility executive’s optimal work effort/control choice, in

terms of optimal non-systematic Sharpe ratio λ⋆, w.r.t. his work

effectiveness parameters, work productivity 1/κ̃ and disutility stress

α; given base-level work effort λ0 = 0.10.
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Figure 1.2: The log-utility executive’s fair up-front compensation ∆v, based on

utility indifference, w.r.t. his work effectiveness parameters, work

productivity 1/κ̃ and disutility stress α; given initial wealth v = $5

million, time horizon T = 10 years, and base-level work effort λ0 =

0.10.
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Figure 1.3: The power-utility executive’s optimal work effort/control choice, in

terms of optimal non-systematic Sharpe ratio λ⋆, w.r.t. time t, for

varying risk-aversion γ; given work productivity 1/κ̃ = 2000, disutil-

ity stress α = 5, and base-level work effort λ0 = 0.10.
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Figure 1.4: The power-utility executive’s optimal work effort/control choice, in

terms of optimal non-systematic Sharpe ratio λ⋆, w.r.t. time t, for

varying work productivity 1/κ̃; given risk aversion γ = 0.5, disutility

stress α = 5, and base-level work effort λ0 = 0.10.
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Figure 1.5: The power-utility executive’s optimal work effort/control choice, in

terms of optimal non-systematic Sharpe ratio λ⋆, w.r.t. time t, for

varying disutility stress α; given risk aversion γ = 0.5, work produc-

tivity 1/κ̃ = 2000, and base-level work effort λ0 = 0.10.
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Figure 1.6: The power-utility executive’s fair up-front compensation ∆v, based

on utility indifference, w.r.t. his work productivity 1/κ̃ and risk aver-

sion γ; given disutility stress α = 5, initial wealth v = $5 million, time

horizon T = 10 years, and base-level work effort λ0 = 0.10.
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Figure 1.7: The power-utility executive’s fair up-front compensation ∆v, based

on utility indifference, w.r.t. his risk aversion γ and disutility stress

α; given work productivity 1/κ̃ = 2000, initial wealth v = $5 million,

time horizon T = 10 years, and base-level work effort λ0 = 0.10.



50

Chapter 2

Own-Company Stockholding and Work

Effort Preferences of an Unconstrained

Executive with Constant Absolute Risk

Aversion

The goal of this chapter is to solve our optimal investment and work effort

decision (1.12) for a constant absolute risk aversion set-up. To do so, we

use again the dynamic programmic method. It is widely supported in the

literature (see for instance Korn (2007)) that for the case of an exponential

utility set-up it is common to optimize the absolute value of the wealth

invested into assets, i.e. the control of the pure investment problem is given

by Π := π v, where v denotes the actual wealth and π the proportion invested

into the risky asset(s). The reason for that is that when just optimizing

the control π, the corresponding optimal strategies π⋆ are proportional to

1/v which may result in optimal strategies which tend to infinity, since the

resulting wealth process w.r.t. the optimal strategies follows a generalized

Brownian motion with drift. This process can become negative, and therefore

in particular attain zero, which can cause optimal strategies that tend to

infinity. To avoid these issues for our investment and work effort problem,

we first reformulate it w.r.t. absolute investment strategies. So in what

follows we will give the set-up along the lines of Chapter 1, then reformulate

it, solve it for the case of exponential utility with zero interest rates and

discuss the implications of these results.
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2.1 The Set-up and its Reformulation

The mathematical set-up is kept the same as in Chapter 1 for the constant

relative risk aversion case. The executive has the same underlying probabili-

ty space, acts on the same financial market and suffers from a disutility rate

depending on the control strategy (µ,σ). The only structural difference is

that the executive invests now the absolute value ΠP = πP v into the market

portfolio and the absolute value ΠS = πS v into the company’s stock, respec-

tively. We collect the absolute investment strategy Π = (ΠP ,ΠS) and the

control strategy (µ,σ) now in the control vector process uab = (ΠP ,ΠS,µ,σ).

The executive’s wealth process, V uab = (V uab
t )t≥0, for control vector uab is

then

dV uab
t =

(
V uab
t − ΠP

t − ΠS
t

) dBt

Bt

+ΠP
t

dPt

Pt

+ΠS
t

dSµ,σ
t

Sµ,σ
t

, V uab
0 ∈ R+ , (2.1)

which can be rewritten using the equations (1.1), (1.2) and (1.3) for the

money market account, the market portfolio and the company’s stock re-

spectively as

dV uab
t =

[
r V uab

t + (ΠP
t + β ΠS

t )(µ
P − r) + ΠS

t (µt − r)
]
dt

+
[
ΠP

t + β ΠS
t

]
σPdW P

t +ΠS
t σt dWt , V uab

0 ∈ R+ .
(2.2)

The optimal investment and control decision of the executive is then the

solution of

Φ(t,v) = sup
uab∈A(t,v)

Et,v

[
U (V uab

T )−
∫ T

t

c⋆ (s,V uab
s ,λs) ds

]
, (t,v) ∈ [0,T ]× R+ ,

(2.3)

where A(t,v) is given in Def. 2.1.1.

Definition 2.1.1

Let 0 ≤ t ≤ T , t fixed, and let further (µ,σ) take values in [r,∞) × (0,∞).

Then we denote by A(t,v) the set of admissible strategies uab =
(
ΠP ,ΠS, µ, σ

)

corresponding to portfolio value v = V uab
t > 0 at time t, which are

{Fs ; t ≤ s ≤ T}-predictable processes, such that
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(i) the company’s stock price process

dSµ,σ
s = Sµ,σ

s

(
µs ds+ β

[
dPs

Ps

− rds

]
+ σs dWs

)
, Sµ,σ

t ∈ R+ ,

has a unique non-negative solution and satisfies
∫ T

t

(Sµ,σ
s )2

(
(βσP )2 + (σs)

2
)
du < ∞ P − a.s. ;

(ii) the wealth equation

dV uab
s =

(
V uab
s − ΠP

s − ΠS
s

) dBs

Bs

+ΠP
s

dPs

Ps

+ΠS
s

dSµ,σ
s

Sµ,σ
s

, V uab
t ∈ R+ ,

has a unique non-negative solution and satisfies
∫ T

t

(
(ΠP

s + β ΠS
s )

2(σP )2 + (ΠS
s σs)

2
)
ds < ∞ P − a.s. ;

(iii) and the utility of wealth and the disutility of control satisfy

E

[
U (V uab

T )− +

∫ T

t

c(s, V uab
s ,µs,σs) ds

]
< ∞ .

The reformulation of the optimization problem follows exactly the same steps

as in the CRRA case. We restate that by Lemma 1.1.1 we know that the

minimization problem

min
{σ>0:µ=r+λσ}

c(t,v,µ,σ) , for (t,v,λ) ∈ [0,T ]× R+ × R+
0 ,

admits a unique solution σ⋆(t,v,λ). With this knowledge we are able to switch

from the control vector uab =
(
ΠP ,ΠS, µ, σ

)
to the reduced control vector

u′
ab =

(
ΠP ,ΠS, λ

)
. The corresponding restated equations of the company’s

stock price and the wealth equation, respectively, read

dSλ
t = Sλ

t

([
r + λtσ

⋆(t,V
u′

ab
t ,λt)

]
dt+ β

[
dPt

Pt

− rdt

]
+ σ⋆(t,V

u′

ab
t ,λt) dWt

)
,

Sλ
0 ∈ R+ ,

(2.4)
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and

dV
u′

ab
t = (V

u′

ab
t − ΠP

t − ΠS
t )

dBt

Bt

+ΠP
t

dPt

Pt

+ΠS
t

dSλ
t

Sλ
t

, V
u′

ab
0 ∈ R+ , (2.5)

whereby the wealth equation admits the rewritten representation

dV
u′

ab
t =

[
r V

u′

ab
t + (ΠP

t + β ΠS
t )(µ

P − r) + ΠS
t λt σ

⋆(t,V
u′

ab
t ,λt)

]
dt

+
[
ΠP

t + β ΠS
t

]
σPdW P

t +ΠS
t σ

⋆(t,V
u′

ab
t ,λt) dWt , V

u′

ab
0 ∈ R+ .

(2.6)

Accordingly, we define the class of admissible strategies w.r.t. the reduced

control vector u′
ab:

Definition 2.1.2

Let 0 ≤ t ≤ T , t fixed, and let further λ take values in [0,∞). Then we denote

by A′(t,v) the set of admissible strategies u′
ab =

(
ΠP ,ΠS,λ

)
corresponding to

portfolio value v = V
u′

ab
t > 0 at time t, which are {Fs ; t ≤ s ≤ T}-predictable

processes, such that

(i) the company’s stock price process

dSλ
s = Sλ

s

(
[r + λsσ

⋆
s ] ds+ β

[
dPs

Ps

− rds

]
+ σ⋆

s dWs

)
, Sλ

t ∈ R+ ,

has a unique non-negative solution and satisfies

∫ T

t

(Sλ
s )

2
(
(βσP )2 + (σ⋆

s)
2
)
ds < ∞ P − a.s. ;

(ii) the wealth equation

dV
u′

ab
s =

(
V

u′

ab
s − ΠP

s − ΠS
s

) dBs

Bs

+ΠP
s

dPs

Ps

+ΠS
s

dSλ
s

Sλ
s

, V
u′

ab
t ∈ R+ ,

has a unique non-negative solution and satisfies

∫ T

t

(
(ΠP

s + β ΠS
s )

2(σP )2 + (ΠS
s σ

⋆
s)

2
)
ds < ∞ P − a.s. ;
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(iii) and the utility of wealth and the minimized disutility of control satisfy

E

[
U(V

u′

ab
T )− +

∫ T

t

c⋆(s, V
u′

ab
s ,λs) ds

]
< ∞ .

With the following analogon to Assumption 1.1.2, we can easily proof the

correspondence theorem for our formulation with respect to the absolute

investment strategies:

Assumption 2.1.1

For a given control uab = (ΠP ,ΠS,µ,σ) ∈ A(t,v), the value process V
u′

ab
t , λt =

(µt−r)/σt and σ⋆(t,V
u′

ab
t ,λt) are determined in accordance with Lemma 1.1.1.

The process Sλ
t defined in (2.4) is assumed to satisfy

∫ T

t

(Sλ
s )

2
(
(βσP )2 + (σ⋆(s,V

u′

ab
s ,λs))

2
)
ds < ∞ P − a.s. .

Theorem 2.1.2 (Correspondence Result)

Suppose (2.3) admits a solution Φ, then this solution coincides with the value

function of the optimal investment and control problem

Φ′(t,v) = sup
u′

ab∈A′(t,v)

Et,v

[
U
(
V

u′

ab
T

)
−
∫ T

t

c⋆
(
s,V

u′

ab
s ,λs

)
ds

]
, (t,v) ∈ [0,T ]×R+ ,

(2.7)

where A′(t,v) is given in Def. 2.1.2.

Proof. Applying exactly the same steps as in Theorem 1.1.3, where we just

substitute the control vectors u = (πP ,πS,µ,σ) and u′ = (πP ,πS,λ) from

Chapter 1 by the control vectors uab = (ΠP ,ΠS,µ,σ) and u′
ab = (ΠP ,ΠS,λ)

together with Assumption 2.1.1 yields the result.

For the remainder of the chapter we assume that the optimal investment and

control problem (2.7) admits a value function Φ ∈ C1,2.
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As in the power- and log-utility case, to guarantee that the candidates we

will derive for the executive’s optimal investment and control strategy as well

as the value function are indeed optimal, we restrrict the class of admissible

strategies now as follows:

Definition 2.1.3

Let 0 ≤ t ≤ T , t fixed, and let λ take values in [0,∞). Further choose

ǫ̃ ∈ (0,∞) as close to zero as possible. Then by A′
η(t,v) we denote the set of

admissible strategies u′
ab ∈ A′(t,v), such that we have for η > 0:

∫ T

t

(ΠP
s + β ΠS

s )
2+ǫ̃(σP )2+ǫ̃ +

(
ΠS

s σ
⋆
s

)2+ǫ̃
ds ≤ C1 < ∞, for some C1 ∈ R+

0 ,

(2.8)
∫ T

t

ΠS
s σ

⋆
sλs du ≥ C2 > −∞ , for some C2 ∈ R+

0 . (2.9)

The optimal investment and control problem stated w.r.t. this more restric-

tive class is given by

Φ(t, v) = sup
u′

ab∈A′

η(t,v)

Et,v

[
U(V

u′

ab
T )−

∫ T

t

c⋆(s,V
u′

ab
s ,λs) ds

]
, (2.10)

where (t,v) ∈ [0,T ]× R+.

2.2 Optimal Strategies

In this section we give a closed-form solution for the optimal investment

and control problem in (2.10) w.r.t. absolute investment strategies using

an exponential utility/disutility set-up. Unfortunately this set-up is only

solvable for the case of zero interest rates.

For the absolute risk aversion parameter η > 0, the utility function U is

U(v) = 1− e−η v , (2.11)
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and the disutility of control (i.e. work effort) c⋆ is

c⋆(t,v,λ) = κ e−η v λ
α

α
, (2.12)

where κ > 0 and α > 2 are again the executive’s work effectiveness parame-

ters, termed ‘inverse work productivity’ and ‘disutility stress’. κ and α have

the same properties and implications as mentioned in Section 1.2.

Now, in (2.12), the scaling factor e−η v relates the executive’s disutility of work

effort to his wealth (v) with a formulation based on the constant absolute risk

aversion formulation of the utility function in (2.11). Given a positive value

of the absolute risk aversion parameter, η > 0, the executive’s disutility of

work effort decreases with his wealth.

Remark 2.2.1

This specification for the disutility of work effort is economically counter-

intuitive: For η > 0, our specification produces decreasing disutility of work

effort for an increasing level of wealth, keeping work effort constant.

But it is also important for this exponential utility/disutility set-up that the

utility of wealth and the disutility of work effort are normed to take values on

the same scale w.r.t. the wealth v.

We refer again to the explanation of Chapter 1. We consider an executive

with a rather high work ethic and we consider η to be positively related to the

executive’s work ethic. We repeat that our high work ethic executive has then

a comparatively low aversion to work effort at outset and will become further

less averse to work effort if past effort or chance brings success as indicated

by increased wealth. In contrast to that a low work ethic executive would

have a comparatively high aversion to work effort and will become further

more averse to work effort if his wealth increases.
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2.2.1 Hamilton-Jacobi-Bellman Equation

Having formulated the optimal investment and control decision problem with

respect to the parameter set u′
ab = (ΠP ,ΠS,λ) as given by (2.7), we can write

down the corresponding Hamilton-Jacobi-Bellman equation (HJB); again for-

mulated with respect to a general utility function U and a general disutility

function c⋆:

0 = sup
u′

ab∈R2×[0,∞)

[
(Lu′

ab Φ)(t,v)− c⋆(t,v,λ)
]
, for (t,v) ∈ [0,T )× R+,

U(v) = Φ(T,v) , for v ∈ R+ ,

(2.13)

where the differential operator Lu′

ab is given by

(Lu′

abg)(t,v) =
∂g

∂t
(t,v) +

∂g

∂v
(t,v)

(
r v +ΠSλσ⋆(t,v,λ) + (ΠP + β ΠS)

· [µP − r]
)
+

1

2

∂2g

∂v2
(t,v)

([
ΠSσ⋆(t,v,λ)

]2
+
[
(ΠP + β ΠS)σP

]2)
.

