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Abstract
Modelling languages are important in the process of software development. The suit-
ability of a modelling language for a project depends on its applicability to the target
domain. Here, domain-speci�c languages have an advantage over more general mod-
elling languages. On the other hand, modelling languages like the Uni�ed Modeling
Language can be used in a wide range of domains, which supports the reuse of devel-
opment knowledge between projects. This thesis treats the syntactical and semantical
harmonisation of modelling languages and their combined use, and the handling of
complexity of modelling languages by providing language subsets - called language
pro�les - with tailor-made formal semantics de�nitions, generated by a pro�le tool.
We focus on the widely-used modelling languages SDL [35] and UML [52], and formal
semantics de�nitions speci�ed using Abstract State Machines [27].

ii



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Focus and Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . 2

2 Foundations: Modelling Languages and Formal Techniques 4
2.1 Speci�cation and Description Language . . . . . . . . . . . . . . . . . . 4

2.1.1 Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 State Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Uni�ed Modeling Language . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Meta-model Architecture . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 UML Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Abstract State Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.1 States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.3 Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.4 Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Formal Semantis of SDL . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.1 Static Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.2 Dynamic Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Formal Semantics of UML . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Harmonisation of Modelling Languages 21
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Abstract Syntax Representations . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 The Abstract Grammar Approach . . . . . . . . . . . . . . . . . 22
3.2.2 The Metamodel Approach . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Mapping Between Meta-models and Abstract Grammars . . . . . . . . . 24
3.3.1 Classes and Enumerations . . . . . . . . . . . . . . . . . . . . . . 25
3.3.2 Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.3 Associations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.4 Multiplicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.5 Specialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.6 Meta-Model Approach vs. Abstract Grammar Approach . . . . . 34

3.4 Syntactic Harmonisation of SDL and UML . . . . . . . . . . . . . . . . 35

iii



3.5 Semantic Comparison of SDL and UML . . . . . . . . . . . . . . . . . . 41
3.6 The UML Pro�le Approach . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.6.2 UML Pro�les . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.6.3 The UML Pro�le for SDL . . . . . . . . . . . . . . . . . . . . . . 49
3.6.4 Formalisation of the UML Pro�le for SDL . . . . . . . . . . . . . 50
3.6.5 Survey of an SDL-style Formalisation Approach . . . . . . . . . . 51
3.6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.8 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Pro�ling of Modelling Languages 62
4.1 Language Pro�les . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2 Consistency of Pro�les . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.1 Consistency for Sequential Abstract State Machines . . . . . . . 64
4.2.2 Consistency for Distributed Abstract State Machines . . . . . . . 65
4.2.3 Verifying Consistency for Distributed Abstract State Machines . 67
4.2.4 Using Structural Information for Verifying Consistency . . . . . . 71

4.3 SDL Pro�les . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3.1 Core, Static and Dynamic . . . . . . . . . . . . . . . . . . . . . . 71
4.3.2 Cmicro and Cadvanced . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.3 SDL+/Sa�re . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.4 UML Pro�le for SDL . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.5 Hierarchy of SDL Pro�les . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.5 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 Extraction of Language Pro�les 76
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2 Language Pro�le De�nition . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3 Approach for De�ning Semantics for Language Pro�les . . . . . . . . . . 77

5.3.1 The Composition Approach . . . . . . . . . . . . . . . . . . . . . 77
5.3.2 The Extraction Approach . . . . . . . . . . . . . . . . . . . . . . 78

5.4 Static Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.5 Reduction Pro�le . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.6 Formalisation Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.7 Formal Reduction of ASMs . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.7.1 Formal Reduction of ASM De�nitions . . . . . . . . . . . . . . . 85
5.7.2 Macros, Functions and Parameters . . . . . . . . . . . . . . . . . 86
5.7.3 Formal Reduction of ASM Rules . . . . . . . . . . . . . . . . . . 88
5.7.4 Formal Reduction of ASM Domains . . . . . . . . . . . . . . . . 90
5.7.5 Formal Reduction of ASM Expressions . . . . . . . . . . . . . . . 91

5.8 Verifying Correctness of the Extraction . . . . . . . . . . . . . . . . . . . 97
5.8.1 Proof Obligations . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.8.2 Proofs over Distributed Abstract State Machines . . . . . . . . . 99

iv



5.8.3 Case Study: Proving Correctness of Extraction . . . . . . . . . . 102
5.9 Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.10 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.11 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 The SDL-Pro�le Tool 111
6.1 Sequence of Steps of the SDL-pro�le Tool . . . . . . . . . . . . . . . . . 111

6.1.1 Parse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.1.2 Normalise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.1.3 Remove . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.1.4 Clean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.1.5 Iterate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.1.6 Unparse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2 The Term Processor Kimwitu . . . . . . . . . . . . . . . . . . . . . . . . 113
6.2.1 De�ning the Abstract Syntax. . . . . . . . . . . . . . . . . . . . . 113
6.2.2 Rewriting Abstract Syntax Trees. . . . . . . . . . . . . . . . . . . 114
6.2.3 Unparsing Abstract Syntax Trees. . . . . . . . . . . . . . . . . . 114
6.2.4 Kimwitu Control Structures. . . . . . . . . . . . . . . . . . . . . 115

6.3 Implementation Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.3.1 ASM Syntax De�nition . . . . . . . . . . . . . . . . . . . . . . . 115
6.3.2 Implementing the Predicates . . . . . . . . . . . . . . . . . . . . 116
6.3.3 Implementing the Remove Function . . . . . . . . . . . . . . . . 117
6.3.4 Referencing De�nitions . . . . . . . . . . . . . . . . . . . . . . . 117
6.3.5 Transforming Trivial Rules and Expressions . . . . . . . . . . . . 119
6.3.6 Generating Proof Obligations . . . . . . . . . . . . . . . . . . . . 119
6.3.7 Output of the Reduced Abstract Syntax Tree . . . . . . . . . . . 120

6.4 Implementation of the SDL-Pro�le Tool . . . . . . . . . . . . . . . . . . 123
6.4.1 Executing the SDL-Pro�le Tool . . . . . . . . . . . . . . . . . . . 123
6.4.2 Parsing the Reduction Pro�le . . . . . . . . . . . . . . . . . . . . 124
6.4.3 Processing the Semantics De�nition . . . . . . . . . . . . . . . . 124

6.5 Application of the SDL-Pro�le Tool . . . . . . . . . . . . . . . . . . . . 126
6.5.1 Extracting a Pro�le without Timers . . . . . . . . . . . . . . . . 127
6.5.2 Extracting a Pro�le without Inheritance . . . . . . . . . . . . . . 129
6.5.3 Size of Extracted SDL Pro�les . . . . . . . . . . . . . . . . . . . 134

6.6 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.7 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7 Conclusions 138
7.1 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.1.1 Combined Use of Modelling Languages . . . . . . . . . . . . . . . 138
7.1.2 Language Pro�les and Modular Language De�nition . . . . . . . 139

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

A UML Kernel Abstract Grammar 141

v



B Agent Moves for Ping-Pong System 147

C Complete Formal De�nition of Extraction 149
C.1 De�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
C.2 Macros, Functions and Parameters . . . . . . . . . . . . . . . . . . . . . 149
C.3 Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
C.4 Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
C.5 Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

D Reduction Pro�les for SDL Features 160

E Syntax of Abstract State Machines 163

vi



List of Tables

3.1 Rules and their meanings . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Mapping of Multiplicities . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Common syntax of packages . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4 Common syntax of agent types and classes . . . . . . . . . . . . . . . . . 37
3.5 Common syntax of signals . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6 Common syntax of channels and connectors . . . . . . . . . . . . . . . . 38
3.7 Common syntax of gates and ports . . . . . . . . . . . . . . . . . . . . . 38
3.8 Common syntax of agents and properties . . . . . . . . . . . . . . . . . 39
3.9 Common syntax of parameters . . . . . . . . . . . . . . . . . . . . . . . 39
3.10 Common syntax of composite states and state machines . . . . . . . . . 40
3.11 Common syntax of states . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1 Truth table for negation . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2 Truth table for disjunction . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.3 Derived truth table for conjunction . . . . . . . . . . . . . . . . . . . . . 93
5.4 Truth table for element-of operator . . . . . . . . . . . . . . . . . . . . . 93
5.5 Truth table for universal quanti�cation . . . . . . . . . . . . . . . . . . . 94
5.6 Truth table for existential quanti�cation . . . . . . . . . . . . . . . . . . 95

6.1 Abstract syntax nodes and corresponding de�nitions . . . . . . . . . . . 118
6.2 Semantically equivalent transformations . . . . . . . . . . . . . . . . . . 119
6.3 Important command line options of the SDL-pro�le tool . . . . . . . . . 124
6.4 Size of extracted SDL pro�les . . . . . . . . . . . . . . . . . . . . . . . . 134
6.5 Size of extracted SDL pro�les . . . . . . . . . . . . . . . . . . . . . . . . 135

B.1 Moves performed by ping-pong ASM agents . . . . . . . . . . . . . . . . 148
B.2 SDL entities and corresponding ASM agents . . . . . . . . . . . . . . . . 148

vii



List of Figures

2.1 SDL agent PingPong with substructure . . . . . . . . . . . . . . . . . . 5
2.2 Agent type Ping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Meta-model hierarchy of UML . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Static semantics of SDL . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Agent mode execution (level 2) and submodes . . . . . . . . . . . . . . . 19

3.1 Excerpt of the abstract syntax of states . . . . . . . . . . . . . . . . . . 24
3.2 Submachine (composite) states and entry/exit-points in SDL and UML 42
3.3 Priority of consume and defer . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4 State with two enabled transitions (UML) . . . . . . . . . . . . . . . . . 44
3.5 Transitions in SDL and UML . . . . . . . . . . . . . . . . . . . . . . . . 44
3.6 Continuous signal, connect node and completion transition . . . . . . . 45
3.7 Pro�le package with stereotype . . . . . . . . . . . . . . . . . . . . . . . 48
3.8 Stereotyped class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.9 Mapping from UML meta-model to SDL abstract syntax . . . . . . . . . 51

4.1 m:n re�nement relation . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2 Consistency of language pro�les (1:1 re�nement) . . . . . . . . . . . . . 64
4.3 Consistency with stuttering steps (m:1 re�nement) . . . . . . . . . . . . 65
4.4 Partially ordered run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.5 Possible executions of a partially-ordered run . . . . . . . . . . . . . . . 66
4.6 Two agents performing causally unrelated moves . . . . . . . . . . . . . 67
4.7 Possible executions for causally unrelated moves . . . . . . . . . . . . . 68
4.8 Relating update sets of two DASMs . . . . . . . . . . . . . . . . . . . . 71
4.9 Superset relationship between SDL pro�les . . . . . . . . . . . . . . . . 74

5.1 Reduced production rule of the SDL abstract syntax . . . . . . . . . . . 79
5.2 Well-formedness condition for state names . . . . . . . . . . . . . . . . . 80
5.3 Mapping states from AS0 to AS1 . . . . . . . . . . . . . . . . . . . . . . 81
5.4 Concept of the extraction process (for SDL) . . . . . . . . . . . . . . . . 82
5.5 Reduction Pro�le for 'Save' Feature . . . . . . . . . . . . . . . . . . . . 84
5.6 Removed part of semantics de�nition . . . . . . . . . . . . . . . . . . . . 98
5.7 Reduction Pro�le for save Feature . . . . . . . . . . . . . . . . . . . . . 102
5.8 Reduction pro�le for 'Timer' feature . . . . . . . . . . . . . . . . . . . . 104
5.9 Reduction pro�le for 'Exception' feature . . . . . . . . . . . . . . . . . . 105

6.1 Sequence of steps of the SDL-pro�le tool . . . . . . . . . . . . . . . . . . 111

viii



6.2 Reduction pro�le for save feature (tool syntsx) . . . . . . . . . . . . . . 124
6.3 Excerpt of reduction pro�le for timer feature . . . . . . . . . . . . . . . 127
6.4 Excerpt of reduction pro�le for inheritance feature . . . . . . . . . . . . 129

B.1 SDL speci�cation of ping-pong system . . . . . . . . . . . . . . . . . . . 147
B.2 Partially-ordered run for ping-pong system . . . . . . . . . . . . . . . . 148

ix



List of Listings

2.1 The program for the philosopher example . . . . . . . . . . . . . . . . . 15
2.2 Behaviour primitive for setting timers . . . . . . . . . . . . . . . . . . . 18
2.3 Compilation of Assignment node to behaviour primitive Task . . . . . 20

4.1 Replacing choose constructs . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2 Application of the choose replacement . . . . . . . . . . . . . . . . . . . 69
4.3 Structurally related ASMs . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1 Abstract Syntax of Reduction Pro�les . . . . . . . . . . . . . . . . . . . 83
5.2 Functions of the SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3 Modular de�nition of timer instruction set . . . . . . . . . . . . . . . . . 109
5.4 Modular de�nition of entry procedures . . . . . . . . . . . . . . . . . . . 109

6.1 Excerpt from the abstract syntax de�nition of ASMs . . . . . . . . . . . 113
6.2 De�nition of list types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.3 De�ning attributes for node types . . . . . . . . . . . . . . . . . . . . . . 114
6.4 Transforming expressions with rewrite rules . . . . . . . . . . . . . . . . 114
6.5 Unparsing the addition operator . . . . . . . . . . . . . . . . . . . . . . 114
6.6 Computation using unparse rules . . . . . . . . . . . . . . . . . . . . . . 115
6.7 Abstract syntax for ASM rules . . . . . . . . . . . . . . . . . . . . . . . 116
6.8 Interface of the predicates . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.9 Implementation of predicate true for conjunction . . . . . . . . . . . . . 116
6.10 General de�nition of remove functions . . . . . . . . . . . . . . . . . . . 117
6.11 Abstract syntax for rules with proof obligation . . . . . . . . . . . . . . 120
6.12 Macro SelectTransitionStartPhase before reduction . . . . . . . . 127
6.13 Macro SelectTransitionStartPhase after reduction . . . . . . . . . 127
6.14 Rule macros for setting timers . . . . . . . . . . . . . . . . . . . . . . . . 127
6.15 Extracted semantics de�nition . . . . . . . . . . . . . . . . . . . . . . . . 129
6.16 Derived functions for inheritance and re�nement . . . . . . . . . . . . . 129
6.17 Extracted derived functions for inheritance and re�nement . . . . . . . . 133
6.18 Excerpt from an ASM semantics for UML statemachines . . . . . . . . . 136

x



1 Introduction
1.1 Motivation
In order to support a wide range of applications, system modelling languages are often
complex and expressive. This leads to language de�nitions that are long and hard
to understand, and can limit language applicability in domains for which specialised,
tailor-made languages are preferred. Another drawback is that tool support for com-
plex languages usually covers only parts of the languages. For example, there is no
tool that supports all features of SDL-96 [13, 31, 32], and only a few of the language
features introduced in SDL-2000 [35, 37, 36] are supported. This raises questions how
the complexity of language de�nitions can be coped with, and how language de�-
nitions - both formal and informal - can be structured to support the de�nition of
domain-speci�c sublanguages.

For speci�c problems and project phases, di�erent modelling languages are suitable.
For example, UML [50, 52] is often used for the early phases of software development.
Further aspects in the choice of modelling languages are the preferences of the devel-
oper, existing speci�cations in a certain language, and tool support. The combined
use of modelling languages enables a developer to utilise the advantages of the indi-
vidual languages, and to combine existing speci�cations with new speci�cations in a
di�erent language. The combined use of modelling languages requires techniques for
the exchange and integration of models between the languages.

1.2 Problem Description
The goal of this thesis is to provide and apply sound approaches for the syntactical
and semantical modularisation of modelling languages. This goal can be split up into
a number of problem areas that are further characterised below.

• Horizontal modularity is concerned with the modular structure within a lan-
guage. The goal is to achieve a modular language de�nition that splits a language
into a language core and a hierarchy of language modules that extend this core.
Language modules encapsulate language features and can be added to the lan-
guage core, yielding sublanguages targeted at speci�c application areas. We call
these tailor-made sublanguages language pro�les.
Horizontal modularity is also concerned with the harmonisation of modelling
languages. Modelling languages like SDL and UML have a lot of features in
common. These features can be de�ned in a common language core. On top of
this core, a hierarchy of language modules for each langauge can be based.

1



An object of research is the nature and size of the language core. The lan-
guage core should contain the most important language constructs, and be small
enough to apply to di�erent problem areas. The core must be extensible, both
syntactically and semantically. For language modules, the object of research is
how language features can be encapsulated, and how the extension of the core
can be achieved.

• Vertical modularity is concerned with the modular structure within language
families like SDL and MSC, or between di�erent views in modelling languages,
like statecharts and interactions in UML. Object of research is the common
semantic core of the related modelling languages. The common core should
contain all language features that are common to the languages based on the core.
These languages must have a su�cient amount of common features, otherwise
the resulting core would be too small and be irrelevant. Given sound techniques
for horizontal modularity in addition, the common language core can be extended
with language modules for each language based on this core.

• Optional modularity is concerned with semantic variation points and in-
complete semantics. These can be expressed in a language de�nition by non-
determinism. Formalisms like ASMs provide constructs for implicit and explicit
non-determinism.

• Temporal modularity is concerned with language extensions and modi�cations
that come with new language versions. Given a modular language de�nition,
conservative language extensions can be introduced as new language modules.

• Hybrid modularity denotes any combination of the forms of modularity men-
tioned above, for example, a common semantic core, with language modules for
di�erent languages and language versions based on the core.

1.3 Focus and Structure of the Thesis
The focus of this thesis lies on the harmonisation between modelling languages, and
on the de�nition of language pro�les (horizontal modularity). Harmonisation between
modelling languages in concerned with the integration of languages taking into account
their underlying similarities and di�erences. Language pro�les de�ne subsets of a
language, from which tailor-made formal semantics de�nitions can be derived.

For the harmonisation of modelling languages, we have selected the widely-used
Uni�ed Modelling Language (UML) [52] and the Speci�cation and Description Lan-
guage (SDL) [35]. Harmonisation of these languages has been an ongoing topic in
research and industry over the last couple of years. Both languages have a lot of
features in common. However, the languages come from di�erent backgrounds, have
a di�erent focus and di�erently structured language de�nitions. UML aims to be a
universal modelling language for a large number of domains, with incomplete and in-
formal semantics, aimed at the early development phases. SDL is a language with
formal semantics, which has a more speci�c application domain, but is more suited for
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detailed design, simulation and code generation. We contribute a mapping between
the abstract syntax representations of UML (meta-models) and SDL (abstract gram-
mars), perform a syntactic and semantic comparison, and derive a common abstract
syntax of UML and SDL. We propose and evaluate an approach for the formalisation
of the UML Pro�le for SDL. Work in this area was published in the proceedings of the
FORTE 2004 conference [24], and in technical reports [23, 22].

For pro�ling languages, the focus lies on the behaviour speci�cation, speci�cally
behaviour speci�ed by abstract transition systems. We de�ne consistency between the
dynamic semantics of language pro�les, and outline its veri�cation. We examine the
e�ect of de�ning language pro�les on the static semantics of a language, and introduce
an approach to extract a reduced formal semantics de�nition for a given language
pro�le. For the practical application of our approach, we focus on SDL, which has a
complete formal semantics de�ned using Abstract State Machines (ASMs) [27, 28, 8].
However, the results apply to other formal semantics de�ned using ASMs as well. Work
in this area was published in the proceedings of the SAM 2006 workshop [21, 18], the
FASE 2007 conference [26], and as a technical report [22].

This thesis is structured as follows: We introduce modelling languages and formal
techniques covered in this thesis in Chapter 2. Chapter 3 treats abstract syntax rep-
resentations and the harmonisation of modelling languages SDL and UML. Chapter
4 introduces language pro�les, and makes general observations on the consistency of
formal language de�nitions. Chapter 5 formalises an extraction-based approach for
the generation of formal semantics de�nitions for language pro�les, with tool support
and results discussed in Chapter 6. We draw conclusions and give an outlook on future
work in Chapter 7.
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2 Foundations: Modelling
Languages and Formal Techniques

This chapter introduces modelling languages and formal techniques covered in this
thesis. Modelling languages covered are the Speci�cation and Description Language
(SDL) and the Uni�ed Modeling Language (UML). We introduce the formal technique
Abstract State Machines (ASM), and outline the formal de�nitions of SDL and UML.

2.1 Speci�cation and Description Language
The Speci�cation and Description Language (SDL) [13, 35, 37, 36] is a formal language
standardised by the International Telecommunications Union (ITU), widely used both
in industry1 and academia. It is based on the concept of asynchronously communicat-
ing extended �nite state machines, running concurrently or in parallel. SDL provides
language constructs for the speci�cation of nested system structure, communication us-
ing channels, signals and signal queues, behaviour using extended �nite state machines,
and data.

In 1988, the semantics of SDL was formally de�ned, upgrading the language to
a formal description technique. In 1999, a new version of the language, referred to
as SDL-2000, was introduced. Since the formal de�nition of the old semantics was
assessed as being too di�cult to extend and maintain, a new formal semantics, based
on Abstract State Machines, was de�ned from scratch [19].

2.1.1 Agents
The structure of an SDL system is described using SDL agents. An SDL agent can
contain variables, procedures, a state machine, and a substructure consisting of SDL
agent sets and channels. An SDL agent set contains SDL agents of a certain type.
A speci�ed number of SDL agents are created initially for each SDL agent set. SDL
agents can be created and stopped dynamically.

The contained instances of an SDL agent are either interpreted concurrently (agent
kind BLOCK) or in an interleaving manner (agent kind PROCESS). The outermost
agent of an SDL speci�cation is a special kind of block (agent kind SYSTEM) that
can interact with the environment of open SDL systems.

Figure 2.1 shows SDL agent PingPong, with a substructure consisting of agent type
references Ping and Pong, two SDL agent sets containing SDL agents of type Ping
1Several tool developers o�er tool support for SDL and related languages, for example Telelogic,
Cinderella, PragmaDev and Solinet.
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system PingPong 1(1)
signal ping, pong;

Ping Pong

pi: Ping po: Pong
g1

C

pingpong

g2

SDL agent
type reference

SDL agent set

(1,1) (1,1)

SDL agent

SDL agent

Channel

Figure 2.1: SDL agent PingPong with substructure

and Pong, respectively, and a channel C connecting the agents sets. Initially, one SDL
agent of type Ping and Pong is created.

2.1.2 Communication
In SDL, agents communicate by exchanging signals over a communication structure.
Signals are generated and consumed by state machines. A signal has a type, and
can contain data and addressing information. A signal can be addressed explicitly by
sending it to a process identi�er, or implicitly by sending it either to an agent identi�er
or with no target information. The route a signal takes can be further constrained to
certain channels and gates.

Channels and gates form the communication structure of an SDL system. Gates
de�ne the interface of an agent, as the list of signals that can be sent to and from
the agent. Gates have associated signal queues containing the signals waiting at this
gate for transmission over a channel, or for delivery to an agent. A special gate is the
inport associated with each agent instance, with signals waiting for consumption by
the state machine of the agent instance. Channels connect agents with each other and
the environment via their gates. A channel can be uni- or bi-directional, delaying or
not delaying, and have a list of signal types that can be sent over this channel. Signals
can not be lost, duplicated or reordered by a channel.

Signals are generated by output actions of state machines, and are placed in a
suitable outgoing gate of the agent set, according to the addressing information of the
signal. Signals are forwarded over channels and gates to a valid destination, where
they are placed in the inport of the agent.

In Figure 2.1, a bi-directional channel C connects the gates g1 of agent set pi and
g2 of agent set po. Signals of type ping can be sent from pi to po, and signals of type
pong from po to pi. The interfaces de�ned by gates g1 and g2 must match the signal
lists de�ned for channel C: g1 (g2) must o�er ping (pong) and accept pong (ping).

5



2.1.3 State Machines
State machines, together with the nested agents in the substructure, de�ne the be-
haviour of an SDL agent. State machines de�ne states, transitions between states, sig-
nal consumption and actions, for example signal output, setting timers and variables.
SDL-2000 introduces hierarchical state machines, structured by composite states. A
composite state has a substructure consisting of state-nodes (which can again be com-
posite states) and transitions.

The topmost state of an SDL statemachine is a composite state, representing the
state machine. A composite state is re�ned either into a composite state graph, con-
sisting of state-nodes and transitions, or into a state aggregation, which is a parallel
composition of composite states with disjoint interfaces, called state partitions. This
assures that for a given signal, only one of the state partitions can �re a transition.

process type Ping 1(1)
Timer timeout;

SET(now+5,
timeout)

wait

     ping      pong    timeout

wait SET(now+5,
timeout)

     ping

wait

pingpong

g1

Figure 2.2: Agent type Ping

State transitions are triggered by signals in the inport of the agent, or spontaneously.
SDL de�nes several kinds of transition triggers:

• Priority input: If a signal of the speci�ed type2 is in the inport, it is consumed
and the transition is �red. Priority input transitions have precedence over other
transition kinds, except for spontaneous transitions.

• Input: The �rst signal in inport is consumed and the corresponding transition
is �red. If no input node exists for the �rst signal of the inport, it is either
discarded or saved (remaining at the front of the inport), and the next signal in
inport is checked.

2Priority is associated with the trigger of a transition, not with the signal type.
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• Continuous signal: If inport is empty and the guard is true, the transition is
�red.

• Spontaneous: A spontaneous transition is �red indeterministically.

Figure 2.2 shows the state machine de�nition of agent type Ping. The start transition
(left) sets timer timeout, outputs signal ping3, and enters state wait. In state wait,
Ping either receives signal pong, or the timeout signal. In both cases, the timer is
reset, and a new ping signal is sent.

2.2 Uni�ed Modeling Language
2.2.1 Overview
The Uni�ed Modeling Language (UML, [50, 52]) is a graphical speci�cation language
for object modelling, standardised by the Object Management Group (OMG). UML
aims at being a universal modelling language for modelling software, hardware, and
processes for a large variety of application domains. It is best suited for modelling soft-
ware systems in an object-oriented fashion. A UML speci�cation de�nes an abstract
model of a system, using model elements and relationships between them.

2.2.2 Meta-model Architecture

 M3 (metameta-model)

 M2 (meta-model)   

 M1 (model)

 M0 (instance)

MOF

UML

User model

Run-time instance

Figure 2.3: Meta-model hierarchy of UML

UML de�nes a four-layered meta-model hierarchy (see Figure 2.3), based on the
MetaObject Facility (MOF, [51, 53]). In this hierarchy, each layer is an instance of
the directly superordinated layer.

• The topmost layer (M3) is a metameta-model that de�nes a language for speci-
fying a meta-model. The metameta-model is re�exive, meaning it is an instance
of itself.

3Due to the structure of system PingPong, signal ping can only take one communication path.
Therefore, no addressing information is needed.
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• Layer M2 is the set of meta-models de�ning languages for specifying user models.
The abstract syntax of UML is de�ned as a meta-model.

• Layer M1 is the set of UML models - instances of the UML meta-model - as
speci�ed by the user. The models de�ne a languages for describing application
domains.

• Layer M0 is the set of run-time instances of UML models.

2.2.3 UML Diagrams
UML introduces several types of diagrams as graphical representation of parts of the
model. Each diagram type describes a certain aspect of a model, for example static
relationships between classi�ers for class diagrams. There are two groups of diagram
types: structure diagrams describe the static structure of objects in a system, be-
haviour diagrams show their dynamic behaviour. A set of model elements is associated
with each diagram type. However, UML does not de�ne strict boundaries between the
di�erent types, and allows mixing several diagram types in a single diagram.

Structure Diagrams
• Class Diagrams describe classes and interfaces, and their relationship by as-

sociation, aggregation and composition. Class diagrams are one of the most
common types of UML diagrams.

• Package Diagrams describe packages and their relationship by package exten-
sion, import and merge.

• Object Diagrams describe objects and links between them. Object diagrams
are the instance-level (M0) counterpart of class diagrams.

• Component Diagrams describe the physical components that make up a sys-
tem, and their dependencies.

• Composite Structure Diagrams describe the internal structure of a class,
consisting of classes, parts and connectors. Composite structure diagrams de-
scribe nested system structure similar to agents in SDL.

• Deployment Diagrams describe the execution architecture of a system by
assigning software artifacts to computational resources.

Behaviour Diagrams
• Activity Diagrams describe activities, and their control and object �ow.

• Interaction Diagrams describe the interactions between entities of a system.
There are four kinds of interaction diagrams, which provide di�erent views on
the same part of the model:
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� Sequence Diagrams describe interactions between entities of a system,
with the focus on the causal order of send and receive events. Sequence
diagrams correspond to MSCs [34] in SDL [30].

� Communication Diagrams describe interaction between entities of a sys-
tem, with the focus on the architecture and relationships between entities.

� Interaction Overview Diagrams describe interactions between entities
of a system on a higher level of abstraction, using a combination of an
activity-like notation and sequence diagrams. Interaction overview dia-
grams correspond to HMSCs [34] in SDL.

� Timing Diagrams, introduced in UML 2.0 [52], describe the state changes
of entities over time.

• Statemachine Diagrams describe discrete behaviour with �nite state transi-
tion systems.

• Use Case Diagrams provide a graphical overview of the functional require-
ments of a system.

2.3 Abstract State Machines
Abstract State Machines (ASMs) [27, 28, 8] are a general model of computation intro-
duced by Yuri Gurevich. They combine declarative concepts of �rst-order logic with
the abstract operational view of distributed transition systems. ASMs are based on
sorted �rst-order structures, called states. A state consists of a signature (or vocab-
ulary) containing domain names, function names, and relation names, together with
an interpretation of these names over a superuniverse X. A state can be viewed as a
memory snapshot of the ASM, where locations - identi�ed by functions and parameter
values - are mapped to result values.

The computation model of Distributed ASMs is based on a set of autonomously
operating ASM agents. Starting from an initial state, the agents perform concurrent
computations and interact through shared locations (see Section 2.3.2) of the state.
The behaviour of ASM agents is determined by ASM programs, consisting of ASM
rules. Complex ASM rules are de�ned as compositions of guarded update instructions
using a small set of rule constructors. From these rules, update sets, i.e. sets of memory
locations and new values, are computed. These update sets de�ne state transitions
that result from applying all updates simultaneously.

2.3.1 States
As abstract representation of states of arbitrary algorithms, ASMs rely on structures
from mathematical logic. Structures were �rst introduced by Tarski in 1936 and are an
accepted standard in mathematics. Structures are based on set theory - they consist of
a base set X, called superuniverse, together with an interpretation of the names from

9



a vocabulary V in X. Structures, slightly modi�ed for dynamic purposes, describe the
states of an ASM.

Vocabularies
A vocabulary V is a �nite collection of domain, function,relation, and variable names
with �xed arity. Names in the vocabulary can be marked as static, meaning they
have the same interpretation in all states of the ASM, or dynamic. Function and
relation names can be speci�ed as either monitored, controlled, or shared. Controlled
functions can only be modi�ed by the machine, while monitored functions can only be
modi�ed by the environment. Shared functions can be modi�ed both by machine and
environment. By default, functions are controlled and dynamic. Every vocabulary of
an ASM contains the following static names: the equality sign, the 0-ary functions
true, false, and undefined, and the common boolean operators. The vocabulary
can be extended by a set of variables names.

Below is the vocabulary VP for a speci�cation of the dining philosophers, consisting
of the domain names Philosopher, Fork, and Mode, the function names numphil,
left, right, owner, and mode, and the relation name hungry. Since the setup of philoso-
phers and forks doesn't change, numphil, left, and right are marked as static.

1 static domain Philosopher
2 static domain Fork
3 static domain Mode
4
5 static numphil: → N
6 static left : Philosopher → Fork
7 static right : Philosopher → Fork
8
9 owner: Fork → Philosopher
10 mode: Philosopher →Mode
11
12 monitored hungry: Philosopher → Boolean

Terms can be constructed syntactically from variable names and names from the
vocabulary. Every variable is a term, and if f is a function (relation) name with arity
r and t1, . . . tr are terms, f(t1, . . . , tr) is a term. If v is a variable and g and t are
boolean terms, ∀v : g. t and ∃v : g. t are terms.

For example, owner(left(p)) is a term with variable name p and function names
owner and left. ∃p : hungry(p).(owner(left(p)) = p) is a �rst-order term over VP .

States
A state A of an ASM consists of a non-empty superuniverse X and an interpretation
of the names of vocabulary V in X. A domain name in V is interpreted as a universe,
a subset of X. Universes can be de�ned as unary predicates that hold for elements
in the domain. A function name f in V with arity r is interpreted as a function
fA from Xr to X.4 A relation name in V with arity r is interpreted as a function
4We use function and relation names in the vocabulary that are typed by domain names. We
interpret these types as constraints on the ASM.
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from Xr to {true, false}. Variable names are interpreted as 0-ary functions, denoting
elements of the superuniverse. The 0-ary constants true, false and undefined denote
distinct elements of the superuniverse X. Superuniverse and vocabulary are �xed for
the states of an ASM, the interpretation for non-static names of the vocabulary can
change between states.

In order to support algorithms that allocate additional space dynamically, every
state of an ASM contains an in�nite store of �fresh� elements, called the reserve.
Elements of the reserve have the following properties:

• Every basic relation with the element as an argument, with the exception of
equality, evaluates to false.

• Every function with the element as an argument evaluates to undefined.

• The element is not included in the image of any function, or in a domain.