(2.14)

Potential maximizers ΠP ⋆
, ΠS⋆

and λ⋆ of the HJB (2.13) can be calculated

by establishing the first order conditions:

ΠP ⋆

(t,v) = −(µP − r)

(σP )2
Φv(t,v)

Φvv(t,v)
− β ΠS⋆

(t,v) ,

ΠS⋆

(t,v) = − λ⋆(t,v)

σ⋆(t,v,λ⋆(t,v))

Φv(t,v)

Φvv(t,v)
, (2.15)

where λ⋆ is the solution of the implicit equation

λ
Φ2

v(t,v)

Φvv(t,v)
+

∂c⋆

∂λ
(t,v,λ) = 0 for all (t,v) ∈ [0,T ]× R+ , (2.16)

where we have already used (2.15) to simplify the equation.

Substitung the candidates (2.15) in the Hamilton-Jacobi-Bellman equation
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(2.13) yields:

0 =Φt(t,v) + Φv(t,v) v r −
1

2
(λ⋆(t,v))2

Φ2
v(t,v)

Φvv(t,v)
− 1

2
λ2
P

Φ2
v(t,v)

Φvv(t,v)

− c⋆(t,v,λ) .

(2.17)

In the following section we give the solution of this equation w.r.t. exponen-

tial utility and disutilty.

2.2.2 Closed-Form Solution

A closed-form solution is derived for the control problem (2.10) using the

utility and disutility functions (2.11) and (2.12), for η > 0, where we have to

restrict ouselves to the case of zero interest rates to obtain solvability of the

problem.

Theorem 2.2.1 (The exponential-utility case: η > 0 with r = 0)

The full solution of the maximization problem (2.10) can be summarized by

the strategy

λ⋆(t,v) =

(
1

κ
f(t)

) 1
α−2

,

ΠP ⋆
(t,v) =

µP

η (σP )2
− β πS⋆

(t,v) , ΠS⋆
(t,v) =

λ⋆(t,v)

η σ⋆(t,v,λ⋆(t,v))
,

(2.18)

and value function

Φ(t,v) = 1− f(t) e−η v , (2.19)

where

f(t) = e−
1
2 (µP /σP )

2
(T−t)

×
(
1− (α− 2)

(
σP
)2

κ− 2
α−2

α (µP )2

(
e−

1
α−2(µP /σP )

2
(T−t) − 1

))−α−2
2

.
(2.20)
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Proof. First recall from Theorem 1.2.1 that a function F of the form F (λ) =

a λ2 − b λα, λ ≥ 0, for given constants a, b > 0 and α > 2, has a unique

maximizer λ⋆ and maximized value F (λ⋆) given by

λ⋆ =

(
2 a

α b

) 1
α−2

, and F (λ⋆) = (α− 2)α− α
α−2 2

2
α−2 a

α
α−2 b−

2
α−2 . (2.21)

Using this insight the first order condition for λ⋆ in (2.16) is now solved. Set

a =
1

2

Φ2
v

−Φvv

, and b =
κ

α
e−η v ,

then (2.21) gives

λ⋆ =

(
eη v

κ

Φ2
v

−Φvv

) 1
α−2

, F (λ⋆) =
α− 2

2α

(
eη v

κ

) 2
α−2

(
Φ2

v

−Φvv

) α
α−2

. (2.22)

Now (2.17) reads

0 = Φt + Φv v r +
1

2

Φ2
v

−Φvv

(
λP
)2

+
α− 2

2α

(
eη v

κ

) 2
α−2

(
Φ2

v

−Φvv

) α
α−2

. (2.23)

Using the separation ansatz Φ(t,v) = 1− f(t) e−η v with f(T ) = 1 results in

Φt = −ḟ e−η v , Φv = η f e−η v , Φvv = −η2 f e−η v , and
Φ2

v

−Φvv

= f(t) e−η v .

Thus (2.23) becomes

0 = −ḟ e−η v + η f e−η v v r +
1

2
(λP )2 f e−η v +

α− 2

2α

(
eη v

κ

) 2
α−2 (

f e−η v
) α

α−2 .

Simplifying gives

−e−η v

{
ḟ − f

[
η v r +

1

2
λ2
P

]
+ f

α
α−2

[
−α− 2

2α
κ− 2

α−2

]}
= 0 . (2.24)

From (2.24), we see that the separation approach as given above only works if

we have that r = 0. (2.24) with r = 0 is fullfilled when the expression in the

brackets is equal to zero or we have that lim η → ∞, which is economically

not reasonable. Thus we have to solve the Bernoulli ODE of the form

ḟ = f
1

2

(
µP

σP

)2

+ f
α

α−2
α− 2

2α
κ− 2

α−2 , (2.25)
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where we keep in mind that (λP )2
r=0
= (µP/σP )2. The solution of this ODE

is calculated as in the power-utility case. We repeat that a Bernoulli ODE

of form ḟ = a1 f + aν f
ν , has the solution

f(t)1−ν = C eG(t) + (1− ν) eG(t)

∫ t

0

e−G(s) aν ds ,

where G(t) = (1 − ν)
∫ t

0
a1(s) ds and C is an arbitrary constant. In the

exponential-utility setting we have ν = α
α−2

and (1− ν) = −2
α−2

as well as

a1 =
1

2

(µP

σP

)2
, aν =

α− 2

2α
κ

−α
α−2 .

The formal solution f(t)1−ν is explicitly calculated in three steps. First,

compute

G(t) = − 2 a1 t

α− 2
, and

∫ t

0

e−G(s) aν(s) ds =
α− 2

2

aν
a1

(
e

2 a1 t
α−2 − 1

)
,

then

f(t) = ea1 t
(
C − aν

a1

(
e

2 a1 t
α−2 − 1

))−α−2
2

.

Finally, solve for C by using f(T ) = 1 so that

C = e
2 a1 T
α−2 +

aν
a1

(
e

2 a1 T
α−2 − 1

)
.

Note also that f(0) = C−α−2
2 . Now

f(t) = e−a1 (T−t)

(
1− aν

a1

(
e−

2 a1
α−2

(T−t) − 1
))−α−2

2

.

Substituting for a1 and aν then yields the result for f(t). Using Φv

Φvv
= − 1

η

and the first order conditions in (2.15) and (2.22) we obtain the claimed

optimal strategy λ⋆, ΠP ⋆
and ΠS⋆

. Finally note that our claimed optimal

strategies are admissible, i.e. u′
ab

⋆ = (ΠS⋆
,ΠP ⋆

,λ⋆) ∈ A′
η(t,v). This is again

shown as in the CRRA case. A sufficient condition for admissibility is that

λ⋆, ΠP ⋆
σP , and ΠS⋆

σ⋆ be uniformly bounded (see Def. 2.1.3); because these

expressions are deterministic and continuous functions in u on [t,T ], they are

hence uniformly bounded.
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Remark 2.2.2

Theorem 2.2.1 clearly indicates that the claimed optimal strategies are not

proportional to 1/v and we avoid the problem that they could tend to infinity.

Remark 2.2.3

In a classical set-up without disutility the executive’s optimal investment de-

cision w.r.t. absolute investment strategies

Φ̂(t, v) = sup
Π∈Â(t,v)

Et,v[U(V Π
T )] , (t,v) ∈ [0,T ]× R+,

where Â(t,v) denotes the set of all admissible portfolio strategies Π at time t

corresponding to portfolio value (i.e. wealth) v = V Π
t > 0, can be solved for

an exponential utility function as given in (2.11) using the ansatz

Φ̂(t,v) = e−η[f(t) v+g(t)] with f(T ) = 1 and g(T ) = 0 .

However in our set-up including a disutility of work effort, this technique

does not work, since the additional term arising from the disutility in (2.23)

causes problems when applying the ansatz stated above in order to reduce

equation (2.23) to ordinary differential equations w.r.t. f and g.

2.2.3 Verification Theorem

The solutions of the maximization problem given in Theorem 2.2.1 are candi-

dates for the optimal investment and control choices for the problem in (2.10)

for the case r = 0. In this section we verify that under sufficient assumptions

also these solutions are indeed optimal.

Theorem 2.2.2 (Verification Result for the Exponential Case)

Let κ > 0 and α > 2; further let r = 0. Assume the executive’s utility and

disutility functions are given by (2.11) and (2.12). Then the candidates given

in (2.18) - (2.20) are the optimal investment and control strategy (i.e. own-

company stockholding, market portfolio holding and non-systematic Sharpe
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ratio strategy) and value function of the optimal control problem (2.10) w.r.t.

absolute investment strategies.

Proof. Define the performance functional of our optimal investment and

control decision by

J(t,v; u′
ab) := Et,v

[
U
(
V

u′

ab
T

)
−
∫ T

t

c⋆(s, V
u′

ab
s ,λs) ds

]
,

where (t,v) ∈ [0,T ]×R+ and u′
ab = (ΠP ,ΠS,λ) ∈ A′

η(t,v). First note that the

wealth process (2.6) for r = 0 reads

dV
u′

ab
t =

[
(ΠP

t + β ΠS
t )µ

P +ΠS
t λt σ

⋆
t

]
dt

+
[
ΠP

t + β ΠS
t

]
σPdW P

t +ΠS
t σ

⋆
t dWt , V

u′

ab
0 ∈ R+ .

(2.26)

Recall the claimed optimal value function Φ ∈ C1,2 and apply Ito’s formula

for η > 0 to obtain:

U
(
V

u′

ab
T

)
−
∫ T

t

c⋆(s, V
u′

ab
s ,λs) ds = Φ(T,V

u′

ab
T )−

∫ T

t

κe−ηV
u′ab
s

λα
s

α
ds = Φ(t,v)

+

∫ T

t

(
Φt(s,V

u′

ab
s ) + Φv(s,V

u′

ab
s )

[
ΠS

u λs σ
⋆
s + (ΠP

s + β ΠS
s )µ

P
]

+ 1/2Φvv(s,V
u′

ab
s )

[
((ΠP

s + β ΠS
s )σ

P )2 + (ΠS
s σ

⋆
s)

2
]
− κe−ηV

u′ab
s

λα
s

α

)
ds

+

∫ T

t

Φv(s,V
u′

ab
s ) (ΠP

s + β ΠS
s )σ

P dW P
s +

∫ T

t

Φv(s,V
u′

ab
s ) ΠS

s σ
⋆
s dWs .

(2.27)

The remainder of the proof is divided into two parts. Part (a) establishes that

the value function Φ coincides with the performance functional J evaluated

at the claimed maximizers u′⋆
ab = (ΠP ⋆

,ΠS⋆
,λ⋆), η > 0. Part (b) shows

the optimality of the candidate u′⋆
ab, i.e.: J(t,v; u′

ab) ≤ Φ(t,v), for u′
ab =

(ΠP ,ΠS,λ) ∈ A′
η(t,v).

Part (a): We establish that J(t,v; u′⋆
ab) = Φ(t,v). To do this we show that

in the right hand side (RHS) of (2.27) the drift vanishes by the HJB (2.13)
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and that the local martingale component is a true martingale and hence dis-

appears in expectation. And finally, it is verified that indeed u′⋆
ab ∈ A′

η(t,v).

By construction, Φ with control u′⋆
ab satisfies the HJB-PDE in (2.13), that is

for r = 0,

0 = Φt + Φv (ΠS⋆ λ⋆ σ⋆ + (ΠP⋆ + β ΠS⋆)µP )

+(1/2)Φvv ([Π
S⋆ σ⋆]2 + [(ΠP⋆ + β ΠS⋆) σP ]2)− c⋆ .

This eliminates the drift (Lebesgue integral) in (2.27) and we obtain

U
(
V

u′⋆
ab

T

)
−
∫ T

t

c⋆(s, V u′⋆
ab

s ,λ⋆
s) ds = Φ(t,v)+

∫ T

t

Φv(s,V
u′⋆

ab
s ) (ΠP⋆

s + β ΠS⋆
s )σP dW P

s +

∫ T

t

Φv(s,V
u′⋆

ab
s ) ΠS⋆

s σ⋆
s dWs .

For J(t,v; u′⋆
ab) = Φ(t,v), it remains to prove that the local martingale

component disappears in expectation. A sufficient condition is the square-

integrability of the local martingale component

E

[∫ T

t

(
Φv(s,V

u′⋆
ab

s )
)2 (

[ΠP ⋆

s + β ΠS⋆
s ]2(σP )2 + [ΠS⋆

s σ⋆
s ]

2
)
ds

]
< ∞ .

Using the explicit form of the candidates in (2.18) and Φv = η f(t) e−η v, for

η > 0, gives

(
Φv(s,V

u′⋆
ab

s )
)2 (

[ΠP ⋆

s + β ΠS⋆
s ]2(σP )2 + [ΠS⋆

s σ⋆
s ]

2
)

= f(s)2 e−2 η V
u′

⋆
ab

s

[(
µP

σP

)2

+

(
1

κ
f(s)

) 2
α−2

]
.

The RHS is e−2 η V
u′

⋆
ab

s times a deterministic and continuous function on the

compact set [t,T ]. The deterministic part is uniformly bounded. Therefore,

it is sufficient to focus on the stochastic component: V u′⋆
ab satisfies

dV u′⋆
ab

s =
[ (µP )2

η (σP )2
+

(λ⋆(s,V
u′⋆

ab
s ))2

η

]
ds+

µP

η σP
dW P

s +
λ⋆(s,V

u′⋆
ab

s )

η
dWs.
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The solution of the above inhomogeneous wealth equation w.r.t. the optimal

strategies u′⋆
ab starting at t with initial wealth V

u′⋆
ab

t = v applying variation

of constants is

V u′⋆
ab

s = v +

∫ s

t

(
(µP )2

η (σP )2
+

(λ⋆
s̃)

2

η

)
ds̃ +

∫ s

t

µP

η σP
dWP

s̃ +

∫ s

t

λ⋆
s̃

η
dWs̃ .

Recalling that λ⋆(s,v) is a continuous function in s and does not depend on

v, we see that V
u′⋆

ab
s follows a normal distribution with mean

µ
V

u′⋆ab
s

= v +

∫ s

t

(
(µP )2

η (σP )2
+

(λ⋆
s̃)

2

η

)
ds̃

and variance

σ2

V
u′⋆ab
s

=

∫ s

t

(
(µP )2

η2 (σP )2
+

(λ⋆
s̃)

2

η2

)
ds̃

being uniformly bounded, for all s ∈ [t,T ]. Since all moments of a log-

normally distributed random variable exist, it follows that the local martin-

gale is a square-integrable martingale. This establishes J(t,v; u′⋆
ab) = Φ(t,v).

Finally, u′⋆
ab ∈ A′

η(t,v) follows from the fact that ΠP⋆, ΠS⋆ σ⋆, and λ⋆ are

uniformly bounded on [t,T ], for each η > 0.

Part (b): Now we show the optimality, i.e. J(t,v; u′
ab) ≤ Φ(t,v), for u′

ab ∈
A′

η(t,v). As in (a), this is also based on the analysis of (2.27). The HJB (2.13)

is applied to show that the drift component is bounded from above by zero.

Then it is shown that the conditions in Def. 2.1.3 are sufficient for the local

martingale component on the RHS of (2.27) to vanish in expectation.

By the HJB (2.13), Φ with arbitrary u′
ab = (ΠP ,ΠS,λ) ∈ R × R × R+

0 with

r = 0 satisfies

0 ≥ Φt + Φv (Π
S λσ⋆ + (ΠP + β ΠS)µP )

+(1/2)Φvv ([Π
S σ⋆]2 + [(ΠP + β ΠS) σP ]2)− c⋆ ,

for (s,v) ∈ [t,T ]×R+. This provides the point-wise upper bound zero for the
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drift in (2.27) and we obtain

U
(
V

u′

ab
T

)
−
∫ T

t

c⋆(s, V
u′

ab
s ,λs) ds ≤ Φ(t,v)+

∫ T

t

Φv(s,V
u′

ab
s ) (ΠP

s + β ΠS
s )σ

P dW P
s +

∫ T

t

Φv(s,V
u′

ab
s ) ΠS

s σ
⋆(s,V

u′

ab
s ,λs) dWs

︸ ︷︷ ︸
=:Mt

T

.

(2.28)

Now recall Φv(t,v) = η f(t) e−η v and calculate the quadratic variation of M t:

〈M t〉T =

∫ T

t

η2 e−2η V
u′ab
s f 2(s)

(
[Πs + β ΠS

s ]
2(σP )2 + [σ⋆

sΠ
S
s ]

2
)
ds

≤ ǫ
ǫ

1+ǫ

1 + ǫ
η2 sup

0≤s≤T
f(s)2

[∫ T

t

e−2 η V
u′ab
s (1+ 1

ǫ ) ds

+

∫ T

t

(
[Πs + β ΠS

s ]
2(σP )2 + [σ⋆

sΠ
S
s ]

2
)1+ǫ

ds
]
, ǫ > 0 ,

(2.29)

where the upper bound in the second line was achieved using inequality

(A.1.2) given in Lemma 0.1.1 setting

x := e−2 η V
u′ab
s and y :=

(
[ΠP

s + β ΠS
s ]

2(σP )2 + [σ⋆
sΠ

S
s ]

2
)
.

We show that M t is a martingale by deriving the integrability of the quadratic

variation 〈M t〉T . First we use once more that f is a continuous function on

the compact set [0,T ] and is uniformly bounded, and thus sup0≤s≤T f(s)2 is

finite. We are left to deal with the two expressions in the brackets of (2.29).

The second expression is bounded in expectation by assumption, see (2.8)

in Def. 2.1.3, setting ǫ = 1
2
ǫ̃. In what follows we establish that the first

expression is finite by showing that

Et,v[eξ V
u′ab
s ] < ∞ uniformly , (2.30)

with ξ = −2 η
(
1 + 1

ǫ

)
, where ξ < 0 since η > 0 and we note that |ξ| < ∞

since ǫ > 0.
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The solution of the inhomogeneous wealth equation (2.26) starting at t with

initial wealth v = V
u′

ab
t applying variation of constants is

V
u′

ab
s = v +

∫ s

t

(
(ΠP

s̃ + β ΠS
s̃ )µ

P +ΠS
s̃ λs̃σ

⋆
s̃

)
ds̃

+

∫ s

t

(ΠP
s̃ + β ΠS

s̃ ) σ
P dW P

s̃ +

∫ s

t

ΠS
s̃ σ

⋆
s̃ dWs̃ .

Then

eξ V
u′ab
s = eξ v× eξ

∫ s
t ((ΠP

s̃ +βΠS
s̃ )µ

P+ΠS
s̃ λs̃σ

⋆
s̃) ds̃︸ ︷︷ ︸

=:Rt
s

× eξ (
∫ s
t (Π

P
s̃ +βΠS

s̃ )σ
P dWP

s̃ +
∫ s
t ΠS

s̃ σ⋆
s̃ dWs̃)︸ ︷︷ ︸

=:Zt
s

.

Thus, condition (2.30) is for example fulfilled when

Et,v[(Rt
s)

2] < ∞ and Et,v[(Zt
s)

2] < ∞ .

The square of Rt
s is given by

(Rt
s)

2 = e2 ξ
∫ s
t ((ΠP

s̃ +βΠS
s̃ )µ

P+ΠS
s̃ λs̃σ

⋆
s̃) ds̃ ,

which is uniformly bounded by a constant, see Def. 2.1.3, (2.8) and (2.9),

and noting that 2 ξ < 0 for η > 0 and |ξ| < ∞ since ǫ > 0. This directly

implies the square integrability of Rt. With

Lt
s :=

∫ s

t

(ΠP
s̃ + β ΠS

s̃ ) σ
P dW P

s̃ +

∫ s

t

ΠS
s̃ σ

⋆
s̃ dWs̃ ,

and

〈
Lt
〉
s
:=

∫ s

t

(
(ΠP

s̃ + β ΠS
s̃ )

2 (σP )2 + (ΠS
s̃ σ

⋆
s̃)

2
)
ds̃ ,

the square of Zt
s is given by

(Zt
s)

2 = e2 ξ L
t
s = e2 ξ L

t
s− (2 ξ)2〈Lt〉

s × e+(2 ξ)2〈Lt〉
s

= e2 ξ L
t
s−4 ξ2〈Lt〉

s × e4 ξ
2〈Lt〉

s

≤ 1

2

[
e4 ξ L

t
s− 1

2
16 ξ2〈Lt〉

s︸ ︷︷ ︸
=:Z̃t

s

+ e8 ξ
2 〈Lt〉

s︸ ︷︷ ︸
=:R̃t

s

]
,
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where the last line is a straight forward upper bound.

The second factor R̃t is uniformly bounded by a constant by condition (2.8)

of Def. 2.1.3, again noting that |ξ| < ∞ since ǫ > 0. To finally obtain

the square integrability of Zt, it remains to prove that the first factor Z̃t
s =

e4 ξ L
t
s− 1

2
16 ξ2 〈Lt〉

s , t ≤ s ≤ T , is integrable. However, Z̃t is a strictly positive

local martingale since it is the stochastic exponential of the local martingale

4 ξ Lt. The Novikov condition holds by (2.8), i.e. Et,v(e
1
2
16 ξ2〈Lt〉

T ) < ∞, and

hence Z̃t is a true martingale and Et,v(Z̃t
s) = 1, t ≤ s ≤ T . In summary,

the local martingale M t is therefore a martingale vanishing in expectation

in (2.28), and taking the conditional expectation of (2.28) gives the desired

result

J(t,v; u′
ab) = Et,v

[
U(V

u′

ab
T )−

∫ T

t

c⋆(s,V
u′

ab
s ,λs) ds

]
≤ Φ(t,v) , u′

ab ∈ A′
η(t,v).

And the proof is finished.

2.3 Discussion and Implications of Results

Theorems 2.2.1 and 2.2.2 indicate our unconstrained executive’s maximized

utility and associated optimal behavior in terms of personal portfolio selec-

tion and choice of work effort, subject to the constant absolute risk aversion

set-up. We proceed as in Chapter 1; we investigate the sensitivity of this

optimal behavior to variation of the executive’s risk aversion and work ef-

fectiveness characteristics. Again the utility indifference rationale (1.41) is

applied to determine the fair compensation of an executive characterized by

the exponential utility/disutility set-up.

Here, the executive is characterized by the constant absolute risk aversion

coefficient (η > 0) and the two work effectiveness parameters work produc-

tivity (1/κ, with κ > 0), and disutility stress (α > 2). We repeat that in
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order to produce results that have relativity to a base-level of work effort, as

indicated by a base-level non-systematic Sharpe ratio control decision λ0 > 0,

the disutility c⋆ given by (2.12) is reparameterized by choosing

κ̃ := κ (λ0)
α . (2.31)

Then the CARA utility/disutility set-up becomes

U(v) = 1− e−η v , for η > 0 ,

and

c⋆(t,v,λ) =
κ̃

α
e−η v

(
λ

λ0

)α

, for λ ≥ 0 , η > 0 .

Analogously to the constant relative risk aversion case, regarding the exec-

utive’s optimal personal investment decisions Π⋆, the optimal own-company

stockholding ΠS⋆
is a function of the optimal work effort choice, and the as-

sociated optimal volatility σ⋆ (see Lemma 1.1.1) which we do not explicitly

specify. The optimal market portfolio allocation ΠP ⋆
considered in conjunc-

tion with the systematic risk exposure associated with ΠS⋆
coincides with

the results from classical utility maximization in the constant absolute risk

aversion setting w.r.t. an exponnetial utility function, and is therefore of

limited interest.

We insvestigate the relationship between the executive’s optimal work ef-

fort/control choice λ⋆, his characteristics 1/κ̃ and α, and his utility indiffer-

ence compensation, for the exponential-utility case.

Note that the optimal work effort λ⋆ does not depend on the risk aversion

parameter η in contrast to the CRRA set-up, which is caused by assuming

r = 0 in equation (2.24) in the proof of Theorem 2.2.1 in order to make the

separation approach work. So we have to limit the graphical representations

to the behaviour w.r.t. the work effectiveness parameters and time.
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After the reparametrization, the executive’s optimal choice of work effort is

λ⋆(t) = λ
α

α−2

0

(
1

κ̃

) 1
α−2

f(t)
1

α−2 ,

with

f(t) = e−
1
2
(µ2

P /σP )2 (T−t)

×


1−

(α− 2) (σP )2
(

λα
0

κ̃

) 2
α−2

2α (µP )2

(
e−

1
α−2

(µP /σP )2 (T−t) − 1
)



−α−2
2

,

(see Theorem 2.2.1 for the optimal choice under the original disutility pa-

rameterization).

Again we want to ensure that the optimal work effort is not less than the base-

level. In the exponential case we have to assume that the work productivity

fulfills

1/κ̃ > λ−2
0 f(0)−1 .

This condition follows from the properties of the function f given by the

equation above, where we keep in mind that η > 0 and from the fact that

f is the solution of a Bernoulli ODE, which is increasing in time for η > 0

(therefore see equation (2.25) in the proof of Theorem 2.2.1).

The following Proposition gives the fair compensation rate of the executive

who is characterized by the CARA utility/disutility set-up.

Proposition 2.3.1

Using the indifference utility argument (1.41), the exponential-utility execu-

tive’s utility indifference (fair) up-front compensation ∆ v is

∆ v =
1

2 η

∫ T

0

(λ∗(s))2ds

+
α− 2

α η
log


1−

(α− 2) (σP )2
(

λα
0

κ̃

) 2
α−2

2α (µP )2

(
e−

1
α−2

(µP /σP )2 T − 1
)

 .
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Proof. Applying the indifference utility argument (1.41) and the same ar-

gumentation as in the proof of Proposition 1.3.2, we obtain ∆ v by solving

Φ̂(0,v) = Φ(0,v +∆v) , (2.32)

where Φ̂(0,v) denotes the maximized utility of an outside investor, who

chooses his control vector û′⋆
ab = (Π̂P ⋆

,Π̂S⋆
,λ̂⋆) identical to the executive’s

control vector u′⋆
ab = (ΠP ⋆

,ΠS⋆
,λ⋆). An outside investor with knowledge of

the optimal control vector û′⋆ does not suffer from disutility and is charac-

terized by the following Hamilton-Jacobi-Bellmann equation (where we note

that r = 0):

0 = Φ̂t(t,v)−
1

2
(λ⋆(t))2

Φ̂2
v(t,v)

Φ̂vv(t,v)
− (µP )2

2 (σP )2
Φ̂2

v(t,v)

Φ̂vv(t,v)
,

where we have set λ⋆(t,v) = λ⋆(t), since we already know from (2.18) that

the optimal work effort does not depend on v.

Applying the ansatz Φ̂(t,v) = f̂(t) e−η v with f̂(T ) = 1 results in the ODE

˙̂
f =

[
1

2
(λ⋆(t))2 +

(µP )2

2 (σP )2

]
f̂ , f̂(T ) = 1 ,

which has the solution

f̂(t) = e
− (µP )2

2 (σP )2
(T−t)− 1

2

∫ T
t (λ⋆(s))2ds

.

From (2.32) we then get that

1− f̂(0) e−η v = 1− f(0) e−η (v+∆ v) ⇔ ∆ v = −1

η
log

(
f̂(0)

f(0)

)
.

Plugging in the representations of f̂ and f , respectively, and simplifying gives

the result.

Remark 2.3.1

The fair compensation ∆ v depends in contrast to the optimal work effort λ⋆

on the risk aversion η, which is caused by the representation of the value
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function (compare equation (2.19)). Further, ∆ v is independent of the ini-

tial wealth v of the executive. This is a consequence of the CARA set-up

and the fact that already the optimal investment strategies ΠP ⋆
and ΠS⋆

are

independent of the actual wealth.

As in the power-utility case, the sensitivities of the executive’s optimal work

effort λ⋆ and fair compensation ∆v with respect to variations in his work

effectiveness parameters cannot be shown with compact expressions. Instead

we limit ourselves to graphical representations of the relationships, with ad-

ditional consideration of the executive’s parameter η of constant absolute risk

aversion for the fair compensation.

Figures 2.1 and 2.2 show optimal work effort over time for varying work ef-

fectiveness parameters (i.e. respectively λ⋆ versus t and 1/κ̃, and λ⋆ versus t

and α). The executive’s work effort increases with increasing work produc-

tivity and with increasing time (see Figure 2.1), and the executive’s work

effort increases with decreasing disutility stress and increasing time (see Fig-

ure 2.2), i.e. work effort is positively related to work productivity 1/κ̃, and

negatively related to disutility stress α. Given that the optimal work effort

does not depend on the risk aversion η, it is an (at first sight) unexpected

fact that the optimal work effort increases with time, since we know from the

power-utility case that the optimal work effort of the power-utility executive

does only increase in time for a rather high level of the relative risk aversion

parameter γ. This can be interpreted as the exponential-utility executive

with zero interest rates is in general of a risk-averse nature, which may stem

from the fact that in a financial market with zero interest rates a loss in a

risky asset would cause more damage to the executive than in an environ-

ment with higher interest rates, since the investment in the money market

account will deliver no return when r = 0.

Figures 2.3 and 2.4 show the exponential utility executive’s fair compensation

versus pairings of risk aversion with each of work productivity and disutil-
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ity stress (i.e. respectively ∆v versus η and 1/κ̃, and ∆v versus α and η).

Any combination of decreasing risk aversion, increasing work productivity,

and decreasing disutility stress leads to higher work effort and commensu-

rately higher fair compensation. We repeat that the fair compensation in the

exponential utility/disutility set-up does not depend on the initial wealth v

implying that the illustrations are true for any initial wealth of the executive.

This is economically counter-intuitive and another drawback of this set-up.

As in the CRRA set-up of Chapter 1, the level of fair compensation is particu-

larly prominently dependent on risk aversion: fair compensation sensitivity

to work productivity and disutility stress is highest when risk aversion is low

(η ≈ 0.5 or lower), which is emphasized by Figures 2.3 and 2.4. This can

be considered as a confirmation of the correctness of the CRRA set-up of

Chapter 1.

We summarize that the constant absolute risk aversion set-up of this chapter

has many drawbacks compared to the constant relative risk aversion set-up

of Chapter 1. The model itself has some limitations; we are not able to solve

the optimal investment and control decision for a general r 6= 0 and the

disutility of work effort produces decreasing disutility for increasing wealth

for all values of η > 0. Further, the optimal work effort does not depend

on the risk aversion η and the fair compensation rate is independent of the

initial wealth of the executive. The constant relative risk aversion set-up is

thus much more likely to produce reality-based results.
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2.4 Figures

0
2

4
6

8
10

0

500

1000

1500

2000
0

0.05

0.1

0.15

0.2

0.25

0.3

O
p
ti

m
a
l
w

o
rk

eff
o
rt

λ
⋆

Work productivity 1/κ̃ Time t

Figure 2.1: The exponential-utility executive’s optimal work effort/control

choice, in terms of optimal non-systematic Sharpe ratio λ⋆, w.r.t.

time t, for varying work productivity 1/κ̃; given disutility stress

α = 5, and base-level work effort λ0 = 0.10.
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Figure 2.2: The exponential-utility executive’s optimal work effort/control

choice, in terms of optimal non-systematic Sharpe ratio λ⋆, w.r.t.

time t, for varying disutility stress α; given work productivity 1/κ̃ =

2000, and base-level work effort λ0 = 0.10.
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Figure 2.3: The exponential-utility executive’s fair up-front compensation ∆v,

based on utility indifference, w.r.t. his work productivity 1/κ̃ and

risk aversion η; given disutility stress α = 5, time horizon T = 10

years, and base-level work effort λ0 = 0.10.