The reserve is de�ned as the set of elements that satisfy these properties.
An ASM has a set of initial states as possible start states. This set can be char-

acterised by constraints on the initial state. In the philosophers example, the initial
state has at least two philosophers and an equal number of forks. Each philosopher
has a fork to his left and right, and shares each fork with another philosopher. All
philosophers are thinking, and none of the forks are owned by any of the philosophers.

1 initially numPhil > 1
2
3 initially Philosopher = {p0, . . . , pnumPhil−1 }
4 initially Fork = {f0, . . . , fnumPhil−1 }
5 initially Mode = {thinking, waiting, eating}
6
7 initially ∀pi : Philosopher. mode(pi) = thinking
8 initially ∀pi : Philosopher. left(pi) = f(i−1) mod numPhil

9 initially ∀pi : Philosopher. right(pi) = fi

10
11 initially ∀f : Fork. owner(f) = undef

2.3.2 Actions
State transitions in Abstract State Machines are performed by reinterpreting the state
in a bounded number of locations. A transition is described by an update set - a set
of locations together with the new values of the locations.

Locations
A location l of a state A over vocabulary V is a pair (f,−→a ). f is a function or
relation name of V , −→a is a tuple of elements from the superuniverse X of A with a
size corresponding to the arity of f . In case f is a relation name of V , location l is
called relational. The content of a location is the output of the function fA(−→a ).
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Updates
An update is a pair (l, v) of a location l and an element v of X. Firing an update at
a state S changes the interpretation of S at l to the new value v. If l is relational, v
must be boolean-valued.

An update set α is a set of updates. An update set is consistent, if there are no two
updates in the set that write di�erent values to the same location: ∀(l1, v1), (l2, v2) ∈
α.(l1 = l2 → v1 = v2). Firing a consistent update set at a state S �res every update
in the set simultaneously. Firing an inconsistent update set has no e�ect on the state.

2.3.3 Rules
Rules describe state transitions of the Abstract State Machine. Given a state of the
ASM, an update set can be calculated from a rule. Firing the update set of the rule
at the state results in the subsequent state of the ASM. In sequential abstract state
machines, a rule �res in every state of the ASM. Further execution semantics are
described in Section 2.3.4.

Basic Update Rule The basic update rule has the form f(−→a ) := t with a function or
relation f , a tuple of terms −→a with a number of elements according to the arity of f ,
and a term t. A basic update writes the value of t in state S at the location described
by f(−→a ).

Update(f(−→a ) := t, S) = {((f, 〈valS(−→a )〉), valS(t))}

Guarded Updates Rules can be guarded with a �rst-order term, �ring the update
set associated with the rule only in states in which the guard holds. A second rule can
be speci�ed that is �red instead in states in which the guard doesn't hold.
R ≡ if g then R1 else R2 endif

Update(R,S) =

{
Update(R1, S) valS(g)
Update(R2, S) else

Rule Blocks Rules can be collected in rule blocks that are executed in parallel. The
resulting update set is the union of the update sets of the individual rules. If the
resulting update set is inconsistent, the state is not modi�ed5. Parallel execution of
rules is the default, so the do in-parallel keyword can be omitted.
R ≡ do in−parallel R1 . . . Rn enddo

Update(R, S) = Update(R1, S) ∪ . . . ∪Update(Rn, S)

5In particular, if any of the rules in the rule block produces an inconsistent update set, the update
set of the rule block is inconsistent.

12



Importing Elements ASMs can allocate additional resources by importing fresh el-
ements from the reserve, using extend. The extend-rule binds reserve elements to
variables v1, . . . , vn, and �res rule R with these bindings. If the resulting update set
is consistent, the elements are removed from the reserve and inserted into domain D
in the subsequent state. Otherwise, they remain in the reserve.
extend D with v1, . . . , vn

R
endextend

Bounded Parallelism For a �nite number of non-reserve elements for which the guard
g holds, rule R can be �red in parallel with variable v bound to a di�erent element
from the range of the guard. BaseSet(S) is the base set X of state S.
do forall v: g(v)
R(v)

endextend

RangeS(v : g(v)) = {a ∈ BaseSet(S) : a 6∈ Reserve ∧ S |= gS(a)}

Update(R,S) =
⋃
{Update(R, S(v → a)) : a ∈ RangeS(v : gS(v))}

Non-deterministic Choice An element is selected non-deterministically from the
range of the guard g. Rule R is �red with variable v bound to this element. Nonde-
terministic choice must only range over a �nite number of elements. Choosing from
an empty set results in an empty (not inconsistent) update set.
choose v: g(v)
R(v)

endextend

For rules with non-deterministic choice, Update produces a set of update sets,
representing the possible update sets produced by the choice rule. Update for non-
deterministic ASMs is de�ned in [28], Chapter 6.

Another way to model non-deterministic choice is to introduce a monitored function,
constrained by g.

Shortcuts As a shortcut for long terms, the result of evaluating a term t in state S
can be bound to a variable x for a rule R(x). This is equivalent to the rule R(x) with
every occurrence of x replaced by term t.
let x = t in
R(x)

endlet
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2.3.4 Programs
Sequential Abstract State Machines
A run of a Sequential Abstract State Machine is a sequence of states A0 . . . An over
vocabulary V , where A0 is an initial state, and state An+1 results from �ring the rules
of the ASM on state An. Sequential ASMs can be seen as a special case of Distributed
ASMs with a single agent.

A0
δ−→ A1

δ−→ A2
δ−→ . . .

δ−→ An (2.1)

Distributed Abstract State Machines
In Distributed Abstract State Machines (DASMs), several ASMs act as agents per-
forming moves on a shared state. Each agent is represented by an element of the
superuniverse X. The vocabulary of a DASM contains the following additional names:
domain names Agent and Program, the sets of elements representing ASM agents
and programs; the function names program, assigning programs to agents, and Self,
identifying the element corresponding to the agent executing the program.

1 domain Agent
2 domain Program
3
4 program: Agent → Program
5 monitored Self: → Agent

Programs are rules without free variables. An agent performs a move by �ring its
program at the current state. Agents can make moves on the shared state concurrently
and in parallel, restricted by the notion of partially-ordered runs.

Partially-ordered runs [27] de�ne a coherence condition that imposes a minimal re-
striction on the parallel execution of ASM agents6. Formally, partially-ordered runs are
de�ned as follows: A partially ordered run of a Distributed ASM is a triple (M, A, σ),
with a partially-ordered set M of moves performed by the agents of the ASM, a func-
tion A mapping moves to agents, and a function σ mapping sets of moves to states.
The following properties hold for partially-ordered runs:

• For every move m of M , the set of predecessors {x : x < m} is �nite.

• The set of moves by a single agent a, Ma = {m ∈ M : A(m) = a}, is a total
order with regard to the ordering relation of M , restricted to elements of Ma.

• An initial segment is a substructure I of M so that for every m ∈ I and x < m
in M follows x ∈ I. σ maps an initial segment I to a state that is the result of
performing all moves in I. σ(∅) is an initial state.

6The parallel execution of ASM agents should not be confused with parallel updates within an ASM
rule
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• coherence condition: If m is a maximal element in a �nite initial segment7 X of
M and Y = X −{m}, then a = A(m) is an agent in σ(Y ), m is a move of a and
σ(X) is obtained from σ(Y ) by performing m at σ(Y ).

From the coherence condition it follows that for a �nite initial segment, all lineari-
sations produce the same �nal state.

Listing 2.1 shows the program of the Distributed ASM for the dining philosopher
example. The program consists of three if -rules executed in parallel. A thinking
philosopher changes into mode waiting when hungry. The philosopher waits until the
forks to the left and right are free, then acquires them and goes into eating mode. Since
the forks are acquired in a parallel, atomic step, no deadlock can occur. An eating
philosopher releases the forks and goes into thinking mode once he is not hungry.

1 PhilosopherProgram ≡
2 if hungry(Self) ∧mode(Self) = thinking then
3 mode(Self) := waiting
4 endif
5 if mode(Self) = waiting then
6 if owner(left(Self )) = undef ∧owner(right(Self)) = undef then
7 owner(left(Self )) := Self
8 owner(right(Self)) := Self
9 mode(Self) := eating
10 endif
11 endif
12 if mode(Self) = eating ∧¬ hungry(Self) then
13 owner(left(Self )) := undef
14 owner(right(Self)) := undef
15 mode(Self) := thinking
16 endif
17
18 initially ∀pi : Philosopher. pi ∈ Agent
19 initially ∀pi : Philosopher. program(pi) = PhilosopherProgram

Listing 2.1: The program for the philosopher example

The coherence condition ensures that two philosophers can not acquire the same
fork at the same time. Take two philosophers p0, p1 in waiting mode, and fork f0

with an unde�ned owner. Philosopher p0 (p1) can make a move m0 (m1) acquiring
fork f0. Given the partially ordered set {m0,m1} with both moves unordered, all
linearisations must produce the same �nal state. Executing m0 before m1 results in
p0 acquiring f0 while p1 remains in waiting mode. Executing m1 before m0 results
in p1 acquiring f0 while p0 remains in waiting mode. This contradicts the coherence
condition. Therefore, in a valid partially ordered run, either m0 < m1 or m1 < m0

must hold.

The Environment
In the case of Sequential ASMs, the environment can be seen as an entity changing the
interpretation of monitored and shared functions in between two steps of the ASM. In

7This requires the set of agents to be �nite.
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the case of Distributed ASMs, the environment can be seen as a set of invisible agents
running concurrently or in parallel to the agents of the DASM, while subject to the
coherence condition.

Generally, the environment should not change the monitored and shared functions in
an arbitrary fashion. Therefore, the behaviour of the environment can be restricted,
for example by formulas of temporal logic, to exclude unexpected behaviour. For
the dining philosophers example, we expect hungry philosophers to stay hungry until
they start eating, and to eventually stop being hungry after starting to eat. This is
expressed in the following constraints.
constraint ∀pi: Philosopher. 2 (hungry(pi) → (hungry(pi) U mode(pi) = eating))
constraint ∀pi: Philosopher. 2 (mode(pi) = eating → 3 ¬hungry(pi))

Real-time Abstract State Machines
Real-time Abstract State Machines are Distributed Abstract State Machines that in-
troduce a notion of real time. Agents perform instantaneous actions in continuous
time, de�ned by the monitored, real-valued function currentTime. Function current-
Time must satisfy constraints that ensure behaviour according to the nature of physical
time. For example, currentTime must increase monotonically over an ASM run.
monitored currentTime: → Real

2.4 Formal Semantis of SDL
In November 2000, the formal semantics of SDL-2000, the current version of SDL, was
o�cially approved to become part of the SDL language de�nition (for a detailed survey,
see [16] and [19]). It covers all static and dynamic language aspects, and consists of
two major parts:

• The static semantics of SDL de�nes well-formedness conditions on the concrete
syntax of SDL. Furthermore, transformations map extended features of SDL to
core features of the language, reducing the complexity of the dynamic semantics.
The static semantics contains over 5600 lines of speci�cation.

• The dynamic semantics of SDL de�nes the dynamic behaviour of well-formed
SDL speci�cations, based on ASMs. At the core of the dynamic semantics is the
SDL Virtual Machine (SVM), which includes an abstract machine for the exe-
cution of SDL speci�cations, plus operating system functionality. A compilation
function maps actions from transitions in an SDL speci�cation to instructions of
the SVM. The dynamic semantics contains over 2800 lines of ASM speci�cation.

2.4.1 Static Semantics
The static semantics of SDL [41] de�nes which syntactically correct SDL speci�cations
are valid, how extended features of the language are transformed to basic features of
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the language, and how the mapping between the di�erent kinds of syntax (CS, AS0,
AS1) is performed. SDL has two kinds of abstract syntax. The abstract syntax AS0
corresponds to the concrete syntax (CS) of SDL, without delimiters and keywords.
The abstract syntax AS1 is the basis for the speci�cation of the dynamic semantics of
SDL. Its structure is simpli�ed compared to CS and AS0, and only elements covered
by the dynamic semantics are included. Figure 2.4 shows the steps de�ned in the static
semantics of SDL from the concrete syntax to the abstract syntax AS1.

Concrete Syntax (CS)

Abstract Syntax 0 (AS0)

Abstract Syntax 1 (AS1)

WFC 0

WFC 1

Parsing
Transformation

Mapping

Figure 2.4: Static semantics of SDL

1. The parsing step de�nes the relationship between the concrete syntax CS and
abstract syntax AS0. This step is not formally de�ned, but is implicitly given
by the direct correspondence between the two syntax de�nitions. Delimiters
and keywords are omitted, and the textual speci�cation is tranformed into an
abstract syntax tree.

2. On the abstract syntax AS0, several transformation steps are performed. During
the transformation, names are resolved and replaced with identi�ers (quali�ed
names), and SDL features not covered by the dynamic semantics are transformed
to equivalent SDL features. For example, remote procedure calls are transformed
to local procedure calls and signal exchange.
Because of dependencies between transformations, some transformations must
be completed for the entire speci�cation before other transformations can be
applied. Therefore, transformations are divided into 17 groups. Transformations
in a group must be completed for the entire speci�cation before transformations
of the subsequent group are applied.
On the abstract syntax AS0, well-formedness conditions (WFC 0) that must be
satis�ed by a valid SDL speci�cation are de�ned. These well-formedness condi-
tions are checked after parsing, and after the completion of all transformations
in a group.

3. The mapping step de�nes the relationship between abstract syntax AS0 and
AS1. After the transformations on AS0 are completed, the mapping to AS1 is
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straightforward. On AS1, another set of well-formedness conditions (WFC 1)
that a valid SDL speci�cation must satisfy is de�ned.

2.4.2 Dynamic Semantics
The dynamic semantics of SDL [42] de�nes the behaviour of syntactically correct, well-
formed SDL speci�cations, given by abstract syntax AS1. The possible computations
of an SDL speci�cation are described in the form of a partially-ordered run of a DASM.
Due to the complex, distributed nature of SDL, a virtual machine approach is used
for the formal semantics of SDL.

Based on distributed real-time ASMs (DASMs, see Section 2.3.4), which support
concurrency, asynchronous computation, and time, an SDL virtual machine (SVM) is
de�ned. The SVM consists of an SDL abstract machine (SAM), the logical hardware
for the execution of SDL speci�cations, plus operating system functionality.

SDL Abstract Machine (SAM)
The SAM de�nes the logical hardware for the execution of SDL speci�cations, and
consists of the following parts:

• Behaviour primitives form the instruction set of the SDL abstract machine.
Instructions include setting timers, procedure calls, and entering and leaving
state nodes.

1 Set =defTimeLabel ×Timer ×ValueLabel∗ ×ContinueLabel
2
3 EvalSet(a : Set) ≡
4 SetTimer(a.s-Timer, values(a.s-ValueLabel-seq, Self), semvalueReal(value(a.s-

TimeLabel, Self)))
5 Self .currentLabel := a.s-ContinueLabel

Listing 2.2: Behaviour primitive for setting timers

Listing 2.2 shows the behaviour primitive for setting timers, consisting of a do-
main Set (line 1) and a rule macro EvalSet (line 3). Set is a tuple consisting
of the type of the timer, and several labels referring to the time the timer is
set to, timer parameters, and the next instruction to be evaluated. EvalSet
evaluates instructions of type Set, by calling rule macro SetTimer, and setting
the abstract program counter currentLabel to the next instruction.

• SAM agents de�ne several agent types: SDLAgent and SDLAgentSet for
SDL agents and their containers, and Link for SDL channels.

• The signal �ow model provides communication resources (links, gates and signal
queues) for signal exchange between agents.
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SDL Virtual Machine (SVM)
The SVM provides operating system functionality on top of the SAM, de�ning pro-
grams for SDL agents, SDL agent sets, and links. The SVM de�nes transition selection,
�ring of actions of a transition, a communication system, and a runtime system for
the execution of SAM agents. Transition selection freezes the state of inport of an
agent, and iterates for each transition type (priority input, input, . . . ) through the
signals in the queue and the current states of the agent, until a �reable transition is
found. Transition �ring executes the actions of the transition by calling the behaviour
primitives of the SAM. The runtime system manages execution rights, and enables
either parallel or interleaving execution of agents, depending on the agent type.

 

execution 

selecting 
Transition 

firing 
Transition startPhase 

stopping 

Figure 2.5: Agent mode execution (level 2) and submodes [42]

For transition selection, �ring, and agent execution, the SVM de�nes an agent control
block , storing context information for each SDL agent, such as the state of inport at
the start of transition selection, the state and transition currently being checked, and
the mode of the agent.

Each SDL agent and SDL agent set has a hierarchy of agent modes. An agent
mode models an activity phase of an agent. On the top level (level 1), an agent is
in agent mode initialisation or execution. These high level activities are split up in
subactivities, represented by agent modes on a lower level (levels 2 - 5). Figure 2.5
shows the submodes of agent mode execution, and the order in which these activities
are executed. An agent entering mode execution �rst enters submode startPhase, then
alternates between modes �ringTransition and selectingTransition. These two modes
contain further subactivities. From mode �ringTransition, the agent can enter agent
mode stopping, after which agent mode execution is left. The agent mode hierarchy
consists of up to �ve levels, stored in functions agentMode1 to agentMode5.

Compilation Function
The compilation function de�nes the compilation of SDL transitions from the abstract
syntax AS1 to an ASM representation - a set of behaviour primitives. Each transition
is compiled into a set of actions and an action �ow. The compilation generates a label
for each action - via function uniqueLabel - as an abstract program counter, and as a
location to store the results of expressions and procedure calls.

Listing 2.3 shows the compilation function for the Assignment node of the AS1,
assigning an expression expr to a variable id. Function compileExpr compiles expr to
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an ASM representation. Label uniqueLabel(a,1) is passed as the next label to process
after the expression. The compilation function also generates a behaviour primitive of
type Task, with label uniqueLabel(a,1), variable id, the label storing the result of the
expression uniqueLabel(expr,1), and the next label to be processed, a parameter of the
compilation function.
| a=Assignment(id, expr) =>

compileExpr(expr, uniqueLabel(a,1)) ∪
{mk-Primitive(uniqueLabel(a,1), mk-Task(id, uniqueLabel(expr,1), next) )}
Listing 2.3: Compilation of Assignment node to behaviour primitive Task

2.5 Formal Semantics of UML
UML is a language without a standardised formal semantics de�nition. While the
abstract syntax of UML is de�ned in a semi-formal fashion (using meta-models), the
semantics is de�ned for fragments of the language in an informal fashion. Steps towards
a more complete language semantics were taken with UML 2.0, the precise meaning
of UML subsets is only given by tool implementations.

In the research community, a substantial body of work is concerned with the for-
malisation of subsets of UML. Several works exist for the formalisation of speci�c
UML diagrams, in particular Behaviour Diagrams. For example, Börger et al. have
provided a formal semantics for State Machine [5] and Activity Diagrams [4] using
Abstract State Machines. These works provide a formal semantics for the view of an
UML model provided by the speci�c diagram, but do not address the semantics of the
complete UML model - for example, the interdependencies of state machines and class
diagrams concerning object creation and inter-object communication.

Other approaches de�ne formal semantics for subsets of the UML model. In [49],
static semantics derived from the UML meta-model is combined with dynamic seman-
tics using Abstract State Machines. The dynamic semantics formalises the UML action
language, concurrency and communication (partially based on the signal �ow model
of SDL). In [11], a subset of UML - called krtUML - covering behavioural modelling
entities of UML used for real-time applications is formalised using symbolic transition
systems. The ITU de�nes the UML Pro�le for SDL [39] - scheduled for standardisation
in 2007 -, giving a precise semantics to a large subset of UML by mapping modelling
entities to SDL entities with compatible semantics. While SDL is a formal language,
the mappings de�ned in the UML Pro�le for SDL are de�ned informally. We introduce
an approach for the formalisation of the pro�le in [22] (see Section 3.6.4 in this thesis).

Work of the pUML Group [1] focuses on the precise de�nition of languages, UML
in particular, using an object-oriented meta-modelling language (MML) [9, 10]. This
language incorporates a subset of the UML, de�ning UML in itself using a precise
meta-modelling approach.
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3 Harmonisation of Modelling
Languages

This chapter is concerned with the harmonisation of modelling languages SDL and
UML, that is, the integration of these languages taking into account their underlying
similarities and di�erences. As a �rst step, we provide mappings between the abstract
syntax representations of SDL (abstract grammars) and UML (meta-models) (Section
3.3). Then, using abstract grammars as abstract syntax representation, we examine
how common constructs of SDL and UML are re�ected in common parts of the abstract
syntax of both languages (Section 3.4). We analyse semantic similarities and di�erences
of state machines in SDL and UML, which have a comprehensive semantics in both
languages (Section 3.5). Section 3.6 describes the approach of the ITU to integrate
SDL as a pro�le of UML. We contribute an approach to the formalisation of this pro�le,
giving a formal semantics to a subset of UML, and enabling the automatic generation
of tool support.

3.1 Motivation
With SDL-2000, several important steps towards its future harmonisation with UML
have been made. For instance, classes and associations including aggregation, compo-
sition, and specialisation were added to the language. Furthermore, composite states
that are similar to submachines in UML statecharts were incorporated. In turn, UML
2.0 introduced structured classes, which extend classes by an internal structure con-
sisting of nested structured classes, ports and connectors. This makes it possible to
model architectural aspects of systems in a fashion similar to SDL.

First attempts to harmonise UML and SDL have already been made for previous
language versions. The old Z.109 standard [33] de�nes a subset of UML 1.3 [50] that
has a mapping to SDL-2000. The UML subset is used in combination with SDL, with
the semantics based on SDL-2000. In [62], Selic and Rumbaugh de�ne a transformation
from SDL-92 to UML 1.3 extended with the Rational Rose real-time pro�le.

Ultimately, these e�orts are directed towards an integration of both languages and
the corresponding notations. However, at the time being, UML and SDL still deviate
in many ways, making it hard to see whether and when integration might actually
be achieved. Di�erences range from pure syntactic aspects to semantic concepts, re-
sulting from the origin of the languages. Also, it is not clear whether di�erent views
of a system even if expressed in notations belonging to the same family are consis-
tent. Furthermore, while SDL is a complete language with formal semantics, UML
is a language framework with a formal syntax, but many semantic variation points.
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These similarities and di�erences make UML and SDL suitable objects for studying
the harmonisation of modelling languages.

In order to derive a common syntactic and semantic basis, the existing language
de�nitions of UML and SDL should be taken as a starting point. In this chapter,
we present the results of analysing several corresponding excerpts of UML and SDL,
compare them, and derive a common subset. On the syntactical level, this is done
by de�ning conceptually sound and well-founded mappings from meta-models (used
to de�ne the abstract syntax of UML) to abstract grammars (used by SDL) and vice
versa, and by extracting common production rules. On the semantic level, we compare
statemachines of UML with process graphs of SDL, and outline their similarities and
di�erences. Finally, we describe the approach of the ITU to integrate UML and SDL
via the UML pro�le mechanism as documented in the Z.109 standard [39], and propose
a formalisation for this approach.

3.2 Abstract Syntax Representations
3.2.1 The Abstract Grammar Approach
The de�nition of a language consists of its syntax and semantics. The concrete syntax
of a language includes separators and other constructs needed for parsing the language.
The abstract syntax omits these details and contains only the elements relevant for the
de�nition of the semantics. Both the concrete and the abstract syntax of a language
can be de�ned in terms of a grammar, consisting of a set of production rules that
de�ne the syntactically correct sentences.

For SDL, a concrete (textual and graphical) syntax and two abstract syntaxes, AS0
and AS1, are de�ned. The AS0 is obtained from the concrete syntax by omitting details
such as separators and lexical rules. Otherwise, it is very similar to the concrete syntax
of SDL. The abstract syntax AS1 is obtained from the abstract syntax AS0 through
a step of transformations followed by a mapping. During the transformation, several
concepts are translated into core concepts of SDL as described in the standard.

The abstract syntax of SDL is described in terms of a context-free abstract gram-
mar (see [35], Section 5.4.1), based on the meta-language of the Vienna Development
Method (VDM) [2, 44]. A production rule of the abstract grammar has the form:

Name ::=(::) Rule or Name ::=(=) Rule

We call production rules of the form Name ::=(::) Rule concatenations, and pro-
duction rules of the form Name ::=(=) Rule synonyms. We refer to the name as the
left hand side, and to the rule as the right hand side of the production rule. A rule
consists of one or more terms, separated by vertical bars (�|�). A term is a sequence
of items. Items are names, modi�ed names (see below), and bracketed terms (terms
with more than one item).

A name as an item refers to the set of objects de�ned by its rule. For each name
N, the modi�ed names N-set (the powerset of N), N* (the set of sequences of N), N+
(the set of non-empty sequences of N) and [N] (the union of N and �unde�ned�) are
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de�ned. A bracketed term is a composite, tree-like object. For each bracketed term, a
mk-α operator with a unique name α is introduced. If the bracketed term is the only
term on the right hand side of a concatenation, α is the name on the left hand side
of the concatenation. Table 3.1 (corresponding to Figure 4.1 in [44]) shows the rule
forms used for the abstract grammar of SDL, and the sets of objects they describe.

Rule Sets of Objects
A ::=(=) B B
A ::=(=) B | C B ∪ C
A ::=(=) t1 | t2 | . . . { t1, t2, . . . } for terminals t1, t2, . . .
A ::=(::) B { mk-A(b) | b ∈ B }
A ::=(::) B C { mk-A(b,c) | b ∈ B, c ∈ C }
A ::=(::) B (C | D) same as A ::=(::) B X; X ::=(=) C | D

Table 3.1: Rules and their meanings

For the mapping described in Section 3.3, we assume a normal form of the abstract
grammar, where concatenations have no alternatives (�|�) on the right hand side. The
SDL abstract grammar can be easily transformed into this normal form by introducing
new synonyms for these alternatives (see Table 3.1).

Below, an excerpt of the AS1, the concatenation State-node and the synonym
Nextstate-node, is shown. State nodes are composite objects consisting of a state
name, a save signalset, and sets of input nodes, spontaneous transitions, continuous
signals, and connect nodes. Optionally, a state node can have a composite state type
identi�er (in that case, the state represents a composite state of the respective type)
and an associated exception handler.

State-node ::=(::) State-name
[On-exception]
Save-signalset
Input-node-set
Spontaneous-transition-set
Continuous-signal-set
Connect-node-set
[Composite-state-type-identi�er]

A Nextstate-node is a synonym for either a Named-nextstate or a Dash-nextstate, a
transition terminator containing either a state name or a dash symbol.

Nextstate-node ::=(=) Named-nextstate | Dash-nextstate

3.2.2 The Metamodel Approach
A meta-model [51, 53, 52] is a model used to de�ne a language for the speci�cation of
models. In UML, this meta-model approach is used to de�ne the language syntax. In
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particular, the abstract syntax of the language is de�ned using UML class diagrams.
This approach is re�ective, since class diagrams are UML models, and therefore de-
scribed in terms of themselves. On top of the model and the meta-model, more layers
can exist (meta-meta-models, etc.). UML uses a four layer meta-model structure [52]:
user objects (M0), model (M1), meta-model (M2), and meta-meta-model (M3). Every
element in a layer is an instance of an element of the direct superordinate layer.

UML class diagrams used for the description of the abstract syntax comprise pack-
ages, classes, attributes, associations, and specialisation. Classes in the UML meta-
model describe language elements. An occurrence of the language element in the
model (M1) is an instance of the meta-model class. Classes in the meta-model can be
parameterised by attributes. Attributes describe properties of the language element
described by a class. Composition between meta-model classes describes that a lan-
guage element contains another. General associations relate language elements, for
example, a transition with a trigger. The meta-model uses packages, abstract classes,
and specialisation to structure the abstract syntax.

 
State 

/ isComposite: Boolean 
/ isOrthogonal: Boolean 
/ isSimple: Boolean 
/ isSubmachineState: Boolean 
 

Activity 

Trigger 

0..1 0..1 

* * 

+doActivity
{subsets ownedElement}

+deferrableTrigger

Figure 3.1: Excerpt of the abstract syntax of states

Fig. 3.1 shows an excerpt from the abstract syntax of statemachine states. States
are described by a class with four attributes, describing the type of the state. These
attributes are derived ('/'), meaning that their value is derived from other information
in the meta-model. A State contains up to one Activity in the role of a 'doActivity'.
It is also associated with an arbitrary number of triggers in the role of deferrable
triggers. The composition between State and Activity is a subset of the association
'ownedElement'.

3.3 Mapping Between Meta-models and Abstract
Grammars

As a contribution, we de�ne precise, sound mappings from meta-models to abstract
grammars, and vice versa (this work was submitted and accepted to the Forte'04
conference [24]). As it turns out, not every element of UML meta-models can be
mapped. Also, several meta-model elements may have the same representation in the
abstract grammar. Therefore, the mapping is not completely reversible. However, it is
possible to map every element of an abstract grammar to a meta-model representation.
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In Section 3.4, these mappings will be applied to UML and SDL to extract a common
syntactical basis.

In the following sections, we de�ne mappings for elements of the meta-object facility
(MOF) [51, 53] relevant for the de�nition of the UML meta-model. These elements
are classes and enumerations, attributes, associations, multiplicity, and specialisation.

3.3.1 Classes and Enumerations
map(MM): A concrete class of the meta-model represents a language element. For ex-
ample, the meta-model class State represents all state descriptions in a UML statema-
chine. In an abstract grammar, a language element (non-terminal) is represented by
a speci�c production rule, namely a concatenation. Therefore, a concrete class in the
meta-model is mapped to a concatenation of the abstract grammar. The name of the
non-terminal is derived from the class name and the package structure of the meta-
model (see below). The right hand side of the concatenation is derived from the class
de�nition (attributes) and context (associations) as de�ned below (see 3.3.2, 3.3.3).

An abstract class of the meta-model describes properties that are common to its
subclasses. For example, the meta-model class Vertex describes properties that are
common to states and pseudo-states (initial states, . . . ). Since an abstract class can not
be instantiated, it does not represent a language element. Therefore, no concatenation
is used in the mapping. Instead, we map an abstract class of the meta-model to another
kind of production rule, namely a synonym, of the abstract grammar. In an abstract
grammar, a synonym replaces the element on its left hand side with an element of the
right hand side. This is similar to abstract classes in the meta-model, which must be
replaced by one of their concrete subclasses. The name of the non-terminal is selected
as in the case of a concrete class. The right hand side is derived from the context
(specialisation) as described below (see 3.3.5).

An enumeration in the meta-model is a set of values used to parameterise meta-
model classes. For example, the meta-model class Pseudostate describes di�erent lan-
guage elements (entry point, exit point, . . . ) of the model depending on the value
of the attribute 'kind' of the enumeration type PseudostateKind. Enumerations do
not directly describe language elements. Therefore, as in the case of abstract classes,
no concatenation is used in the mapping. Instead, enumerations are also mapped to
synonyms of the abstract grammar. This production rule replaces the enumeration by
one of its values.

The name of a non-terminal introduced by one of the mappings described above is
the quali�ed name of the class or enumeration. The quali�ed name is a sequence of the
packages the class or enumeration is contained in (from outermost to innermost) and
the name of the class or enumeration, each separated by underscores. For example,
Kernel_Element is the name of the non-terminal introduced by the class Element in
the package Kernel. The quali�ed name is used in order to avoid name clashes between
equally named classes in di�erent packages.
Example: The following example comes from the meta-model of UML state ma-

chines. It describes two classes, an abstract class Vertex and a concrete class StateMa-
chine. Furthermore, there is an enumeration TransitionKind. All of these elements are
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contained in the package BehaviorStatemachines (not shown) that we will shortly refer
to as BehSM.

StateMachine is a concrete class, and is therefore mapped to a concatenation. The
name BehSM_StateMachine comes from the package structure and the name of the
class. The abstract class Vertex and the enumeration TransitionKind are mapped to
synonyms.

MM map(MM) 

StateMachine 

 

Vertex 

 

<<enumeration>> 
TransitionKind 

internal 
local 
external 

 

BehSM_StateMachine ::=(::) 
 
BehSM_Vertex ::=(=) 
 
BehSM_TransitionKind ::=(=) 
 

map(AG): As mentioned when de�ning the mapping from meta-models to abstract
grammars, concrete classes and concatenations both represent language elements of
the model. Therefore, concatenations of the abstract grammar are mapped to con-
crete classes in the meta-model. The name of the concrete class is derived from the
production rule (see below).

AS1 map(AS1) 

State-node ::=(::) … 
 
Nextstate-node ::=(=) … 
 
 

State-node 

 

Nextstate-node 

 

 
 

A synonym of the abstract grammar represents a language element that does not
appear in the model, but stands for other language elements. For example, a Data-type-
de�nition in the SDL abstract grammar is a synonym for a Value-data-type-de�nition,
an Object-data-type-de�nition or an Interface-de�nition. This is a similar concept to
abstract classes in the meta-model, which we have mapped to synonyms in the abstract
grammar. However, it is also similar to an enumeration, where the enumeration stands
for one of its values. Therefore, we map a synonym in the abstract grammar either to
an abstract class or an enumeration. The exact mapping depends on the right hand
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side of the synonym (see 3.3.2, 3.3.3). The name of the class or enumeration is the
name of the non-terminal on the left hand side of the production rule.
Example: In the abstract grammar of SDL, the production rule for the non-

terminal State-node is a concatenation. It is therefore mapped to a concrete class.
The production rule for Nextstate-node is a synonym. It would therefore either map to
an abstract class or an enumeration. Because of the right hand side of the production
rule, which we do not treat at this point, it is mapped to an abstract class.