76 2.4. FIGURES

5
5.2

5.4
5.6

5.8
6

0.5

1

1.5

2
0

0.2

0.4

0.6

0.8

F
ai

r
co

m
p
en

sa
ti

on
∆
v

Risk aversion η Disutility stress α

Figure 2.4: The exponential-utility executive’s fair up-front compensation ∆v,

based on utility indifference, w.r.t. his risk aversion η and disutility

stress α; given work productivity 1/κ̃ = 2000, time horizon T = 10

years, and base-level work effort λ0 = 0.10.
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Chapter 3

Work Effort, Consumption, and

Portfolio Selection: When the

Occupational Choice Matters

The framework of this chapter is a modification and extension of the frame-

work in the past chapters. One shortcoming of that set-up is that the exec-

utive is subject to instanteneous disutility from work effort, but can benefit

from the utility of the investment decision only at the end of the considered

time horizon. This shortcoming is compensated by allowing the executive

to consume continuously in time and to derive immediate utility from that.

Another shortcoming of the past set-up is that the compensation of the ex-

ecutive is assumed to be included in the starting wealth. This shortcoming

is resolved by assuming that the executive receives compensation at a deter-

ministic and fix rate relative to his total personal wealth. Further we stick

no longer that closely to the notion of an executive who is necessarily based

in an ancestral company. We now consider a highly-qualified individual who

has the choice between two distinct career paths at the beginning of the time

horizon. She can choose between an executive position within a smaller listed

company with the possibility to directly influence the own-company’s per-

formance and a mid-level management position in a large company without

the ability to affect the own-company’s performance. The latter possibility

is referred to as outside option in the literature. In this chapter we follow

the lines of Desmettre and Szimayer (2010).
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3.1 Notation and Setup

We consider an individual endowed with given initial wealth. She manages

here financial objectives by investing in the financial market and choosing

her instantaneous consumption. The individual can also choose the level of

work effort she applies.

3.1.1 Financial Market

First we specify the financial market. We are given a filtered probability

space (Ω,F , P, (Ft)t≥0) satisfying the usual hypothesis and large enough to

support two independent standard Brownian motions, W P = (W P
t )t≥0 and

W = (Wt)t≥0. The investment opportunities available are a money market

account, a diversified market portfolio, and shares of a small listed company

making a job offer to the individual.

The risk-free money market account has the price process B = (Bt)t≥0, with

dynamics

dBt = r Bt dt , B0 = 1 , (3.1)

where r is the instantaneous risk-free rate of return, hence Bt = er t.

The price process of the market portfolio, P = (Pt)t≥0, follows the stochastic

differential equation (SDE)

dPt = Pt (µP dt+ σP dW P
t ) , P0 ∈ R+ , (3.2)

where µP ∈ R and σP > 0 are respectively the expected return rate and

volatility of the market portfolio. The corresponding Sharpe ratio is then

λP = (µP − r)/σP .

The company’s stock price process, Su = (Su
t )t≥0, is a controlled diffusion
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with SDE

dSu
t = Su

t

(
[r + λt σ] dt+ β

[
dPt

Pt

− rdt

]
+ σ dWt

)
, Su

0 ∈ R+ , (3.3)

where µ = r + λσ is the company’s expected return rate in excess of the

beta-adjusted market portfolio’s expected excess return rate (i.e. the ex-

pected return compensation for non-systematic risk), σ is the company’s

non-systematic volatility, and λ = (λt)t≥0 is a control process collected in the

control vector process u that will be specified below.

3.1.2 Controls and Wealth Process

The individual is endowed with the initial wealth V0 > 0. She receives an

instantaneous salary proportional to her current wealth at a relative rate δ.

For an exogenously given time horizon, T > 0, the individual seeks to maxi-

mize her total utility by controlling the portfolio holdings, consumption, and

work effort.

The portfolio is determined by a self-financing trading strategy given by the

bivariate control process π = (πP ,πS), where πP = (πP
t )t≥0 is the fraction

of wealth invested in the market portfolio and πS = (πS
t )t≥0 is the fraction

of wealth invested in the company’s stock. The remainder in the risk-free

account, that is, the strategy is self-financing. The individual consumes in-

stantaneously at the relative rate k = (kt)t≥0 proportional to the wealth V π
t

at time t, where kt ≥ 0, leading to a total consumption rate kt V
π
t . Further,

she influences the small company’s stock price dynamics by choice of the con-

trol strategy λ = (λt)t≥0, which is specified to be associated with work effort.

The control strategy can be conceptualized as deriving from the individual’s

corporate investment. For example, identifying and initiating positive net

present value projects. Value is added if µ = r + λσ is greater than r, indi-

cating excess return compensation for non-systematic risk. To ensure sensible
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solutions we require λ ≥ 0, which effectively bars her from destroying com-

pany value (λ < 0) and potentially profiting by shorting the company’s stock.

All controls are collected in the vector process u = (πP ,πS,k,λ).

For a fixed salary rate δ, initial wealth V0 > 0, and a control strategy u, the

wealth process, V u = (V u
t )t≥0, with starting value V u

0 = V0 is given by

dV u
t = V u

t

([
1− πP

t − πS
t

] dBt

Bt

+ πP
t

dPt

Pt

+ πS
t

dSu
t

Su
t

+ δ dt− kt dt

)
, t ≥ 0 .

(3.4)

The above equation can be rewritten as follows

dV u
t =V u

t

( [
r + δ − kt + (πP

t + β πS
t )λP σP + πS

t λt σ
]
dt

+
[
πP
t + β πS

t

]
σP dW P

t + πS
t σ dWt

)
, t ≥ 0 .

(3.5)

3.1.3 Stochastic Control Problem

The individual is assumed to maximize the expected value of the terminal

utility of her wealth for time horizon T , subject to some utility function U1

and her consumption rate over the time period [t,T ], subject to some utility

function U2. The disutility for work effort is quantified by the cost function C.

Both utility functions and the cost function will be specified when deriving

closed-form solutions.

Assuming control of the company’s stock price behavior λ is determined

exogenously and comes at zero cost, the individual’s optimal investment and

consumption decision is then described by

Φ̂(t, v) = sup
(π,k)∈Π(t,v)

Et,v

[
U1(V

(π,k)
T ) +

∫ T

t

U2(s,V
(π,k)
s ,ks) ds

]
, (3.6)

for (t,v) ∈ [0,T ] × R+, where Π(t,v) denotes the set of all admissible port-

folio processes (π,k) at time t corresponding to portfolio value (i.e. wealth)
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v = Vt > 0 (see for example Korn and Korn (2001)), U1 and U2 are utility

functions, and Et,v denotes the expectation conditional on t and v.

The optimal investment and consumption control decision including work

effort is then the solution of

Φ(t, v) = sup
u∈A(t,v)

Et,v

[
U1(V

u
T ) +

∫ T

t

U2(s,V
u
s , ks) ds−

∫ T

t

C(s,V u
s ,λs) ds

]
,

(3.7)

for (t,v) ∈ [0,T ]×R+. The set of admissible strategies for the maximization

A(t,v) problem is made precise in the following definition.

Definition 3.1.1

Fix (t,v) ∈ [0,T ] × R+, then u =
(
πP ,πS,k,λ

)
is in the set of admissible

strategies A(t,v), if and only if u is an {Fs ; t ≤ s ≤ T}-predictable processes,

such that

(i) the stock price equation

dSu
s = Su

s

(
[r + λs σ] ds+ β

[
dPs

Ps

− rds

]
+ σ dWs

)
,

with initial condition Su
t ∈ R+ admits a non-negative solution and

∫ T

t

(Su
s )

2 (σ2 + β2 σ2
P

)
ds < ∞ P − a.s. ;

(ii) the wealth equation

dV u
s = V u

s

([
1− πP

s − πS
s

] dBs

Bs

+ πP
s

dPs

Ps

+ πS
s

dSu
s

Su
s

+ δ ds− ks ds

)
,

with initial condition V u
t = v has a unique non-negative solution and

∫ T

t

(V u
s )

2
(
([πP

s + β πS
s ] σP )

2 + (πS
s σ)

2
)
ds < ∞ P − a.s. ;

(iii) and the utility of wealth and consumption, and the disutility of control

satisfy

E

[
U1(V

u
T )

− +

∫ T

t

U2(s,V
u
s ,ks)

− ds+

∫ T

t

C(s,V u
s ,λs) ds

]
< ∞ .
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3.1.4 Outside Option

The individual can choose between two job offers at t = 0 . As an alternative

to taking on the executive position with the company with share price Su,

she can pursue her outside option and decide to work for a large company

in a mid-management position paying a salary at rate δ̂. In the latter case

she cannot affect the stock price process any longer and hence λ̂ = 0. The

classical optimal investment and consumption decision applies.

Assume that portfolio process follows Eq. (3.5) where we set δ = δ̂ and

λ = λ̂ = 0. Then the optimal investment decision problem in Equation (3.6)

determines the value of the outside option Φ̂(0,V0) at time t = 0 for initial

wealth V0 > 0.

3.2 Optimal Strategies

In this section we use stochastic control techniques to derive closed-form

solutions to the control problem in (3.7). Our main focus is placed on the

log utility specification for utility from terminal wealth and consumption and

disutility that is a power function of work effort applied. In addition, we also

discuss the general constant relative risk aversion specification.

3.2.1 Hamilton-Jacobi-Bellman Equation

Having formulated the optimal investment and control decision problem in-

cluding consumption with respect to the parameter set u = (πP ,πS,k,λ)

as given by (3.7), we can write down the corresponding Hamilton-Jacobi-

Bellman equation. Note that we formulate this equation with respect to

a general utility functions U1 and U2 and a general cost function C. For
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(t,v) ∈ [0,T )× R+ we have

∂Φ

∂t
(t,v) + sup

u∈U
[(Lu Φ)(t,v) + U2(t,v,k)− C(t,v,λ)] = 0 , (3.8)

with terminal condition Φ(T,v) = U1(v), for v ∈ R+, where U = R2 × [0,∞)2

and the differential operator Lu is defined by

(Lug)(t,v) =

∂g

∂v
(t,v) v

(
r + δ + πS(t,v)λ(t,v) σ +

[
πP (t,v) + β πS(t,v)

]
λP σP − k(t,v)

)

+
1

2

∂2g

∂v2
(t,v) v2

(
[πS(t,v) σ]2 + [πP (t,v) σP + β πS(t,v) σP ]

2
)
.

(3.9)

Potential maximizers πP ⋆
, πS⋆

, k⋆ and λ⋆ of the HJB (3.8) can be calculated

by establishing the first order conditions:

πP ⋆

(t,v) = − λP

v σP

Φv(t,v)

Φvv(t,v)
− β πS⋆

(t,v) ,

πS⋆

(t,v) = −λ⋆(t,v)

v σ

Φv(t,v)

Φvv(t,v)
,

(3.10)

and λ⋆ is the solution of the implicit equation

λ
Φ2

v(t,v)

Φvv(t,v)
+

∂C

∂λ
(t,v,λ) = 0 , for all (t,v) ∈ [0,T ]× R+ , (3.11)

where we have already used (3.10) to simplify the equation, and k⋆ is the

solution of the equation

∂U2

∂k
(t,v,k)− vΦv(t,v) = 0. (3.12)

Substituting the maximizers (3.10) in the HJB (3.8) yields:

Φt(t,v)+Φv(t,v) v (r + δ − k⋆(t,v))− 1

2
(λ⋆(t,v))2

Φ2
v(t,v)

Φvv(t,v)

− 1

2
λ2
P

Φ2
v(t,v)

Φvv(t,v)
+ U2(t,k

⋆(t,v))− C(t,v,λ⋆(t,v)) = 0 .

(3.13)

In the following we solve (3.13) with particular choices for the utility and

disutility functions.



84 3.2. OPTIMAL STRATEGIES

3.2.2 Closed-Form Solution for the Log-Utility Case

We specify the utility functions to be of log-utility type, belonging to the

constant relative risk aversion class. The utility function of the final wealth

U1 is

U1(v) = K log(v) , for v ∈ R+ , (3.14)

for a constant K > 0, the utility function of consumption U2 is

U2(t,k,v) = e−ρ t log(v k) , for (t,v,k) ∈ [0,T ]× R+ × R+
0 , (3.15)

where ρ ∈ R parametrizes the time preference, and the cost function of work

effort C is

C(t,v,λ) = e−ρ̃ t κ
λα

α
, for (t,v,λ) ∈ [0,T ]× R+ × R+

0 , (3.16)

where κ > 0 and α > 2 are the individual’s work effectiveness parameters,

respectively termed ‘inverse work productivity’ and ‘disutility stress’, and

ρ̃ ∈ R is a time preference parameter. The constant κ directly relates her

work effort disutility to the quality of her control decision as indicated by the

non-systematic Sharpe ratio λ, and α indicates how rapidly her work effort

disutility will rise for the sake of an improved λ. The requirement α > 2

is a consequence of our set-up that ensures the executive’s disutility grows

with work effort, i.e. λ, at a rate that offsets (at some level of λ) the rate

of her utility gain due to the flow-on from her work effort to the value of

her own-company stockholding; this becomes evident with derivation of the

solution to (3.7). A higher quality individual is able to achieve a given λ with

lower disutility, and is able to improve λ with lower incremental disutility.

That is, higher individual quality (i.e. higher work effectiveness) is implied

by lower values of κ and α.

For the remainder of the chapter we assume that the optimal investment

and control problem (3.7) admits a value function Φ ∈ C1,2. To guarantee

that the candidates we will derive for the executive’s optimal investment
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and control strategy (i.e. the choices for own-company stockholding, market

portfolio holding and non-systematic Sharpe ratio) and value function are

indeed optimal, we have to consider a more restrictive class of admissible

strategies as follows.

Definition 3.2.1

Fix (t,v) ∈ [0,T ] × R+. Then by A′(t,v) we denote the set of admissible

strategies u ∈ A′(t,v), such that u ∈ A(t,v) and

E

[∫ T

t

(
πP
s + β πS

s

)2
(σP )

2 +
(
πS
s σ
)2

ds

]
< ∞ , (3.17)

Restating the optimal investment and control problem:

Φ(t, v) = sup
u∈A′(t,v)

Et,v

[
U1(V

u
T ) +

∫ T

t

U2(s,V
u
s , ks) ds−

∫ T

t

C(s,V u
s ,λs) ds

]
,

(3.18)

for (t,v) ∈ [0,T ]× R+.

A closed-form solution is obtained for the optimal investment and control

problem in (3.18) using the utility and disutility functions (3.14), (3.15) and

(3.16).

Theorem 3.2.1

The full solution of the maximization problem (3.18) can be summarized by

the strategy

πP ⋆
(t,v) =

λP

σP

− β πS⋆
(t,v) , πS⋆

(t,v) =
λ⋆(t,v)

σ
,

λ⋆(t,v) =

(
eρ̃ t

κ
f(t)

) 1
α−2

, k⋆(t,v) =
e−ρ t

f(t)
,

(3.19)

and value function

Φ(t,v) =f(t) log(v) + g(t) , (3.20)

with

f(t) =

{
K + e−ρ t−e−ρ T

ρ
, for ρ 6= 0 ,

K + T − t , for ρ = 0 ,
(3.21)
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and

g(t) =

(
r + δ +

1

2
λ2
P

)∫ T

t

f(s) ds+
α− 2

2α

∫ T

t

(
eρ̃ s

κ

) 2
α−2

f(s)
α

α−2 ds

−
∫ T

t

(1 + ρ s) e−ρ s ds−
∫ T

t

e−ρ s log(f(s)) ds .