3.3.2 Attributes
map(MM): In the meta-model, attributes of a class represent properties of a language
element. For example, the attribute 'kind' of the meta-model class Transition describes
if the transition is internal, local or external. In an abstract syntax tree, an attribute
is represented as a sub-node of the non-terminal and corresponds to a class. We have
mapped concrete classes to concatenations of the abstract grammar. Therefore, an
attribute of a concrete class is mapped to either a terminal or a non-terminal on the
right hand side of the concatenation. We map attributes to terminals if they do not
need to be re�ned any further, and to non-terminals otherwise. If the type of the
attribute is an enumeration type, we always map the attribute to a non-terminal,
since we have mapped enumerations to synonyms and non-terminals. The name of the
terminal is the name of the type (for example, Boolean). The name of the non-terminal
is derived from the name of the enumeration and the package structure, as de�ned in
Section 3.3.1.

Attributes that are marked as derived carry no additional information and can be
omitted. For example, the attribute 'isComposite' of State can be derived from the
number of associated regions. If they are not omitted, additional constraints are needed
to de�ne the dependencies between the original and the derived attributes. Default
values of attributes can not be mapped to the abstract grammar.

Elements of an enumeration represent values of the enumeration type. In an abstract
grammar, a value is represented by a terminal. Therefore, enumeration elements are
mapped to terminals of the abstract grammar. The name of the terminal is the name
of the enumeration element. An enumeration is mapped to a synonym of the abstract
grammar. Therefore, we map the terminals to the right hand side of the synonym
corresponding to the enumeration.

MM map(MM) 

<<enumeration>> 
TransitionKind 

internal 
local 
external 

Transition 

kind: TransitionKind 

 

BehSM_TransitionKind ::=(=) 
 INTERNAL 
 | LOCAL 
 | EXTERNAL 
 
BehSM_Transition ::=(::) 
 BehSM_TransitionKind  /* kind */ 
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Example: The example above (again from BehaviorStatemachines) contains a con-
crete class Transition and the enumeration TransitionKind. The classes are mapped as
described in the previous section. The attribute 'kind' of Transition is an element on the
right hand side of BehSM_Transition. In this special case ('kind' is an enumeration),
it is a non-terminal that refers to the mapping of the enumeration TransitionKind. The
name of the attribute is appended as a comment. The enumeration literals of Transi-
tionKind appear as alternatives of terminals on the right hand side of the production
rule, written in all caps for better distinction.
map(AG): A terminal on the right hand side of a concatenation represents a prop-

erty of the language element. In the meta-model, an attribute represents a property of
a language element. The terminal is therefore mapped to an attribute of the concrete
class corresponding to the concatenation. The type of the attribute is the name of the
terminal. The name of the terminal can be chosen arbitrarily as long as it does not
con�ict with other attribute names of the class.

A synonym with only terminals on the right hand side represents an enumeration
of values. For example, the synonym Agent-kind of the SDL abstract grammar is an
enumeration of the values SYSTEM, BLOCK and PROCESS. Therefore, the terminals
are mapped to enumeration values of the enumeration corresponding to the synonym.
Example: Agent-kind is a synonym and has only terminals on the right hand side.

Therefore, it is mapped to an enumeration. The alternatives on the right hand side
(SYSTEM, BLOCK and PROCESS) are mapped to enumeration literals of the corre-
sponding enumeration. The terminal PRIORITY on the right hand side of Input-node
is mapped to an attribute of the corresponding concrete class.

AS1 map(AS1) 

 
Agent-kind ::=(=) 
 SYSTEM 
 | BLOCK 
 | PROCESS 
 
Input-node ::=(::) 
 PRIORITY 
 … 
 
 

<<enumeration>> 
Agent-kind 

system 
block 
process 

Input-node 

prio: Priority 

 
 

3.3.3 Associations
map(MM): An aggregation or composition between two classes means that one lan-
guage element contains or is made up of other language elements. For example, a
Region in a statechart contains vertices and transitions. In the same way, a node in
an abstract syntax tree can have sub-nodes. For example, a State-transition-graph of
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the SDL abstract grammar has a set of State-nodes as sub-nodes. Therefore, we map
aggregation and composition to the abstract grammar so that the de�nition of the
aggregated class is a sub-node of the aggregating class. This is achieved by adding
the non-terminal corresponding to the aggregated class on the right hand side of the
concatenation corresponding to the aggregating concrete class.

A general association between two classes is an association between language ele-
ments, in which the elements play a certain role. For example, a State is associated
with a number of triggers, the triggers playing the role of deferrable triggers. In the
SDL abstract grammar, two language elements are associated by identi�ers. For ex-
ample, an Input-node is associated with a Signal by a Signal-identi�er on the right hand
side of the concatenation corresponding to the Input-node. Therefore, a directed gen-
eral association is mapped to an identi�er on the right hand side of the concatenation
corresponding to the concrete class the association originates from. An undirected
general association is split into two directed general associations.

An association with the union property is the union of the associations that subset
it. This is expressed by the property subsets. As in the case of derived attributes,
associations with the union property are not mapped to the abstract grammar.

MM map(MM) 

Transition 

kind: TransitionKind 

Vertex 

 

+outgoing +incoming 

+source +target 

Region 
 
 

+subvertex 
{subsets ownedElement} 

* 

1

* 

1 

* 

 

BehSM_Region ::=(::) 
 BehSM_Vertex-set /* subvertex */ 
 
BehSM_Vertex ::=(=) 
 
BehSM_Transition ::=(::) 
 BehSM_TransitionKind  /* kind */ 
 BehSM_Vertex-Identifier 
  /* source */ 
 BehSM_Vertex-Identifier 
  /* target */ 
 
BehSM_Vertex-Identifier ::=(=) 
 Identifier 
 
 

Example: The example above shows the abstract class Vertex and the concrete
classes Transition and Region. Region is composed of a set of Vertexes called subvertex.
This composition is a subset of the association 'ownedElement' between two elements.
In the abstract syntax tree, BehSM_Region thus has BehSM_Vertex-set on the right
hand side, with the name appended as a comment. Between Vertex and Transition
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there are two bidirectional associations, which are split into two unidirectional asso-
ciations each. Attributes and associations of an abstract class are not mapped to the
corresponding synonym in the abstract syntax tree, since an abstract class is not a
synonym for one of its attributes or associations. Instead, they are copied into the
respective subclasses, as described in Section 3.3.5. In this example, Vertex has no
subclasses. Therefore, we only have to map the two general associations 'source' and
'target'. To distinguish between general association and composition, an association
is mapped to an identi�er (in this case, BehSM_Vertex-Identi�er) on the right hand
side of the corresponding production rule. How the identi�er looks like is not further
speci�ed. It could be a quali�ed name like in the case of SDL.
map(AG): Non-terminals on the right hand side of a concatenation can stand for

an enumeration or a class in the meta-model. In case they represent an enumeration,
they represent an attribute of the class (see Section 3.3.2). In case they represent a
class, this class is a sub-node of the class corresponding to the concatenation. This
is similar to a class in the meta-model that is composed of other classes. Therefore,
in this case we map a non-terminal on the right hand side of a concatenation to a
composition in the meta-model. The composing class is the class corresponding to the
concatenation; the composed class is the class corresponding to the non-terminal on
the right hand side. The role of the classes can be chosen arbitrarily.

AS1 map(AS1) 

State-node ::=(::) 
 Input-node-set 
 Composite-state-type-identifier 
 … 
 
Input-node ::=(::) 
 
Composite-state-type-definition ::=(::) 
 
Composite-state-type-identifier ::=(=) 
 Identifier 

Composite-state-type-
definition 

 

State-node 

 

substate 

Input-node 

 

trigger 0..* 

 
 

An identi�er on the right hand side of a concatenation identi�es a language element
that is associated with the language element described by the concatenation. For
example, in the SDL abstract grammar, an Input-node is associated with a Signal
by a Signal-identi�er. Therefore, we map an identi�er on the right hand side of a
concatenation to a directed general association in the meta-model. The source of
the association is the concrete class corresponding to the concatenation, according to
the mapping in Section 3.3.1. The target is the concrete class corresponding to the
language element referenced by the identi�er. The roles of the classes can be chosen

30



arbitrarily.
Example: The non-terminal Input-node on the right hand side of State-node is

mapped to a composition of Input-node in State-node in the meta-model. The set-
su�x is mapped to the multiplicity '0..*', as de�ned in Section 3.3.4. Composite-
state-type-identi�er is an identi�er referring to a Composite-state-type-de�nition (in the
abstract grammar of SDL, identi�er/de�nition pairs usually have the same name with a
-identi�er/-de�nition su�x, e.g. Signal-identi�er and Signal-de�nition). This is mapped
to a general association between the two corresponding classes in the meta-model.

3.3.4 Multiplicity
In UML, multiplicities consist of a lower bound and an optional upper bound, which
can be in�nite. The property ordered expresses that there is a linear order for the
elements. The property unique expresses that no element appears more than once. In
the abstract grammar, an optional element is enclosed by square brackets. A possibly
empty list of elements is marked by a '*' behind the element, a non empty list by a
'+'. A set of distinct elements is marked by the su�x '-set'.

MM AG
0..1 [Name]
0..n, 1 < n (as 0..*)
0..* Name *
0..* {unique} Name-set
1 Name
1..n, 1 < n (as 1..*)
1..* Name +
1..* {unique} (as 0..* {unique})
n (as 0..*)
n..m, 1 < n < m (as 1..*)
n..*, 1 < n (as 1..*)

Table 3.2: Mapping of Multiplicities

Table 3.2 shows the mapping of multiplicities between meta-model and abstract
grammar. If we use lists in the abstract grammar, the elements are ordered and not
necessarily unique. If we use sets, they are not ordered and unique. Therefore, we can
only map one of the properties to the abstract grammar. In this case, the property
ordered is omitted from the mapping.

3.3.5 Specialisation
In the UML meta-model, abstract classes and specialisation are used frequently to
capture common aspects of di�erent classes, and as part of a meta-language core reused
in several standards (see UML: Infrastructure [52]). For the abstract syntax, abstract
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classes are not directly interesting, since they can not be instantiated and therefore
do not appear in a model, except through their subclasses. Nonetheless we map them
to the abstract grammar, to preserve as much of the structure of the meta-model as
possible.
map(MM): We have to map specialisation to the abstract grammar, and the fact

that a specializing class inherits properties of the specialised class. The easiest way
to do this is to copy these properties into the specializing classes before the mapping.
This has the advantage that rede�nition of properties is easy to realise. They are not
copied to subclasses that overwrite them.

This is done as follows:

Step 1) For every class that has subclasses, copy all attributes of the class and all asso-
ciations that originate from this class to each of its direct subclasses.
a) An attribute is only copied to a subclass if no attribute of the same name

already exists, i.e., if the attribute is not rede�ned.
b) An association is only copied to a subclass if it is not rede�ned in the

subclass.

Step 2) Repeat Step 1 for all subclasses that have new attributes and associations after
the last execution of Step 1.

In the meta-model, an abstract class can take part in an association. In the model,
an instance of a concrete class that specialises the abstract class takes part in the
association instead. For example, a Vertex is associated with Transition as the source of
transitions. In the model, the source of transitions is either a State or a Pseudostate. In
the abstract grammar, we can express this using a synonym. We have already mapped
an abstract class to a non-terminal and a synonym (see Section 3.3.1). To map the
specialisation to the abstract grammar, we add the non-terminals corresponding to
the direct sub-classes of the abstract class to the right hand side of the synonym. This
means that every occurrence of the non-terminal (the abstract class) is replaced by a
non-terminal (one of the subclasses) in the abstract syntax tree.

To map specialisation to the abstract grammar, we need synonyms. On the other
hand, a concrete class can have subclasses, but is mapped to a concatenation (see
Section 3.3.1). In this case, we transform the meta-model before we perform the
mapping. The concrete class with subclasses is replaced by an abstract class of the
same name. The concrete class is renamed, e.g. by adding a special pre�x, and added
as a subclass of the new abstract class. The subclasses of the concrete class are now
subclasses of the new abstract class and the mapping can be performed. However,
we still have to copy the attributes of the concrete class to its former subclasses, as
described above.
Example: The following example is taken from the package Kernel and covers

classi�ers, classes and associations. Classi�er is an abstract class with the attribute
'isAbstract'. A classi�er can be generalised by another classi�er, described by the
association named 'general'. Concrete subclasses of Classi�er are Class and Association.
The association 'superClass' between two classes rede�nes the association 'general'.
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Before mapping to the abstract grammar, we have to copy the attributes and asso-
ciations of the abstract class Classi�er to its subclasses. The attribute 'isAbstract' is
copied to the classes Class and Association, since no attribute of the same name exists.
A new association 'general' from Association to Classi�er is added. The association
'superClass' rede�nes 'general', therefore no new association is added to Class.

The abstract class Classi�er is mapped to a synonym. Class and Association are
direct subclasses of Classi�er ; therefore, we add the non-terminals corresponding to
these classes on the right hand side of the synonym.

MM map(MM) 

Classifier 

isAbstract: Boolean = false 

 

Kernel 

+general * 

Class 

 

+superClass 
*{redefines general} 

Association 

 

+nested 
Classifier* 

 

Kernel_Classifier ::=(=) 
 Kernel_Class 
 | Kernel_Association 
 
Kernel_Class ::=(::) 
 Boolean /*isAbstract*/ 
 Kernel_Class-Identifier-set  /*superClass*/ 
 Kernel_Classifier-set /* nestedClassifier */ 
 
Kernel_Association ::=(::) 
 Boolean /*isAbstract*/ 
 Kernel_Classifier-Identifier-set /*general*/ 
 
Kernel_Class-Identifier ::=(=) Identifier 
 
Kernel_Classifier-Identifier ::=(=) Identifier 
 

 

map(AG): Non-terminals of the abstract grammar represent language elements. A
synonym of the abstract grammar with non-terminals on the right hand side replaces a
language element by another. For example, a Return-node in the abstract grammar of
SDL is replaced by an Action-return-node, a Value-return-node or a Named-return-node.
We map synonyms to abstract classes in the meta-model. Abstract classes can not
be instantiated, but can have instances through their subclasses. Therefore, we map
a synonym with non-terminals on the right hand side in the abstract grammar to a
specialisation relationship. The specialised class is the class corresponding to the non-
terminal on the left hand side. The specialising classes are the classes corresponding
to the non-terminals on the right hand side.
Example: The synonyms for Graph-node and Task-node are mapped to abstract

classes. Output-node and Call-node are concatenations and therefore concrete classes.
For the non-terminals Task-node, Output-node and Call-node on the right hand side of
the synonym, a specialisation relationship is added between Graph-node and Task-node,
Call-node, and Output-node.
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AS1 map(AS1) 

Graph-node ::=(=) 
 Task-node 
 | Output-node 
 | Call-node 
 | … 
 
Task-node ::=(=) 
 
Output-node ::=(::) 
 
Call-node ::=( ::)  

Graph-node 

 

Task-node 

 

Call-node 

 

Output-node 

 

 
 

3.3.6 Meta-Model Approach vs. Abstract Grammar Approach
From the discussion so far, it seems that the meta-model approach to de�ning an
abstract syntax is more expressive than the (context free) grammar approach. As
a consequence, the mapping from the SDL abstract grammar to a meta-model is
completely reversible. However, this is not the case for the mapping from the UML
meta-model to an abstract grammar. Several elements of the UML meta-model can
not be expressed in the abstract grammar, using our mapping, including the following:

• Visibility information, default values and derived attributes are not expressible
in a context free grammar.

• Associations with the property union, as well as the property subsets are not
expressible.

• When an attribute or an association of an abstract class is rede�ned in a subclass,
it cannot be properly reproduced.

• Several multiplicities have identical mappings, and cannot be properly repro-
duced with the mapping described in the previous section. The property or-
dered (alternatively, the property unique, see Section 3.4) can not be mapped to
a context free grammar.

In consequence, the meta-model approach seems to be preferable as a basis for the
harmonisation of UML and SDL. It covers and extends the expressiveness of abstract
grammars, and thus seems to be the right choice. However, the same expressiveness
can be achieved with the given mapping by adding static conditions as in the static
semantics of SDL [41], leading to a context-sensitive grammar. Therefore, the main
advantage of the meta-model approach is the ability to structure the abstract syntax,
using packages and specialisation. On the other hand, the �at meta-model structure
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obtained by the meta-model transformation described in Section 3.3.5 increases read-
ability, by putting the de�nition of all attributes and associations of a class in one
place. When it comes to implementing a language by providing tool support, ab-
stract grammars have an advantage due to their precise semantics, and the existence
of sophisticated compiler generation tools. With the mapping de�ned above, such an
abstract grammar can be systematically derived.

3.4 Syntactic Harmonisation of SDL and UML
Translating the meta-model of UML 2.0 into an abstract grammar supports the com-
parison of the abstract syntax of UML 2.0 and SDL-2000. In particular, it enables
us to examine how the common constructs of SDL and UML are re�ected in common
parts of the abstract syntax of both languages, and to extract the common abstract
grammar subset.

As it has turned out, some information of the meta-model is lost when it is mapped
to an abstract grammar (see Section 3.3.6). However, the information lost is not
important for the extraction, because it is not present in the abstract syntax of SDL.

Instead of mapping the UML meta-model to an abstract grammar, we could ap-
ply the mapping from the SDL abstract grammar to a meta-model. This way, no
information would be lost, as the meta-model is more expressive. However, the extrac-
tion process would not bene�t from this choice. Even worse, the extraction would be
harder, since the UML meta-model de�nes a large number of abstract classes with at-
tributes and associations, which would not show up in the SDL meta-model. It would
be necessary to either copy the attributes of abstract classes to their subclasses in the
UML meta-model (as described in Section 3.3.5), or to identify common attributes
and associations, and shift them to super-classes in the SDL meta-model.

To relate language elements of SDL-2000 and UML 2.0 on a syntactical level, sub-
stantial knowledge of both languages is required. In particular, it is necessary to take
the semantics of language elements into account. E.g., we need knowledge of the se-
mantics of the language elements to relate the Package-name of a Package-de�nition
in the abstract syntax of SDL with the String of a structured class in the abstract
syntax of UML. Also, it can be expected that for some of the common constructs, the
abstract syntax will be di�erent, although the semantics is the same. In some cases,
there might even be a common abstract syntax, although the semantics is di�erent.

To extract the common abstract syntax of the two languages, we take the production
rules for language elements that are similar in UML and SDL, e.g. packages, as a
starting point, and compare their right hand sides. For corresponding elements in
both sets of production rules that represent similar concepts, the production rules for
these elements are compared. If they overlap, we can relate the two elements with each
other and include them in the common abstract syntax. We exemplify the extraction
with high level language elements, namely packages and agent-types/classes, as well
as language elements with a �ner granularity.
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Packages
Both SDL and UML have a concept of packages for grouping and reuse of elements
of the speci�cation (see Table 3.3). Both support the nesting of packages (2). The
abstract syntax of UML describes the contents of a package as a set of PackageableEle-
ments, a synonym for all elements that can be contained in a package. SDL describes
sets of the elements that can be contained in a package, e.g. Signal-de�nition-set.
Common packageable elements in SDL and UML are agents/classes (4), signals (3)
and composite states/statemachines (5).

SDL-2000 (AS1) UML 2.0 (derived AS)
Package-de�nition ::=(::) Kernel_Package ::=(::)
1 Package-name 1 [String]
2 Package-de�nition-set 2 Kernel_Package-set

Data-type-de�nition-set Kernel_PackageableElement-set
Syntype-de�nition-set Kernel_PackageMerge-set

3 Signal-de�nition-set Kernel_ElementImport-set
Exception-de�nition-set Kernel_PackageImport-set

4 Agent-type-de�nition-set Kernel_PackageableElement ::=(=)
5 Composite-state-type- 4 StructuredClasses_Class

de�nition-set 5 BehStateMachines_StateMachine
Procedure-de�nition-set 3 Communications_Signal

Table 3.3: Common syntax of packages

Agent-type/Class
UML 2.0 introduces structured classes, which are classes extended with internal struc-
ture and ports (see Table 3.4). Structured classes are semantically and syntactically
similar to Agent-types in SDL. Both have an internal structure of properties (respec-
tively agents, 9), connectors (channels, 7) and gates (ports, 6). Both agent-types and
structured classes can specialise other agent-types and structured classes (2), however
SDL only supports single inheritance while UML supports multiple inheritance.

Behaviour is associated with an Agent-type as a State-machine-de�nition, which con-
sists of a name and a Composite-state-type-identi�er. Behaviour is associated with
structured classes by a Behavior-Identi�er (8). Behaviour in the abstract syntax of
UML is a synonym for statemachines and other behaviour models. Statemachines are
syntactically similar to composite-state-types in SDL. The abstract syntax of the two
languages di�ers slightly, since UML does not have a State-machine-de�nition. In the
common abstract grammar, we include the State-machine-de�nition but discard the
name associated with it, since it does not exist in UML.

SDL-2000 (AS1) UML 2.0 (derived AS)
Agent-type-de�nition ::=(::) StructuredClasses_Class ::=(::)
1 Agent-type-name 1 [String]

36



Agent-kind . . .
2 [ Agent-type-identi�er ] Kernel_Classi�er-Identi�er-set

Agent-formal-parameter * 2 StructClasses_Class-Identi�er-set
Data-type-de�nition-set [Kernel_Type]
Syntype-de�nition-set Kernel_ElementImport-set

3 Signal-de�nition-set Kernel_PackageImport-set
Timer-de�nition-set Kernel_Constraint-set
Exception-de�nition-set Kernel_Behavior-set
Variable-de�nition-set 8 [Kernel_Behavior-Identi�er]

4 Agent-type-de�nition-set Boolean /*isActive*/
5 Composite-state-type- Communications_Reception-set

de�nition-set 6 Ports_Port-set
Procedure-de�nition-set 7 CompStruct_Connector-set

9 Agent-de�nition-set 9 IntStruct_Property-set
6 Gate-de�nition-set Kernel_Property *
7 Channel-de�nition-set Kernel_Classi�er-set
(8) [ State-machine-de�nition ] Kernel_Operation *

State-machine-de�nition ::=(::) Kernel_Classi�er ::=(=)
State-name 4 StructuredClasses_Class

8 Composite-state-type- 5 BehStateMachines_StateMachine
identi�er 3 Communications_Signal

. . .

Table 3.4: Common syntax of agent types and classes

Signals
Signal types exist in SDL and UML to describe communication between agents/objects
(see Table 3.5). Signals have a name (1) and parameters, which are represented by
sorts in SDL and properties in UML. While representing similar concepts, the abstract
syntax of sorts and properties are di�erent, therefore signals in the common abstract
grammar have no parameters.

SDL-2000 (AS1) UML 2.0 (derived AS)
Signal-de�nition ::=(::) Communications_Signal ::=(::)
1 Signal-name Kernel_Property *

Sort-reference-identi�er * 1 [String]
. . .

Table 3.5: Common syntax of signals
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Channel/Connector
Channels/connectors connect gates/ports (see Table 3.6). In SDL, a channel has one
or two channel-paths. In case of two channel-paths, the channel is bi-directional and
the originating gate of the �rst path is the destination gate of the second path and
vice versa. In UML, the connector connects two or more ports. In the common AS,
a channel is a set of channel-ends (2), which is a pair of ports (3). No direction is
speci�ed.

SDL-2000 (AS1) UML 2.0 (derived AS)
Channel-de�nition ::=(::) IntStruct_Connector ::=(::)
1 Channel-name IntStruct_Connector-Identi�er

[NODELAY] 2 Ports_ConnectorEnd * /* 2..* */
2 Channel-path-set [Kernel_Association-Identi�er]

. . .
Channel-path ::=(::) 1 [String]
3 Originating-gate [Kernel_Type]
3 Destination-gate Ports_ConnectorEnd ::=(::)

Signal-identi�er-set 3 [IntStruct_ConnectableElement-Identi�er]

Table 3.6: Common syntax of channels and connectors

Gate/Port
Gates/ports are endpoints for channels/connectors (see Table 3.7). Gates specify valid
signals for both directions, while ports have required and provided interfaces (2, 3).

SDL-2000 (AS1) UML 2.0 (derived AS)
Gate-de�nition ::=(::) Ports_Port ::=(::)
1 Gate-name 3 Interfaces_Interface-Identi�er-set/*required*/
2 In-signal-identi�er-set 2 Interfaces_Interface-Identi�er-set/*provided*/
3 Out-signal-identi�er-set Ports_Port-Identi�er-set

IntStruct_ConnectorEnd-set
1 [String]

. . .

Table 3.7: Common syntax of gates and ports

Agent/Property
Agents and properties (see Table 3.8) are both instances of a type (2) (agent-type in
SDL, structured class in UML). Both specify upper and lower bounds for the number
of instances (3). While the lower bound in UML is optional, it is required in SDL, and
therefore in the common abstract syntax.
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SDL-2000 (AS1) UML 2.0 (derived AS)
Agent-de�nition ::=(::) IntStruct_Property ::=(::)
1 Agent-name Kernel_AggregationKind

Number-of-instances Kernel_Property* /*subset*/
2 Agent-type-identi�er Kernel_Property* /*re�ned*/

[Kernel_ValueSpeci�cation]
Number-of-instances ::=(::) [Kernel_Association-Identi�er]
3 Initial-number Ports_ConnectorEnd-Identi�er-set
3 [Maximum-number] 1 [String]

2 [Kernel_Type-Identi�er]
Initial-number ::=(=) Nat 3 [Kernel_ValueSpeci�cation]
Maximum-number ::=(=) Nat 3 [Kernel_ValueSpeci�cation]

. . .

Table 3.8: Common syntax of agents and properties

Parameter
Like signals, parameters in the common AS (see Table 3.9) have a name (1) but no
sort or type, since the abstract syntax of sorts and types is di�erent.

SDL-2000 (AS1) UML 2.0 (derived AS)
Parameter ::=(::) Kernel_Parameter ::=(::)
1 Variable-name 1 [String]

Sort-reference-identi�er [Kernel_Type-Identi�er]

Table 3.9: Common syntax of parameters

Composite-state-type/Statemachine
Composite-state-types as well as statemachines (see Table 3.10) have a name (1), a
sequence of parameters (3) and an identi�er of the composite-state-type/statemachine
that they specialise (2), if any. In UML, a statemachine has one or more regions that
contain states and transitions. The equivalent in SDL is a Composite-state-graph (one
region) or a State-aggregation-graph (two or more regions). A Composite-state-graph
contains a State-transition-graph which contains the states of the Composite-state-type.
A Region in UML maps to a State-transition-graph in SDL. Both contain the states
(5) and transitions of the composite-state-type/statemachine. Multiple regions are not
included in the common AS, because of the di�erent syntax and semantics in SDL and
UML.

SDL-2000 (AS1) UML 2.0 (derived AS)
Composite-state-type-de�nition
::=(::)

BehSM_StateMachine ::=(::)
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1 State-type-name BehSM_Pseudostate-set
2 [ Composite-state-type-identi�er ] 4 BehSM_Region +
3 Composite-state-formal-parameter* 2 [BehSM_StateMachine-Identi�er]

State-entry-point-de�nition-set 3 Kernel_Parameter *
State-exit-point-de�nition-set BasBeh_Behavior-Identi�er-set
Gate-de�nition-set . . .
. . . Kernel_Constraint-set
Composite-state-type-de�nition-set Kernel_Constraint-set
Variable-de�nition-set Kernel_Property-set
Procedure-de�nition-set Kernel_Class-Identi�er-set
[ Composite-state-graph | Kernel_Classi�er-set
State-aggregation-node ] Kernel_Operation-set

Composite-state-graph ::=(::) . . .
4 State-transition-graph Kernel_VisibilityKind

[Entry-procedure-de�nition] 1 [String]
[Exit-procedure-de�nition] Kernel_Classi�er-Identi�er-set
Named-start-node-set Kernel_Generalization-set

State-transition-graph ::=(::) BehSM_Region ::=(::)
[On-exception] 5 BehSM_Vertex-set
[State-start-node] BehSM_Transition-set

5 State-node-set [BehSM_Region]
Free-action-set [Kernel_VisibilityKind]
Exception-handler-node-set [String]

Table 3.10: Common syntax of composite states and state machines

State-node/State

SDL-2000 (AS1) UML 2.0 (derived AS)
State-node ::=(::) BehSM_State_Concrete ::=(::)
1 State-name [Beh_ConnectionPointReference]

[On-exception] 2 [BehSM_StateMachine-Identi�er]
Save-signalset . . .
Input-node-set Com_Trigger-Identi�er-set
Spontaneous-transition-set BehSM_Region-set
Continuous-signal-set [BehSM_State-Identi�er]
Connect-node-set BehSM_Transition-Identi�er-set

2 [Composite-state-type- BehSM_Transition-Identi�er-set
identi�er] 1 [String]

Table 3.11: Common syntax of states
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State-nodes in SDL are similar to states in UML, however, the syntax is di�erent
(see Table 3.11). Both have a name (1) and an identi�er of the composite-state-
type/statemachine that is the submachine of this state (2), if any. States are the
source of transitions, but in SDL these transitions are associated with the trigger of
the transition (Input-node) and in UML with the state itself.

3.5 Semantic Comparison of SDL and UML
In the previous section, we have argued for the necessity to take the semantics of
language elements into account. Particularly on the behavioural level, UML and SDL
di�er syntactically, but have several concepts in common semantically. Following the
conclusions reached so far, we now compare corresponding language elements of UML
and SDL on a semantic level.

While the semantics of SDL is de�ned completely, UML only provides semantics for
fragments of the language. Therefore, we choose UML statecharts and SDL process
graphs for this comparison. UML statecharts have a semantics de�nition with few
omissions and variation points. Several attempts to formally de�ne the behaviour of
statecharts exist, for example [5].

The syntactical comparison of UML and SDL revealed that the abstract syntax of
statecharts and process graphs is very di�erent. However, there are several language
elements in both languages that have a similar notation and represent corresponding
concepts, despite major syntactical di�erences. For example, both languages have
the concept of a guarded transition. In the following, we compare the semantics of
corresponding constructs of UML statecharts and SDL process graphs. We omit those
cases where corresponding constructs are semantically di�erent. Work that provides
mappings for these cases, can be found in [62] for SDL-92 to an executable subset
of UML 1.3 (using Rational-speci�c extensions). In this section, we provide a tool-
independent comparison of SDL-2000 and UML 2.0. This work was published as
technical report 327/03 [23].

States
Both UML and SDL have the concept of states as a condition in which the state
machine waits for an event to occur. The state (or set of states) the state machine
waits in is called the active state. In UML, it can also model a condition in which the
process performs a certain activity (do-activity). There are several kinds of states (see
[52], 9.3.11):

• Simple States: A simple state is a state without sub-states.

• Composite States: A composite state is a state that contains sub-states, which
can again be composite states. In UML, the sub-states of a composite state are
partitioned into one or more regions. If the state machine is in the composite
state, it is also in exactly one sub-state of each region (this applies recursively).
SDL distinguishes between composite states, which have a set of sub-states of
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which exactly one is active when the state is entered (composite state with one
region in UML), and state aggregations, which consist of several composite states
that are interpreted in an interleaving manner (composite state with multiple
regions in UML).

• Submachine States: UML introduces submachine states, which are semanti-
cally equivalent to UML composite states. Syntactically, they are closer to SDL
composite states than the composite states in UML (Figure 3.2). Submachine
states make it possible to build the speci�cation in a modular way.

 

main: 

state 
main: 

state 

entry1 

exit1 

entry1 

exit1 

 

Figure 3.2: Submachine (composite) states and entry/exit-points in SDL and UML

Unlike in SDL, simple states in UML can have entry-activities (exit-activities) that
are executed when the state is entered (left).

Composite states in SDL and submachine states in UML (both referred to as com-
posite states below) have entry- and exit-procedures/activities. A transition targeting
the composite state leads to an entry of the state at the default entry point (initial
pseudostate in UML, unnamed state start node in SDL). A transition to an entry
connection-point reference of the composite state leads to an entry of the state at the
entry point that is referenced by the connection-point reference. If a region of a UML
composite state reaches an exit point, or if all regions reach the �nal state, the com-
posite state is left at the corresponding exit connection point reference (completion
transition in case of leaving via �nal states). In SDL, the composite state is left when
all state partitions have reached a return node. The state is left via the corresponding
exit point of the composite state. If more than one exit point is valid, one is chosen
in an indeterministic way.

Signals and Events
State transitions are triggered by signals in SDL and events in UML. An SDL agent
has an input port associated with its state machine, in which signals are queued in the
order of their arrival time (see [35], Chapter 9). If a signal is saved in a state, it is
not enabled. The signal that is dispatched is the �rst enabled signal in the queue; the
saved signals in the queue are retained in the order of their arrival (see [35], 11.7).

UML objects have an event pool, with an unspeci�ed ordering of events (see [52],
7.3.5), with the exception of completion events, which are dispatched before any other
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event in the pool (see [52], 9.3.14). If an event is deferred in a state, it is retained in
the event pool as long as the state machine is in a state where the event is deferred, or
a transition for this event is enabled (see [52], 9.3.11). No priority between events that
become enabled again and non-deferred events is speci�ed. If an event was deferred in
the previous state and is not deferred in the current state, it has no priority over an
event that was not deferred at all.

SDL signals and UML events are both referred to as 'events' in the remainder of
this section.

Timers
In SDL, a timer can be set to expire at a speci�ed time or after a duration. When the
timer expires, an event is generated and put into the input queue. This can trigger a
transition when the event is dispatched (see [35], 11.15). UML has TimeEvents that
occur at a certain point in time or after a speci�ed duration (though the starting time
is not de�ned in the standard). TimeEvents can trigger a TimeTrigger (see [52], 7.3.27).

Transitions
Transitions in UML and SDL have a run-to-completion semantics, meaning that an
event is completely processed before the next event can be handled.

 

signal is 

consumed 
signal is 

defered 

signal is defered 

in state 

substate 

signal is consumed 

in state 

 

Figure 3.3: Priority of consume and defer

Transitions with a trigger and no conditions have the same semantics in SDL and
UML for simple and composite states. The transition in the active state is enabled
when the event the transition is labelled with is dispatched. When the transition
is �red, the source (composite) state of the transition is left, a sequence of actions
is executed, and the target (composite) state is entered. More than one transition
can be enabled in a state for an event. When the state machine is in a composite
state, and both the composite state and an active sub-state have a transition for the
dispatched event, both transitions are enabled. In SDL and UML, the transition of
the nested state has a higher priority than the transition of the containing state, and
the transition of the sub-state is �red (see [35], 11.11 and [52], 9.3.12). This also
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applies to con�icts between deferred (saved) and consumed events (Figure 3.3). In
case of con�icts between consumed and deferred events in orthogonal states, the event
is consumed (Figure 3.3, left). In case of con�icts between consumed and deferred
events in current states where one state is the substate of another, the substate takes
precedence (Figure 3.3, right). The former case is only possible in UML, since SDL
requires distinct sets of events for orthogonal states.

State 

s11 

s12 

s21 

s22 

sig1 sig1 

 

Figure 3.4: State with two enabled transitions (UML)

States in SDL can not have more than one transition for the same event (see [35],
11.2), and orthogonal states must have a disjoint set of input signals (see [35], 11.11.2).
However, in UML this is not the case. If there is more than one transition for the same
event in the active state, one of them is processed. For every orthogonal region, if there
is a transition for the dispatched event in the active state, it is enabled and can be
processed. More than one transition, up to the number of orthogonal regions in the
state, can be �red in the same run-to-completion step in arbitrary order (see [52],
9.3.12). In Figure 3.4, if the statemachine is in the states s11 and s21 and the event
sig1 is dispatched, both transitions are enabled and �red, since they do not con�ict
with each other.
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 Figure 3.5: Transitions in SDL and UML
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Both SDL and UML support transitions that have guards (enabling conditions in
SDL) (Figure 3.5). Transitions are only enabled when their guard evaluates to true.
If the guard evaluates to false, in SDL the event is not enabled and the next event is
selected from the queue (see [35], 11.6). UML discards the event, unless it is explicitly
deferred or there is another transition for this event that is enabled (see [52], 9.3.12
and 9.3.14). Therefore the semantics of guards di�er between SDL and UML.

Transitions (with guard) that are not explicitly labelled with an event are called
continuous signals in SDL and completion transitions in UML (see Figure 3.6). Con-
tinuous signals are �red when their guard is true and the event queue is empty (see
[52], 11.5). Completion transitions are �red when a completion event occurs and their
guard is true. Completion events are dispatched before all other events. They occur
when a do-activity is �nished or when a composite state is left because all regions have
reached a �nal state (see [35], 9.3.14). A completion transition in UML has a similar
semantics as a connect-node in SDL. A connect-node originates from a composite state
and is taken when the composite state is left via the default exit point. A connect-node
cannot have a guard.

s1 s1 

guard [guard] 

s1 

 

Figure 3.6: Continuous signal, connect node and completion transition

History
UML has two history pseudostates, deep history and shallow history (see [52], 9.3.8).
Entering a composite state over a history state leads to the restoration of the active
states as it was when the composite state was left. For a deep history state this
applies recursively for all substates. All entry activities of states that are entered are
executed. In SDL, a transition can end in a history nextstate. In this case, the next
state is the one in which the transition originated. In case of a composite state, the
state is re-entered and the entry-procedure is invoked (see [35], 11.12.2.1).

Actions
In UML, actions are used to describe behaviour. Actions take inputs and transform
them into outputs, possibly modifying the state of the system. Outputs of actions
can be connected to inputs of other actions by an activity �ow, as in a statechart
transition. UML supports a number of primitive actions that more complex actions
can be mapped on. In SDL, transitions perform a sequence of actions. Actions in SDL
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manipulate data, output signals and call procedures. SDL supports a small number
of speci�c actions important for communication systems.

• Task/StructuralFeatureAction, VariableAction: Tasks in SDL can con-
tain assignments that are interpreted when the task is interpreted. In UML,
assignments can be realised by a combination of actions. With ReadStruc-
turalFeatureAction/ReadVariableAction and WriteStructuralFeatureAction/ Write-
VariableAction, attributes and variables can be read and written. With Apply-
FunctionAction, primitive functions can be applied.

• Create/CreateObjectAction: CreateObjectAction creates a new object for a
given classi�er, without further initialisation. The Create action in SDL creates
a new agent in the scope of the creating agent. Its variables are created and its
formal parameters initialised.

• Procedure Call/CallOperationAction: When a procedure is called in SDL,
the interpretation continues at the start node of the procedure graph that was
invoked by the call. It resumes after the call node when the interpretation of the
procedure is �nished. A CallOperationAction in UML leads to the execution of an
operation in a local or remote object. If the call is synchronous, the interpretation
of the transition resumes after the CallOperationAction when the operation is
�nished. How parameters and results are transmitted is not speci�ed.

• Output/SendSignalAction: An output action in SDL leads to the creation
of a signal instance of the speci�ed type and parameters. The signal instance
can have an agent set or an agent as target, or it can be transmitted to any
agent reachable via a sequence of valid channels, possibly restricted by the via
argument. In UML, a SendSignalAction leads to the creation of a signal instance
of the speci�ed type and parameters. The signal instance is transmitted to the
target object. The path the signal takes, its transmission time and the order in
which signals arrive are unde�ned.

• Decision/Choice: A decision node in SDL evaluates a question and selects an
outgoing transition that has the answer to the question in its range. If no range
of an outgoing transition is matched and an else-branch exists, the else-branch
is selected; otherwise a NoMatchingResult exception is thrown. SDL forbids
having the same answer in more than one range of an outgoing transition. When
a Choice pseudostate is reached in UML, the guards of the outgoing transitions
are evaluated, and one of the transitions whose guard evaluates to true is selected
in an indeterministic way. If there is an else-branch and none of the guards
evaluates to true, the else-branch is selected, otherwise the model is ill-formed.
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3.6 The UML Pro�le Approach
3.6.1 Overview
Since the Uni�ed Modeling Language was introduced, the development of SDL has
been in�uenced by UML, and vice versa. The mutual in�uence became especially
apparent with the most recent language standards, SDL-2000 and UML 2.0. With
SDL-2000, the �rst version of the Z.109 standard [33] was introduced, which described
the combined use of SDL and UML 1.3 by providing a mapping from UML to SDL,
using UML pro�les.

With the UML 2.0 standard, the Uni�ed Modeling Language took a big step towards
SDL, incorporating many features of the language. For example, structured classes
model architecture in a fashion similar to SDL. UML 2.0 also comes with a mature
UML pro�le mechanism, de�ning it as a speci�c meta-modelling technique. Pro�les
have become a part of the UML meta-model, de�ned in the Pro�le package, giving
UML pro�les a formal abstract syntax. The new version of the Z.109 standard [39]
takes these changes into account and de�nes a UML Pro�le for SDL based on the UML
2.0 and SDL-2000 standards.

SDL is a more mature and complete language than UML, with few semantic variation
points (for example, implicit addressing of signals) and a formal semantics. The UML
Pro�le for SDL utilises this by taking SDL as the semantic basis for UML. On the other
hand, using UML as front end language utilises its advantages in the early phases of
software development, and its integration of di�erent modelling techniques. Mapping
UML speci�cations to SDL provides more �exibility than the common syntactic and
semantic basis described in the previous sections.

3.6.2 UML Pro�les
The Uni�ed Modeling Language aims at being a universal language for modelling
software systems in the early phases of software development, particularly the require-
ments and design phases. To achieve this goal, UML provides a complete semi-formal
abstract syntax de�nition of the language, using meta-models, but leaves the seman-
tics de�nition imprecise and incomplete. Semantic variation points in the language
de�nition identify parts of the semantics that are explicitly left open for interpretation,
or where alternative interpretations are provided. For example, the event pool of a
classi�er instance is a collection of events that occurred at this instance. Events in the
event pool can trigger classi�er behaviour. The order in which the events are processed
is intentionally left open. This enables a tool provider to implement a strategy that
�ts the target domain of the tool within the framework given by UML, for example
�rst-in-�rst-out or priority based strategies.

Semantic variation points make UML a �exible modelling language that can be
adapted for a large variety of target domains. Tool providers resolve semantic variation
points when implementing a subset of UML, providing a domain-speci�c solution.
However, these solutions are tool-speci�c, not standardised, and often proprietary.
This is a disadvantage for the interoperability of UML tools.
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UML provides the UML pro�le mechanism to extend and adapt existing meta-
models using special classes called stereotypes. Using UML pro�les, it is possible to give
precise semantics to parts of the language, and to tailor it for di�erent platforms and
domains. UML pro�les are tool-independent and can be de�ned as separate standards,
augmenting the UML language de�nition. Standardised UML pro�les include pro�les
for CORBA, quality-of-service and real-time, and testing.

UML pro�les are not a �rst-class extension mechanism, that is, it is not possible
to modify existing semantics of UML. Pro�les can add constraints to a meta-model,
provide semantics that does not con�ict with the semantics of the meta-model, and
add di�erent notation for already existing symbols. This ensures that the model with
applied stereotypes is still a valid UML model, which can be processed by a UML
tool with su�cient compliance to the UML standard. For extensions that modify
the semantics of UML, the meta-model itself must be modi�ed. However, this is not
recommended.

UML Pro�le De�nition
UML 2.0 de�nes the UML pro�le mechanism as a part of the UML meta-model, giving
it a formal abstract syntax. Pro�les and stereotypes are integrated as specialisations of
packages and classes, respectively. The notation to be used for de�ning UML pro�les is
generally left unspeci�ed. The Z.119 standard [38] gives a guideline for de�ning UML
pro�les for ITU languages in a similar fashion to the UML superstructure document,
describing semantics and constraints of a stereotype using informal language and OCL
[54].

A pro�le is a specialised package that is applied to other packages (including pro�les)
via a pro�le application. A pro�le uses the same notation as a package, with the
keyword �pro�le� attached to the name of the package.

Figure 3.7: Pro�le package with stereotype

The pro�le consists of a set of owned stereotypes. A stereotype is a kind of meta-class
that is linked to a meta-class of the referenced meta-model. Like classes, stereotypes
can have properties, called tag de�nitions. Applying a stereotype to a meta-class adds
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the constraints, semantics and notations of the stereotype to the meta-class. Figure
3.7 shows the graphical notation of a pro�le SDL, which contains a stereotype Agent
that extends the meta-class Class from package StructuredClasses. Stereotype Agent
de�nes a tag de�nition isConcurrent of type Boolean. Semantics and constraints can be
added to Agent as long as they don't con�ict with existing semantics and constraints.

Figure 3.8: Stereotyped class

Figure 3.8 shows a UML model with stereotype Agent applied, using the standard
notation for stereotyped UML classes. If the stereotype Agent de�nes a notation, for
example the graphical syntax of process agents in SDL, it can be used instead. Tag
value isConcurrent, de�ned in the stereotype, is set to false.

3.6.3 The UML Pro�le for SDL
The UML Pro�le for SDL [43] gives a precise meaning to a subset of UML by mapping
UML meta-model elements to elements of the SDL abstract syntax. Several meta-
model classes are stereotyped, de�ning constraints and semantics to tailor the language
to SDL. The semantics is de�ned as a mapping of the stereotyped meta-model classes
to the abstract syntax of SDL, thus reusing the formal semantics de�nition of SDL
[42]. The meta-model and abstract syntax elements related by this mapping bear a
strong resemblance to the common abstract syntax derived in Section 3.4: for example,
packages are mapped to Package-de�nitions, active classes to Agent-de�nitions, and
signals to Signal-de�nitions. The mapping de�ned by the UML Pro�le for SDL is
more �exible than the common syntax and semantics approach. Apart from mapping
UML features to directly corresponding SDL features, features that do not have a
direct representation in SDL are translated to a combination of related features. For
example, while UML guards do not have a direct representation in SDL, they are
mapped by the UML Pro�le for SDL to a decision symbol at the start of the outgoing
transition. Furthermore, constraints are added to the UML meta-model, leading to a
subset of UML.

For each meta-model class included in the pro�le, several aspects are de�ned:

• Attributes (tag de�nitions): Additional attributes de�ned by the stereotype
that can be set in the model. Attributes give additional information that can
otherwise not be expressed in the meta-model, and that is important for the
mapping of model-elements to the abstract syntax. For example, the stereotype
�ActiveClass�, which extends Class, de�nes the attribute isConcurrent of type
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Boolean. A class with stereotype �ActiveClass� is mapped to an Agent-type-
de�nition in the abstract syntax, and attribute isConcurrent de�nes the Agent-
kind of the Agent-type-de�nition - Block if true and Process if false.

• Constraints: Constraints de�ne additional checks and conditions that the meta-
model must satisfy. The meta-model is constrained to a subset for which a
mapping to SDL is provided. For example, a pair of signal-triggered transitions
from di�erent orthogonal regions must have distinct triggers.

• Semantics: Gives a precise semantics to meta-model elements by describing
a mapping to the abstract syntax of SDL, thus reusing its formal semantics
de�nition [42]. Meta-model elements are mapped directly to the AS1 of SDL,
bypassing transformations in SDL from AS0 to AS1. The following excerpt from
[43] describes a mapping of transitions with a ChangeEvent as trigger.

�If the trigger event of a �Transition� Transition is a ChangeEvent, the
transition is mapped to a Continuous-signal. The changeExpression
maps to the Continuous-expression of the Continuous-signal. The ef-
fect property maps to the Graph-node list of the Transition of the
Continuous-signal. The priority maps to the Priority-name.�

• Notation: Describes the notation to be used for the stereotyped model ele-
ment. Z.109 almost exclusively uses UML standard syntax. For some elements,
additional textual syntax is introduced.

3.6.4 Formalisation of the UML Pro�le for SDL
The UML Pro�le for SDL in [43] is de�ned in an informal fashion, similar to the
UML language de�nition. The SDL language de�nition, on the other hand, includes
a complete formalisation of static and dynamic aspects of the language. In order to
carry over the mathematical precision of SDL to the subset of UML covered by the
pro�le, it was proposed to create a formal de�nition of Z.109. A formal de�nition of
Z.109 would have several advantages. For example, constraints formulated using the
Object Constraint Language (OCL) can be automatically checked by most UML tools.
From an operational formal de�nition of the mapping to the SDL abstract grammar,
tool support can be automatically generated, as it is done in the case of the formal
semantics of SDL.

Figure 3.9 provides an overview over the steps taken in the pro�le de�nition. The
intent is to provide a mapping from model elements of UML, described by a meta-model
(UML MM), to abstract syntax elements of SDL, described by an abstract grammar
AS1 (SDL AG). This mapping consists of two orthogonal steps: a mapping from UML
to SDL (M and M'), and a mapping between abstract syntax representations (m),
from meta-models to abstract grammars. In addition to the mapping, constraints
are de�ned on the meta-model, for example using OCL, and transformations (T) are
performed on the UML side, since the mapping targets the already reduced abstract
grammar AS1.
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Figure 3.9: Mapping from UML meta-model to SDL abstract syntax

A way to perform the mapping is to map the UML meta-model to a UML abstract
grammar �rst (m), then to map the UML abstract grammar to SDL (M'). Based
on this, we have devised a formal approach to the de�nition of the UML pro�le for
SDL, which we survey in Section 3.6.5. The mapping between the abstract syntax
representations can be derived from the mapping we de�ned in Section 3.3. The
mapping M' is a mapping between two di�erent abstract grammars. Such a mapping
can be found in the formalisation of the static semantics of SDL (Z100 Annex F Part
2 [41]), where the abstract grammar AS0 is mapped to the abstract grammar AS1.
Generally, the mapping M' is more complicated than the mapping in Z100.F2, since
the mapping is performed between two di�erent languages.

The mapping of the UML Pro�le for SDL covers a subset of SDL. Core features of
SDL that are not covered include timers, exceptions, enabling conditions, entry- and
exit-procedures. This subset de�nes an SDL Pro�le, for which a tailor-made formal
semantics can be extracted [21, 25].

3.6.5 Survey of an SDL-style Formalisation Approach
In this section, we present our partial formalisation of the Z.109 standard, with the
focus on transitions. This work was published as technical report 350/06 [22]. The
approach is to apply the techniques used for the formalisation of the static semantics of
SDL-2000 [41] as much as possible. This gives us the advantage of using an approach
that has been applied successfully before, and for which tool support is available,
allowing us to concentrate on the formalisation itself. The sequence of steps taken in
our approach is illustrated in Figure 3.9, with numbers 1) to 4). Each step is described
in this section in a paragraph with a corresponding number.
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1) Formalising the Constraints.
The stereotypes in the UML Pro�le for SDL introduce additional constraints on the
meta-model classes they extend. For the formalisation of these constraints, the Object
Constraint Language (OCL) [54], which is used thoughout the UML superstructure
speci�cation, is a self-evident choice. The OCL is tailor-made for specifying constraints
for MOF-compatible [53] meta-models. It provides a logic that allows navigation over
properties and association ends of classi�ers. In the following are the constraints spec-
i�ed for the �Transition� stereotype formulated in OCL. Unless speci�ed otherwise,
all OCL expressions are formulated in the context of meta-class Transition.

• The Transition shall have kind == external or local. The UML concepts of
internal transitions are not allowed.
self .kind = #external or self.kind = #local

• The port of the Trigger1 shall be empty.
self . trigger−>forAll(t | t .port−>isEmpty())

• In the Transition set de�ned by the outgoing properties of a State, the signal
property of each event property that is a SignalEvent of each trigger shall be
distinct.
context State

self .outgoing−>forAll(t1,t2: Transition | t1.trigger−>select(event.
oclIsKindOf(SignalEvent)).event.signal−>intersection(t2.trigger−>
select(event.oclIsKindOf(SignalEvent)).event.signal)−>isEmpty())

• The event property of the trigger property shall be a MessageEvent or Change-
Event.
self . trigger−>forAll(t | t .event.oclIsKindOf(MessageEvent) or t.event.

oclIsKindOf(ChangeEvent))

• The e�ect property shall reference an Activity.
self . e�ect−>notEmpty() implies self.e�ect.oclIsKindOf(Activity)

While the informally speci�ed constraints of the �Transition� stereotype are intuitive
and easy to understand, three issues were discovered when specifying the constraints
in OCL, two of them concerning multiplicities.

• A transition in UML can have an arbitrary number of triggers, while the stereo-
type constraints only assume a single trigger at most. The OCL constraints were
formulated in a way that allows an arbitrary number of triggers, however, there
should be an additional constraint that a transition should have at most one
trigger.

1The UML meta-model actually de�nes a set of triggers for a transition.
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• The informally speci�ed constraints leave it unclear if the e�ect property is al-
lowed to be empty. This has been clari�ed in the formalisation.

• The third constraint is formulated more naturally in the context of �State�, since
it deals with sets of transitions of a state. Therefore, the constraint should be
part of the stereotype �State�.

2) Mapping the Metamodel to an Abstract Grammar.
In order to apply the approach from the formalisation of the static semantics of SDL,
which provides a mapping between two abstract grammars, we �rst have to provide
a mapping from the meta-model of the UML pro�le to a UML abstract grammar
(mapping m in Figure 3.9). Since UML does not de�ne an abstract grammar, we
apply the mapping de�ned in Section 3.3 to the UML meta-model. The result is an
UML abstract grammar together with the mapping m between the meta-model and
abstract grammar, which we document using OCL expressions.

The UML Pro�le for SDL constrains the meta-model de�ned in the UML super-
structure speci�cation to classes and associations that can be expressed in SDL. In
some cases, elements are not constrained but no mapping to SDL is de�ned, since no
semantics is associated with them. These elements can be omitted in the extracted
abstract grammar, keeping it concise. In the mapping of meta-model class Transition
to the non-terminal Transition, name and visibility of the Transition are omitted. The
result is a production rule (concatenation):
Transition(TransitionKind, [Trigger ], [Constraint], [Activity ], Vertex−Identi�er ,

Vertex−Identi�er , Integer)
Apart from the production rule, we get the mapping m for class Transition, describing

the mapping to the extracted production rule. Role names of the associations are used
to navigate in the meta-model, and to de�ne the relation between elements of the
meta-model and elements of the abstract grammar. The auxiliary function toId maps
meta-classes to identi�ers as required by the non-terminal.
context Transition::m
mk−Transition(kind, trigger−>any(), guard, e�ect, source . toId , target . toId ,

priority ) --tag definition priority--

toId : MetaClass → Identifier
The mapping from meta-models to abstract grammars naturally maps general asso-

ciations to identi�ers and aggregation or composition to subtrees in an abstract syntax
tree (see Section 3.3.3). In few cases, due to the di�erent structure of the abstract
syntax of SDL and UML, it is of advantage to map general associations in the same
way as compositions. For example, in UML, states and transitions are related by gen-
eral associations, while in SDL the transition is a part of the state. Because a UML
transition has a unique source state, it can be mapped as a subtree of a state instead
of an identi�er, in the SDL fashion.
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State(String, Trigger−set, Transition−set, ConnectionPointReference−set,
Pseudostate−set, StateMachine−Identi�er)

Pseudostate(String, PseudostateKind, Transition−set) --Transition-Identifier
replaced by Transition--

context State::m
mk−State(name, deferrableTrigger, outgoing, connection, connectionPoint,

submachine)
context Pseudostate::m
mk−Pseudostate(name, kind, outgoing)
Events do not have a counterpart in the abstract syntax of SDL. Therefore, as with

transitions, we place events directly inside a trigger instead of an event-identi�er. The
abstract meta-class MessageEvent is merged with the abstract meta-class Event, since
it doesn't introduce new attributes and associations.
Trigger(Event) --Event-Identifier replaced by Event--

context Trigger::m
mk−Trigger(event)

Event = SignalEvent | CallEvent | ChangeEvent | AnyReceiveEvent

SignalEvent(Signal−Identi�er)
CallEvent(Operation−Identi�er)
ChangeEvent(ValueSpeci�cation)
AnyReceiveEvent()

context SignalEvent::m
mk−SignalEvent(signal.toId)

context CallEvent::m
mk−CallEvent(operation.toId)

context ChangeEvent::m
mk−ChangeEvent(changeExpression)

3) Transformations on the UML Abstract Grammar.
To keep the language semantics concise, SDL distinguishes between core constructs
of the language, for which the semantics is given directly, and additional constructs,
which are expressed through the core constructs. In the abstract grammar AS1 of
SDL, which is the target of the UML Pro�le for SDL, these additional constructs are
already eliminated. UML constructs that correspond to additional SDL constructs are
therefore transformed before the mapping to SDL is performed.

The transformations can be de�ned on the UML meta-model, using meta-model
transformations, or on the UML abstract grammar. In order to apply the tech-
niques from Z100 Annex F, transformations are de�ned on the abstract grammar,
using rewrite rules on abstract syntax trees.
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If the trigger event of a �Transition� Transition is an AnyReceiveEvent, the transition
is expanded according to the Model in SDL 11.3 for transforming <asterisk input
list> before applying the mapping that follows in this section.

The function collectTriggers computes the set of triggers for a state from the com-
plete valid set of triggers of the enclosing class, minus transitions and deferred signals
de�ned for the state, and minus remote procedures and remote variables. If at least
one trigger exists in the set of triggers returned by collectTriggers, the set of transitions
is expanded with a copy of the transition triggered by AnyReceiveEvent, but triggered
by a trigger from collectTriggers. If the set of triggers is empty, the transition triggered
by AnyReceiveEvent is removed.

{ pre, tany=Transition(kind,Trigger(AnyReceiveEvent()),grd,e�,src,trg,prio), rest}
=1=>
if ∃trig ∈ collectTriggers(tany.parent) then

{pre, tany, Transition(kind,collectTriggers(tany.parent).take(),grd,e�,src,trg,prio),
rest}

else
{pre, rest}

endif

collectTriggers(s: State): Trigger-set=def

let ag: Class = enclosingAgent(s) in
validTriggers(ag) \ (remoteProcedures(ag) ∪ remoteVariables(ag) ∪

inputTriggers(s) ∪ deferredTriggers(s)
endlet

4) Formalisation of UML to SDL Mapping.
In order to de�ne the mapping from UML to SDL, we introduce a function Mapping
from UML abstract syntax trees (DefinitionUML) to AS1 abstract syntax trees
(DefinitionAS1) of SDL. The domain of Mapping contains all abstract syntax trees
described by the abstract grammar of UML, and their subtrees. A detailed description
of these domains is given in [40].
Mapping: DefinitionUML → DefinitionAS1
idToNode: Identifier → DefinitionUML

In the same way as in Z100 Annex F Part 2, the mapping function is a concatenation
of cases. A case consists of a pattern on the left hand side, and a resulting syntax
tree on the right hand side. The pattern can contain nodes of the UML abstract
syntax tree, as well as variables, wildcards ('*'), and a provided-clause to constrain
the matches. Additionally, we introduce the notation var ! to express that var does
not match undef. It is a shortcut for specifying var 6= undef in the provided-clause.
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The function idToNode provides the same functionality as the function idToNodeAS1
in the static semantics of SDL. It maps an identi�er to the node in the abstract syntax
tree that corresponds to the de�nition the identi�er refers to. The operators s- and
s2- have the same semantics as in Z100 Annex F Part 2, selecting a subnode of a
speci�ed kind from a node. For example, s.s-Transition-set selects the set of outgoing
transitions from State s.

Mapping UML Transitions to SDL. We provide a formalisation for the semantics
of the stereotyped class �Transition� Transition by de�ning the mapping function to
abstract grammar AS1. Depending on the properties of the transition, it is mapped
to a Spontaneous-transition, Input-node, Continuous-signal or Connect-node.

If the trigger event of a �Transition� Transition is a SignalEvent and the name
of the Signal is �none� or �NONE� (case sensitive therefore excludes �None�), the
Transition is mapped to a Spontaneous-transition-node. The e�ect property maps
to the Graph-node list of the Transition of the Spontaneous-transition-node.

Transitions triggered by the signal �none� or �NONE� are Spontaneous-transitions
with unde�ned On-exception and Provided-expression. Here, we de�ne the case where
the guard of the transition is unde�ned. Transitions with guard have a more compli-
cated mapping and are de�ned below.

Mapping(
Transition(*,Trigger(SignalEvent(signal)),undef,e�ect,*,target,*)
provided signal.idToNode.s-String ∈ {�NONE�, �none�}

⇒ Spontaneous-transition(undef,undef,Transition(Mapping(e�ect),
Mappingtrg(target.idToNode)))

)

If the trigger event of a �Transition� Transition is a SignalEvent and the name
of the Signal is neither �none� nor �NONE� (so it does not map to Spontaneous-
transition-node), the Transition is mapped to an Input-node. The quali�edName of
the Signal maps to the Signal-identi�er of the Input-node and for each 〈attr-name〉
in the 〈assignment-speci�cation〉 (see the Notation given in UML SS 13.3.24) the
quali�edName of the attribute (with this name) of the context object owning the
triggered behavior is mapped to the corresponding (by order) Variable-identi�er of
the Input-node. The e�ect property maps to the Graph-node list of the Transition
of the Input-node.

Transitions triggered by all other kind of signals are Input-nodes without Priority,
Provided-expression and On-exception. To get the Signal-identi�er of the Signal, the
second subnode of kind string is selected with s2-String (s-String selects the signal
name).
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Mapping(
Transition(*,Trigger(SignalEvent(signal)),undef,e�ect,*,target,*)
provided signal.idToNode.s-String 6∈ {�NONE�, �none�}

⇒ Input-node(undef,signal.idToNode.s2-String,Mapping(assignment-spec),
undef, undef, Transition(Mapping(e�ect), Mappingtrg(target.idToNode)))

)

If the trigger event of a �Transition� Transition is a ChangeEvent, the transition is
mapped to a Continuous-signal. The changeExpression maps to the Continuous-
expression of the Continuous-signal. The e�ect property maps to the Graph-node
list of the Transition of the Continuous-signal. The priority maps to the Priority-
name.

Transitions that are triggered by a ChangeEvent are mapped to Continuous-signals.
The changeExpression is a boolean expression that is mapped to a corresponding SDL
expression.

Mapping(
Transition(*,Trigger(ChangeEvent(changeExpression)),*,e�ect,*,target,priority)
⇒ Continuous-signal(undef,Mapping(changeExpression),Mapping(priority),

Transition(Mapping(e�ect), Mapping trg(target.idToNode)))
)

If the �Transition� Transition has an empty trigger property and a non-empty guard
property, the Transition is mapped to a Continuous-signal. The guard maps to the
Continuous-expression of the Continuous-signal. The e�ect property maps to the
Graph-node list of the Transition of the Continuous-signal. The priority maps to
the Priority-name.

Transitions without trigger but with guard are mapped to Continuous-signals. In
this case, the guard de�nes the condition of the Continuous-signal.

Mapping(
Transition(*,undef,guard!,e�ect,*,target,priority)
⇒ Continuous-signal(undef,Mapping(guard),Mapping(priority),Transition(

Mapping(e�ect), Mapping trg(target)))
)

If the �Transition� Transition has an empty trigger property and an empty guard
property, the Transition is mapped to a Connect-node. The e�ect property maps
to the Graph-node list of the Transition of the Connect-node. If the source of the
Transition is a ConnectionPointReference, this maps to the State-exit-point-name. If
the source is a State the State-exit-point-name should be empty.

Transitions without trigger and guard are mapped to Connect-nodes. The exact
mapping depends on the source of the transition. The informal description is imprecise
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with regard to how a ConnectionPointReference is mapped to a State-exit-point-name.
In the formalisation, this is de�ned precisely as the name of the exit Pseudostate
associated with the ConnectionPointReference.

Mapping(
Transition(*,undef,undef,e�ect,source,target,*)
provided source.idtoNode ∈ ConnectionPointReference

⇒ Connect-node(source.idToNode.s2-Pseudostate.idToNode.s-String,undef,
Transition(Mapping(e�ect), Mapping trg(target)))

| Transition(*,undef,undef,e�ect,source,target,*)
provided source.idtoNode ∈ State

⇒ Connect-node(undef,undef,Transition(Mapping(e�ect),
Mapping trg(target.idToNode)))

)

If a �Transition� Transition has a non-empty trigger property and non-empty guard
property, the guard is mapped to the Transition as follows. A Decision-node is
inserted �rst in the Transition with a Decision-answer with a Boolean Range-
condition that is the Constant-expression true and another Decision-answer for
false. The speci�cation property of the guard property of the Transition maps to
Decision-question of the Decision-node. The false Decision-answer has a Transition
that is a Dash-nextstate without HISTORY. The e�ect property of the Transition
maps to the Graph-node list of the Transition of the true Decision-answer.

Guards in UML and enabling conditions in SDL represent the same concept, but
have incompatible semantics (see Section 3.5). Mapping guards to SDL is therefore
not straightforward, except in the case of continuous signals (see above). To express
UML-style guards in SDL, the transition is modi�ed, inserting a decision node with
the guard as condition as the �rst action of the transition.

Mapping(
Transition(*,Trigger(SignalEvent(signal)),guard!,e�ect,*,target,*)
provided signal.idToNode.s-String ∈ {�NONE�, �none�}

⇒ Spontaneous-transition(undef,undef,Transition(< >,
Decision-node(Mapping(guard),undef,
{ Decision-answer(Range-condition(Constant-expression(false)),

Transition(< >,Terminator(Dash-nextstate(undef)))),
Decision-answer(Range-condition(Constant-expression(true)),

Transition(Mapping(e�ect),Mapping trg(target.idToNode))) },
undef)))

)

Mapping(
Transition(*,Trigger(SignalEvent(signal)),guard!,e�ect,*,target,*)
provided signal.idToNode.s-String 6∈ {�NONE�, �none�}

⇒ Input-node(undef,signal.idToNode.s2-String,Mapping(assignment-spec),

58



undef, undef, Transition(< >,Decision-node(Mapping(guard),undef,
{ Decision-answer(Range-condition(Constant-expression(false)),

Transition(< >,Terminator(Dash-nextstate(undef)))),
Decision-answer(Range-condition(Constant-expression(true)),

Transition(Mapping(e�ect),Mapping trg(target.idToNode))) },
undef)))

)

A target property that is a State maps to a Terminator of the Transition (mapped
from the e�ect) where this Terminator is a Nextstate-node without Nextstate-
parameters, and where the quali�edName of the State maps to the State-name
of the Nextstate-node.
A target property that is a ConnectionPointReference maps to a Terminator of the
Transition (mapped from the e�ect) where this Terminator is aNextstate-node with
Nextstate-parameters, and where the quali�edName of the state property of the
ConnectionPointReference maps to the State-name of the Nextstate-node, and the
quali�edName of the entry property Pseudostate of the ConnectionPointReference
maps to State-entry-point-name.