(3.22)

Proof. First observe that a function F of the form F (λ) = a λ2 − b λα,

λ ≥ 0, for given constants a, b > 0 and α > 2, has a unique maximizer λ⋆

and maximized value F (λ⋆) given by

λ⋆ =

(
2 a

α b

) 1
α−2

, and F (λ⋆) = (α− 2)α− α
α−2 2

2
α−2 a

α
α−2 b−

2
α−2 . (3.23)

Using this insight, the first order condition for λ⋆ in (3.11) is now solved. Set

a =
1

2

Φ2
v

−Φvv

, and b = e−ρ̃ t κ

α
,

then (3.23) gives

λ⋆ =

(
eρ̃ t

κ

Φ2
v

−Φvv

) 1
α−2

, and F (λ⋆) =
α− 2

2α

(
eρ̃ t

κ

) 2
α−2
(

Φ2
v

−Φvv

) α
α−2

.

(3.24)

Having specified the utility function U2 of the consumption rate as

U2(t,v,k) = e−ρ t log(v k), we can also solve the first order condition for the

optimal consumption rate. Equation (3.12) then gives:

k⋆ =
e−ρ t

vΦv

. (3.25)

Substituting λ⋆ and k⋆ in equation (3.13) we get:

0 =Φt + Φv v (r + δ) +
1

2
λ2
P

Φ2
v

−Φvv

+
α− 2

2α

(
eρ̃ t

κ

) 2
α−2
(

Φ2
v

−Φvv

) α
α−2

− e−ρ t − ρ t e−ρ t − e−ρ t log(Φv) .

(3.26)
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Using the ansatz Φ(t,v) = log(v) f(t) + g(t) with f(T ) = K and g(T ) = 0

results in

Φt = log(v)ḟ(t) + ġ(t) , Φv =
1

v
f(t) , Φvv = − 1

v2
f(t) , and

Φ(T,v) = K log(v) = U1(v) .

Then (3.26) reduces to

0 = log(v)ḟ(t) + ġ(t) + f(t)

(
r + δ +

1

2
λ2
P

)
+

α− 2

2α

(
eρ̃ t

κ

) 2
α−2

f(t)
α

α−2

− e−ρ t − ρ t e−ρ t + e−ρ t log(v)− e−ρ t log(f(t)) .

(3.27)

Taking the derivative of this equation w.r.t. v gives:

1

v
ḟ(t) +

1

v
e−ρ t = 0 ⇐⇒ ḟ(t) = −e−ρ t .

Using the condition f(T ) = K we then get by integration

f(t) =

{
K + e−ρ t−e−ρ T

ρ
, for ρ 6= 0 ,

K + T − t , for ρ = 0 .
(3.28)

Following the derivation of f we can eliminate the log(v) in (3.27)

−ġ(t) = f(t)

(
r + δ +

1

2
λ2
P

)
+

α− 2

2α

(
eρ̃ t

κ

) 2
α−2

f(t)
α

α−2

− e−ρ t − ρ t e−ρ t − e−ρ t log(f(t)) , and g(T ) = 0 .

(3.29)

Equation (3.29) can now be solved by simple integration:

g(t) =

(
r + δ +

1

2
λ2
P

)∫ T

t

f(s) ds+
α− 2

2α

∫ T

t

(
eρ̃ s

κ

) 2
α−2

f(s)
α

α−2 ds

−
∫ T

t

(1 + ρ s) e−ρ s ds−
∫ T

t

e−ρ s log f(s) ds ,

where f(t) is given as above.

Combining the results for the functions f and g we then get the claimed result

for the value function. Noting that Φv/Φvv = −v and using the first order
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conditions in (3.10) establishes the claimed optimal strategies πP ⋆
and πS⋆

.

Finally noting that Φ2
v/Φvv = −f(t) and using the solved first order condition

(3.24), we get the desired result for the optimal sharpe ratio λ⋆ and plugging

in vΦv = f in (3.25) we get the claimed result for the optimal consumption

rate k⋆. The claimed optimal investment and control choices are deterministic

and the optimal consumption rate are continuous on a compact support, so

they are uniformly bounded implying u⋆ = (πS⋆
,πP ⋆

,λ⋆,k⋆) ∈ A′(t,v).

Remark 3.2.1

The expression for g in Theorem 3.2.1 can be partially calculated fairly ex-

plicitly. For ρ 6= 0 we obtain

g(t) =

(
r + δ +

1

2
λ2
P

)(
K [T − t] +

1

ρ2
[
e−ρ t − e−ρ T (1 + ρ[T − t])

])

− 1

ρ

(
e−ρ t − e−ρ T

)
− t e−ρ t + T e−ρ T +K log(K)

− log

(
K +

1

ρ

[
e−ρ t − e−ρ T

])(
K +

1

ρ

[
e−ρ t − e−ρ T

])

+
α− 2

2α

∫ T

t

(
eρ̃ s

κ

) 2
α−2

f(s)
α

α−2 ds .

The integral in the last line can in general not be computed in closed form.

However, it can be expressed as a hypergeometric function. For ρ = 0, the

function g can be obtained by continuity in ρ, i.e. fix t and then compute the

limit for ρ → 0.

The solutions of the maximization problems given in Theorem 3.2.1 are can-

didates for the optimal investment and control choices as well as for the

optimal consumption rate for the problem in (3.18). In the following the-

orem we verify that under sufficient assumptions these solutions are indeed

optimal.

Theorem 3.2.2 (Verification)

Let κ > 0 and α > 2. Assume the executive’s utility function of wealth, the

utility function of the consumption rate as well as the cost function are given
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by (3.14), (3.15) and (3.16). Then the candidates given in (3.19) and (3.20)

are the optimal investment and control strategy (i.e. own-company stockhold-

ing, market portfolio holding and non-systematic Sharpe ratio strategy), the

optimal consumption rate and value function of the optimal control problem

(3.18).

Proof. Define the performance functional of our optimal investment, con-

sumption and control decision by

J ′(t,v; u) := Et,v

[
U1 (V

u
T ) +

∫ T

t

U2(s,V
u
s ,ks) ds−

∫ T

t

C(s,V u
s ,λs) ds

]
.

(3.30)

Our candidates are optimal if we have

J ′(t,v; u⋆) = Φ(t,v) with u⋆ = (πP⋆,πS⋆

,k⋆,λ⋆) and

J ′(t,v; u) ≤ Φ(t,v) , for all u = (πP ,πS,k,λ) ∈ A′
1(t,v) .

(3.31)

Let u ∈ A′
1(t,v). Since Φ ∈ C1,2, we obtain by Ito’s formula:

Φ(T,V u
T ) +

∫ T

t

e−ρ s log(V u
s ks) ds−

∫ T

t

e−ρ̃ sκ
λα
s

α
ds

= Φ(t,v) +

∫ T

t

(
Φt(s,V

u
s ) + e−ρ s log(V u

s ks)− e−ρ̃ sκ
λα
s

α

)
ds

+

∫ T

t

Φv(s,V
u
s )V

u
s

(
r + δ − ks +

[
πP
s + βπS

s

]
λPσP + πS

s λsσ
)
ds

+
1

2

∫ T

t

Φvv(s,V
u
s ) (V

u
s )

2 ([(πP
s + β πS

s )σP ]
2 + [πS

s σ]
2
)
ds

+

∫ T

t

Φv(s,V
u
s )V

u
s

(
πP
s + βπS

s

)
σP dW P

s +

∫ T

t

Φv(s,V
u
s )V

u
s π

S
s σ dWs.

(3.32)

First, we investigate the optimal control u⋆ = (πP ⋆
,πS⋆

,λ⋆,k⋆) given in (3.19).

To show that the local martingale component in (3.32) vanishes in expecta-

tion we check the sufficient integrability condition

E

[∫ T

t

(
Φv(s,V

u⋆

s )V u⋆

s

)2 ([
πP ⋆

s + β πS⋆

s

]2
σ2
P +

[
πS⋆

s

]2
σ2
)
ds

]
< ∞ . (3.33)
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From (3.19) and (3.20) we obtain

(
Φv(s,V

u⋆

s )V u⋆

s

)2 ([
πP ⋆

s + βπS⋆

s

]2
σ2
P +

[
πS⋆

s

]2
σ2
)
= (f(s))2

(
λ2
P + [λ⋆(s)]2

)
.

Now, f and λ⋆ are deterministic continuous functions on the compact [0,T ],

and thus the above expression is uniformly bounded. Accordingly the ex-

pectation in (3.33) is finite, and the Wiener integrals in (3.32) vanish in

expectation. Furthermore, Φ satisfies the HJB equation (3.8) implying

0 =Φv(s,V
u⋆

s )V u⋆

s

(
r + δ − ks +

[
πP ⋆

s + βπS⋆

s

]
λPσP + πS⋆

s λ⋆
sσ
)

+
1

2
Φvv(s,V

u⋆

s )
(
V u⋆

s

)2 (
[(πP ⋆

s + β πS⋆

s )σP ]
2 + [πS⋆

s σ]2
)

+ Φt(s,V
u⋆

s ) + e−ρs log(V u⋆

s k⋆
s)− e−ρ̃sκ

(λ⋆
s)

α

α
, for t ≤ s ≤ T .

Then, using that Φ(T,v) = U1(v) the expectation of (3.32) is:

Φ(t,v) = Et,v

[
Φ(T,V u⋆

T ) +

∫ T

t

e−ρs log(V u⋆

s k⋆
s) ds−

∫ T

t

e−ρ̃sκ
(λ⋆

s)
α

α
ds

]

= Et,v

[
U1(V

u⋆

T )) +

∫ T

t

U2(s,V
u⋆

s , k⋆
s) ds−

∫ T

t

C(s,V u⋆

s ,λ⋆
s) ds

]

= J ′(t,v; u⋆) .

Thus we have verified the first part of (3.31).

Next, fix u ∈ A′(t,v). By the HJB equation (3.8), we have

0 ≥Φt(s,V
u
s ) + Φv(s,V

u
s )V

u
s

(
r + δ − ks +

[
πP
s + βπS

s

]
λPσP + πS

s λsσ
)

+
1

2
Φvv(s,V

u
s ) (V

u
s )

2 ([(πP
s + β πS

s )σP ]
2 + [πS

s σ]
2
)

+ e−ρs log(V u
s ks)− e−ρ̃sκ

λα
s

α
, for t ≤ s ≤ T .

Substituting this in (3.32) and recalling that Φv(t,v) =
1
v
f(t) we get:

Φ(T,V π
T ) +

∫ T

t

e−ρs log(V u
s ks)ds−

∫ T

t

e−ρ̃sκ
λα
s

α
ds

≤ Φ(t,v) +

∫ T

t

f(s)
(
πP
s + β πS

s

)
σP dW P

s +

∫ T

t

f(s) πS
s σ dWs .

(3.34)
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Taking the expectation on both sides and keeping in mind that Φ(T,v) =

U1(v) then yields

J ′(t,v; u)

= Et,v

[
U1(V

u
T )) +

∫ T

t

U2(s,V
u
s , ks) ds−

∫ T

t

C(s,V u
s ,λs) ds

]

= Et,v

[
Φ(T,V u

T ) +

∫ T

t

e−ρs log(V u
s ks)ds−

∫ T

t

e−ρ̃sκ
λα
s

α
ds

]

≤ Φ(t,v) + Et,v

[∫ T

t

f(s)
(
πP
s + β πS

s

)
σP dW P

s +

∫ T

t

f(s) πS
s σ dWs

]

︸ ︷︷ ︸
=0, by (3.17)

.

The Wiener integral vanishes in expectation since the corresponding inte-

grand is square integrable, since f is uniformly bounded and (3.17).

3.2.3 Participation Constraint for the Log-Utility Case

The optimal strategies in Theorem 3.2.1 and Theorem 3.2.2 above apply in

case the individual decides to work for the smaller listed company. However,

she has the opportunity to take up an outside option, that is, working for

a larger company in a mid-level management position. The outside option

offers a contract that differs in the salary rate and foregoes the possibility of

controlling the stock price of the smaller listed company. Next, we calculate

the value of the outside option and derive the participation constraint.

The outside option pays a salary rate δ̂. Taking on the position results in the

loss of the ability to influence the stock price of the smaller listed company

and therefore λ̂ = 0. She can invest in the financial market. The classical

optimal investment and consumption decision applies. For the remainder

of this subsection we assume that the portfolio process follows Eq. (3.5)

where we set δ = δ̂ and λ = λ̂ = 0. Then the optimal investment decision

problem in Equation (3.6) determines the value of the outside option Φ̂(0,V0)
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at time t = 0 for initial wealth V0 > 0. The solution Φ̂ can be obtained

as a simplification of the results in Theorem 3.2.1 and Theorem 3.2.2, i.e.

Φ̂(t,v) = f̂(t) log(v) + ĝ(t) with

f̂(t) =

{
K + e−ρ t−e−ρ T

ρ
, for ρ 6= 0 ,

K + T − t , for ρ = 0 ,
(3.35)

and

ĝ(t) =

(
r + δ̂ +

1

2
λ2
P

)∫ T

t

f̂(s) ds

−
∫ T

t

(1 + ρ s) e−ρ s ds−
∫ T

t

e−ρ s log(f̂(s)) ds .

(3.36)

Observe that f̂ = f and

g(t)− ĝ(t) = (δ − δ̂)

∫ T

t

f(s) ds+
α− 2

2α

∫ T

t

(
eρ̃ s

κ

) 2
α−2

f(s)
α

α−2 ds . (3.37)

Based on the discussion above we can state the participation constraint.

Theorem 3.2.3

Let δ̂ be the salary rate of the outside option. Then the value of the outside

option is the solution Φ̂ to optimal investment and consumption problem

in (3.6) with dynamics (3.5) where we set δ = δ̂ and λ = λ̂ = 0. The

participation constraint for the individual is

δ ≥ δ̂ − (α− 2)

2α

∫ T

0

(
eρ̃ t

κ

) 2
α−2

f(t)
α

α−2 dt
∫ T

0
f(t) dt

, (3.38)

where f is given in Theorem 3.2.1.

Proof. The value function is of the form Φ̂ = f̂(t) log(v) + ĝ(t) with f̂ = f

and ĝ − g given in (3.37). Then we have of course Φ(t,v) − Φ̂(t,v) = g(t) −
ĝ(t) and the participation constraint Φ(0,V0) ≥ Φ̂(0,V0) follows as stated

in (3.38).
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Remark 3.2.2

Using the representation of the function f

f(t) =

{
K + e−ρ t−e−ρ T

ρ
, for ρ 6= 0 ,

K + T − t , for ρ = 0 ,

we can rewrite the particicpation constraint as

δ ≥





δ̂ − (α− 2)

2α

∫ T

0

(
eρ̃ t

κ

) 2
α−2

f(t)
α

α−2 dt

K T + 1
ρ2
[1− e−ρT (1 + ρT )]

, for ρ 6= 0 ,

δ̂ − (α− 2)

2α

∫ T

0

(
eρ̃ t

κ

) 2
α−2

f(t)
α

α−2 dt

K T + 1
2
T 2

, for ρ = 0 .

3.2.4 Closed-Form Solution for the Power-Utility Case

In this subsection, we derive a closed-form solution for the case of power

utility. In particular, we specify a constant relative risk aversion utility-

disutility set-up. For the relative risk aversion parameter γ > 1, the utility

function of the final wealth U1 is

U1(v) =
v1−γ

1− γ
, for γ > 1 , (3.39)

the utility function of the consumption U2 is

U2(k,v) =
(v k)1−γ

1− γ
, for γ > 1 , (3.40)

and the disutility of control (i.e. work effort) C is

C(v,λ) = κ v1−γ λα

α
, for γ > 1 , (3.41)

where κ > 0 and α > 2 are as in the log-utility part.