Mapping of states is ambiguous. A state can either be mapped as a state owned
by a statemachine, or as the target of a transition. The former is a state in SDL,
the latter a terminator. To di�er between these mappings, we introduce a mapping
function Mapping trg to map states as targets of a transition.

Mapping trg(
State(name,*,*,*,*,*)
⇒ Terminator(Named-nextstate(name,undef))
| cpr=ConnectionPointReference(PseudoState(name,*,*),*)
⇒ Terminator(Named-nextstate(quali�edName(state(cpr)),

Nextstate-parameters(< >,name))) )

A target property that is a Pseudostate maps to the last item of the Transition (a
Terminator or Decision-node) as de�ned in section 8.6.

Transition targets that are pseudostates are mapped to corresponding terminators in
SDL in a straightforward manner. Pseudostates of kind choice are mapped to decision
nodes. The mapping to decision nodes is more complicated, because the UML Pro�le
for SDL encodes the decision question in the guard expressions of the outgoing tran-
sitions, as the �rst operand of a two operand guard. The decision question is selected
from the guard of a random transition by Constraint.s-Expression.s-Expression. The
second operand, selected by Constraint.s-Expression.s2-Expression, de�nes the range
condition of a transition originating from the choice pseudostate.

Mapping trg(
PseudoState(*,deepHistory,*)
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⇒ Terminator(Dash-nextstate(History))
| Pseudostate(name,junction,*)
⇒ Terminator(Join-node(name))
| Pseudostate(*,choice,outgoing)
⇒ Decision-node(

Mapping(outgoing.take.s-Constraint.s-Expression.s-Expression),
undef,
{Decision-answer(

Mapping(t.s-Constraint.s-Expression.s2-Expression),
Transition(Mapping(t.s-Activity),
Mapping trg(t.s2-Vertex-Identi�er.idToNode)

) | t ∈ outgoing},
undef)

| Pseudostate(name,exitPoint,*)
⇒ Terminator(Named-return-node(name))
| Pseudostate(*,terminate,*)
⇒ Terminator(Stop-node())

)

3.6.6 Conclusions
In Section 3.6.4, we have presented an approach for the formalisation of the UML
Pro�le for SDL. This approach applies techniques from the formalisation of the static
semantics of SDL, for which tool support is available. We have applied our formalisa-
tion approach to the transition stereotype from the pro�le, which di�ers syntactically
and semantically from SDL transitions. The formalisation covers all mappings de�ned
in the Z.109 standard for the transition stereotype. Successfully applying our approach
to transitions indicates its feasibility for less complicated cases.

The formal de�nition of the transformations, mappings and meta-model constraints
helps detecting errors, omissions and ambiguities in the informal speci�cation of the
Z.109 standard (for example, in Z.109 it is unclear how ConnectionPointReference is
mapped exactly). This became especially apparent with the meta-model constraints,
where an error and an ambiguity were detected in the �ve informal constraints of
the transition stereotype (see Section 3.6.5, Paragraph 1). The formalisations of the
mappings and transformations lead to a number of suggested improvements concerning
ambiguities in the informal semantics. For the transition stereotype, ten comments
and suggested corrections were submitted, and resolved in a subsequent version of the
standard.

3.7 Related Work
In [17], Fischer and others argue that support for generalisation and structure give
meta-models an advantage over context-free syntax de�nitions for specifying language
syntax. Therefore, a mapping of BNF style grammars to meta-models is provided. For
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the resulting simple meta-models, transformations are de�ned that lead to a better use
of meta-model features such as specialisation.

In [66], the semantics of the UML Pro�le for Communicating Systems is de�ned by a
mapping of the UML meta-model to the abstract grammar AS1 of SDL. The mapping
is de�ned by pre- and post-conditions on the meta-model and the abstract grammar,
using OCL [54]. The correctness of a concrete mapping can be veri�ed using these
constraints.

The syntactic and semantic comparison is taken further by the new Z.109 standard
[39], de�ned by the ITU. With the new standard, SDL is integrated into UML as a
UML pro�le, which de�nes a mapping of a subset of UML to a subset of SDL-2000.
Currently, this mapping is de�ned in an informal fashion, and covers most features
of SDL-2000. A tool that complies to the UML Pro�le for SDL supports a subset
of UML with precise semantics, which can be exchanged with other compliant tools
while retaining the semantics of the model. This subset can be combined with other
UML model elements not covered by the pro�le. However, the semantics of these
model elements can di�er between UML tools. This approach is taken by the Telelogic
Tau Generation 2 tool, which supports a subset of UML that is mapped to SDL,
using a proprietary pro�le. Apart from using SDL as the semantic foundation of the
UML subset, the user can switch between the concrete syntax of SDL and UML for
statemachines.

3.8 Summary and Conclusions
In this chapter, we have argued that the harmonisation of languages requires a common
syntactic and semantic basis. Following this line, we have �rst de�ned conceptually
sound and well-founded mappings from meta-models - used to de�ne the abstract syn-
tax of UML - to abstract grammars - used by SDL -, and vice versa. By applying these
mappings, we have then extracted common grammar rules, arriving at a common ab-
stract grammar for several language constructs. While the results were encouraging for
structural language elements, it turned out that the coverage was below expectations
for behavioural constructs. From this experience, we have drawn the conclusion that
an extraction on a purely syntactical basis is not su�cient. Therefore, we have com-
pared language elements on a semantic basis, too. Here, the results of the syntactical
study provided valuable information and feedback.

Based on our mapping between meta-models and abstract grammars, and the map-
ping between abstract grammars de�ned in the formal language de�nition of SDL, we
have proposed an approach to the formalisation of the Z.109 standard. The advantages
of this approach are a well-de�ned and precise mapping from UML to SDL, and the
ability to generate tool support from the formal de�nition for checking conditions and
mapping speci�cations.
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4 Pro�ling of Modelling Languages
In this chapter, we contribute the concept of language pro�les as a way to de�ne
sublanguages of a language. We de�ne consistency between language pro�les, based
on the dynamic semantics of the sublanguages de�ned by the pro�les1. Focusing on
formal semantics de�ned using Abstract State Machines, we describe the problems
de�ning and verifying consistency for Distributed Abstract State Machines, propose
solutions, and argue for deriving formal semantics de�nitions from the complete formal
semantics, using language pro�les, as a way to guarantee consistency. Finally, we
introduce several language pro�les for SDL - called SDL pro�les - de�ned by tools and
standards, in an informal fashion.

4.1 Language Pro�les
In order to support a wide range of applications, system modelling languages are often
complex and expressive. The complexity of the languages leads to language de�nitions
that are long and hard to understand, and can limit their applicability in domains for
which specialised, tailor-made languages are preferred. Another drawback is that tool
support for complex languages usually covers only parts of the language. For example,
there is no tool that supports the whole of SDL-96, and only a few of the language
constructs introduced in SDL-2000 are supported.

A language pro�le de�nes a subset of a language, consisting of a language core (for
example, the Kernel package of UML), and a set of language features that extend the
core. A language pro�le can also be characterised by the features excluded, compared
to the complete language de�nition. Using language pro�les, it is possible to de�ne
sublanguages of a language that are of lesser complexity, and are tailor-made for certain
application areas.

A way to de�ne language pro�les is to split a language de�nition into a language
core and a set of language modules that can be used as language building blocks. The
language core represents an essential subset of the language that each tool for the
language should implement. This core is a pro�le that can be extended by language
modules, yielding further language pro�les that represent well-de�ned subsets of the
language which a tool provider can implement. De�ning language modules requires
techniques to encapsulate language features in modules, and to compose these modules
with the language core.

A language (pro�le) de�nition consists of the syntax and the semantics of the lan-
guage (pro�le). Modelling languages usually have a graphical syntax, de�ned infor-
mally or using a special description language, and possibly a formal textual syntax.
1In this thesis, we consider only sublanguages that have a dynamic semantics.
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Usually, the language de�nition of a modelling language also includes at least one ab-
stract syntax de�nition, speci�ed using a meta-language like MOF or Meta-IV. The
context-sensitive part of the syntax is de�ned using well-formedness conditions. Trans-
formations give semantics to parts of a language by mapping them to a subset of the
language. Well-formedness conditions and transformations are also referred to as static
semantics.

The semantics of a language is often de�ned informally, or using a mathemati-
cal formalism. There are several advantages associated with a formal de�nition of
the language semantics. Formal semantics give a precise de�nition of the language
and eliminate the ambiguities that come with an informal language de�nition. Fur-
thermore, operational mathematical formalisms like Abstract State Machines can be
executed and used to generate a compiler and runtime system [58], giving a reference
for tool developers.

De�ning language pro�les, we have to consider both the syntax and the semantics
of a language, and their extension or reduction. In order to formulate precise criteria
for valid language extension and reduction, we focus on parts of a language de�nition
that are de�ned formally, which includes the textual and abstract syntax, and for some
languages the semantics.

As a shortcut, we refer to both the de�nition of a sublanguage and the sublanguage
itself as a language pro�le in this thesis.

4.2 Consistency of Pro�les
The goal is for a speci�cation expressed in a sublanguage to yield the same behaviour
as in all supersets of the sublanguage. In order to accomplish this goal, we need to
assure consistency between language pro�les. Two language pro�les are consistent, if
all speci�cations accepted by both pro�les behave exactly the same way in each pro�le.
A set of language pro�les is consistent, if each pair of pro�les from the set is consistent.

The dynamic semantics of SDL is de�ned using Abstract State Machines [42]. Con-
sistency between language pro�les de�ned using ASMs is based on the consistency of
corresponding runs of the ASMs. A run of an ASM is a sequence of states, where
each subsequent state is the result of �ring the programs of one or more agents on
the preceding state. For non-deterministic, multi-agent ASMs, the legal behaviour is
given by a set of runs, each run in the set describing a possible execution of the system.

De�nition. Given a dynamic semantics de�ned using ASMs, two language pro�les
are consistent if they yield the same set of runs of their respective ASMs for all speci-
�cations accepted by both pro�les.

In the following sections, we examine consistency for two arbitrary pro�les related
by the superset relationship: P1 ⊇ P2. P2 covers a subset of the speci�cations that
can be expressed in P1.
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4.2.1 Consistency for Sequential Abstract State Machines
The notion of consistency between ASM runs of di�erent language pro�les is closely
related to the re�nement relation between runs of ASMs, which has been studied
intensively [3, 14, 59]. The re�nement relation relates runs of an �abstract� machine A
to the runs of a �concrete� machine - or �implementation� - A'. In an m:n re�nement
(see Figure 4.1), starting from two states related by the re�nement relation, both
machines end up in states related by the re�nement relation after m steps of A and n
steps of A' (m,n ≥ 1). ≈ is a data equivalence relation that relates states of A and A'
(see [3]).

S1 S1’

S2 S2’

δA,1 . . . δA,m

δA′,1 . . . δA′,n

≈
≈

Figure 4.1: m:n re�nement relation

A consistency relation between two runs is a 1:1 re�nement relation, in which each
state in the run of A is directly related to a state in the run of A' (see Figure 4.2),
and one step of A and A' leads to another pair of related states. The data equivalence
relation ≈ relates the contents of the locations of A and A' in all points of interest.

mA mA mA

mA′ mA′ mA′

≈ ≈ ≈ ≈

Figure 4.2: Consistency of language pro�les (1:1 re�nement)

The consistency relation can be relaxed so that the machine A' of the subset can
take fewer steps than the machine A of the superset (see Figure 4.3). This is reasonable
when a state update in the run of A only updates the state in locations outside the
points of interest. For example, the SVM changes into mode selectSpontaneous if the
predicate Spontaneous is true during transition selection. If no spontaneous transition
exists in the current states, the mode is immediately changed back without modifying
other locations. In an SDL pro�le without spontaneous transitions, it is reasonable to
omit this intermediate state.
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mA mA mA

mA′ mA′

≈ ≈ ≈

Figure 4.3: Consistency with stuttering steps (m:1 re�nement)

4.2.2 Consistency for Distributed Abstract State Machines
Non-determinism and Initial States
Consistency for DASMs has to take non-determinism into account. Non-determinism
can be introduced explicitly via the choose construct, or through the behaviour of the
environment, via monitored and shared functions. A non-deterministic DASM pro-
gram, �red on a state, can lead to a �nite2 but potentially large number of subsequent
states.

To show consistency for two DASMs, runs starting from all initial states must be
related by the consistency relation. The set of initial states of the machine A' is a
subset of the set of initial states of machine A. The states of the smaller machine,
usually having less locations, are related to states of the larger machine by the data
equivalence relationship ≈. For each run starting in an initial state of the smaller
machine, a consistent run of the larger machine starting from an equivalent initial
state must exist3.

To show consistency for DASMs, we can extend the de�nition of consistency from
Section 4.2.1 from a consistency relation on simple sequential runs to a consistency
relation of algebraic transition systems [15].

De�nition. An algebraic transition system (S, I,→) is an unlabelled transition sys-
tem with algebraic structures S as states, initial states I ⊂ S and a transition relation
→⊂ S × S.

IA is given by the set of initial states of DASM A, SA by the states over the vocab-
ulary VocA, modulo reserve permutation (states that only di�er by a permutation of
the elements of the in�nite reserve). →A is given as (s, s′) for each s ∈ SA and each s′

resulting from �ring an action γ from the action family NDen(A, s), the set of actions
of DASM A in state s (see [28]).

The consistency relation between DASMs A and A′ is a bisimulation relationship R
between the algebraic transition systems of A and A′, with IA′ ⊂ IA, and →A,→A′

2While DASM programs are limited to �nite nondeterminism, in�nite nondeterminism can be intro-
duced by the environment [28].

3Runs starting from a pair of equivalent states does not imply consistency between the runs. Equiva-
lent states can di�er in locations outside the points of interest, which can a�ect locations in points
of interest during a run of the ASM.

65



restricted to the states reachable from IA′ . The bisimulation R shall only relate states
that are data equivalent: R(s, t) → s ≈ t.

Partially-ordered Runs
The execution semantics of Distributed Abstract State Machines (see Section 2.3.4) is
based on the notion of partially-ordered runs, in which moves of the agents are ordered
by a partial-order relation (see Figure 4.4). The coherence condition ensures that every
linearisation of the set of moves results in the same state when executed. Given a set
of moves M and a partial order <, a move m ∈ M is activated in a well-de�ned state,
resulting from �ring all the moves m′ ∈ M with m′ < m.

m1

m2

m3

m4

A1

A2

A(m2)

Figure 4.4: Partially ordered run

Two moves m2,m3 that are not ordered by < can be �red in parallel or concur-
rently. Possible executions of a partially-ordered run can di�er in the order in which
these moves are executed, resulting in di�ering intermediate states (if any) in these
executions (see Figure 4.5). The well-de�ned states, resulting from �ring all moves
{m′|m′ < m} for a move m, are equal for all executions. This follows from the coher-
ence condition.

Figure 4.4 shows a partially-ordered set of moves m1,m2 of agent A1 and m3,m4

of agent A2. After agent A1 �res m1, moves m2 and m3 can be �red concurrently or
in parallel. If the set describes a valid partially-ordered run, move m4 is �red in the
same state regardless of the execution order of m2 and m3.

m1 {m2, m3} m4

m1 m2 m3 m4

m1 m3 m2 m4

Figure 4.5: Possible executions of a partially-ordered run

Figure 4.5 shows the possible executions for the partially-ordered set in Figure 4.4.
The states of the executions are identical, with the exception of a possible intermediate
state resulting from �ring m2 before m3, or vice versa. One possibility is to modify
the consistency relation so that the intermediate state is ignored, assuming m2 and m3
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are �red in parallel. In this example, the number of executions to be related between
the abstract and the concrete machine is reduced from three to one.

A1 :

A2 :

m1

m4

m2

m5

m3

m6

Figure 4.6: Two agents performing causally unrelated moves

Figure 4.6 shows another example, with two agents performing their moves indepen-
dently with no causal dependency between the moves of the agents. Figure 4.7 shows
the possible executions for this partially-ordered run. While the coherence condition
ensures that all executions end in the same �nal state, move m6 of agent A2 can be
�red in four di�erent states, depending on how many moves were already �red by agent
A1.

Firing all activated moves in parallel, as in the previous example, results in a single
execution with four states. However, several executions exist that have only the initial
and �nal state in common with this execution (for example, by �ring all moves of A1

before a move of A2 is �red). In this example, consistency would only be guaranteed for
the initial and �nal state, resulting in a simple input/output consistency. Therefore,
it is not generally possible to reduce the number of executions that have to be related
by the consistency relation, by assuming that agents perform their activated rules in
parallel. Furthermore, the number of possible executions grows exponentially with
the number of agents performing causally unrelated moves. This makes any naive
approach to proving consistency for partially-ordered runs infeasible.

Figure 4.6 re�ects the situation in the dynamic semantics of SDL4. In the formal
semantics, ASM agents - representing SDL agents, SDL agent sets and links - perform
most of their moves independently, with few causal relationships to moves of other
agents. Dependencies between moves occur only when agents communicate using
signals.

4.2.3 Verifying Consistency for Distributed Abstract State
Machines

In order to verify the consistency of two DASMs, an approach that abstracts from
initial states, nondeterminism and execution order of agents is needed. Induction
is a suitable proof technique for this problem. DASMs A and A' are assumed to
start in arbitrary, equivalent initial states. In the induction step, it is shown that for
two equivalent, reachable states of A and A', �ring a valid, arbitrary subset of the
activated agents leads to another pair of equivalent states, given equivalent behaviour
of the environment (i.e. nondeterminism).

To make this approach feasible, we make two assumptions:

4For an example of partially-ordered runs of the dynamic semantics of SDL, see Annex B.
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Figure 4.7: Possible executions for causally unrelated moves

• For veri�cation purposes, nondeterminism introduced by the choose construct
is either replaced by nondeterminism introduced by the environment, through
monitored functions, or corresponding choose-constructs whose guards can be
compared exist in both DASMs.

• An isomorphism exists between the sets of agents of A and A'. From this follows
that A and A' have the same number of agents, and that each agent of A is
uniquely related to an agent of A'. Consistency proofs are therefore restricted to
DASMs that are structurally equivalent.

Resolving Non-determinism. Non-determinism is introduced in Abstract State Ma-
chines via the choose construct and via monitored functions, which are modi�ed by the
environment. Choose constructs can be replaced by equivalent monitored functions,
which makes the veri�cation of consistency easier. For each choose construct, a moni-
tored function with a unique name x_n is introduced. This function is constrained by
the guard g from the choose rule, so that only elements are returned that satisfy the
condition of the choose construct. Within the constraint g, each occurrence of variable
x is replaced by the monitored function x_n. In rule R, variable x is bound to the
content of x_n in the current state (see Listing 4.1).

1 /* choose rule */
2 choose x: g(v_1, . . . , v_n) in
3 R
4 endchoose
5
6 /* replacement */
7 monitored x_n: D1 × . . .×Dn → D
8 constraint mode → ∀p1 ∈ D1, . . . , pn ∈ Dn.g[x/x_n(p1, . . . , pn)]
9 let x = x_n(v1, . . . , vn) in
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10 R
11 endlet

Listing 4.1: Replacing choose constructs

The guard of the choose construct can contain locally bound variables that become
free variables when placed into a global constraint. These variables must be added
as parameters to the monitored function, and bound in the constraint by a universal
quanti�er. Since the constraint only has to hold in states where the choose construct is
evaluated, it is implied by predicatemode, which holds only for these states. Otherwise,
the constraint may be false in a state that does not lead to the evaluation of the choose
construct, making a valid execution of the environment impossible.

In Listing 4.2, choose selects an agent that is directly contained in the currently
executing agent set, and is the target of the signal instance si under observation. The
monitored function sa_1 gets a signal instance as parameter, and returns for every
signal instance the target agent of the signal in the currently executing agent set, while
in the mode DeliverSignal.

1 /* choose rule */
2 choose sa: sa ∈ SDLAgent ∧sa.owner = Self ∧sa.self = si.toArg
3 R
4 endchoose
5
6 /* replacement */
7 monitored sa_1: SignalInst → SDLAgent
8 constraint DeliverSignal → ∀si ∈ SignalInst.sa_1(si) ∈ SDLAgent ∧sa_1(si).owner = Self ∧

sa_1(si).self = si.toArg
9
10 let sa = sa_1(si) in
11 R
12 endlet

Listing 4.2: Application of the choose replacement

A di�erence between the choose construct and monitored functions is that a moni-
tored function always yields the same value for a given set of parameters in the same
state. Executing a given choose rule more than once in the same state, for example
when combining it with bounded parallelism (do forall), would yield the same element
for each execution with the monitored function, but possibly di�erent elements with
the choose construct, if there is true nondeterminism. In general, this problem doesn't
occur, since the monitored function will be called with di�erent parameters each time.
If this is not the case, an additional parameter that increases with each call has to
be introduced. Furthermore, with the new semantics of choose constructs introduced
in [28], the approach described above fails if no element matches the constraint. If
such cases exist, they must be explicitly handled in the constraint on the monitored
function.

An easier approach is to identify corresponding choose constructs of both DASMs
and to compare their guards directly. Corresponding choose constructs are choose
constructs that are evaluated in the same equivalent states of DASMs A and A'.

In the induction step, the premise is that abstract machines A and A' behave equally
with regard to non-determinism. Given equivalent constraints g and g′, monitored
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functions x_n of A and x_n′ of A' are assumed to be equal in every equivalent state
of A and A', and corresponding choose constructs are assumed to select equivalent
elements.

Agent Execution.
De�nition. Let Ag = AgentsA = AgentsA′ the set of agents of DASMs A and A'.
Activea(n) ⊂ Ag is the set of agents that can perform non-trivial moves in the current
state of DASM a (the n-th step of the execution of a). Execa(n) ⊂ Activea(n) is the
set of agents �ring their moves on the current state, in accordance with the coherence
condition of partially ordered runs.

For consistent abstract machines A and A', the set of active agents must be equal
in each step of the execution. Otherwise, there is an inconsistent execution resulting
from �ring only the non-trivial move of an agent activated only in one of the machines,
while no move is performed in the other machine, since there is no matching active
agent.

To prove consistency, we compare runs of A and A' that execute the same subset of
agents in each step of the execution:

∀n ∈ N.(ActiveA(n) = ActiveA′(n) ∧ ExecA(n) = ExecA′(n))

In case the machine representing the superset (A) can perform stuttering steps, we
modify this condition to compare the n-th step of A' with the f(n)-th step of A, where
f : N→ N is a strictly increasing function, and f(0) = 0.

∀n ∈ N.(ActiveA(f(n)) = ActiveA′(n) ∧ ExecA(f(n)) = ExecA′(n))

A similar approach is taken in [14], where a function A(k) is used to refer to the agent
executed in the k-th state of the run. The run of a lower-level machine that implements
termination detection is then proven to be a run of a higher level machine, with the
same agent execution sequence. This assumes a linear execution of the partially-
ordered run. The functions described above extend this notion so that a set of agents
can be executed in each step.

Veri�cation. In the induction step, it has to be proven that from any reachable
pair of equivalent states, A and A' end up in another pair of equivalent states after
�ring the moves of any subset of their active agents. In this proof, the assumptions on
monitored functions and the execution of agents derived above are used. The induction
step consists of a case distinction over all classes of states that lead to the execution of
di�erent rules of the ASMs, by satisfying guards of certain if-rules, while not satisfying
guards of others. For large DASMs A and A', this case distinction can become very
large. Furthermore, a case distinction is needed for every combination of agents that
are active in a certain class of states. Since these agents usually work on independent
locations, this is generally a trivial step.
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4.2.4 Using Structural Information for Verifying Consistency
Generally, we show consistency for DASMs that are related to each other. In the case
of language pro�les, one DASM is de�ned for a smaller subset of the language, and
can therefore omit certain parts of the speci�cation that the DASM de�ned for the
superset must include, or parts of the speci�cation can be written in a less complex
fashion (for example, a simpli�ed transition selection).

mA mA mA

mA′ mA′ mA′

Figure 4.8: Relating update sets of two DASMs

For example, Listing 4.3 shows excerpts of the semantics de�nition for two language
pro�les, with language features A and B. The second pro�le does not support feature B
and therefore omits rule R2 with associated guard gB . To prove consistency, we show
that gB holds only for speci�cation that use feature B. In that case, speci�cations using
only feature A are not a�ected by removing (or adding, when extending the language)
the second if-statement.

1 if (gA) then if (gA) then
2 R1 R1

3 if (gB ) then
4 R2

Listing 4.3: Structurally related ASMs

4.3 SDL Pro�les
SDL-2000, as a complex, sophisticated language with a complete formal semantics
[40, 41, 42], de�ned using ASMs, is well-suited for the de�nition of language pro�les.
SDL is used in many di�erent application areas, and systems speci�ed with SDL
are deployed on a wide range of target platforms, from servers to microcontrollers.
Several tools exist that support a subset of SDL to generate optimised code for speci�c
applications and platforms, for example Telelogic Tau and SDL-RT. This use of SDL
pro�les is today's state-of-the-practice. However, unlike in UML, their de�nition is
not re�ected in the SDL standard.

In this section, we describe several SDL pro�les, de�ned by SDL tools and standards.

4.3.1 Core, Static and Dynamic
The transpiler ConTraST [18] introduces four SDL pro�les, as subsets of SDL-96. The
smallest pro�le - included in all other pro�les described in this section - is Core, which
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contains only basic features of SDL. Static1 , Static2 and Dynamic extend Core, each
pro�le adding additional features to the preceding one, with Dynamic being roughly
the equivalent of SDL-96.

• SDL pro�le Core is a minimal subset of SDL, supporting only the most elemen-
tary features of the language. Core retains architectural concepts of SDL such
as package, system, block and process, plus communication structure using chan-
nels. Processes are limited to single instances and contain simple state machines,
which are restricted to simple states, input and output of signals. Signals can
be addressed explicitly by process name or implicitly by the channel structure.
Core models structured, asynchronously communicating automata. Excluding
support for data makes this subset academical in nature, with the advantage
of a concise semantics, e�cient execution, and the ability to apply veri�cation
techniques, such as model checking.

• Support for data is added in SDL pro�le Static1 , making it suitable for practical
applications. It supports all data types de�ned in SDL excluding string, array,
octetstring and powerset, which require dynamic memory allocation. Static1 fea-
tures commonly used language elements of SDL such as timer, save, decision and
task symbols. Processes may have multiple instances, but dynamic instantiation
is not supported.

• Static2 extends Static1 with more complex, static features of SDL. On the ar-
chitectural level, services (or their replacement in SDL-2000, state aggregation)
give additional structure to state machines, while inheritance gives better sup-
port for reuse. Static2 introduces a more expressive transition semantics for SDL,
with additions such as priority input, spontaneous transition, continuous signal
and enabling condition. These additions signi�cantly increase the complexity of
transition selection.

• Dynamic extends Static2 with dynamic aspects of SDL. That includes procedures,
dynamic creation and termination of process instances, context parameters for
process instances, and dynamic data structures (string, array, octetstring and
powerset). SDL pro�le Dynamic is roughly equivalent to SDL-96 and is com-
pletely supported by ConTraST.

Apart from the linear hierarchy of SDL pro�les de�ned by ConTraST, further SDL
pro�les could have practical relevance. For example, Static1 , containing the most
common static SDL features, could be extended by dynamic SDL features.

4.3.2 Cmicro and Cadvanced
Two SDL pro�les are de�ned by the Telelogic Tau code generators Cadvanced and
Cmicro. While Cadvanced supports the majority of SDL-96 features, Cmicro has
several restrictions in order to produce e�cient code for target platforms with limited
resources, such as microcontrollers.
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Procedures with states have semantics comparable to composite states in SDL-2000,
with similar complexity. Cmicro only supports stateless procedures, leading to �at state
machines and simpli�ed transition selection. Transition selection is further simpli�ed
by excluding SDL features such as priority input, continuous signal and enabling con-
dition. Processes may not contain services.

4.3.3 SDL+/Sa�re
The language SDL+ [61], de�ned by the SDL Task Force and implemented in the
Safire tool, aims at being the simplest, practically useful subset of SDL. However,
SDL+ is not a pure subset of SDL, since it includes several extensions of the language.
Most notably, SDL+ includes extensions for testing, and a di�erent handling of gates.
As an SDL pro�le, we consider the reduction of SDL+ to features that exist in SDL5.

The core of the SDL+ language is formed by a simpli�ed version of SDL statema-
chines. Statemachines have only simple states (as in SDL-96) and transitions triggered
by input signals. Other forms of triggers, such as priority input, spontaneous transition
and continuous signal, as well as enabling condition and save are not supported.

Other features not included are composite state, exception, specialisation and dy-
namic instantiation of agents.

4.3.4 UML Pro�le for SDL
The UML Pro�le for SDL ([39], see Section 3.6.3) gives a precise meaning to a subset
of UML by mapping elements of UML to elements of SDL with compatible semantics.
UML is an extensive language that aims at being a universal language for modelling
systems. Therefore, the mapping of the UML subset covers a large portion of the lan-
guage scope of SDL. However, not every language element of SDL is naturally repre-
sented in UML, and therefore the mapping does not cover SDL completely. Therefore,
the UML pro�le implicitly de�nes an SDL pro�le.

Language features not covered by this implicitly de�ned pro�le are exception, priority
input, enabling condition (guards are mapped to decision symbols) and entry- and exit-
procedure. Furthermore, SDL agents of type system are not covered, since the UML
speci�cation is mapped to an agent of type �block�.

4.3.5 Hierarchy of SDL Pro�les
Figure 4.9 shows the superset relationship between the language pro�les de�ned in the
previous sections. The SDL pro�les Core, Static1 , Static2 and Dynamic form a linear
hierarchy of pro�les, with each pro�le being a superset of the preceding one. Dynamic
is included in the UML Pro�le for SDL, a subset of SDL-2000.

The pro�les Cmicro and Cadvanced include Static1 , and Static2 as subsets, respec-
tively. Cmicro itself is a subset of Cadvanced . Safire, which does not include common
SDL features such as save, has Core as the largest subset. Since it contains dynamic

5The complete language of SDL+ can be considered as a pro�le of the uni�cation of SDL and SDL+
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Figure 4.9: Superset relationship between SDL pro�les

elements and procedures with states, the smallest supersets of Safire are Dynamic
and Cadvanced .

SDL-2000 is a superset of all SDL-96 based pro�les and of the UML Pro�le for SDL,
which covers most of SDL-2000. While some features of SDL-96 were removed in SDL-
2000, SDL-2000 is the more powerful language, and these features can be expressed
by corresponding SDL-2000 features. For example, services in SDL-96 can be directly
mapped to the more powerful state aggregations in SDL-2000.

4.4 Related Work.
A modular language de�nition can be found in the language speci�cation of UML
[52]. The abstract syntax of UML is de�ned using a meta-model approach, using
classes to de�ne language elements and packages to group language elements into
medium-grained units. The core of the language is de�ned by the Kernel package,
specifying basic elements of the language such as packages, classes, associations and
types. UML de�nes four compliance levels (L0 - L4, see [52], Section 2.2), de�ning
language subsets by including speci�c packages only. However, each meta-model class
has only an informal description of its semantics, limiting a precise de�nition of subsets
to the language syntax.

UML has a pro�le mechanism that allows metaclasses from existing metamodels
to be extended and adapted, using stereotypes. Semantics and constraints may be
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added as long as they are not in con�ict with the existing semantics and constraints.
The pro�le mechanism has been used, for example, to de�ne a UML pro�le for SDL,
enabling the use of UML 2.0 as a front-end for SDL-2000 [43]. UML pro�les de�ne
sublanguages of UML.

Pfahler and Kastens introduce a component-based approach for domain-speci�c lan-
guages [56, 55]. Here, domain and language experts develop a collection of con�gurable
components describing certain properties of a language. The domain expert can de�ne
a tailor-made language for a domain by selecting and composing these components.
The selections of the domain expert are checked automatically for consistency and
completeness - for example, if the domain expert chooses to include while-statements
in the language, type boolean is automatically included. In case boolean has been de-
activated, the domain expert is noti�ed about the inconsistent selections. The scope
of this work is restriced to imperative languages.

Consistency of Abstract State Machines is closely related to re�nement of ASMs.
In [3] a general notion of ASM re�nement is introduced and compared with other
re�nement approaches, like conservative extension, procedural re�nement and data
re�nement. In [59], a generic framework for the veri�cation of re�nements of deter-
ministic ASMs, using generalised forward simulation, is presented. [60] explores the
relationship between ASM re�nement and data re�nement, and behavioural data re-
�nement is shown to be a speci�c instance of ASM re�nement. [14] presents a case
study for the re�nement and veri�cation of distributed, multi-agent ASMs, using a
termination detection algorithm as example.

4.5 Summary and Conclusions
In this chapter, we have introduced the concept of language pro�les, and outlined the
problems that can occur concerning the static semantics. For SDL, we have identi�ed
a hierarchy of pro�les, de�ned by standards, commercial tools and the ConTraST
transpiler. We have de�ned consistency between the behaviour of pro�les, given a
semantics using abstract transition systems. Finally, we have outlined an approach to
verify consistency of pro�les de�ned using Distributed Abstract State Machines.

From this, we conclude that structural information is needed for the practical, ef-
�cient veri�cation of consistency for language pro�les. Moreover, consistency can be
guaranteed by deriving pro�les from a common semantics de�nition, removing only
parts of the semantics de�nition which do not apply to speci�cations contained in the
sublanguage de�ned by a pro�le. Ideally, consistency is guaranteed by an extraction
process that uses formal criteria to reduce the formal semantics de�nition for a given
language pro�le. Consistency is either guaranteed directly by the extraction process,
or, if heuristics are used, by verifying proof obligations generated by the extraction.
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5 Extraction of Language Pro�les
In this chapter, we contribute an extraction approach for tailor-made formal language
de�nitions for language pro�les. We examine the e�ect of de�ning syntactical subsets
of a language on the static semantics. For dynamic semantics de�ned using Abstract
State Machines, we formalise our approach for extracting the formal semantics of
language pro�les from the dynamic semantics de�nition. This approach is based on
identifying invariants for the abstract machine state, derived from the language syntax
and the pro�le de�nition. Based on these invariants, we extract a formal semantics
de�nition with ASM rules that are never evaluated removed. Results of this work have
been published at the SAM workshop [21], the FASE conference [26] and as a technical
report [25].

5.1 Motivation
Language pro�les de�ne subsets of a language. For the language user, these subsets can
be seen as syntactical subsets - the tool that supports the subset only provides certain
language features, or language features not included in the pro�le are rejected by the
parser. This is standard practice in the tool industry. For example, the graphical
SDL editor of the Telelogic Tau suite only supports drawing SDL speci�cations with
features included in the Cadvanced subset. The more restrictive Cmicro subset rejects
SDL speci�cations using features not supported by the parser.

An open question is the language de�nition for language pro�les. The state of
the practice is to base tools that support a subset of the language on the complete
language de�nition. For example, SDL pro�les Cadvanced and Cmicro are based
on the Z.100 standard of SDL, which does not de�ne any compliance levels or valid
subsets. Our aim is to provide smaller, tailor-made language de�nitions for speci�c
language pro�les, that are easier to understand, leading to fewer errors and faster
development of tool support. Speci�cally, we want to provide tailor-made formal
semantics de�nitions for language pro�les. Formal semantics de�nitions for complex
languages with many features, like SDL, are generally large and take a lot of e�ort to
be understood completely.

5.2 Language Pro�le De�nition
Language pro�les characterise subsets of the set of valid language speci�cations. These
subsets are de�ned syntactically. We propose two ways to de�ne language subsets:
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• The syntax of the language de�ned by a language pro�le is given explicitly. Here,
the complete syntax of the language has to be speci�ed.

• The language pro�le speci�es constraints on the syntax (concrete or abstract),
in the same way UML pro�les constrain the meta-model of UML using OCL
expressions. For example, the constraint

∀s ∈ State-node.(s.s-Save-signalset .s-Signal-identi�er-set = ∅)
on the abstract syntax of SDL removes the save feature of SDL syntactically.

In both cases, the e�ects on the static semantics of the language have to be evaluated
(see Section 5.4).

5.3 Approach for De�ning Semantics for Language
Pro�les

One approach to provide a tailor-made formal semantics de�nition for language pro�les
is to de�ne the semantics for each pro�le from scratch. This leads to concise, specialised
language de�nitions for each language pro�le. However, this approach is infeasible,
since de�ning a formal semantics from scratch takes a lot of e�ort, even when factoring
in reuse from related pro�le de�nitions. Changes due to new language versions have
to be applied to each pro�le individually. Furthermore, de�ning the formal semantics
for each pro�le from scratch makes statements about the consistency of pro�les harder
to prove, as we have argued in the previous chapter.

For these reasons, we start from a single formal semantics de�nition, and derive the
semantics de�nition for language pro�les. We consider two approaches:

• The composition approach, where a tailor-made semantics de�nition for a lan-
guage pro�le is created by composing a language core with prede�ned language
modules.

• The extraction approach, where, starting from a formal semantics de�nition for
the complete language, a semantics de�nition is extracted by removing parts
corresponding to language features not included in the pro�le.

5.3.1 The Composition Approach
Here, language pro�les are de�ned by composing a language core and selected lan-
guage modules. The language core can be understood as the smallest useful subset of
the language, for instance, SDL reduced to a set of elementary communicating �nite
state machines, without any extensions. A language module encapsulates a language
feature, de�ning its syntax, semantics, and dependencies to other language modules.
For SDL, examples of language modules are timer, exception, save, and inheritance.
Note that language core as well as language modules consist of syntax and seman-
tics. For the composition to be feasible, it is crucial that the semantics of modules
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can be encapsulated and composed with the semantics of the language core and other
modules.

The formal semantics de�nition of SDL is already de�ned in a modular fashion. Rule
macros and derived functions are used extensively to structure the dynamic semantics.
The language core is formed by the signal �ow model, together with the de�nition of
SDL agents and basic actions such as signal output. Language modules are de�ned by
behaviour primitives, which de�ne the actions of the virtual machine executing SDL
speci�cations. Transition selection is split up into di�erent agent modes for each input
kind SDL supports (for example, priority input or spontaneous signals). However,
composition of language modules with the language core requires a substantial amount
of �glue code�, which means that language features have an impact on the complete
formal semantics de�nition in a lot of di�erent places.

From a methodological point of view, the composition approach seems more appeal-
ing. However, there is the di�culty of encapsulating the formal semantics of language
modules such that composition is supported - while maintaining readability -, which
we have not been able to overcome.

5.3.2 The Extraction Approach
Here, language pro�les are de�ned by extracting the pro�le de�nition from the com-
plete (formal) language de�nition. As in the composition approach, language modules,
each consisting of a set of language constructs, can be identi�ed. To obtain a particular
language pro�le, these language modules are then removed from the complete language
de�nition. Di�erent from the composition approach, it is not necessary that the se-
mantics of modules can be encapsulated. Instead, it su�ces to characterise modules
by their language constructs. With this information, it is straightforward to identify
corresponding grammar rules, and to reduce or remove them.

To extract the formal semantics of a language pro�le from the complete formal
semantics, given a dynamic semantics de�ned using Abstract State Machines, we have
considered two approaches:

• ASM rule coverage. With each language pro�le, an ASM rule coverage com-
prising all ASM rules of the dynamic semantics that may be evaluated in some
execution of some speci�cation written in that language pro�le can be associ-
ated. While this approach is semantically sound, it is practically infeasible. The
concurrent, non-deterministic nature of most modelling languages leads to a very
large number of possible executions. Furthermore, the number of speci�cations
that can be written in a given language pro�le is extremely large, even for small
subsets of a language. Therefore, the worst-case complexity of an algorithm for
ASM rule coverage is far too high to be of any use for practical purposes.

• Dead ASM rule recognition. Instead of computing the ASM rule coverage of
a set of speci�cations, we can develop safe criteria to recognise ASM rules that are
never evaluated for a given language pro�le. For instance, if the SDL language
module timer is to be removed, we can safely remove all ASM rules that are used
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for setting and resetting SDL timers, including the corresponding ASM domains,
functions, and relations. It is important here that ASM dead rule recognition
works in a conservative way, meaning ASM rules must only be removed if it can
be proven that they are never evaluated for a given language pro�le. The degree
of reduction that can be achieved this way thus depends on the completeness
of the criteria that can be de�ned. Unlike the ASM rule coverage approach,
dead code recognition is practically feasible. Therefore, we have followed this
approach, and will present safe criteria as well as some heuristics below.

5.4 Static Semantics
Language pro�les, from the point of view of the language user, can be seen as syn-
tactical subsets of a language. Language features not included in the pro�le are not
supported syntactically, and the formal syntax de�nition can be reduced accordingly.
The context-free syntax of a language is usually de�ned using a variation of the Backus-
Naur Form (BNF). Similar meta-language exist for the de�nition of the abstract syn-
tax, like Meta-IV for SDL. Figure 5.1 shows the abstract syntax of states for SDL.
The non-terminals Spontaneous-transition and Continuous-signal are removed from the
de�nition of the non-terminal State-node, resulting in states without these kind of tran-
sitions. The resulting abstract syntax de�nition is consistent with the original one,
since the non-terminals appear as sets, which can be empty. Removing State-name
from the syntax rule or making the State-name optional are examples of non-consistent
reductions.

State-node ::=(::) State-name
[ On-exception ]
Save-signalset
Input-node-set
Spontaneous-transition-set
Continuous-signal-set

State-node ::=(::) State-name
[ On-exception ]
Save-signalset
Input-node-set

Figure 5.1: Reduced production rule of the SDL abstract syntax [35]

Consistent Reduction A reduced grammar is consistent if all speci�cations comply-
ing to the reduced grammar also comply to the original grammar, that is the language
described by reduced grammar Lr is a subset of the language described by the original
grammar: Lr ⊂ Lo.

A reduction of a grammar rule leads to a consistent grammar, if for all elements x
on the right hand side of a production rule the multiplicity of the element is restriced
or stays the same. The multiplicity is restriced by raising the lower bound (but not
beyond the new upper bound) and lowering the upper bound (but not below the new
lower bound). Applied to the abstract grammar of SDL (see Section 3.2.1), this leads
to the following rules:
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• An optional element [x] has the multiplicity 0..1, and can be omitted (multiplicity
0..0) or be required (x, multiplicity 1..1).

• A set of elements x-set has the multiplicity 0..∗, and can be omitted (multiplicity
0..0) or replaced by an optional element [x].

• A non-empty sequence of elements x+ has the multiplicity 1..∗ and can be re-
placed by a single element x (multiplicity 1..1).

• A sequence of elements x∗ has the multiplicity 0..∗ and can be omitted, or
replaced by a single element x, a single optional element [x] or a non-empty
sequence x+.

The minimal consistent reduced grammar is the grammar with the smallest number
of elements on the right hand sides of production rules that is consistent with the
original grammar.

Well-formedness conditions. Well-formedness conditions are static conditions that
a valid speci�cation has to satisfy. They form the context-sensitive part of the lan-
guage syntax. Reducing the context-free grammar can restrict speci�cations in a
way that certain well-formedness conditions are always violated, and thus no valid
speci�cations exist. Therefore, reduction of the context-free grammar has to take
well-formedness conditions into account. For example, the WFC in Figure 5.2 - de-
�ned on the abstract syntax of SDL - ensures that two states in the same context
do not have the same State-name. Under the assumption that selecting a removed
grammar element yields a unique, unde�ned value, this WFC is always false, since
sn.s-State-name = sn2.s-State-name = undefined . Note that we need to make this
assumption because reducing State-name from State-node is an inconsistent reduction.

∀sn, sn2 ∈ State-node : (sn 6= sn2) ∧ (sn.parentAS1 = sn2.parentAS1 ) ⇒
(sn.s-State-name 6= sn2.s-State-name)

Figure 5.2: Well-formedness condition for state names [41]

In general, there are two ways to resolve this problem:

• Allow only reductions of the formal syntax that do not violate the WFCs. The
WFCs introduce dependencies between elements of the syntax that have to be
taken into account. Usually, but not generally, these syntax elements belong to
the same language feature.

• Reduce the WFCs accordingly, or remove the con�icting condition entirely. This
leads to inconsistencies since the reduced language now accepts speci�cations
that are not accepted by the complete language. We have to assure that the
dynamic semantics covers these speci�cations. This approach is unsuitable for
language pro�les, which we have de�ned as subsets of a language.
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Transformations. Transformations rewrite syntax elements of the speci�cation to
core constructs of the language, for example remote procedure calls to local proce-
dure calls and signal exchange in SDL. Transformation rules match certain syntax
elements, and become super�uous if these syntax elements are removed. Some rules
still apply but must be adapted, in order to �t the reduced syntax. For example, in
the static semantics of SDL, the pattern < state > (< s >∩ rest, exc, triggers), with
< onexception > exc, must be reduced to < state > (< s >∩ rest, triggers) if excep-
tions are removed - the transformation rule can't be removed entirely, since it matches
states regardless of the existence of exceptions. The variable exc must consequently
be removed from the transformation rule - usually, this happens automatically by re-
ducing the abstract syntax expressions on the right hand side of the transformation
rule. In other cases, such variables can be replaced by undefined (for elements) or ∅
(for sets).

Reduction of the syntax that a�ects core constructs of the language a�ects every
construct that is mapped to this core construct. For example, in SDL, reducing syntax
for local procedures will a�ect remote procedures, which are mapped to local proce-
dures. These dependencies between features can be obscure: in SDL, a language pro�le
without exceptions must also exclude remote procedures, since the mapping of remote
procedures to local procedures and signal exchange introduces exceptions.

The a�ected transformation rules must be removed together with corresponding
syntax elements, for which no semantics is de�ned in the reduced language.

Mappings. Mappings are a�ected in a similar way as transformations. While trans-
formations rewrite syntax elements of a grammar, mappings map between di�erent
grammars, for example from abstract grammar AS0 to abstract grammar AS1 in
SDL. The same rules as for transformations apply. If an element of the target ab-
stract grammar is removed, all elements from the source abstract grammar that map
to this element are a�ected. If an element of the source abstract grammar is removed,
the mapping rule must be reduced accordingly.

In SDL, there is a 1:1 relationship between elements of the abstract grammar AS0,
after applying all transformations, and abstract grammar AS1. Consequently, the
grammars are not reduced independently, but corresponding elements are removed.
This simpli�es the reduction of the mapping function. In Figure 5.3, the second
parameters of < state > in the AS0 and State-node in the AS1 are omitted, both
referring to the exception handler for this state node.

< state > (<< statelistitem > (name, empty) >, exc,triggers)
⇒mk�State-node(Mapping(name),Mapping(exc), . . . , ∅, undefined)

Figure 5.3: Mapping states from AS0 to AS1 [41]

A formal reduction of the conditions, transformations and reductions depends on the
concrete speci�cation technique used to de�ne them. For SDL, which uses denotational
aspects of ASMs to de�ne the static semantics, techniques we introduce in Section 5.7
can be applied.
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5.5 Reduction Pro�le
Language pro�les characterise subsets of the set of valid speci�cations, by de�ning
subsets of the concrete and abstract syntax of the language. The abstract syntax of a
language in�uences the dynamic semantics, which is the focus of our work. For SDL,
this happens in two ways:

• The abstract syntax yields part of the SVM data structure (ASM signature,
see Figure 5.4). For each element of the abstract grammar, a domain of the
same name is introduced in the ASM signature. For example, the following non-
terminals of the abstract grammar, which are only relevant for SDL speci�cations
with timers, are also domains in the signature of the ASM: Timer-name, Timer-
identi�er, Timer-de�nition, Timer-active-expression, Set-node, and Reset-node.

• In the case of SDL actions (for example, assignments, setting timers), a com-
pilation function maps parts of the abstract syntax to domains of the formal
semantics de�nition that form the SVM. For example, the compilation of a Set-
node in the abstract syntax tree leads to the creation of an element of the domain
Set in the ASM signature.

These observations will be used in our approach to identify invariants of the machine
state over the run of the dynamic semantics. These invariants are used when extracting
a formal semantics de�nition for a language pro�le.

Figure 5.4: Concept of the extraction process (for SDL)

Following the extraction approach, we remove language modules from the formal
language de�nition. Language modules consist of sets of language constructs, and

82



their corresponding grammar rules. These grammar rules are removed from the formal
syntax de�nition. Furthermore, they form the starting point for the reduction of the
formal semantics de�nition (see Figure 5.4). Starting from the removed parts of the
formal syntax de�nition, we can identify corresponding domains in the ASM signature,
as described above. These domains are empty in the initial state of the ASM, and,
since they are not modi�ed by the machine, will be empty in all reachable states,
too. This observation is fundamental for recognising dead ASM rules of the dynamic
semantics.

Apart from domains corresponding to elements of the abstract grammar of a lan-
guage module, other domains, functions and predicates in the ASM signature corre-
spond to speci�c language modules. For example, in the dynamic semantics of SDL,
SignalSaved is a predicate that corresponds to the save feature in SDL. If it holds, the
signal being examined is not discarded, if no valid transition is found. These elements
of the signature are removed in addition to domains corresponding to elements of the
abstract grammar. However, we need to prove that these elements are not needed for
the given language pro�le. For example, we can show that SignalSaved is always false
if save-signalset is empty. This is an invariant for all reachable states in the run of the
SVM for speci�cations without save.
Reduction−pro�le ::= Invariant∗
Invariant ::= (Function−name | Relation−name | Domain−name | Rule−name)

Default−value
Default−value ::= true | false | unde�ned | ∅ | empty

Listing 5.1: Abstract Syntax of Reduction Pro�les

In order to perform ASM dead code recognition, we specify all parts of the ASM
signature that correspond to language modules not included in the language pro�le in
a reduction pro�le (see Listing 5.1). The reduction pro�le is a list of domains, functions
and predicates from the SVM signature to be removed in the extraction process. This
list can be derived from the abstract syntax and, if one exists, the compilation function.
However, domain knowledge is still required. We specify a default value for predicates
(true or false), functions (undefined, the empty set or the empty sequence), and
domains (the empty set). These elements are removed from the formal semantics
de�nition according to a set of extraction rules - mapping between ASM de�nitions -
formally de�ned in the following sections. The complete set of extraction rules is listed
in Annex C.

Default values are invariants speci�ed for elements of the ASM signature. The re-
duction assumes the content of a domain/function in the reduction pro�le corresponds
to the default value in any state of the dynamic semantics. This is a proof obligation
that has to be veri�ed. The reduction pro�le can also contain names of derived func-
tions and rule macros, used by the SDL-pro�le tool (see Chapter 6) when iterating the
remove step. In the reduction pro�le provided by the language expert, these elements
should only be included if it is certain that calls to these elements are never executed.

Figure 5.5 shows the smallest possible reduction pro�le corresponding to a language
feature. It speci�es all grammar elements and predicates used to defer the consumption
of input signals.
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Save-signalset = ∅
SignalSaved = false

Figure 5.5: Reduction Pro�le for 'Save' Feature

Correct Reduction Pro�les. In a correct reduction pro�le, default values must cor-
respond to the type of the function, predicate or domain in the SVM. Predicates
must have default value true or false, and all other functions included in the pro�le
must have type -set or include undefined. In Listing 5.2, functions inheritedStateN-
ode and stateNodesToBeRe�ned can be included in a reduction pro�le, defaulting to
undefined and the empty set, respectively. Function stateName must not be included
in a reduction pro�le, since it must contain a valid state name.
controlled inheritedStateNode: StateNode → [StateNode]
controlled stateNodesToBeRe�ned: SdlAgent → StateNode-set

controlled stateName: StateNode → State−name
Listing 5.2: Functions of the SVM

Given a correct reduction pro�le, we can exclude certain cases of our dead ASM rule
recognition, de�ned in the following sections, that lead to inconsistent reductions. For
correct reduction pro�les, proving consistency can be reduced to proving the invariants
speci�ed in the reduction pro�le. Additionally, the reduction covers incorrect reduction
pro�les, such as assigning the default value unde�ned to a predicate. In most cases, this
leads to the extraction of semantics de�nitions inconsistent with the formal semantics
of the complete language.

5.6 Formalisation Signature
We now formalise our approach for extracting the formal semantics of language pro�les
from the complete language semantics. The formalisation gives a precise de�nition of
the removal process, which leads to deterministic results, and provides the foundation
for tool support for the removal process. Finally, a formal de�nition is necessary in
order to make precise statements about the consistency of language pro�les. Since
the formal syntax de�nition can be easily de�ned in a modular fashion, making its
reduction straightforward, we focus on the reduction of the formal semantics de�nition.

For the formal de�nition of the extraction process, we have decided to use a func-
tional approach, de�ning functions that recursively map the original formal semantics
to the reduced formal semantics. These functions are based on a concrete grammar
for Abstract State Machines [20]. The input of the reduction is the formal semantics
de�nition, and a reduction pro�le r, as described in the previous section.

To formalise the extraction, we de�ne a function remover, which maps a term from
the grammar G of ASMs and a set of variables V - an initially empty set of locally
unde�ned variables from the ASM formal semantics - to a reduced term from the
grammar G. Additionally, we introduce three mutually exclusive binary predicates,
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namely undefinedr, truer and falser. These predicates hold for expressions of the ASM
that are determined as true, false or unde�ned/empty, respectively, in any state, given
the information in the reduction pro�le. The language pro�le is speci�ed by a globally
de�ned set of elements r from the ASM signature of the formal semantics de�nition,
annotated by default values true and false for predicates. This set represents the
elements to be removed from the formal semantics de�nition, and is therefore called
the reduction pro�le. For all elements in the reduction pro�le, undefinedr (truer or
falser for predicates) holds.

remover : G× V → G

undefinedr : G× V → Boolean

truer : G× V → Boolean

falser : G× V → Boolean

The remover function is de�ned on all elements of the grammar G. Predicates truer

and falser are explicitly de�ned on boolean and �rst-order logic expressions. On all
other elements of G, the predicates do not hold.

The function remover is de�ned recursively - a given term is mapped to a new term
by applying the mapping de�ned by remover to the subterms. In case none of the
predicates undefinedr, truer and falser holds, the current term is not reduced any
further. This assures in particular that remover corresponds to the identical mapping
if the signature of the ASM is not reduced. In other cases, subterms can be replaced
or omitted depending on which of the predicates hold.

In the following sections, we omit the index r from remove and the predicates.

5.7 Formal Reduction of ASMs
In this section, we de�ne parts of the formal reduction of ASMs. The complete de�ni-
tion can be found in Annex C.

5.7.1 Formal Reduction of ASM De�nitions
This section describes the remove function for ASM de�nitions, namely domain, func-
tion and rule macro de�nitions. The remove function does not remove a de�nition
completely. If, by the reduction process, the de�nition becomes trivial or is not ref-
erenced anymore, it is removed in a subsequent cleanup step. The following variables
are used to de�ne removal:

D, D1, D2 ∈ domain, dn ∈ DomainName, exp ∈ formula, R, R1, R2 ∈ rule, ps ∈
paramSeq

Domain de�nitions are not a�ected by removal, unless they are derived de�nitions.
For derived domain de�nitions, removal continues with the domain expression that
de�nes the derived domain.
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remove(mode domain dn,V) = mode domain dn
remove(domain dn,V) = domain dn
remove(dn =def D,V) = dn =def remove(D,V)

For function de�nitions, removal continues with the function signature to remove
any unde�ned domains. For derived functions, removal also continues with the for-
mula that de�nes the function, taking into account all formal parameters that were
removed. After removal, unreferenced functions or functions with no target domain
can be removed in a subsequent step.
remove(mode f ':' D1 → D2,V) = mode f ':' remove(D1,V) → remove(D2,V)
remove(mode f ':' → D2,V) = mode f ':' → remove(D2,V)
remove(f ':' D1 → D2,V) = f ':' remove(D1,V) → remove(D2,V)
remove(f ':' → D2,V) = f ':' → remove(D2,V)

remove(f ':' D =def exp,V) = f ':' remove(D,V) =def remove(exp,V)
remove(f(ps) ':' D =def exp,V) =

f(remove(ps,V)) ':' remove(D,V) =def remove(exp,V ∪ remfpar(ps))

A macro de�nition consists of a rule name, a sequence of formal parameters and a
rule body. Domains of formal parameters may be unde�ned, and the corresponding
parameters must be removed. Removal continues with the rule body and the unde�ned
formal parameters added to the list of unde�ned variables.
remove(RuleName ≡ R,V) = RuleName ≡ remove(R,V)
remove(RuleName(ps) ≡ R,V) =

RuleName(remove(ps,V)) ≡ remove(R,V ∪ remfpar(ps))

Removal on constraints equates to removal on the constraint formula. Removal of
program de�nitions continues with removal of the rule body of the program.
remove(constraint exp,V) = constraint remove(exp,V)
remove(initially exp,V) = initially remove(exp,V)

remove(ProgramName ':' R,V) = ProgramName ':' remove(R,V)
remove(ProgramName ':',V) = ProgramName ':'

5.7.2 Macros, Functions and Parameters
This section describes the removal of formal parameters of rule macros and functions,
and the removal of corresponding parameters from calls to these macros and functions.
The following variables are used in this section, in addition to the ones introduced
above:

fcs ∈ formulaCommaSeq, n, p ∈ N

Formal parameters are removed from a list of formal parameters if undefined holds
for their domain (the type). Removal of formal parameters starts with the rightmost
parameter.
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remove(ps ',' x ':' D,V) =
remove(ps,V) iff undefined(D)
remove(ps,V) ',' x ':' remove(D,V) else

remove(x ':' D,V) =
� iff undefined(D)
x ':' remove(D,V) else

The function numfpar counts the number of formal parameters in a formal parameter
sequence. The function is used when removing parameters from a parameter sequence
(see below).

numfpar(fcs ',' exp) = numfpar(fcs) + 1
numfpar(exp) = 1
numfpar(ps ',' x ':' D) = numfpar(ps) + 1
numfpar(x ':' D) = 1

The function remfpar returns a set of names of formal parameters. The set in-
cludes all names of a formal parameter sequence for which undefined holds for the
corresponding domain.

remfpar(ps ',' x ':' D) =
{x} ∪ remfpar(ps) iff undefined(D)
remfpar(ps) else

remfpar(x ':' D) =
{x} iff undefined(D)
{} else

Formal parameters removed in a macro de�nition must be removed from the ar-
gument lists of macro calls. count assigns a code to a macro that describes which
parameters have been removed. The code function gets a list of parameters and a
number n (initially the number of arguments minus one) as arguments. If the domain
of the rightmost argument is unde�ned, 2n is added to the code of the remaining pa-
rameters with the number n− 1. E.g. for a sequence of four parameters, with the �rst
and the third unde�ned, the code is 20 + 22 = 5.

code(ps ',' x ':' D,n) =
code(ps, n− 1) + 2n iff undefined(D)
code(ps, n− 1) else

code(x ':' D, 0) =
1 iff undefined(D)
0 else

count(MacroName) = code(ps,numfpar(ps)− 1)
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The function removepar removes arguments from a macro call corresponding to
unde�ned formal parameters in the macro de�nition. The number n corresponds the
position of the argument (initially the number of arguments minus one), the number
p to the code of the macro de�nition. If p is larger than 2n, the argument is removed
and removal is continued with the remaining parameters.

removepar(fcs ',' exp, n, p) =
removepar(fcs, n− 1, p− 2n) iff p− 2n > 0
removepar(fcs, n− 1, p) ',' exp else

removepar(exp, n, p) =
� iff p = 2n // n should be 0
exp else

A sequence of formulas is unde�ned if each formula in the sequence is unde�ned.

undefined(fcs, exp,V) iff undefined(fcs,V) ∨ undefined(exp,V)

5.7.3 Formal Reduction of ASM Rules
Rules specify transitions between states of the ASM. The basic rule is the update rule,
which updates a location of the state to a new value. Alltogether, there are seven
kinds of rules for ASMs, for all of which we have formalised the reduction.

The left hand side of an update rule speci�es a location of the ASM. The location
consists of a function f from the ASM signature and a tuple of elements fcs. If
undefined holds for either, the location lies outside the scope of the reduced ASM, and
the update rule is omitted. If undefined holds for the expression on the right hand
side of the update rule, we remove the update rule, retaining the previous value of the
location.

remove(f(fcs) := exp,V) =
skip iff undefined(f,V) ∨ undefined(fcs,V)∨

undefined(exp,V)
f(remove(fcs,V)) := remove(exp,V) else

The mapping of the if -rule depends on which predicate holds for the guard exp of
the rule. If the guard always evaluates to true (false), the if -rule can be omitted,
and removal continues with subrule R1 (R2). If the guard is unde�ned, the rule is
syntactically incorrect, and should not be reachable1. Since a valid if -rule can not be
constructed with an invalid guard, we map this case to the skip-rule. If none of the
predicates hold, the removal is applied recursively to the guard and the subrules of the
if -rule, leaving the rule itself intact.
1This is a proof obligation that we have to verify manually. However, so far this has only occurred
in very few cases, which turned out to be errors in the reduction pro�le.
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remove(if exp then R1 else R2 endif, V) =
remove(R1,V) iff true(exp,V)
remove(R2,V) iff false(exp,V)
skip iff undefined(exp,V)
if remove(exp,V) then remove(R1,V) else
else remove(R2,V) endif

The let-rule is a shortcut that binds the evaluation result of an expression in the
current state to a variable, which can be used inside the let-rule. In case the expression
exp is unde�ned, so is the variable x. The result is the mapping of the contained rule
R, with the variable x included in the set of locally unde�ned names V. The result of
the removal is the same as if the expression exp had been used directly in the rule R
instead of the variable x.

remove(let x : D = exp in R endlet, V) =
remove(R,V ∪ {x}) iff undefined(exp,V) ∨ undefined(D)
let x : remove(D,V) = remove(exp,V) in else
remove(R,V) endlet

The extend-rule dynamically imports a fresh ASM element from the reserve (an
in�nite store of unused ASM elements), binding it to a variable x in the context of the
subrule R and including it in the ASM domain dn (given by name). In case the domain
name dn is unde�ned, i.e. has been removed from the ASM signature, the extend-rule
can be omitted, since elements of domain dn belong to a removed feature. However, the
subrule R might still contain parts not related to this feature - although it would be a
better style to move these parts outside the extend-rule. Therefore, the subrule is not
omitted by default, but replaced with its mapping by the remove function, including
the now unbound variable x in the set of locally unde�ned variables. This leads to all
occurrences of x being removed from the rule R.

remove(extend dn with x R endextend, V) =
remove(R,V ∪ {x}) iff undefined(dn,V)
extend dn with x remove(R,V) endextend else

The choose-rule nondeterministically takes an element from the �nite set de�ned by
the constraint exp and binds it to the variable x. If no element satis�es the constraint,
as in the case where false holds, choose is equivalent to skip [28]. Futhermore, if
undefined holds for the constraint, we assume that no element matches it. If true
holds for the constraint, the choose-rule is invalid since it ranges over a potentially
in�nite set.

remove(choose x : exp R endchoose, V) =
skip iff false(exp,V) ∨ true(exp,V) ∨

undefined(exp,V)
choose x : remove(exp,V) remove(R,V) else
endchoose
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Using typed ASMs, it is sensible to restrict the element x to a domain D as the
type of x. In the formal semantics of SDL-2000, all constraints of choose-rules have
the form �x ∈ D ∧ constraint� (constraint being optional). From the de�nition of true
and undefined on expressions (see Section 5.7.5) follows that these predicates will not
hold for a constraint of this form. Tables 5.3 and 5.4 show that only false can hold for
x ∈ D and x ∈ D ∧ constraint .

The do forall-rule performs a parallel update of the state, �ring the rule R with
x bound to the element a, for all a ∈ {x | exp}, {x | exp} being a �nite set. Removal
follows the same principles as with choose, as both choose-rule and do forall-rule
use elements from a �nite set de�ned by a constraint. If false holds for the constraint,
the rule is equivalent to skip. As described above, predicates true and undefined do
not hold if exp has the form �x ∈ D ∧ constraint�.

remove(do forall x ':' exp R enddo,V) =
skip iff false(exp,V) ∨ true(exp,V) ∨

undefined(exp,V)
do forall x ':' remove(exp,V) remove(R,V) else
enddo

Rule blocks in ASMs are �red in parallel. A sequence of rule blocks is broken down
to the mappings of the sub-rule blocks. This may result in a sequence of skip-rules
which can be reduced to a single skip. However, this is not part of the remove mapping,
but is done in a subsequent cleanup step.

remove(R1 R,V) = remove(R1,V) remove(R,V)

5.7.4 Formal Reduction of ASM Domains
This section de�nes the remove function for expressions describing ASM domains, e.g.
union or tuple domains. The following variables are used, in addition to the variables
de�ned in previous sections:

s, s1, s2 ∈ simpledomain, t ∈ tupledomain, u ∈ uniondomain, ics ∈ itemCommaSeq.

Removal is applied to domains in expressions that contain them, in formal parameter
lists and in function declarations. A domain is removed if it is unde�ned. A union
domain is removed if all of the subdomains are unde�ned (i.e., evaluating to the empty
set), otherwise only the unde�ned subdomains are removed. A tuple domain is removed
if any of the subdomains is unde�ned.

remove(s1 × s2,V) =
nodomain iff undefined(s1 × s2,V)
remove(s1,V)× remove(s2,V) else

remove(t× s,V) =
nodomain iff undefined(t× s,V)
remove(t,V)× remove(s,V) else
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remove('(' ')',V) = '(' ')'

remove(s1 ∪ s2,V) =
nodomain iff undefined(s1 ∪ s2,V)
remove(s1,V) iff undefined(s2,V)
remove(s2,V) iff undefined(s1,V)
remove(s1,V) ∪ remove(s2,V) else

remove(u ∪ s,V) =
nodomain iff undefined(u ∪ s,V)
remove(u,V) iff undefined(s,V)
remove(s,V) iff undefined(u,V)
remove(u,V) ∪ remove(s,V) else

The predicate unde�ned on domains speci�es if a domain expression is unde�ned
(that is, empty), given the basic domains that have been de�ned as being empty. A
domain expression is unde�ned if the domain name it comtains is unde�ned. In case
of union of two domains, both domains must be unde�ned - if only one is unde�ned, a
valid domain de�nition can be extracted by removing the unde�ned domain from the
expression. A tuple domain is unde�ned if one of its subdomains is unde�ned.

undefined(s1 × s2,V) iff undefined(s1,V) ∨ undefined(s2,V)
undefined(t× s,V) iff undefined(t,V) ∨ undefined(s,V)

undefined(s1 ∪ s2,V) iff undefined(s1,V) ∧ undefined(s2,V)
undefined(u ∪ s,V) iff undefined(u,V) ∧ undefined(s,V)

5.7.5 Formal Reduction of ASM Expressions
Expressions are terms over the signature of the SVM. Additionally, ASMs include
common mathematical structures like boolean algebra, or natural numbers. Our formal
reduction covers all operations de�ned in [20]. In the truth tables de�ned in this
section, we use the following shortcuts:

T Predicate true holds
F Predicate false holds
U Predicate undefined holds
- ¬T ∧ ¬F ∧ ¬U

Furthermore, we use the variables e, e1, e2, e3 ∈ formula, nseq ∈ nameCommaSeq
and pcs ∈ primaryCommaSeq.
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Boolean Operators
Boolean Operators take boolean expressions as arguments, therefore the predicates
true, false and undefined apply. With binary boolean operators, we have to consider
sixteen di�erent combinations of predicates holding for the subexpressions - four for
each subexpression. In order to improve readability, we combine the de�nitions of
true, false, undefined and remove for boolean operators in a four-valued truth table.
Valid boolean expressions always evaluate to either true or false. Therefore, it is
undesirable that the predicate undefined holds for such an expression. However, this
can not be avoided in every case.