Compared to the log-utility setup we have made the simplifying assumption

that utility from consumption in (3.40) and the cost from work effort in (3.41)
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are not depending on time, see (3.15) and (3.16) for time preferences in the

log-utility setup. This assumption enables us to obtain a tractable formu-

lation of the problem. However, we require a further structural assumption

linking the cost function parameter α to the relative risk aversion γ. The

following condition is assumed to hold:

α = 2γ + 2 . (3.42)

Condition (3.42) enables us to reduce an ODE of inhomogeneous Bernoulli

type that appears when solving the HJB equation to an ODE of Riccati

type, which we are able to solve in closed-form. This restriction is however

not counterintuitive. A more risk averse individual is implicitly assumed to

be more sensitive towards work. When focusing on the optimal work effort

λ⋆ as a main result we can rely on the results of the first chapter. The

results w.r.t. this related framework (although without consumption and

salary) indicate that λ⋆ decreases with increasing risk aversion as well as

with increasing disutility stress; compare Figures 1.3 and 1.5. So by relating

those two parameters via (3.42) we do not change the qualitative behavior

of the optimal work effort.

Analogously to the log-utility case, to guarantee indeed the optimality of the

candidates we will derive for the executive’s optimal investment and control

strategy and value function, we consider again a more restrictive class of

admissible strategies as follows.

Definition 3.2.2

Fix (t,v) ∈ [0,T ]×R+. Further choose ǫ̃ ∈ (0,∞) as close to zero as possible.

Then for γ > 1, we denote by A′
γ(t,v) the set of admissible strategies u ∈

A′
γ(t,v), such that u ∈ Aγ(t,v) and
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∫ T

t

(πP
s + β πS

s )
2+ǫ̃(σP )2+ǫ̃ +

(
πS
s σ
)2+ǫ̃

ds ≤ C1 < ∞ , for some C1 ∈ R+
0 ,

(3.43)
∫ T

t

πS
s σλs ds ≥ C2 > −∞ , for some C2 ∈ R+

0 , (3.44)

∫ T

t

ks ds ≤ C3 < ∞ , for some C3 ∈ R+
0 . (3.45)

Theorem 3.2.4 (The power-utility case: γ > 1)

Suppose that the relative risk aversion parameter γ and the disutility stress

parameter α are connected via the relation (3.42), then the full solution of

the maximization problem (3.18) can be summarized by the strategy

πP ⋆
(t,v) =

µP − r

γ (σP )2
− β πS⋆

(t,v) , πS⋆
(t,v) =

λ⋆(t,v)

γ σ⋆(t,v,λ⋆(t,v))
,

λ⋆(t,v) =

(
1

κ γ
f(t)

) 1
2γ

, k⋆(t,v) = (f(t))−
1
γ ,

(3.46)

and value function

Φ(t,v) =
v1−γ

1− γ
f(t) , (3.47)

where

f(t) =

(
2(1− gP )

√
C0

2
√
C0e−2

√
C0(T−t) + (1− gP )

(
e−2

√
C0(T−t) − 1

) + gP

)−γ

, (3.48)

with

C0 =
(γ − 1)2

4γ2

(
r + δ +

1

2

λ2
P

γ

)2

− κ

2

(1− γ)

(1 + γ)

(
1

κγ

) γ+1
γ

, (3.49)

and

gP = −1− γ

2γ

(
r + δ +

1

2

λ2
P

γ

)
+
√

C0 . (3.50)

Proof. First observe that a function F of the form F (λ) = a λ2 − b λα,

λ ≥ 0, for given constants a, b > 0 and α > 2, has a unique maximizer λ⋆
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and maximized value F (λ⋆) given by

λ⋆ =

(
2 a

α b

) 1
α−2

, and F (λ⋆) = (α− 2)α− α
α−2 2

2
α−2 a

α
α−2 b−

2
α−2 . (3.51)

Using this insight the first order condition for λ⋆ in (3.11) is now solved. Set

a =
1

2

Φ2
v

−Φvv

, and b =
κ

α
v1−γ ,

then (3.51) gives

λ⋆ =

(
1

κ v1−γ

Φ2
v

−Φvv

) 1
α−2

, F (λ⋆) =
α− 2

2α

(
κ v1−γ

)− 2
α−2

(
Φ2

v

−Φvv

) α
α−2

.

Having specified the utility function as U2(t,kt) = (v k)1−γ

1−γ
, the first order

condition (3.12) for the optimal consumption rate becomes:

k⋆ =
1

v
(Φv)

− 1
γ .

Substituting λ⋆ and k⋆ in (3.13) then yields:

0 = Φt + Φv v (r + δ) +
1

2

Φ2
v

−Φvv

(
λP
)2

+
α− 2

2α

(
κ v1−γ

)− 2
α−2

(
Φ2

v

−Φvv

) α
α−2

+
γ

1− γ
(Φv)

γ−1
γ .

(3.52)

Using the separation ansatz Φ(t,v) = f(t) v1−γ

1−γ
results in

Φt = ḟ
v1−γ

1− γ
, Φv = f v−γ , Φvv = −γ f v−γ−1 , and f(T ) = 1 . (3.53)

Thus (3.52) becomes

0 = ḟ
v1−γ

1− γ
+ f v1−γ (r + δ) +

1

2

f v1−γ

γ

(
λP
)2

+
α− 2

2α

(
κ v1−γ

)− 2
α−2

(
f v1−γ

γ

) α
α−2

+
γ

1− γ
v1−γf

γ−1
γ .

Dividing by v1−γ

1−γ
and then defining

a1 =(1− γ)

(
r + δ +

1

2

λ2
P

γ

)
, an = (1− γ)

κ

2

α− 2

α

(
1

κ γ

) α
α−2

,

am =γ , n =
α

α− 2
, and m =

γ − 1

γ
.

(3.54)
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results in an ordinary differential equation of the form

ḟ + a1 f + an f
n + am fm = 0 . (3.55)

The ansatz g = f 1−n yields ġ =
1− n

fn
ḟ and thus

ġ + a1 (1− n) g + am (1− n) g
m−n
1−n = −an (1− n) , g(T ) = 1 .

Using (3.42), i.e. α = 2 + 2 γ, and plugging in the coefficients in (3.54) we

obtain the following ODE of Riccati type

ġ − 1− γ

γ

(
r + δ +

1

2

λ2
P

γ

)
g − g2 =

κ

2

1− γ

1 + γ

(
1

κ γ

) γ+1
γ

. (3.56)

This ODE can be solved if we know a particular solution gP , since then we

can reduce this ODE by using the standard ansatz

h = 1/(g − gP )

to the following linear form:

ḣ+

[
2gP +

γ − 1

γ

(
r + δ +

1

2

λ2
P

γ

)]
h+ 1 = 0 , h(T ) =

1

1− gP
.

This equation can now be solved by variation of constants. A nonnegative

particular solution of (3.56) is

gP =− 1− γ

2γ

(
r + δ +

1

2

λ2
P

γ

)

+

√
(γ − 1)2

4 γ2

(
r + δ +

1

2

λ2
P

γ

)2

− κ

2

(1− γ)

(1 + γ)

(
1

κγ

) γ+1
γ

,

which means that we have to solve the following inhomogeneous linear ODE

ḣ+


2

√
(γ − 1)2

4γ2

(
r + δ +

1

2

λ2
P

γ

)2

− κ

2

(1− γ)

(1 + γ)

(
1

κγ

) γ+1
γ


h+ 1 = 0 .

(3.57)
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Now applying variation of constants and using that h(T ) = 1/(1 − gP ), the

solution of this ODE is

h(t) =
1

1− gP
e2

√
C0 (T−t) +

1

2
√
C0

(
e2

√
C0 (T−t) − 1

)
, (3.58)

where

C0 =
(γ − 1)2

4γ2

(
r + δ +

1

2

λ2
P

γ

)2

− κ

2

(1− γ)

(1 + γ)

(
1

κγ

) γ+1
γ

.

Transforming the result back to the function f we get

f(t) =

(
gP +

2(1− gP )
√
C0

2
√
C0e2

√
C0(T−t) + (1− gP )

(
e2

√
C0(T−t) − 1

)
)−γ

. (3.59)

Using the representations (3.53) we get

λ⋆(t,v) =

(
1

κ v1−γ

Φ2
v

−Φvv

) 1
α−2

=

(
1

κγ
f(t)

) 1
α−2

=

(
1

κγ
f(t)

) 1
2γ

,

and

πP ⋆

(t,v) = −(µP − r)

v(σP )2
Φv(t,v)

Φvv(t,v)
− β πS⋆

(t,v) =
µP − r

γ (σP )2
− β πS⋆

(t,v) ,

πS⋆

(t,v) = − λ⋆(t,v)

vσ⋆(t,v,λ⋆(t,v))

Φv(t,v)

Φvv(t,v)
=

λ⋆(t,v)

γ σ⋆(t,v,λ⋆(t,v))
,

as well as

k⋆(t,v) =
1

v
(φv(t,v))

− 1
γ =

1

v

(
f(t) v−γ

)− 1
γ = (f(t))−

1
γ .

And the proof is finished.

Remark 3.2.3

Establishing the solution is based on the function f in (3.55). The transfor-

mation g = f−1/γ is applied and requires f to be nonnegative. Accordingly,

the function g satisfies the Riccati ODE in (3.56) and lives also on R+. As

a solution strategy we identifying a particular solution gP . This works for

γ > 1, since then gP > 0, i.e. the particular solution is in the region where

g is specified on. However, the solution strategy breaks down for 0 < γ < 1.
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Then we would have gP < 0 and this candidate is not an admissible solution.

This explains why we cannot provide a solution for the case 0 < γ < 1, at

least, with our methods at hand.

Again, we need to show that the candidates derived in Theorem (3.2.4) are

indeed optimal. This is done in the following verification theorem.

Theorem 3.2.5 (Verification Result for the Case γ > 1)

Let κ > 0 and α > 2 and α = 2γ + 2. Assume the utility function of

wealth, the utility function of the consumption rate and the disutility function

are given by (3.39), (3.40) and (3.41), respectively. Then the candidates

given via (3.46) - (3.50) are the optimal investment and control strategy

(i.e. own-company stockholding, market portfolio holding and non-systematic

Sharpe ratio strategy), the optimal consumption rate and value function of

the optimal control problem (3.18) for the case γ > 1.

Proof. Define the performance functional of our optimal investment, con-

sumption and control decision again by (3.30). Our candidates are optimal

if we have

J ′(t,v; u⋆) = Φ(t,v) with u⋆ = (πP ⋆

,πS⋆

,k⋆,λ⋆) and

J ′(t,v; u) ≤ Φ(t,v) , for all u = (πP ,πS,k,λ) ∈ A′
γ(t,v) .

Let u ∈ A′
γ(t,v). Since Φ ∈ C1,2, we obtain by Ito’s formula:

Φ(T,V u
T )−

∫ T

t

κ(V u
s )

1−γ λ
α
s

α
ds+

∫ T

t

(V u
s k)1−γ

1− γ
ds = Φ(t,v) +

∫ T

t

{
Φt(s,V

u
s ) + Φv(s,V

u
s )V

u
s

[
r + πS

s λs σ + (πP
s + β πS

s )λ
PσP + δ − ks

]

+ 1/2Φvv(s,V
u
s ) (V

u
s )

2 [(πP
s + β πS

s )
2(σP )2 + (πS

s σ)
2
]

− κ(V u
s )

1−γ λ
α
s

α
ds+

(V u
s k)1−γ

1− γ

}

+

∫ T

t

Φv(s,V
u
s )V

u
s (π

P
s + β πS

s )σ
P dW P

s +

∫ T

t

Φv(s,V
u
s )V

u
s π

S
s σ dWs . (3.60)
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For the optimality candidates given in (3.46), the local martingale compo-

nent in (3.60) disappears. A sufficient condition to verify this is the square

integrability condition

E

[∫ T

t

(
Φv(s,V

u⋆

s )V u⋆

s

)2 (
[πP ⋆

s + β πS⋆

s ]2(σP )2 + [πS⋆

s σ]2
)]

ds < ∞ . (∗)

Now substituting the candidates from (3.46) - (3.50) yields

(
Φv(s,V

u⋆

s )V u⋆

s

)2 (
[πP ⋆

s + β πS⋆

s ]2(σP )2 + [πS⋆

s σ]2
)

=

(
V u⋆

s

)2(1−γ)
f(s)2

γ2

[
(λP )2 +

(
1

κγ
f(s)

) 1
γ

]
. (∗∗)

The RHS of (∗∗) is
(
V u⋆

s

)2(1−γ)
times a deterministic and continuous function

on the compact set [0,T ]. The deterministic part is uniformly bounded.

Therefore it is sufficient to focus on the stochastic component: V u⋆

s satisfies

the wealth equation

dV u⋆

t = V u⋆

t

[
r dt+

λ2
P

γ
dt+

(λ⋆(t,V u⋆

t ))2

γ
dt − (f(t))−

1
γ dt+ δdt

+
λP

γ
dW P

t +
λ⋆(t,V u⋆

t )

γ
dWt

]
,

for which we have substituted the optimality candidates (3.46) in the original

wealth equation. Recalling that λ⋆(t,v) is a deterministic function in t and

further does not depend on v and that f(t) is a deterministic function as well,

we see that V u⋆

t follows a log-normal distribution for all t ≥ 0 with parameters

being uniformly bounded for all t ∈ [0,T ]. Since all moments of a log-

normally distributed random variable exist, we have proven (∗). Furthermore

Φ satisfies the HJB equation (3.8), i.e. for u = u⋆ = (πP ⋆
,πS⋆

,k⋆,λ⋆), the

choice (3.41) of the disutility function and the choice (3.40) of the consumpion

rate we have:

Φt(s,V
u⋆

s ) + Φv(s,V
u⋆

s )V u⋆

s

[
r + πS⋆

s λ⋆
s σ +

(
πP ⋆

s + β πS⋆

s

)
λPσP + δ − k⋆

s

]

+ 1/2Φvv(s,V
u⋆

s )
(
V u⋆

s

)2 [
(πP ⋆

s + β πS⋆

s )2(σP )2 + (πS⋆

s σ)2
]

− κ
(
V u⋆

s

)1−γ (λ⋆
s)

α

α
+

(
V u⋆

s k⋆
)1−γ

1− γ
= 0 .
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Then, for u = u⋆, the expectation of equation (3.60) using Φ(T,v) = v1−γ/(1−
γ) is:

Et,v

[(
V u⋆

T

)1−γ

1− γ

]
− Et,v

[∫ T

t

κ
(
V u⋆

s

)1−γ (λ⋆
s)

α

α
ds

]
+ Et,v

[∫ T

t

(
V u⋆

s k⋆
)1−γ

1− γ
ds

]

= J ′(t,v; u⋆) = Φ(t,v) .

The optimality of our candidates is finally shown if we have for all u ∈
A′

γ(t,v) :

Et,v

[
(V u

T )
1−γ

1− γ

]
− Et,v

[∫ T

t

κ (V u
s )

1−γ (λs)
α

α
ds

]
+ Et,v

[∫ T

t

(V u
s k)

1−γ

1− γ
ds

]

= J ′(t,v; u) ≤ Φ(t,v) .

(3.61)

Also, since Φ satisfies the HJB equation (3.8), we get for all u ∈ A′
γ(t,v) :

Φt(s,V
u
s ) + Φv(s,V

u
s )V

u
s

[
r + πS

s λs σ + (πP
s + β πP

s )λ
PσP + δ − ks

]

+ 1/2Φvv(s,V
u
s ) (V

u
s )

2 [(πP
s + β πS

s )
2(σP )2 + (πS⋆

s σ)2
]

− κ (V u
s )

1−γ (λs)
α

α
+

(V u
s k)

1−γ

1− γ
≤ 0 .

Substituting this in (3.60) , recalling that Φv(t,v) = f(t) v−γ , we get:

Φ(T,V u
T )−

∫ T

t

κ (V u
s )

1−γ λα
s

α
ds+

∫ T

t

(V u
s k)

1−γ

1− γ
ds ≤ Φ(t,v)

+

∫ T

t

(V u
s )

1−γf(s)
(
πP
s + β πS

s

)
σP dW P

s +

∫ T

t

(V u
s )

1−γf(s)πS
s σ dWs

︸ ︷︷ ︸
=:Mt

T

.

(3.62)

To verify equation (3.61), we impose conditions under which the local mar-

tingale M t is a martingale. Recall Φv(t,v) = f(t) v−γ and calculate the
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quadratic variation of M t

〈M t〉T =

∫ T

t

(V u
s )

2(1−γ)f 2(s)
(
[πP

s + β πS
s ]

2(σP )2 + [σπS
s ]

2
)
ds

≤ ǫ
ǫ

1+ǫ

1 + ǫ
sup

0≤s≤T
f(s)2

(∫ T

t

(V u
s )

2 (1−γ) (1+ 1
ǫ ) ds

+

∫ T

t

(
[πP

s + β πS
s ]

2(σP )2 + [σπS
s ]

2
)1+ǫ

ds
)
, ǫ > 0 ,

(3.63)

where the upper bound in the second line was achieved using inequality

(A.1.2) given in Lemma 0.1.1 setting

x := (V u
s )

2(1−γ) and y :=
(
[πP

s + β πS
s ]

2(σP )2 + [σ⋆
sπ

S
s ]

2
)
.

We show that M t is a martingale by deriving the integrability of the quadratic

variation 〈M t〉T . First we use that f is a continuous function on the compact

set [0,T ] and is uniformly bounded, and thus sup0≤s≤T f(s)2 is finite. We are

left to deal with the two expressions in the brackets of (3.63). The second

expression is bounded in expectation by assumption, see (3.43) in Def. 3.2.2,

setting ǫ = 1
2
ǫ̃. In what follows we establish that that the first expression is

finite by showing that

Et,v[(V u
s )

ξ] < ∞ uniformly , (3.64)

with ξ = 4(1− γ)
(
1 + 1

ǫ

)
< 0 for γ > 1 and |ξ| < ∞ since ǫ > 0.

Applying variation of constants, the solution of the wealth equation (3.5)

starting at t with initial wealth v = V u
t is

V u
s = v e(r+δ)(s−t)+

∫ s
t ((πP

s̃ +β πS
s̃ )λ

P σP+πS
s̃ λs̃σ−ks̃) ds̃ eL

t
s− 1

2〈Lt〉
s ,

where Lt
s =

∫ s

t
(πP

s̃ + β πS
s̃ )σ

PdW P
s̃ +

∫ t

0
πS
s̃ σ dWs̃ and 〈Lt〉s =

∫ s

t
(πP

s̃ +

β πS
s̃ )

2(σP )2 + (πS
s̃ σ)

2ds̃ .

Using this we have

(V u
s )

ξ = vξ eξL
t
s− 1

2
ξ〈Lt〉

s︸ ︷︷ ︸
=:Zt

s

× eξ[(r+δ)(s−t)+
∫ s
t ((πP

s̃ +β πS
s̃ )λ

P σP+πS
s̃ λs̃σ−ks̃) ds̃]︸ ︷︷ ︸

=:Rt
s

.
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Thus, condition (3.64) is for example fulfilled when

Et,v[(Rt
s)

2] < ∞ and Et,v[(Zt
s)

2] < ∞ .

The square of Rt is given by

(Rt
s)

2 = e2 ξ[(r+δ)(s−t)+
∫ s
t (π

P
s̃ +β πS

s̃ )λ
P σP+πS

s̃ λs̃σ−ks̃ ds̃] ,

which is uniformly bounded by a constant, see Def. 3.2.2, (3.43), (3.44) and

(3.45) and recalling that ξ < 0 for γ > 1 as well as |ξ| < ∞ since ǫ > 0,

and keeping in mind that kt ≥ 0, t ≤ s ≤ T , by assumption. This directly

implies the square integrability of Rt. The square of Zt is given by

(Zt
s)

2 = e2 ξ L
t
s− 1

2
2 ξ 〈Lt〉

s

= e2 ξ L
t
s−(2 ξ)2 〈Lt〉

s × e(2 ξ)
2 〈Lt〉

s
− 1

2
2 ξ 〈Lt〉

s

= e2 ξ L
t
s−4 ξ2 〈Lt〉

s × eξ (4ξ−1) 〈Lt〉
s

≤ 1

2

[
e4 ξ L

t
s− 1

2
16 ξ2 〈Lt〉

s︸ ︷︷ ︸
=:Z̃t

s

+ e2 ξ (4ξ−1) 〈Lt〉
s︸ ︷︷ ︸

=:R̃t
s

]
,

where the last line is a straight forward upper bound. The second factor

R̃t is uniformly bounded by a constant by condition (3.43) of Def. 3.2.2. To

finally obtain the square integrability of Zt, it remains to prove that the

first factor Z̃t
s = e4 ξ L

t
s− 1

2
16 ξ2 〈Lt〉

s , t ≤ s ≤ T , is integrable. However, Z̃t

is a strictly positive local martingale since it is the stochastic exponential

of the local martingale 4 ξ Lt. The Novikov condition holds by (3.43), i.e.

Et,v(e
1
2
16 ξ2〈Lt〉

T ) < ∞, and hence Z̃t is a true martingale and Et,v(Z̃t
s) = 1,

t ≤ s ≤ T . In summary, the local martingale M t is therefore a martingale

vanishing in expectation in (3.62), implying (3.61) for u ∈ A′
γ(t,v).

3.3 Discussion and Implications of Results

The previous section established results on the optimal behavior of the indi-

vidual and derived the participation constraint, i.e. conditions for the her to
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accept the offer by the smaller listed company. In the following we discuss

the results by investigating the sensitivities of the optimal strategies and the

participation constraint when varying model parameters.

3.3.1 Optimal Work Effort

Theorems 3.2.1 and 3.2.2 indicate the individual’s maximized utility and asso-

ciated optimal behavior in terms of personal portfolio selection, consumption

and work effort decision, given that she accepts to job offer by the smaller

listed company, all subject to the log utility set-up. We now investigate the

sensitivity of the optimal work effort to variations of the work effectiveness

characteristics and the time preferences. Note that the portfolio selection

and consumption are in line with standard results in the log utility setup

and are here of limited interest.

The individual is characterized by the work effectiveness parameters work

productivity (1/κ, with κ > 0), and disutility stress (α > 2) and the time

preferences of consumption from work effort (ρ ∈ R) and disutility (ρ̃ ∈
R), respectively. To produce results that have relativity to a base-level of

work effort, as indicated by a base-level non-systematic Sharpe ratio control

decision λ0 > 0, the disutility C given by (3.16) is reparametrized to

C(t,v,λ) = e−ρ̃ t κ̃

α

(
λ

λ0

)α

, for λ ≥ 0 , γ > 0,

and the utility of wealth U1 and the utility of consumption U2 remain un-

changed.

The individual’s optimal work effort for the new disutility parametrization is

λ⋆(t,v) = λ
α

α−2

0

(
eρ̃ t

κ̃
f(t)

) 1
α−2

(3.65)
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(see Theorem 3.2.1 for the optimal choice under the original parametrization).

Assuming that the inverse work productivity satisfies

1/κ̃ > λ−2
0 e|ρ̃|T/K , (3.66)

we guarantee that the optimal work effort λ⋆ is not less than the base level

λ0, i.e. λ⋆ ≥ λ0 > 0. If not stated otherwise, the default values for the

parameters are α = 5, 1/κ̃ = 1000, r = 0.05, λP = 0.20, λ0 = 0.10, ρ = 0.10,

ρ̃ = −0.10, K = 1, δ̂ = 0.20, and T = 10.

The individual’s optimal work effort choice is positively related to her work

productivity and negatively related to her disutility stress. This result is

illustrated by Figures 3.1 and 3.2, which graph the optimal work effort λ⋆

versus time t and work productivity 1/κ̃ and, time t and disutility stress α,

respectively. Both figures indicate that the individual’s optimal work effort

is negatively related to time, i.e. λ⋆ is decreasing over time. The individual

spends in general more work effort at the beginning of the time horizon. Note

that the monotonicity of the optimal work effort depends on the sign of ρ,

see discussion of Figure 3.4 below.

Figure 3.3 shows the optimal work effort choice λ⋆ w.r.t. the time preference

of consumption ρ and time t. The figure indicates that with increasing time

the optimal work effort decreases as already observed above. This implies

that the individual is more productive at the beginning of her career path.

The optimal work effort is also decreasing for increasing time preference of

consumption ρ. An individual which has a higher consumption preference will

deliver a lower work effort, especially at the beginning of the time horizon.

Figure 3.4 graphs the optimal work effort choice λ⋆ w.r.t. the time preference

of disutility ρ̃ and time t. The optimal work effort is positively related to

the time preference of work related disutility ρ̃, i.e. with increasing value

of ρ̃ the individual is becoming more productive and delivers a higher level

of the optimal work effort indicating a reasonable behavior: The higher the
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cost for spending work effort the lower is the optimal work effort. Note that

positive values of ρ̃ are associated with work effort becoming cheaper over

time. For this parameter set, we first observe over time an increase of work

effort and then a decrease at the end of the time horizon. However, typically

we expect ρ̃ to be negative, i.e., work effort becomes more expensive with

the passing of time.

3.3.2 Participation Constraint

The participation constraint is given in Theorem 3.2.3. Denote δ⋆ the mini-

mal salary rate such that the participation constraint holds, i.e. δ⋆ = inf{δ ∈
R : δ satisfies (3.38)}. Taking account of the reparametrization gives

δ⋆ =





δ̂ − (α− 2)

2α
λ

2α
α−2

0

∫ T

0

(
eρ̃ t

κ̃

) 2
α−2

f(t)
α

α−2 dt

K T + 1
ρ2
[1− e−ρT (1 + ρT )]

, for ρ 6= 0 ,

δ̂ − (α− 2)

2α
λ

2α
α−2

0

∫ T

0

(
eρ̃ t

κ̃

) 2
α−2

f(t)
α

α−2 dt

K T + 1
2
T 2

, for ρ = 0 .

(3.67)

Now, α > 2 by assumption and f > 0 by Theorem 3.2.1. And the minimal

salary rate of the smaller listed company that is satisfying the participation

constraint is always below the salary rate of the outside option, i.e. δ⋆ < δ̂.

The salary rate discount can be explained by the fact that the smaller com-

pany is offering in return for the reduced salary the possibility to affect the

share price by work effort and thereby to increase the utility derived from

the individual’s investment. In the following we investigate the minimal

required salary rate δ⋆ depending on the individual’s parameters (work pro-

ductivity 1/κ̃, disutility stress α, time preference of consumption ρ and time

preference for work effort ρ̃) to characterize individuals that are attracted by

an offer of the smaller listed company.

Figure 3.5 displays the minimal required salary rate δ⋆ w.r.t. disutility

stress α and work productivity 1/κ̃. The minimal required salary rate is
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decreasing with increasing work productivity and increasing with increasing

disutility stress. This means that a more productive individual is willing to

accept a lower salary rate because she can compensate the loss of utility by

the ability to improve the unsystematic Sharpe ratio λ. On the other hand,

an individual with a higher disutility stress requires a higher salary rate to

accept the contract from the smaller listed company.

The effect of the time preferences is shown in Figure 3.6. The required min-

imal salary rate δ⋆ is graphed against the time preference of consumption ρ

and the time preference of disutility from work effort ρ̃, respectively. Increas-

ing the time preference parameter for consumption increases the minimal

required salary rate. In contrast, the required minimal salary rate decreases

with increasing time preference of disutility. This is attributed to the average

disutility from work effort being lower for a higher value of ρ̃. The individual

will deliver a higher work effort (see also Figure 3.4), and therefore accept

a lower salary since she gains more utility from an improved unsystematic

Sharpe ratio.

We summarize that the offered salary rate δ can act as a selection device for

the smaller listed company. Under the assumption that potential job can-

didates have an identical outside option, the group of individuals satisfying

a more restrictive participation constraint is in general more talented, i.e.

the individuals exhibit a lower disutility stress α, a higher productivity 1/κ̃,

a lower time preference for consumption ρ, and a higher time preference for

disutility from work effort ρ̃. Viewing the holdings in the own-company shares

(πS⋆(t) = λ⋆(t)/σ) as a way of voluntarily linking the pay to performance,

our results reflect common practice in executive remuneration. A more tal-

ented manager is in general attracted by a lower fixed salary component and

a higher performance linked salary component.
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3.3.3 Work Effort/Consumption Allocation

Figures 3.1 - 3.4 indicate that the optimal Sharpe ratio is decreasing with in-

creasing time. The optimal consumption rate shows the opposite behaviour:

It increases with increasing time and reaches its maximum at the end of the

time horizon. This behaviour is shown in Figure 3.7, which graphs the opti-

mal consumption rate k⋆ w.r.t. the time preference ρ and time t for fixed time

horizon T = 5 years. This qualitative behaviour can be conceptualized math-

ematically more rigorously: The time dynamics of the optimal work effort

and the optimal consumption weighted with an appropriate factor dependent

on the corresponding time preferences ρ and ρ̃ are anti-proprotional:

(α− 2) log
(
λ⋆ e−

ρ̃
(α−2)

t
)
+ log

(
k⋆ eρ t

)
= log

λα
0

κ̃
.

This can be interpreted as a time budget being distributed between the work

and the consumption of the individual as the weighted sum on the log scale

sums up to a constant. If we now assume that the time allocated for the

work effort and the time allocated for the consumption are suitable weighted

functions on the log scale for both, we can even normalize the work effort-

consumption allocation such that it sums up to 1, i.e. assuming that

t̂(λ⋆) =
(α− 2)

log(1 + T )
log
(
λ⋆ e−

ρ̃
(α−2)

t λ
− α

α−2

0 κ̃
1

α−2

)
, (3.68)

and

t̂(k⋆) =
1

log(1 + T )

(
log(k⋆ eρ t) + log(1 + T )

)
, (3.69)

yields

t̂(λ⋆) + t̂(k⋆) = 1 .