We de�ne truth tables for all boolean operators from the concrete syntax of ASMs:
negation (¬), disjunction (∨), conjunction (∧), implication (→) and equivalence (↔).
In order to ensure consistent results, we derive the de�nition of conjunction, implication
and equivalence from the de�nitions of negation and disjunction. For the predicates
true and false, the subtables match the truth tables for the corresponding boolean
operators with the truth values true and false, respectively. If all subexpressions of
the operator are unde�ned, so is the composite expression.

The truth table for the negation directly follows from these considerations (see Table
5.1). In case no predicate holds for the boolean expression e1 (-), removal maps to the
original term, with removal applied to the subexpression e1.

e1 ¬ T F U -
F T U ¬e1

Table 5.1: Truth table for negation

If true holds for one of the subexpressions e1 or e2, true holds for e1∨e2. If undefined
holds for one of the subexpressions, it is omitted and the result depends exclusively on
the other subexpression. If false holds for one of the subexpressions, the subexpression
is omitted but can still in�uence the �nal result (as in the case false and undefined).

e2

e1 ∨ T F U -
T T T T T
F T F F e1

U T F U e1

- T e2 e2 e1 ∨ e2

Table 5.2: Truth table for disjunction

We can de�ne the other boolean operators with the operators ∨ and ¬ de�ned above.
For example, e1 ∧ e2 is de�ned as ¬(¬e1 ∨¬e2), the truth table is derived accordingly
(see Table 5.3).
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e2

e1 ∧ T F U -
T T F T e1

F F F F F
U T F U e1

- e2 F e2 e1 ∧ e2

Table 5.3: Derived truth table for conjunction

Relational Operators
Binary relational operators form boolean expressions, comparing two subexpressions.
Unlike boolean or arithmetical operators, it is not possible to omit the operator and
retain one of the subexpressions, since the subexpressions are not boolean expressions.
In our approach, we do not evaluate the relational operators >,<,≥,≤ in respect to
their truth-value. Therefore, these expressions are unde�ned if one of their subexpres-
sions is unde�ned. Removal is de�ned accordingly.

A special relational operator is the element-of operator e1 ∈ e2, where e1 denotes
an element and e2 denotes a set. The element-of operator appears frequently in the
guard of if -rules. The expression e2, denoting a set, is interpreted as the empty set
if undefined holds. Therefore, false (true) holds for the element-of (not element-of)
expression if e2 is unde�ned. Likewise, an unde�ned expression should not be an
element of any set. Note that according to this de�nition, undefined can not hold for
an element-of expression.

e2

e1 ∈ U -
U F F
- F -

e2

e1 6∈ U -
U T T
- T -

Table 5.4: Truth table for element-of operator

The equality operator is as signi�cant as the element-of operator. For the equality
operator, we take three special ASM elements into account - the element undefined,
the empty set (∅) and the empty sequence (empty). We interprete an unde�ned ex-
pression e as undefined, empty set or empty sequence, depending on the context.
Therefore, true holds if an unde�ned e is equated with one of these elements. Likewise,
false holds if an unde�ned expression is said to be unequal to one of these elements.
Note that equality is symmetric, so if true holds for e = undefined, it also holds for
undefined = e.

Excluding the cases addressed above, two expressions should never be equal if one
expression is unde�ned and the other expression is not.
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true(e = undefined,V) iff undefined(e,V)
false(e 6= undefined,V) iff undefined(e,V)

true(e = ∅,V) iff undefined(e,V)
false(e 6= ∅,V) iff undefined(e,V)

true(e = empty ,V) iff undefined(e,V)
false(e 6= empty ,V) iff undefined(e,V)

false(e1 = e2,V) iff ¬true(e1 = e2,V) ∧
(undefined(e1,V) ∧ ¬undefined(e2,V) ∨
¬undefined(e1,V) ∧ undefined(e2,V))

true(e1 6= e2,V) iff ¬false(e1 6= e2,V) ∧
(undefined(e1,V) ∧ ¬undefined(e2,V) ∨
¬undefined(e1,V) ∧ undefined(e2,V))

Quanti�cation
Quanti�cation consists of two subexpressions - the expression e1 representing the set
of elements in the range of the quanti�cation, and the boolean-valued expression e2

as the predicate. In the context of quanti�cation, we interprete e1 as the empty set if
the predicate undefined holds.

Qx ∈ e1 : e2, Q ∈ {∀,∃,∃1}
Quanti�cation over an empty set (i.e., undefined holds for e1) is always true in

case of universal quanti�cation, and always false in case of existential quanti�cation.
Furthermore, universal quanti�cation is always true of the boolean expression e2 is
always true, and existential quanti�cation is always false i� e2 is always false. This
leads to the following de�nitions of the remove function and respective predicates (see
Tables 5.5, 5.6).

e1

e2 ∀ T F U -
U T T T T
- T - U -

Table 5.5: Truth table for universal quanti�cation

remove(∀nseq ∈ e1‘ : ‘e2,V) =
true iff undefined(e1,V) ∨ true(e2,V)
undefined iff ¬undefined(e1,V) ∧ undefined(e2,V)
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∀nseq ∈ remove(e1,V)‘ : ‘remove(e2,V) else

e1

e2 ∃ T F U -
U F F F F
- - F U -

Table 5.6: Truth table for existential quanti�cation

remove(∃nseq ∈ e1‘ : ‘e2,V) =
false iff undefined(e1,V) ∨ false(e2,V)
undefined iff ¬undefined(e1,V) ∧ undefined(e2,V)
∀nseq ∈ remove(e1,V)‘ : ‘remove(e2,V) else

Arithmetic Operators
In order to de�ne removal for arithmetic operators precisely, the reduction pro�le
needs to be extended so that static values, constants or expressions can be de�ned as
default values for functions that produce natural or real numbers. Here, we de�ne a
simple reduction that assumes an unde�ned subexpression of an arithmetic operation
evaluates to zero, which is suitable for the reduction of the dynamic semantics of SDL.

remove(−e,V) =
undefined iff undefined(e,V)
−remove(e,V) else

remove(e1 + e2,V) =
undefined iff undefined(e1,V) ∧ undefined(e2,V)
remove(e1,V) iff undefined(e2,V)
remove(e2,V) iff undefined(e1,V)
remove(e1,V) + remove(e2,V) else

remove(e1 ∗ e2,V) =
undefined iff undefined(e1,V) ∨ undefined(e2,V)
remove(e1,V) ∗ remove(e2,V) else

undefined(−e,V) iff undefined(e,V)
undefined(e1 + e2,V) iff undefined(e1,V) ∧ undefined(e2,V)
undefined(e1 ∗ e2,V) iff undefined(e1,V) ∨ undefined(e2,V)
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Sets and Sequences
Set (or sequence) composition constructs a set (sequence) by applying expression e1

to elements from e2, an expression describing a set (sequence), for which the boolean
expression e3 holds. If expression e1 or e3 are unde�ned, so is the set/sequence,
resulting in a malformed speci�cation. If undefined holds for e2 (i.e., e2 is interpreted
as empty) or false holds for e3, the resulting sequence is empty, and the resulting set
is the empty set.

remove({e1 | x ∈ e2 : e3},V) =
undefined iff undefined(e1,V) ∨ undefined(e3,V)
∅ iff (false(e3,V) ∨ undefined(e2,V))

∧¬undefined(e1,V)
{remove(e1,V) | x ∈ remove(e2,V) else
: remove(e3,V)}

undefined({e1 | x ∈ e2 : e3},V) iff (false(e3,V) ∨ undefined(e2,V))
∧¬undefined(e1,V)

Function and Macro Calls
A macro call is removed if one of the parameters passed is unde�ned, or the macro
name itself has been marked as unde�ned. Otherwise, parameters that correspond
to removed formal parameters from the rule macro de�nition are removed from the
parameter list of the macro call. This is done with the function remfpar de�ned in
Section 5.7.2. count is a natural number that holds the information which formal
parameters were removed.

remove(MkName(),V) =
undefined iff undefined(MkName)
MkName() else

remove(MkName(fcs),V) =
skip iff undefined(MkName) ∨ undefined(fcs,V)
MkName(removepar(fcs,numfpar(fcs)− 1, count(MkName)))

else

undefined(MkName(),V) iff undefined(MkName)
undefined(MkName(fcs),V) iff undefined(MkName) ∨ undefined(fcs,V)

Function calls are similar to rule macro calls. A function call can either refer to
a location of the ASM, or a derived function de�ning an expression. Removal for
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function calls is identical to removal for macro calls, removing the call if either the
parameters or the function itself are unde�ned.

remove(f,V) =
undefined iff undefined(f)
f else

remove(exp.f,V) =
undefined iff undefined(f) ∨ undefined(exp,V)
remove(exp,V).f else

remove(f(fcs),V) =
undefined iff undefined(f) ∨ undefined(fcs,V)
f(removepar(fcs,numfpar(fcs)− 1, count(f)))

else

undefined(f(fcs),V) iff undefined(f) ∨ undefined(fcs,V)
undefined(f,V) iff undefined(f)

undefined(exp.f,V) iff undefined(f) ∨ undefined(exp,V)

5.8 Verifying Correctness of the Extraction
5.8.1 Proof Obligations
In order to prove consistency, it is su�cient to show that only dead ASM rules are
removed. This property does not follow automatically from the formally de�ned oper-
ations for removal, since they rely on the invariants of the reduction pro�le. However,
based on these operations, it is possible to derive proof obligations that have to be
veri�ed in order to prove consistency.

For example, during removal, an if -rule can be replaced by the subrule in the then-
block of the rule, if the predicate true holds for the guard. To prove consistency, it
is su�cient to prove that for all speci�cations of the SDL pro�le, the guard evaluates
to true in all reachable states2. Likewise, if the predicate false holds for the guard,
we have to prove that for all speci�cations of the SDL pro�le, the guard evaluates to
false in all reachable states. In case undefined holds for the guard, we have to prove
that the if -statement can not be reached at all.

Figure 5.6 shows a part of the formal language de�nition that was removed as part
of the save feature of SDL, which is used to defer the consumption of input signals. For
SDL pro�les that do not contain the save feature, no grammatical elements of Save-
signalset exist. Therefore, selecting the Save-signalset for any state yields undefined,
and selecting Signal-identi�er-set for the element undefined yields the empty set.
Since Save-signalset is not modi�ed in the formal language de�nition, this holds for
2This condition is stronger than necessary. It would su�ce to show that the guard is always true
for all reachable states that lead to the �ring of the if -rule.
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1 if Self .signalChecked.signalType ∈
2 sn.stateAS1.s−Save−signalset.s−Signal−identi�er−set then
3 Self .SignalSaved := True
4 endif

Figure 5.6: Removed part of semantics de�nition

any reachable state of the ASM. An element can not be contained in an empty set,
therefore the guard is always false, and omitting the if -statement leads to a consistent
de�nition for speci�cations without save.

Choose. Choose nondeterministically selects an element that satis�es the constraint
given by expression exp. If a choose-rule is removed, we have to prove consistency
by proving the expression exp to be false in any reachable state, and therefore -
according to the semantics of ASMs - the choose-rule equates to an empty update
set. Alternatively, we can prove that the choose-rule can not be reached.

Extend. extend-rules are removed if they extend a domain that has been removed
from the ASM signature. For a domain that is associated with a language feature, an
extension of the domain must not be reached if that feature is removed. In order to
prove consistency, we therefore have to prove that such a rule can not be reached.

Rule Macro De�nition. A rule macro can be removed without a�ecting consistency
if no corresponding rule call exists in a reachable part of the ASM, or if the body of
the rule macro can be reduced to skip while maintaining consistency.

Boolean Expressions Parts of boolean expressions are removed if they have no in�u-
ence on the �nal result, for example if true holds for a subexpression of a conjunction.
In this case, the proof obligation is to show that the subexpression is always true for
speci�cations of the SDL pro�le.

Proof obligations on boolean expressions can be split into proof obligations on subex-
pressions, as shown for ∧ and ∨ below. For example, in order to prove consistency for
predicate true on e1 ∧ e2, we can prove consistency for predicate true on e1 and e2.

true(e1 ∧ e2) iff true(e1) and true(e2) (5.1)
false(e1 ∧ e2) iff false(e2) or false(e2) (5.2)
true(e1 ∨ e2) iff true(e1) or true(e2) (5.3)
false(e1 ∨ e2) iff false(e1) and false(e2) (5.4)

Proof obligations for ASM rules and expressions can be inserted into the reduced
formal semantics de�nition by the SDL-pro�le tool described in the following chapter.
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Relational Operators Relational Operators like >,<,≥ and ≤ are unde�ned if one
of their subexpressions is unde�ned. To prove consistency, we have to prove that the
expression can not be reached.

In case of the element-of operator e1 ∈ e2, two heuristics were used. If undefined
holds for the expression on the right hand side, the set is interpreted as empty and
true holds for the expression. In this case, we have to prove that the right hand side
always equates to the empty set. In case undefined holds for the expression on the
left hand side, we have to prove that the element described by this expression is not
contained in the set on the right hand side in any reachable state.

5.8.2 Proofs over Distributed Abstract State Machines
In order to prove the proof obligations that are created during the extraction, we need
to reason over the structure of the dynamic semantics, and over the updates �red in
certain states. To make these proofs more precise, we de�ne �rst-order formulae that
hold for an ASM. These formulae de�ne what locations are updated depending on the
guards of if-rules, and other ASM rules. Here, we only consider ASMs that produce
consistent update sets, such as the dynamic semantics of SDL.

Function Update maps an ASM rule to a corresponding update formula that de-
scribes which locations are a�ected by updates depending on guards and constraints
in the current state. Function NUpdate maps an ASM rule to a corresponding update
formula that described which locations are potentially a�ected by updates. To describe
updates of locations, we de�ne the following predicates:

upd(f, x, t) is de�ned as �the content of f(x) is changed in the next state to the
current value of t�

nupd(f, x, t) is de�ned as �the content of f(x) is potentially changed in the next
state to the current value of t�

We now de�ne Update and NUpdate for the di�erent kinds of ASM rules.

Update. The basic update instruction f(x) := t writes the value of term t into the
location described by function f and parameter x. Inconsistent update sets excluded,
the value of this location in the next state will be the value of t in the current state.

Update(f(x) := t) := upd(f, x, t)

Skip. Skip does not produce any updates, and is de�ned in the update formula as
true.

Update(skip) := true
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If-rules. Generally, update instructions are guarded by several if-rules. That means
that the update instruction is only �red if a guard g holds. This can be expressed in
a formula using implication: g, a �rst-order formula, implies that the update formula
described by Update(R) holds. If g doesn't hold, Update(R) can still be true, if the
respective locations are updated in other parts of the ASM.

Update(if g then R endif) := g → Update(R)

Update(if g then R1 else R2 endif) := (g → Update(R1)) ∧ (¬g → Update(R2))

Parallel. In a parallel rule block with consistent update sets, the resulting update set
is the uni�cation of the update sets of the subrules. The resulting update formula is
the conjunction of the update formulae of the subrules.

Update(do in-parallelR1 R2 enddo) := Update(R1) ∧Update(R2)

Do Forall. For all x for which the guard g(x) holds, the update formula Update(R(x)))
holds.

Update(do forall x : g(x) R(x) enddo) := ∀x.(g(x) → Update(R(x)))

Let. The let-rule de�nes variable x as a shortcut for a term t. The let-rule can be
replaced by replacing every occurrence of x in the rule body with term t. In the update
formula, every occurrence of x is substituted by term t, which is safe because t does
not contain free variables.

Update(let x = t in R(x) endlet) := Update(R(x)))[x/t]

Extend. Extend imports a fresh element from the in�nite reserve and includes it in
domain D, by setting D(x) to true.

Update(extend D with x R(x) endextend) :=
∃x.(x ∈ Reserve ∧ upd(D,x, true) ∧Update(R(x)))

Rule Macro Call. A rule macro call �res the body of the rule macro de�nition with
the formal parameters replaced by name by the parameters passed during the rule
macro call. For a rule macro de�nition Rule(a1, . . . , an) ≡ R, the update formula of
the call is de�ned as follows:

Update(M(x1, . . . , xn)) := Update(R[a1/x1, . . . an/xn])

In order to prevent the update formula from growing too large, we can replace
the rule macro call with a macro representing the update formula for the rule macro
de�nition.
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Choose. Choose �res the update of R(x) for an x for which the guard g(x) holds. If
no such x exists, the choose rule has no e�ect.

Update(choose x : g(x) R(x) endchoose) :=
∃x.(g(x) → Update(R(x))) ∨ ∀x.¬g(x)

For proofs about consistency, we are usually interested in what locations are po-
tentially a�ected by updates. NUpdate produces a formula that includes all locations
potentially a�ected by the choose-rule.

NUpdate(choose x : g(x) R(x) endchoose) := ∀x.(g(x) → NUpdate(R(x)))
NUpdate(f(x) := t) := nupd(f, x, t)

For all other rules, NUpdate is de�ned as Update.

Distributed Abstract State Machines. Update and NUpdate are applied to all pro-
grams de�ned for a DASM. The formula of a program de�ned by Update holds for
an agent with this program if the agent performs a move in the current state. The
formula of a program de�ned by NUpdate holds for an agent with this program if the
agent can perform a move in the current state. Since the proofs don't rely on a �xed
partially-ordered run, we assume that an agent can perform a move in any state, or
produces a trivial update set.

Example. The following example shows the result of NUpdate for the rule macro
SignalOutput from the dynamic semantics of SDL, generated by a tool which im-
plements the de�nitions described above.

1 SignalOutput(s: Signal,vSeq: Value∗,toArg: [ ToArg ],viaArg: ViaArg) ≡
2 let invReference=(if (toArg ∈ PId) then (idToNodeAS1(s) 6∈ toArg.s-Interface−de�nition.s-

Signal−de�nition−set) else False endif) in
3 if invReference then
4 RaiseException(InvalidReference, empty)
5 else
6 choose g: g ∈ (Self .outgates ∪ Self . ingates) ∧ Applicable(s ,toArg,viaArg,g,unde�ned)
7 extend PlainSignalInst with si
8 si .plainSignalType := s
9 si .plainSignalValues := vSeq
10 si .toArg := toArg
11 si .viaArg := viaArg
12 si .plainSignalSender := Self . self
13 Insert(si, now, g)
14 endextend
15 endchoose
16 endif
17 endlet
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1 SignalOutput(s,vSeq,toArg,viaArg) ≡
2 ((invReference → RaiseException[eid/InvalidReference, vSeq/empty])
3 ∧ (¬ invReference →
4 ∀ g .(g ∈ (Self .outgates ∪ Self . ingates) ∧ Applicable(s , toArg, viaArg, g, unde�ned) →
5 ∃ si .( si ∈ Reserve ∧nupd(PlainSignalInst,si,true) ∧
6 nupd(plainSignalType, <si>, s) ∧
7 nupd(plainSignalValues, <si>, vSeq) ∧
8 nupd(toArg, <si>, toArg) ∧
9 nupd(viaArg, <si>, viaArg) ∧
10 nupd(plainSignalSender, <si>, Self.self) ∧
11 Insert[si/si , t/now, g/g])
12 ))
13 ) [invReference/(if (toArg ∈ PId) then (idToNodeAS1(s) 6∈ toArg.s-Interface−de�nition.s-

Signal−de�nition−set) else False endif)]

5.8.3 Case Study: Proving Correctness of Extraction
In this section, we prove the correctness of the extraction for three SDL pro�les, a
pro�le without the save feature, a pro�le without the timer feature, and a pro�le
without the exception feature. The proof obligations are generated by the SDL-pro�le
tool, described in Chapter 6, and inserted into the extracted semantics de�nition as
comments (see Section 6.3.6). A proof obligation is generated for every statement that
is removed based on heuristics (see Section 5.8.1).

Pro�le Without Save

Save-signalset = ∅
SignalSaved = false

Figure 5.7: Reduction Pro�le for save Feature

Saving is activated for a signal in a state by including it in the < save part > of a
state. The < save part > is mapped by the static semantics to the Signal-identi�er-
set of the Save-signalset of the corresponding State-node. Since no other element is
mapped to this set, for speci�cations without save, the following property holds in the
initial state:

∀s ∈ State-node.(s.s�Save-signalset.s�Signal-identi�er-set = ∅) (PS1)
Since sets of Signal-identi�ers are not modi�ed in the dynamic semantics, this prop-

erty holds in every state of the SVM.
1 ...
2 elseif (stateNodeKind(sn) = stateNode) then
3 let curSigId: Identi�er = Self.signalChecked.signalType in
4 Self .stateNodeChecked := sn
5 Self .stateNodesToBeChecked := (Self.stateNodesToBeChecked \ { sn })
6 Self .transitionsToBeChecked := { t ∈ stateTransitions(sn).inputTransitions: (t .s-Signal =

curSigId) }
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7 /* if: prove expression false : (Self.signalChecked.signalType ∈ stateAS1(sn).s-
Save-signalset.s-Signal-identifier-set) */

8 endlet
9 endif

The �rst proof obligation comes from removing an if -rule with a guard that was
determined as false in the extraction, given the reduction pro�le. The proof follows
directly from (PS1), from which we can derive that the set on the right hand side of
the element-of operator is always empty.

Self .signalChecked .signalType ∈ stateAS1 (sn).s-Save-signalset.s-Signal-identi�er-set
impliesPS1 Self .signalChecked .signalType ∈ ∅
implies false

1 if (Self .stateNodesToBeChecked 6= ∅) then
2 SelectNextStateNode
3 else
4 /* if: prove expression true : ¬(Self.SignalSaved) */
5 ...
6 endif

The second proof obligation comes from removing the else-part of an if -expression,
since ¬(Self .SignalSaved) was determined as true. We show that Self.SignalSaved
is always false in states leading to the execution of the if -rule. First, we �nd all
potential updates of SignalSaved to true, for an arbitrary agent. NUpdate con-
tains two potential updates of SignalSaved, occurring in subformulas of the form
g → nupd(SignalSaved , < Self >, true), g being the expression proved false in the
�rst proof obligation. Since a controlled location that is not updated keeps its value
in the next state, SignalSaved is only updated to true if g holds. Therefore, an update
of SignalSaved to true implies that g holds: nupd(SignalSaved , < Self >, true) → g.
From this follows (with g ≡ false as shown above):

g ≡ nupd(SignalSaved , < Self >, true) implies
false ≡ nupd(SignalSaved , < Self >, true) implies
¬nupd(SignalSaved , < Self >, true)

For a speci�cation without save, SignalSaved is therefore never set to true. Since
SignalSaved can have any value in the initial state, we must also show that the func-
tion is set to false for an agent before that agent evaluates the reduced rule. This can
be shown over the sequence of modes the agent goes through. Rule macro SelInput-
StartPhase, which sets SignalSaved to false, is always executed before SelInputS-
electionPhase, which contains the proof obligation.

Pro�le Without Timer
Timers in SDL can be set, reset, and checked if they are active. In the abstract
grammar, this corresponds to the abstract syntax elements Set-node, Reset-node and
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Timer = ∅, TimerInst = ∅,
TimeLabel = ∅, Set = ∅,
Reset = ∅, TimerActive = ∅,
Set-node = ∅, Reset-node = ∅,
Timer-active-expression = ∅

Figure 5.8: Reduction pro�le for 'Timer' feature

Timer-active-expression, which do not occur for pro�les without timers. The compi-
lation function maps these elements to the SVM domains Set, Reset and Timer-
Active, respectively. Since these domains are not modi�ed elsewhere, the following
property holds in all states of the SVM:

Set = Reset = TimerActive = ∅ (PT1)
This property directly satis�es the proof obligations generated during the reduction:

1 Eval(a: Action) ≡
2 ...
3 else
4 /* if: prove expression false : (a ∈ Set) */
5 /* if: prove expression false : (a ∈ Reset) */
6 /* if: prove expression false : (a ∈ TimerActive) */
7 ...
8 endif

The domain TimerInst holds all active instances of timers and is initially empty.
We show that it is empty in every state by collecting all potential updates of domain
TimerInst, and by evaluating the conditions that lead to the update. From this
follows, that a potential update of TimerInst only occurs if and only if an action of
kind set, reset or timer-active exists.

∃a.(a ∈ Set ∨ a ∈ Reset ∨ a ∈ TimerActive) ≡ ∃x.(nupd(TimerInst,x,true))
impliesPT1 6 ∃x.nupd(TimerInst,x,true)

1 signalType(si : SignalInst):Signal =def

2 if (si ∈ PlainSignalInst) then plainSignalType(si)
3 elseif /* if: prove expression false: si ∈ TimerInst */
4 (si ∈ ExceptionInst) then si.s-Exception
5 endif

Pro�le Without Exceptions
Exceptions are an extension to signals introduced in SDL-2000. A transition that ter-
minates with a raise node generates an exception instance that is consumed in a handle
node (a special input node) in the active exception handler node (a special state node).
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Several elements of the abstract syntax correspond to the exception feature. Most no-
tably Raise-node, which terminates a Transition and generates an exception instance,
On-exception, which sets the active exception handler, and Exception-handler-node
and Handle-node, which de�ne the exception handler.

Exception = ∅, ExceptionInst = ∅,
ExceptionHandlerName = ∅,
ExceptionHandlerNode = ∅,
SetHandler = ∅, Raise = ∅

Exception-handler-name = ∅,
Exception-de�nition = ∅,
Exception-handler-node = ∅, On-exception = ∅,
Handle-node = ∅, Raise-node = ∅

selectException = unde�ned

Figure 5.9: Reduction pro�le for 'Exception' feature

The compilation function maps Raise-nodes and On-exceptions to domains Raise
and SetHandler, respectively. These domains are not modi�ed elsewhere in the
SVM, therefore the following property holds in all states.

Raise = SetHandler = ∅ (PE1)
As with the removal of timers, the proof obligations inserted into the Eval rule

macro are directly satis�ed by this property.
1 Eval(a: Action) ≡
2 ...
3 else
4 /* if: prove expression false : (a ∈ SetHandler) */
5 /* if: prove expression false : (a ∈ Raise) */
6 ...
7 endif

For pro�les without exceptions, no exception handler nodes are included in the
abstract syntax, therefore property PE2 holds.

∀s ∈ State-transition-graph.(s.s-Exception-handler-node = ∅) (PE2)

1 InitStateMachine ≡
2 if (Self .stateNodesToBeCreated 6= ∅) then ...
3 elseif (Self .statePartitionsToBeCreated 6= ∅) then ...
4 else
5 /* if: prove expression false : (Self.ehNodesToBeCreated 6= ∅) */
6 endif
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To prove ehNodesToBeCreated equates to the empty set for any agent, we check
the possible updates of the location. The SVM speci�es one potential update of ehN-
odesToBeCreated to a value unequal the empty set:

nupd(ehNodesToBeCreated , < Self >, csdg .s−State-transition-graph.s−Exception-
handler-node−set) impliesPE2

nupd(ehNodesToBeCreated , < Self >, ∅)

Therefore, all potential updates of ehNodesToBeCreated write the empty set to this
location. To prove that ehNodesToBeCreated is always initialised to the empty set for
an agent, we can show that the creation of an agent is always followed by the execution
of the rule macro InitStateMachine for the agent, which sets the location to the
empty set. We omit the details of this proof here.

1 SelectTransition ≡
2 if (Self .agentMode3 = startSelection) then ...
3 else
4 /* if: prove expression false : (Self.agentMode3 = selectException) */
5 ...
6 endif

1 SelectTransitionStartPhase ≡
2 /* if: prove expression false : (Self.currentExceptionInst 6= undefined) */
3 ...

In the reduction pro�le for exceptions (see Figure 5.9), we have speci�ed that agent
mode selectException can not be reached, which leads to the omission of transition
selection for exceptions. From the update formula follows, that setting the agent mode
to selectException is guarded by a boolean term stating that the current exception
instance is not unde�ned (see above). Furthermore, for the current exception instance
not to be unde�ned, domain ExceptionInst must not be empty.

However, this assumption does not hold. Rule macro RaiseException creates
an exception instance, and is called within the SVM for example when a division by
zero occurs, or when a value in a decision is out of range. In these cases, selection
of an exception handler is triggered, which results in the agent program being set to
unde�ned behaviour, since no exception handlers exist in a pro�le without exceptions.
The resulting pro�le is only consistent for speci�cations that don't lead to exceptions
at runtime.

Therefore, agent mode selectException must not be removed in a pro�le without
exceptions, or rule macro RaiseException must be modi�ed to set the program to
the unde�ned behaviour program directly. Due to the complexity of the transition
selection, this has to be done manually.

5.9 Related Work.
ConTraST [65, 18] is an SDL to C++ transpiler that generates a readable C++ rep-
resentation of an SDL speci�cation by preserving as much of the original structure as

106



possible. The generated C++ code is compiled together with a runtime environment
that is a C++ implementation of the formal semantics de�ned in Z100.F3. ConTraST
is based on the textual syntax of SDL-96, and supports SDL pro�les syntactically
through deactivation of language features, and semantically by suppressing unreach-
able parts of the runtime environment for a given pro�le, as identi�ed by the formal
extraction.

A logic for ASMs is introduced in [64], similar to the logic introduced in Section
5.8.2. The logic takes consistency into account, but does not cover indeterminism or
the import of elements from the reserve.

In [47], the concept of program slicing is extended to Abstract State Machines. For
an expressive class of ASMs, an algorithm for the computation of a minimal slice
of an ASM, given a slicing criterion, is presented. The slicing criterion is a list of
locations of the ASM that are of interest with regard to the slice. The resulting ASM
is correct with regard to the slicing criterion, and minimal for an expressive subclass
of ASMs. Possible applications of ASM slicing are testing and error detection. While
the complexity of the slicing algorithm is acceptable in the average case, the worst
case complexity is exponential. In [48], a polynomial slicing algorithm is introduced
that produces a possibly non-minimal slice for every ASM. However, indeterminism
and dynamic memory allocation are not covered. Furthermore, for our application,
the number of locations of interest - locations of the state relevant for the dynamic
semantics of a language pro�le - is much larger than the number of irrelevant locations.

In [6], a modular de�nition of C] using ASMs is presented. In the paper, C] is
divided into layers of orthogonal language features, starting from an imperative core,
and subsequently adding classes, object-orientation, exception handling, delegates and
events, concurrency and pointer arithmetic. The semantics of C] is de�ned by speci-
fying an interpreter for an annotated abstract syntax tree representing a C] program.
For each layer, the abstract syntax is extended, and two new rule macros are speci�ed
de�ning the semantics for new statements and expressions of the layer. The rule macros
de�ne the e�ect of computing the program construct associated with an abstract syn-
tax node. The close integration of syntax elements and their semantics achieved in
this fashion leads to pure incremental extensions that can be easily modularised by
executing the rule macros for di�erent layers in parallel. Similar approaches can be
found for the formal semantics of the Java Virtual Machine [7] and C [29], both de�ned
using ASMs. While this approach is suitable for imperative languages like C and Java,
a complex speci�cation language with a high degree of parallelism and asynchronous
communication like SDL is better de�ned using a virtual machine approach, for which
an extraction approach - as de�ned in Section 5.7 - is more suitable.

5.10 Summary and Conclusions
In this chapter, we have introduced an approach to extract the formal semantics def-
inition for a language pro�le, given a dynamic semantics de�ned using ASMs. The
extraction is based on recognising and removing dead ASM rules from the formal
semantics de�nition, starting from a reduced ASM signature. The reduction of the
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ASM signature is derived from the abstract syntax of removed language modules. To
achieve deterministic results, we have formalised the approach using functions de�ned
recursively over the concrete syntax of ASMs.

The concept behind the extraction de�ned in this chapter is to identify parts of the
ASM signature that are not modi�ed in a run of the ASM for speci�cations in the given
language pro�le. For these parts of the signature, we specify default values, derived
from the static syntax of the language and the compilation function of the dynamic
semantics. These default values can be used in the reduction of the formal semantics.
We found the following set of default values to be su�cient for the dynamic semantics
of SDL: the special ASM element undefined, the empty set, the empty sequence, and
the boolean values true and false. Further default values can be added as needed,
for example for locations holding natural or real numbers.