Figure 3.8 displays the work effort-consumption allocation for fixed work

productivity 1/κ̃ = 1000, disutility stress α = 5, base-level work effort λ0 =

0.10, time preference of disutility ρ̃ = −0.10, and varying time preferences
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of consumption, in particular, ρ = 0.0 (LUHS), ρ = 0.05 (RUHS), ρ = 0.10

(LBHS), and ρ = 0.15 (RBHS), respectively. It shows that the allocation

sums constantly up to 1 and further that time spent at work is decreasing with

the passing of time and conversely, time spent for consumption increases with

the passing of time. The individual starts with a relatively high work effort

and towards the end of the investment horizon the consumption increases to

a level of 100%. We note that the starting level of work effort is decreasing

with increasing values of the time preference of consumption ρ. This indicates

that an individual with a higher time preference of consumption will consume

more at the beginning of the time period than an individual with a lower time

preference of consumption and vice versa. Note that for the limit ρ → 0,

equations (3.19) as well as (3.68) and (3.69), respectively, imply that t̂(λ⋆) =

1 and t̂(k⋆) = 0 at time t = 0, which means that a highly qualified individual

with a zero time preference of consumption will spend her full time budget

for work effort in the beginning of her employment. This result is shown in

the left upper hand side of the figure.
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3.4 Figures
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Figure 3.1: Optimal work effort λ⋆ w.r.t. work productivity 1/κ̃ and time t for

fixed disutility stress α = 5, time preferences ρ = 0.10 and ρ̃ = −0.10,

K = 1, base-level work effort λ0 = 0.10 and time horizon T = 10

years.
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Figure 3.2: Optimal work effort λ⋆ w.r.t. disutility stress α and time t for fixed

work productivity 1/κ̃ = 1000, time preferences ρ = 0.10 and ρ̃ =

−0.10, K = 1, base-level work effort λ0 = 0.10 and time horizon

T = 10 years.
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Figure 3.3: Optimal work effort λ⋆ w.r.t. the time preference of consumption

ρ and time t for fixed work productivity 1/κ̃ = 1000, α = 5, time

preference ρ̃ = −0.10, K = 1, base-level work effort λ0 = 0.10 and

time horizon T = 10 years.
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Figure 3.4: Optimal work effort λ⋆ w.r.t. the time preference of disutility ρ̃ and

time t for fixed work productivity 1/κ̃ = 1000, disutility stress α = 5,

time preference ρ = 0.10, K = 1, base-level work effort λ0 = 0.10

and time horizon T = 10 years.
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Figure 3.5: Minimal required salary rate δ⋆ w.r.t. disutility stress α and work

productivity 1/κ̃ for fixed time preferences ρ = 0.10 and ρ̃ = −0.10,

K = 1, base-level work effort λ0 = 0.10, outside salary rate δ̂ = 0.2,

and time horizon T = 10 years.
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Figure 3.6: Minimal required salary rate δ⋆ w.r.t. the time preferences ρ and ρ̃ for

fixed work productivity 1/κ̃ = 1000, disutility stress α = 5, K = 1,

base-level work effort λ0 = 0.10 and time horizon T = 10 years.
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Conclusion and Outlook for Future

Research

In Chapter 1, we establish a model framework that gives insight into an

unconstrained executive’s own-company stockholding and work effort prefer-

ences examined in a constant relative risk aversion set-up. Further, an indif-

ference utility rationale is applied to determine the executive’s up-front fair

compensation. The executive’s optimal work effort choice λ⋆ and fair com-

pensation ∆v depend sensibly on his characteristics, risk aversion γ, work

productivity 1/κ, and disutility stress α. The executive’s risk aversion is

indicated by his work effort over time; and for a given level of risk aversion,

the executive’s work effectiveness quality (where higher quality is associated

with higher work productivity and/or lower disutility stress) is distinguished

by his work effort at a point in time. For empirical purposes, work effort

might be observed with an empirical non-systematic Sharpe ratio or some

other company performance measure.

We demonstrate that an executive with higher work effectiveness (quality)

undertakes more work effort, which is associated with higher fair (utility

indifference) compensation. Thus the executive is rewarded twice for his

quality. First he receives higher compensation as a direct reward; and second

he benefits from his work effort via his own-company stockholding, which can

be considered an indirect reward.

The extent to which the company benefits from the executive’s work effec-

tiveness depends prominently on his risk aversion. Only if he has sufficiently

low risk aversion to take on a substantial own-company stockholding, he will

have the incentive to apply substantial work effort for the benefit of the com-
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pany. Consequently the executive’s fair compensation is negatively related

to his risk aversion.

Given identification of executive risk aversion and quality, our framework

indicates the own-company stockholding and work effort of an unconstrained

executive. This establishes a base case for theoretical or empirical assessment

of the benefits or otherwise of constraining the executive with performance

contracting.

A future extension of this framework is to allow the executive to invest in

executive stock options with the company’s stock price process as underlying.

The aim is then to calculate optimal option portfolios for the executive ap-

plying the techniques to determine optimal option portfolios given in Korn

and Trautmann (1999) and using the analytic representation of the value

of executive stock options shown in Cvitanić, Wiener and Zapatero (2008).

Optimal strategies will then be compared and contrasted to the strategies

of an executive who cannot invest in options. This set-up reflects more the

compensation structure of ’constrained’ executives who are incentivized by

the agent by including executive stock options in their compensation.

In Chapter 2, we establish the framework of Chapter 1 given that the ex-

ecutive is characterized by a constant absolute risk aversion set-up. Results

are only obtained for the case of zero interest rates due to the limitations

of this set-up. The results from Chapter 1 are confirmed to a large extent.

The executive’s optimal work effort choice λ⋆ depends on the work effective-

ness parameters work productivity 1/κ, and disutility stress α, but not on

his risk aversion η as a consequence of only being able to solve this set-up

for zero interest rates. However, the fair compensation ∆v depends on the

full parameter set and shows an analogous behaviour as in the constant rela-

tive risk aversion set-up. Again, an executive with higher work effectiveness

(quality) undertakes more work effort, which results in a higher fair (utility

indifference) compensation. Further the fair compensation is once more neg-
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atively related to the risk aversion of the executive. We summarize that the

constant relative risk aversion set-up described and solved in Chapter 1 is

widely confirmed by the constant absolute risk aversion set-up and is much

more likely to produce reality-based results.

In Chapter 3, we establish a model framework that gives insight into an

individual’s occupational choice when she can choose between two different

positions. She is offered an executive position in a smaller listed company

where she can affect the company’s share price by work effort. Alternatively,

she can take up a mid-level management position with a larger company but

then forgoes the possibility to affect the other company’s share price. We

identify conditions for the individual to work for the smaller listed company

where the participation constraint is given in terms of the salary differential

of the two job alternatives. In particular, we derive the minimal required

salary δ⋆ that needs to be offered by the smaller company to attract the indi-

vidual and thereby characterize the participation constraint. In general, we

find that a more talented individual requires a lower salary to be attracted to

the smaller listed company. This salary pattern can be observed in practice,

e.g., in the pharmaceutical industry, the IT sector, and the financial industry.

Given that the participation constraint holds, we give explicit solutions for

the individual’s utility maximizing behavior in terms of the investment strat-

egy (π = (πP ,πS)), consumption (k), and work effort (λ). Overall, our re-

sults depend sensibly on her characteristics, work productivity 1/κ, disutility

stress α, time preference of consumption ρ, and time preference of work ef-

fort ρ̃. We demonstrate that a highly-qualified individual with higher work

effectiveness (quality) undertakes more work effort, which is associated with

a lower minimal required salary δ⋆. The main analysis is performed in the

log-utility setting. However, we also explore the broader setup of constant

relative risk aversion and derive a closed-form solution for the case when the

risk aversion parameter γ is bigger than 1.



CONCLUSION 121

A future development of this work is to extend the semi-static game between

the individual and the smaller listed company to a stochastic differential

game. The aim of the company is then to maximize share holder value.

The additional control available to the company is the quantity of share-

based payments granted to the individual that affect her holdings in the

company’s shares. The stochastic differential game can then be investigated

for equilibria. This setup is likely to provide more insight into the design of

optimal share-based payments.

As a concluding remark of this work we can come back to the citation in

the very beginning of this thesis. The results of this thesis indicate that

a more productive executive (or highly-qualified individual, respectively) is

characterized by a higher optimal work effort. This higher optimal work effort

increases the value of the own-company’s stock itself. These implications are

reflected in the salary pattern of the model for the unconstrained executive;

a more productive executive receives a higher fair up-front compensation.

In contrast, the highly-qualified individual with the possibility of an outside

option will accept a lower salary rate when she can directly influence the

own-company’s shares. Taking these effects into account, Warren Buffet was

quite right in 2004, when he said that "If you have a great manager, you

want to pay him very well.".
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Appendix

A Generalized Inequality

The goal of this appendix is to prove a generalized version of the well-known

inequality

x y ≤ 1

2

(
x2 + y2

)
for all x,y ∈ R . (A.1.1)

The following lemma is very useful in order to derive the weakest possible

integrability conditions in the Definitions 1.2.1, 2.1.3 and 3.2.2, which are

needed in the proofs of the Verification Theorems 1.2.3, 2.2.2 and 3.2.5.

Lemma 0.1.1

Let ǫ ∈ (0,∞). Then it holds for all x,y ∈ R

x y ≤ |x y| ≤ ǫ
ǫ

1+ǫ

1 + ǫ

(
|x|1+

1
ǫ + |y|1+ǫ

)
. (A.1.2)

Proof. W.l.o.g. assume that x,y ∈ R+
0 . Further let α > 1 and β > 1. First

we will prove that

cα
(
yα + xβ

)
≥ x y ,

for a suitable choice of cα ∈ R+ and β = β(α). This identity can be rewritten

as

yα − c x y + xβ ≥ 0 , where c = c−1
α .

Fix x ∈ R+
0 . The function fx : [0,∞) ⊂ R+

0 → R defined as

fx(y) := yα − c x y + xβ



APPENDIX 123

is strictly convex for α > 1, hence the zero of ∂fx/∂y is the unique minimum

of fx, which is given by

y0 =
(c x
α

) 1
α−1

.

Plugging in this minimum gives

(c x
α

) α
α−1 − c x

(c x
α

) 1
α−1

+ xβ ≥ 0

⇔ (c x)
α

α−1

(
α− α

α−1 − α− 1
α−1

)
+ xβ ≥ 0

⇔ c
α

α−1 α− α
α−1 (1− α) + xβ− α

α−1 ≥ 0

Choosing β = β(α) = α
α−1

(note β > 1 since α > 1) yields

c
α

α−1 α− α
α−1 (1− α) ≥ −1

⇔ c ≤ α (α− 1)−
α−1
α ,

which implies that

cα =
1

c
≥ (α− 1)

α−1
α

α
.

Putting all this together, we have shown that for the choice β = α
α−1

and

with cα = (α− 1)
α−1
α /α the following inequality holds

x y ≤ (α− 1)
α−1
α

α

(
yα + x

α
α−1

)
.

Now choosing α = (1 + ǫ) (note α = (1 + ǫ) > 1, since ǫ ∈ (0,∞)) yields the

claimed result of the lemma.

Remark 0.1.1

Choosing ǫ = 1 yields the well-known inequality (A.1.1) as a special case of

(A.1.2).



124 BIBLIOGRAPHY

Bibliography

Aseff J, Bizjak J, Lemmon M (2001) Managerial ownership, incentive

contracting, and the use of zero-cost collars and equity swaps by

corporate insiders. Journal of Financial and Quantitative Analysis

36(3):345–370

Cadenillas A, Cvitanić J, Zapatero F (2004) Leverage decision and manager

compensation with choice of effort and volatility. Journal of Financial

Economics 73(1):71–92

Carpenter J (2000) Does option compensation increase managerial risk

appetite? Journal of Finance 55(5):2311–2331

Choi KJ, Shim G (2006) Disutility, optimal retirement, and portfolio

selection. Mathematical Finance 16(2):443–467

Choi KJ, Shim G, Shin YH (2008) Optimal portfolio, consumption-leisure

and retirement choice problem with CES utility. Mathematical Finance

18(3):445–472

Core J, Larcker D (2002) Performance consequences of mandatory increases

in executive stock ownership. Journal of Financial Economics

64(3):317–340

Core J, Guay W, Larcker D (2003) Executive equity compensation and



BIBLIOGRAPHY 125

incentives: A survey. Economic Policy Review 9:27–50

Cvitanić J (2008) On managerial risk-taking incentives when compensation

may be hedged against. Working Paper, Caltech, Pasadena

Cvitanić J, Wiener Z, Zapatero F (2008) Analytic pricing of employee stock

options. The Review of Financial Studies 21:683–724

Desmettre S, Szimayer A (2010) Work effort, consumption, and portfolio

selection: When the occupational choice matters. Working paper

available at SSRN: http://ssrn.com/abstract=1633184

Desmettre S, Gould J, Szimayer A (2010) Own-company stockholding and

work effort preferences of an unconstrained executive. Accepted for

publication in Mathematical Methods of Operations Research:

http://dx.doi.org/10.1007/s00186-010-0322-5

Dittmann I, Maug E (2007) Lower salaries and no options? On the optimal

structure of executive pay. Journal of Finance 62(1):303–343

Garvey G, Milbourn T (2003) Incentive compensation when executives can

hedge the market: Evidence of relative performance evaluation in the

cross section. Journal of Finance 58(4):1557–1581

Hall B, Liebman J (1998) Are CEOs really paid like bureaucrats?

Quarterly Journal of Economics 113(3):653–691

Holmstrom B (1979) Moral hazard and observability. Bell Journal of

Economics 10:74–91

Jensen M, Meckling W (1976) Theory of the firm: Managerial behavior,

agency costs and ownership structure. Journal of Financial Economics

3(4):305–360



126 BIBLIOGRAPHY

Jensen M, Murphy K (1990) Performance pay and top-management

incentives. Journal of Political Economics 98(2):225–264

Jin L (2002) CEO compensation, diversification and incentives. Journal of

Financial Economics 66(1):29–63

Karatzas I, Shreve S (1991) Brownian motion and stochastic calculus.

Graduate Texts in Mathematics, Springer

Korn R (1997) Optimal portfolios. World Scientific, Singapore

Korn R (2007) Continuous-time portfolio optimization. Lecture Notes,

Summer Term 2007, TU Kaiserslautern

Korn R, Korn E (2001) Option pricing and portfolio optimization. Graduate

Studies in Mathematics, Volume 31, American Mathematical Society

Korn R, Kraft H (2008) Continuous-time delegated portfolio management

with homogeneous expectations: Can an agency conflict be avoided?

Financial Markets and Portfolio Management 22(1):67–90

Korn R, Trautmann S (1999) Optimal control of option portfolios.

OR-Spektrum 21(1-2):123–146

Lambert R, Larcker D, Verrecchia R (1991) Portfolio considerations in

valuing executive compensation. Journal of Accounting Research

29(1):129–148

Long NV, Sorger G (2009) A dynamic principal-agent problem as a

feedback stackelberg differential game. Working Paper, University of

Vienna

Merton RC (1971) Optimum consumption and portfolio rules in a

continuous-time model. Journal of Economic Theory 3(4):373–413



BIBLIOGRAPHY 127

Murphy K (1999) Executive compensation. Ashenfelter and D. Card, eds.,

Handbook of labor economics, Vol. 3, Amsterdam, North-Holland.

Ofek E, Yermack D (2000) Taking stock: Equity-based compensation and

the evolution of managerial ownership. Journal of Finance

55(3):1367–1384

Ou-Yang H (2003) Optimal contracts in a continuous-time delegated

portfolio management problem. Review of Financial Studies

16(1):173–208

Ross S (1973) The economic theory of agency: The principal’s problem.

American Economic Review 63(2):134–139

Ross S (2004) Compensation, incentives, and the duality of risk aversion

and riskiness. Journal of Finance 59(1):207–225



Wissenschaftlicher Werdegang

09/1989 - 06/1993 Grundschule, Wemmetsweiler

07/1993 - 06/2002 Illtalgymnasium, Illingen

Abschluss: Abitur

04/2003 - 03/2005 Studium der Mathematik mit Nebenfach Physik an

der Technischen Universität Kaiserslautern

Abschluss: Vordiplom

10/2005 - 03/2006 Gaststudent an der Eidgenössischen Technischen

Hochschule (ETH) Zürich am Fachbereich Mathe-

matik

04/2005 - 06/2007 Studium der Mathematik mit Vertiefungsrichtung

Finanzmathematik an der Technischen Universität

Kaiserslautern

Abschluss: Diplom (Dipl.-Math.)

10/2007 - jetzt Doktorand bei Prof. Dr. Ralf Korn am Fraunhofer

Institut für Techno- und Wirtschaftsmathematik in

Kaiserslautern, Abteilung Finanzmathematik



Scientific Background

09/1989 - 06/1993 Elementary School, Wemmetsweiler

07/1993 - 06/2002 High School: Illtalgymnasium, Illingen

Certificate: Abitur (baccalaureate)

04/2003 - 03/2005 Study of mathematics with minor physics at the

Technical University of Kaiserslautern

Certificate: Vordiplom (B.S. equiv.)

10/2005 - 03/2006 Visiting Student at the Swiss Federal Institute of

Technology (ETH) Zürich at the department of

mathematics

04/2005 - 06/2007 Study of mathematics with specialization financial

mathematics at the Technical University of Kaisers-

lautern

Certificate: Diploma (Dipl.-Math.)

10/2007 - present PhD student of Prof. Dr. Ralf Korn at the Fraun-

hofer Institute for Industrial Mathematics in Kaisers-

lautern, department of financial mathematics