The advantage of this approach is that the extraction can be performed e�ciently,
requiring only a single traversal of the formal semantics de�nition. The approach is
su�ciently powerful, leading to signi�cant reduction of dead ASM rules for common
language features. For SDL, the reduction achieved is less signi�cant where transition
selection is e�ected, due to the structure of the SDL formal semantics. For transi-
tion selection, only small reductions are possible, unless complete parts of transition
selection de�ning certain transition types, such as priority input, are removed. Re-
sults of the application of the extracttion to the formal semantics of SDL, using the
SDL-pro�le tool, are discussed in Chapter 6.

While the approach is e�cient, specifying incorrect default values or including func-
tions and domains that can be changed by a speci�cation in the pro�le in the reduction
pro�le can lead to the extraction of formal semantics de�nitions that are inconsistent
with the complete formal semantics. Here, a subsequent veri�cation step is needed to
show the consistency of the extracted formal semantics with regard to speci�cations
included in the corresponding pro�le.

5.11 Future Work
Language Modules and Composition Approach
An open question is the feasibility of de�ning a modular semantics by composition of
language modules on top of a language core, if the virtual machine approach is used
(as in case of SDL). It is important that language modules encapsulate all parts of
the speci�cation corresponding to a language feature. For the instruction set of the
abstract machine, this can be achieved in a similar fashion as for interpreter semantics.
In Listing 5.3, the domain Action is de�ned incrementally (line 2), with each module
extending the set of actions. For each type of action de�ned by the module, a behaviour
primitive is encapsulated in a rule macro. The intructions in the rule macro are �red
when the current label of the executing agent points to a behaviour (line 5), and the
action of the behaviour has the correct type (for example, Set, line 7). The rule
macros for di�erent action types are mutually exclusive, and can be composed using
the parallel rule composition of ASMs.
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1 module Timer requires Data
2 Action' =defAction ∪ Set ∪ Reset ∪ TimerActive
3
4 EvalSet ≡
5 choose b: b ∈ behaviour ∧b.s-Label = Self.currentLabel
6 let a = b.s-Action in
7 if a ∈ Set then
8 SetTimer(a.s-Timer, values(a.s-ValueLabel-seq, Self), semvalueReal(value(a.s-

TimeLabel, Self)))
9 Self .currentLabel := a.s-ContinueLabel
10 endif
11 endlet
12 endchoose
13
14 ...

Listing 5.3: Modular de�nition of timer instruction set

Language features may a�ect various parts of the SVM (for example, routing or
transition selection), where modularisation and composition is hard to achieve. For
example, when creating an agent instance, functions for procedures and exceptions
are initialised. A possible solution is to add insertion points to the ASM, that can be
referred to from a module de�nition. ASM rule fragments tied to an insertion point
in a module are executed in parallel with ASM rules at the insertion point. Possible
insertion points are the agent modes of the SVM, described in Section 2.4. Open
questions are the handling of local variables, sequential rule fragments, and feature
interaction. Drawbacks of this approach are limited extensibility - depending on the
number of insertion points - and possibly a negative e�ect on readability.

1 EnterStateNodesEnterPhase ≡
2 if Self .stateNodesToBeEntered 6= ∅ then
3 choose snwen: snwen ∈ Self.stateNodesToBeEntered
4 ...
5 if snwen.s-StateNode.stateNodeRe�nement = unde�ned then
6 enterstate: RefinementUndef(snwen)
7 elseif snwen.s-StateNode.stateNodeRe�nement = stateAggregationNode then
8 enterstateaggr: RefinementStateAggrNode(snwen)
9 elseif snwen.s-StateNode.stateNodeRe�nement = compositeStateGraph then
10 entercompstate: RefinementCompStateNode(snwen)
11 endif
12 ...
13
14 module EntryProcedure requires Procedure
15 entercompstate:
16 let cstd : Composite−state−type−de�nition = snwen.s-StateNode.stateDe�nitionAS1 in
17 let comp : Composite−state−graph = cstd.s-implicit in
18 if comp.s-Entry−procedure−de�nition 6= unde�ned then
19 CreateProcedure(comp.s-Entry−procedure−de�nition, unde�ned, unde�ned)
20 endif
21 endlet
22 endlet
23
24 enterstateaggr:
25 let cstd : Composite−state−type−de�nition = snwen.s-StateNode. stateDe�nitionAS1 in
26 let aggr : State−aggregation−node = cstd.s-implicit in
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27 if aggr.s-Entry−procedure−de�nition 6= unde�ned then
28 CreateProcedure(aggr.s-Entry−procedure−de�nition, unde�ned, unde�ned)
29 endif
30 endlet
31 endlet

Listing 5.4: Modular de�nition of entry procedures

Listing 5.4 shows the SVM rule macro EnterStateNodesEnterPhase, de�ning
entry for plain states, state aggregations and composite states, with corresponding in-
sertion points enterstate (line 6), enterstateaggr (line 8) and entercompstate (line 10).
Module EntryProcedure (line 14) - containing rule parts of Entry-/Exit-procedure
from Table 6.4 - de�nes rule fragments for the execution of entry procedures, that are
tied to insertion points entercompstate (line 15) and enterstateaggr (line 24). The rule
fragments use local variables de�ned in the scope enclosing the insertion points. Mod-
ule EntryProcedure requires procedures because the rule macro CreateProcedure
is called (lines 19, 28).
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6 The SDL-Pro�le Tool
Based on the formalisation provided in Chapter 5, we have implemented a tool called
SDL-pro�le tool, in order to automate the extraction process, providing visible results.
The tool reads the formal semantics de�nition1, performs the remove operation based
on a reduction pro�le, and outputs a reduced version of the formal semantics. The
reduction pro�le is a list of domain names, function names, and macro names that
are removed from the ASM signature (or from the set of rules, in the case of macro
names). For predicates, a default value (true or false) is de�ned explicitly.

In this chapter, we give an overview over the sequence of steps of the SDL-pro�le
tool, describe the term processor kimwitu, which we use for de�ning and modifying
abstract syntax trees, and describe the implementation of the tool in detail. Finally,
we show the results of applying the formal extraction, using the SDL-pro�le tool, for
several SDL pro�les.

6.1 Sequence of Steps of the SDL-pro�le Tool
This section gives a short overview of the steps taken by the SDL-pro�le tool. Figure
6.1 shows the sequence of steps performed during the extraction, and the tools used
for each step.

asm ast ast' ast' ast'
parse normalise remove clean

flex,

bison,

kimwitu

kimwitu c++ kimwitu

kimwitu

unparse

kimwitu

iterate

Figure 6.1: Sequence of steps of the SDL-pro�le tool

6.1.1 Parse
The parse step takes a semantics de�nition using ASMs as input and creates an ab-
stract syntax tree representation of the ASM as output. It is generated out of speci-
�cations of the ASM syntax (lexis, concrete and abstract syntax), as de�ned for the
1The SDL-pro�le tool can be applied to every formal semantics de�nition speci�ed using ASMs.
However, the concrete syntax of ASMs is given by the dynamic semantics of SDL.
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formal semantics of SDL-2000 [20]. The speci�cation of the abstract syntax is trans-
lated by kimwitu++ (see Section 6.2) to a data structure for the abstract syntax tree,
where each node type corresponds to a C++ class. Scanner and parser are generated
by �ex and bison, respectively. The parser is a modi�ed version of the parser de�ned
in [58], and accepts the same language.

6.1.2 Normalise
The normalise step transforms the abstract syntax tree to a pre-removal normal form.
The transformation is speci�ed by rewrite rules on the abstract syntax tree. The
rewrite rules are translated to C++ functions by the kimwitu tool. The main function
of the normalisation step is to split up complicated abstract syntax rules, in order to
simplify the de�nition of the remove function.

6.1.3 Remove
The remove step is the implementation of the remove function formalised in Section
5.7. For each type of node (called phylum) in the ASM abstract syntax, a C-function
called 'remove' is introduced. The remove function performs removal for each term
of the respective node type, for example the terms IfThenElse, Choose, and Extend
for the rule node type. It returns a term of the respective node type as result - for
example, the remove function for rules always returns a term of type rule.

6.1.4 Clean
The clean step transforms super�uous rules resulting from the remove step to a post-
removal normal form. The normal form is achieved by de�ning term rewrite rules
in kimwitu. Unlike removal, the rewrite rules apply anywhere where their left hand
side matches, and are applied as long as a match is found. The clean step only
removes trivial parts of the formal semantics de�nition. The resulting speci�cation is
semantically equivalent to the speci�cation before the clean step.

6.1.5 Iterate
Given a complete reduction pro�le, only one run of the SDL-pro�le tool is needed
to generate the reduced formal semantics de�nition. In case the reduction pro�le is
incomplete, the pro�le tool can identify further names in the ASM signature that can
be removed, and iterate the remove and clean steps2. For example, a function in
the ASM signature with a target domain that has been removed during the previous
remove step, is included in the reduction pro�le of a subsequent iteration. Primarily,
de�nitions (for example, rule macros) that become unreferenced in the extracted formal
semantics are removed in subsequent iterations.

2The intent is to keep the reduction pro�le as small as possible, including only parts of the signature
directly related to features that should be removed, and let the tool identify the remaining parts
in iteration steps.
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6.1.6 Unparse
The unparse step traverses the abstract syntax tree and outputs a string representation
of every node. The result is a textual representation of the abstract syntax tree in
the original input format. Therefore, the output of the pro�le tool can be used as
the input for a subsequent run of the pro�le tool. We also provide di�erent output
formats, for example a Latex document of the formal semantics, and a translation to
C++.

6.2 The Term Processor Kimwitu
Kimwitu++3 [45, 46] is a tool for the de�nition and handling of abstract syntax trees,
an important part of compiler generation. It supports the de�nition of an abstract
syntax in a BNF-style notation, additional control structures, and rewrite and printing
(�unparse�) rules. These de�nitions and rules are translated by kimwitu into C++.
Kimwitu is used extensively for the generation of the SDLC compiler [58].

6.2.1 De�ning the Abstract Syntax.
In kimwitu, an abstract syntax is de�ned by a set of node types, called phyla. Each
node type has a name (for example, 'rule') on the left hand side of a colon, and a
set of alternative operators - separated by '|' - on the right hand side, the nodes of
the abstract syntax tree. Each operator has a possibly empty list of node types as
argument, representing the subnodes of this node. Node types correspond to non-
terminals in the BNF, and operators to terminals.
rule : Assign(casestring argumentList expr)

| IfThenElse(expr rule rule)
| ...

expr: Variable(casestring)
| ...

Listing 6.1: Excerpt from the abstract syntax de�nition of ASMs

From the abstract syntax de�nition, terms representing abstact syntax trees can be
constructed. For example, given the abstract syntax of ASMs in Listing 6.1, the term
Assign("f", NilargumentList(), Variable("y")), corresponding to the concrete
syntax �f() := y�, can be constructed. These terms can be constructed manually, or as
the output of a parser generator like bison.

For a node type, a corresponding list type can be de�ned. Two operators are im-
plicitly introduced for each list type: an operator representing the empty list, and an
operator concatenating an element of the node type with a list of elements. Below is
the de�nition of a list type, and the equivalent right-recursive de�nition in kimwitu,
without using the list type. Both de�nitions produce the same abstract syntax, but
kimwitu generates special list handling functions for the list type.
3Kimwitu++ is a C++ based derivative of kimwitu [12]. In this document, we abbreviate
kimwitu++ to kimwitu, referring to the C++ based tool.
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exprList: list expr /* list type */

exprList: NilexprList() /* equivalent definition */
| ConsexprList(expr exprList)

Listing 6.2: De�nition of list types

Finally, attributes can be added to node types of the abstract syntax de�nition. In
the abstract syntax tree, information can be stored in these attributes for each node
of the respective node type. For example, an attribute can be added to the node type
'expr', in which the result of the evaluation of the expression can be stored.
expr: Plus(expr expr)

| Minus(expr expr)
| Value(integer)
{ int value = 0; }

Listing 6.3: De�ning attributes for node types

6.2.2 Rewriting Abstract Syntax Trees.
Rewrite rules specify transformations on the abstract syntax. A rewrite rule consists of
a pattern on the left hand side, and the resulting term on the right hand side. Rewrite
rules are applied as long as terms matching patterns are found in the abstract syntax
tree, replacing the matches with the corresponding right hand side of the rewrite rule.
To ensure termination of the rewrite process, the rewrite rules must be con�uent,
resulting in a normal form of the abstract syntax tree.
Plus(a,Plus(b,c))
−> <trans: Plus(Plus(a,b),c) >;

Listing 6.4: Transforming expressions with rewrite rules

Listing 6.4 shows a rewrite rule that transforms the addition operator according
to the law of commutativity. The resulting normal form is a left-associative term.
Identi�er 'trans' speci�es a rewrite view, which is used to group rewrite rules into
rewrite systems.

6.2.3 Unparsing Abstract Syntax Trees.
Unparsing traverses and outputs the abstract syntax tree in a textual representation.
Listing 6.5 shows an unparse rule for the addition operator. Kimwitu prints the string
tokens and subterms a, b and c in the order speci�ed. The string tokens are sent
directly to a printer function; to the subterms, matching unparse rules are applied.
Plus(Plus(a,b),c)
−> [print: "(" a " + " b ") + " c ];

Listing 6.5: Unparsing the addition operator
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Kimwitu allows using arbitrary C++-code on the right hand side of the unparse
rule, enclosed in braces, which makes unparsing a powerful operation. Listing 6.6
shows how unparse rules can be used for computation. First, subterms a and b are
traversed, in that order, storing the result of the evaluation in the value �eld of these
terms (not speci�ed here). Then, the C++-code is evaluated, adding the values of the
subterms and storing the result in the value �eld of the expression exp.
exp=Plus(a,b)
−> [compute: a b { exp−>value = a−>value + b−>value } ];

Listing 6.6: Computation using unparse rules

6.2.4 Kimwitu Control Structures.
Kimwitu o�ers additional control structures for handling abstract syntax trees, which
can be used in combination with C++-code. The with-statement is the equivalent to a
switch-statement for abstract syntax tree terms. The cases are a list of term patterns,
with associated code enclosed in braces. In the example below, the with-statement is
used to switch over expression terms, computing a value of the expression.
int compute(expr ex) {
with (ex) {
Plus(a,b): { return compute(a) + compute(b); }
Minus(a,b): { return compute(a) − compute(b); }
Value(a): { return a; }
default: { return 0; }

}
}

The foreach-statement implements iteration over list terms. The �rst argument of
foreach is a variable that represents the current list element, the second argument
holds the complete list. In the example below, a list of expressions (for example, the
arguments of a function call) is evaluated, computing and storing the value of each
expression.
int computelist(exprList ex) {
foreach (e; exprList ex) {
e−>value = compute(e);

}
}

6.3 Implementation Decisions
6.3.1 ASM Syntax De�nition
For the syntax de�nition of ASMs, as used in the dynamic semantics of SDL, modi�ed
versions of the concrete and abstract syntax de�nitions of SDLC ([58]) are used. The
abstract syntax is de�ned using kimwitu, introducing node types for each entity kind
of an ASM speci�cation: de�nitions, domains, rules, expressions, as well as patterns
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and parameter/expression lists. For each entity of an entity kind, an operator is
introduced in the respective node type. For example, the rule type (see Listing 6.7)
has an operator for each kind of rule de�ned for ASMs.
rule : Assign(casestring argumentList expr)

| IfThenElse(expr rule rule)
| Empty()
| Skip()
| Parallel(ruleList)
| ForAll(casestring expr rule)
| Choose(casestring expr rule)
| Extend(domain nameList rule)
| Let(letStatements rule)
| RuleCall(casestring argumentList)
;

Listing 6.7: Abstract syntax for ASM rules

The concrete syntax of ASMs is de�ned using �ex and bison. The generated parser
accepts the same set of ASM speci�cations as the ASM parser used for the generation
of the runtime environment for SDLC. Therefore, we can use the textual representation
of the dynamic semantics, extracted from Z100.F3 [42] for the SDLC tool.

6.3.2 Implementing the Predicates
For the predicates true, false and undefined (see Chapter 5), three boolean-valued
functions eval_true, eval_false and eval_undef are introduced. These functions are
overloaded for every node type the respective predicate applies to (see Listing 6.8):
expressions for eval_true and eval_false; expressions, domains, de�nitions, patterns
and argument lists for eval_undef. Each predicate has a set of unde�ned variable
names V as second parameter, as in the formal de�nition of the predicates.

1 bool eval_true(expr ex, SET V);
2 bool eval_false(expr ex, SET V);
3 bool eval_undef(expr e, SET V);
4 bool eval_undef(domain dom, SET V);
5 bool eval_undef(de�nition def, SET V);
6 bool eval_undef(pattern p, SET V);

Listing 6.8: Interface of the predicates

These predicates are implemented with a case switch over all applicable operators
of the respective node type, using the kimwitu control structure with. For eval_true
and eval_false, all operators describing �rst-order expressions are relevant. For each
operator, a boolean value is returned as de�ned in the formal de�nition of the pred-
icates. For example, for the conjunction operator (&) eval_true (eval_false) returns
true for all cases which yield T (F) in the corresponding truth table (see Table 5.3).
eval_true(expr ex, SET V) {
with (ex) {
BinOp("&", e1, e2): { return (eval_true(e1,V) && eval_true(e2,V)) ||

(eval_true(e1,V) && eval_undef(e2,V)) ||
(eval_undef(e1,V) && eval_true(e2,V)); }
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...
default: { return false; }

}
}

Listing 6.9: Implementation of predicate true for conjunction

6.3.3 Implementing the Remove Function
Remove traverses the abstract syntax tree, starting from the topmost node. The
rewrite operation of kimwitu is not well suited for this approach, since rewrites are
performed anywhere in the abstact syntax tree where a rewrite pattern matches. The
remove function is therefore implemented using C++-functions and kimwitu control
structures.

For each node type, a remove function is introduced that returns a possibly reduced
term of the same node type. For each operator of the node type, the returned term
is determined by evaluating the predicates eval_true, eval_false and eval_undef, as
de�ned in the formal de�nition of the extraction. If none of these predicates holds, a
copy of the original term - possibly with reduced subterms - is returned.

The remove function always returns a copies of a term, leaving the original abstract
syntax tree intact. This means that attributes calculated for the original abstract
syntax tree (for example, references) have to be recalculated for the new abstract
syntax tree. Listing 6.10 shows the general structure of the remove functions for each
node type (phylum).
phylum remove(phylum p, SET V) {

with (p) {
Pattern: { /* term handled explicitly */

if (/*check predicates*/) return transformed copy
...
apply removal to children , return copy

}
...
/* terms not handled explicitly */
default: { return (phylum) p−>copy(true); }

}
}

Listing 6.10: General de�nition of remove functions

6.3.4 Referencing De�nitions
Calling the unparse function with unparse view reference on the abstract syntax tree
traverses the tree and sets a reference for each node that references a de�nition. These
references are needed primarily for two purposes: detecting unreferenced de�nitions
that can be removed, and determining the type of parameters. Table 6.1 lists all nodes
with corresponding de�nitions.

In order to store the references in the abstract syntax tree, we introduce an attribute
of type de�nition to the node types rule (Assign, RuleCall) and expr (Program,
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Node Referenced De�nition
Assign (update) FunctionDecl (location)
RuleCall RuleDef
Program ProgramDef
FunCall FunctionDecl or

FunctionDef (derived function)
MKCall (tuple constructor) DomainDef (derived domain)

Table 6.1: Abstract syntax nodes and corresponding de�nitions

FunCall, MKCall). Additionally, we introduce an attribute to node type de�nition,
which is used to store the number of references that point to a de�nition.

rule : ...
{ de�nition def ; }

expr: ...
{ de�nition def ; }

de�nition : ...
{ int refcounter=0; }

The unparse function for unparse view reference traverses the abstract syntax
tree, and sets references for applicable nodes. Below is the unparse rule that sets the
reference for the assign rule, which sets the location described by name and expression
list args to the value of expression e. First, args and e are traversed, setting references
for contained function calls and tuple constructors. Second, getFunDecl looks up the
function declaration with the corresponding name and number of arguments. TheSpec
refers to the root of the abstract syntax tree, which contains the list of global de�nitions
as subterms; rul refers to the assign rule and is used to �nd local de�nitions. The
de�nition returned is stored in the assign node.
rul=Assign(name,args,e)
−> [reference: args e { rul−>def = getFunDecl(name,args,TheSpec,rul); } ];

The function getFunDecl returns a de�nition that is a function declaration (location)
with corresponding name and number of arguments. First, the list of local de�nitions
is searched, then the list of global de�nitions. Local de�nitions are de�nitions de�ned
in the context of the rule macro in which rule rul occurs. Since kimwitu can not return
the parent node for a given node of the abstract syntax tree, the list of local de�nitions
is looked up starting from the topmost node of the abstract syntax tree.
de�nition getFunDecl(casestring name, argumentList args, asmSpec as, rule rul) {

defList dl = (defList) as−>subphylum(0); /* global definitions */
defList dl2 = getLocalDe�nitions(dl , rul) ; /* local definitions */
foreach ($dcl; defList dl2) { /* check local definitions first */

d=FunctionDecl(∗, fname, dom, ∗): {
if (fname−>eq(name) && (args−>length() == length(dom))) return d;

}
default: { /* do nothing */ }

}
foreach ($dcl; defList dl) { /* check global definitions next */

d=FunctionDecl(∗, fname, dom, ∗): {
if (fname−>eq(name) && (args−>length() == length(dom))) return d;

}
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default: { /* do nothing */ }
}
/* no definition found */
return NULL;

}

Corresponding functions getRuleDef, getFunDef, getDomainDef and getProgDef are
introduced for the de�nitions listed in Table 6.1.

Given an abstract syntax tree in which all references are set, the reference counter
can be computed for each de�nition. This is done by traversing the tree, and incre-
menting n->def->refcounter for applicable nodes n where def is unequal to NULL.
De�nitions with refcounter = 0 can be removed with no e�ect on the semantics of the
ASM.

6.3.5 Transforming Trivial Rules and Expressions
In the formal semantics de�nition extracted by remove, usually several trivial rules and
expressions remain. Calling the rewrite function with rewrite view clean removes these
parts of the semantics de�nition. Table 6.2 shows several trivial rules and expressions
that are covered by rewrite rules, and the result of the transformation of these rules.

Pattern Result
if e then r else r endif r
let x = t in skip endlet skip
choose x : g in skip endchoose skip
do forall x : g skip enddo skip
if x = a then a else x endif x
let x = t in x endlet t
let x = t in
if x = t then x else y endif x

endlet
take(∅) undefined

Table 6.2: Semantically equivalent transformations

Note that an extend-rule with rule body skip can not be transformed to skip,
since extend modi�es a domain of the ASM.

6.3.6 Generating Proof Obligations
Proof obligations can be generated by the SDL-pro�le tool in places where parts of
the formal semantics de�nition were removed based on heuristics, as described in
Section 5.8.1. A proof obligation is inserted at the place where the corresponding
reduction took place, since it only applies if this part is executed. To insert proof
obligations into rules, the rule node type of the abstract syntax is extended by a node
ProofObligation (see Listing 6.11). ProofObligation has a casestring, a description of
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the proof obligation, and an expression, the proof obligation, as subterms. Currently,
the tool generates four kinds of proof obligations: the expression must be proven true,
false, the place of the proof obligation must not be reached, and the value assigned to
a location in the reduction pro�le equals the default value of that location.
rule : ...

| ProofObligation(casestring expr)
;

Listing 6.11: Abstract syntax for rules with proof obligation

Remove is modi�ed to insert the proof obligation into the abstract syntax tree,
as described in Section 5.8.1. In the example below, an if -rule is removed because
expression e is evaluated as true. Expression e being true in all states that lead to the
execution of the if -rule is a proof obligation that is inserted into the reduced abstract
syntax by the remove function.

1 IfThenElse(e, r1, r2): {
2 if (eval_true(e,V)) {
3 if (proofob) {
4 return Parallel(ConsruleList(remove(r1,V),ConsruleList(ProofObligation(mkcasestring("if: 

prove expression true"),e),NilruleList()))) ;
5 } else { return remove(r1,V); }
6 }
7 ...

The implementation can be re�ned to generate more precise proof obligations. In
the example above, if eval_true holds because e has the form x ∈ D, and D was
evaluated as empty (undefined), D ≡ ∅ can be returned as proof obligation instead.

6.3.7 Output of the Reduced Abstract Syntax Tree
Creating a LATEX-Document
The SDL-pro�le tool can generate output in latex format of the resulting ASM speci-
�cation using the listings-package, which provides a latex environment for formatting
speci�cation and programming languages. The output format is identical to the tex-
tual representation of the ASM speci�cation used as the input format, enclosed in the
lstlistings environment, with the language set to ASM, and an appropriate LATEX
header and trailer. The main advantage of using textual output together with the
listings package, as opposed to directly generating latex code, is that the listings class
automatically handles line breaks, which would otherwise require substantial e�ort for
long formulae.

The listings class needs a format de�nition for ASMs to be able to display them
properly. This de�nition consists of a list of keywords and a description of the de-
limiters for comments and strings. Two di�erent types of �keywords� can be de�ned,
one being used for standard keywords of ASMs, the other for domains and macros.
The latter are added to the de�nition during the unparsing process. Symbols given in
textual form in the output, for example \land for ∧, are replaced by the listings envi-
ronment using �literate programming�, de�ning the textual string and its replacement
in the compiled LATEX-document: {\\land}{{$\wedge$}}.
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Compilation to Runtime Environment
ConTraST [18] is a transpiler for SDL developed in the Distributed Systems Group
at the University of Kaiserslautern. ConTraST translates SDL-96 systems to C++,
preserving the structure of the original SDL system and producing readable C++
code. This enables the developer to work with the generated code. To execute the
generated system, a runtime environment is provided, which, compiled together with
the generated code, produces an executable.

The runtime environment (SdlRE) is based directly on an extracted dynamic se-
mantics of SDL, which covers features of SDL-96. The ASM rules of the SVM are
manually translated into a C++ representation. The resulting runtime environment
closely resembles the dynamic semantics of SDL.

ConTraST supports SDL pro�les by allowing the user to deactivate language fea-
tures of SDL. Given an extracted dynamic semantics by the SDL-pro�le tool based on
the deactivated features, we can generate a reduced version of the SDL runtime envi-
ronment, resulting in a more e�cient execution of the generated code. Currently, the
SDL-pro�le tool generates the runtime environment semi-automatically. The resulting
code can be adapted and optimised by the developer of the compiler.

ConTraST de�nes its own data structures for the abstract syntax of SDL and the
runtime environment. Domains of the SVM are mapped to C++ classes in the runtime
environment, functions and relations of the SVM to class methods. The SDL-pro�le
tool generates C++ code for rules and derived functions of the SVM compatible to
the data structures of ConTraST. In the following paragraphs, we provide an overview
of the translation of several ASM rules, performed by the SDL-pro�le tool.

Update. An update of a location in the SVM is translated to an assignment in C++.
If the location consists of a function name f and a single parameter x, the function is
de�ned in the class corresponding to the type of the parameter, and the assignment
is to x->f . For locations with multiple parameters, the C++ map class has to be
used. However, this case does not occur in the subset of the dynamic semantics that
is translated to C++.

ASM
f := t
f(x) := t

C++
f = t;
x−>f = t;

ConTraST de�nes data structures for sets and sequences of elements, using tem-
plates. These templates de�ne special methods for modifying these containers, which
we use when updating locations holding sets/sequences. For example, assigning the
empty set/sequence to such a location is translated to a call of the method clear of
the corresponding class. Other methods de�ned for sets and sequences include adding
and deleting elements, and checking if an element is contained in a set/sequence.
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f := ∅
f(x) := ∅

f−>clear();
x−>f−>clear();

Parallel Update. Parallel updates with the do-forall-rule of ASMs can be translated
to C++ by using iterators from the standard template library (STL). The constraint
of the do-forall-rule always has the form x ∈ exp ∧ g - in some cases just x ∈ exp
-, where exp is an expression generating a set. Let d, a parametrised type based on
STL template set, be the type of expression exp4. The do-forall-rule is translated as
follows:

do forall x: x ∈ exp ∧ g
R

enddo

d :: iterator x = exp.begin() ;
while (x != exp.end()) {
if (g) { /* rule body */ }
x++;

}

The translation de�ned above replaces the parallel update of the ASM with a se-
quential update in C++. Care must be taken that assignments in an iteration step
do not a�ect subsequent iteration steps. In the dynamic semantics of SDL, locations
modi�ed during parallel updates are generally parametrised by variable x. Therefore,
the sequentialisation described above is valid.

Note that in the translation de�ned above, the scope of variable x goes beyond
the rule body R. Usually this causes no problems, but if variable x is used in rules
executed within the same scope, the variable de�nitions will clash. This can be avoided
by enclosing variable de�nition and rule body inside the C++ scope operators { and
}.

Choose. ConTraST implements the choose-rule by de�ning a take-operator on do-
mains (classes in ConTraST), and by keeping track of the elements of a class. We
translate choose-rules that select an element from a domain d (the type of expression
exp) to a local variable of type d, which is initialised using the take-operator. If no
element is found, take returns unde�ned (a null pointer), and the rule body R is not
executed.

choose x: x ∈ exp
R

endchoose

d∗ x = exp−>take();
if (x != unde�ned) {
/* rule body */

}

In cases where a guard g further constrains the domain, special choose_if functions
are introduced, which take a predicate as argument. Currently, these predicates have
to be implemented manually. The translation generates a generic �PRED� macro,
together with the guard g, as an argument to choose_if.

4d is computed by the function getDomainFromExpr.
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choose x: x ∈ exp ∧g
R

endchoose

d∗ x = exp−>choose_if(PRED(g));
if (x != unde�ned) {
/* rule body */

}

Extend. ConTraST implements domains of the SVM as classes. Extending a domain
with an element translates to the creation of an object of the corresponding class.

extend d with x
R

endextend

d∗ x = new d();
/* rule body */

Example. Below is the translation of the ForwardSignal rule macro to C++. The
rule macro is mapped to a method of class Link (line 1). The let-rule is replaced by
a local variable de�nition (line 3). Delete and Insert are methods of class Gate, and
are called on the gates passed as the last parameter of Delete and Insert in the
ASM (lines 5,6). Deleting elements from the set viaArg is done with the function erase
de�ned on sets. The update of viaArg in the ASM rule is split up into two method
calls in the C++ code (line 7,8).

1 ForwardSignal ≡
2 if Self .from.queue 6= empty then
3 let si = Self.from.queue.head in
4 if Applicable(si .signalType, si .toArg,si .viaArg,Self .from,Self) then
5 Delete(si,Self.from)
6 Insert(si,now+Self.delay,Self . to)
7 si .viaArg := si .viaArg \ {Self .from.gateAS1.nodeAS1ToId,
8 Self .channelAS1.nodeAS1ToId}
9 endif
10 endlet
11 endif

1 void Link::ForwardSignal(void) {
2 if (this−>from−>queue−>empty()==false) {
3 SignalInst∗ si = this−>from−>queue−>head();
4 if (Applicable(si−>signalType, si−>toArg, si−>viaArg, this−>from,this)) {
5 this−>from−>Delete(si);
6 this−>to−>Insert(si, (now) + (this−>delay));
7 si−>viaArg.erase(this−>from−>Gate_name);
8 si−>viaArg.erase(this−>Agent_name);
9 }
10 }
11 }

6.4 Implementation of the SDL-Pro�le Tool
6.4.1 Executing the SDL-Pro�le Tool
The SDL-pro�le tool accepts several command line options to con�gure the extraction
process. The reduction pro�le and the output format can be set, iteration and gener-
ation of proof obligations can be triggered, and steps of the SDL-pro�le tool can be
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skipped. Table 6.3 shows the most important command line options of the SDL-pro�le
tool. Executing the tool with option -h prints the complete list of options.

-c Disables the rewrite rules of the clean step.
-l Generate proof obligations during remove step.
-p Pretty print only, skip normalise, remove and clean steps.
-f �le File containing the reduction pro�le.
-r type Set output format to asm, sdlre, latex or logic.
-t Iterate removal, for example to remove unreferenced de�nitions.

Table 6.3: Important command line options of the SDL-pro�le tool

The ASM speci�cation is read from standard input, and the result is written to stan-
dard output. The SDL-pro�le tool can therefore be used in a sequence of commands
by redirecting the output (for example, using pipes). If the selected output format is
asm, the speci�cation can go through repeated executions of the SDL-pro�le tool.

6.4.2 Parsing the Reduction Pro�le
A reduction pro�le is a list of names together with information about default values
(see Section 5.5). Reduction pro�les have a simple syntax. Names following token
True: have default value true, names after token False: have default value false,
and names after token Undef: have default value undefined or ∅. All names speci-
�ed before any of these tokens have default value undefined/∅. Additionally, literal
names and their replacement can be speci�ed in the reduction pro�le, with the no-
tation litold/litnew. All occurrences of litold on the right hand side of update rules
are replaced by litnew. This can be utilised to skip agents modes. For example, to
skip priority input selection, we include selectPriorityInput/selectInput in the
reduction pro�le.

Figure 6.2 shows the reduction pro�le for the save feature of SDL.

d-Save-signalset
False:

f-SignalSaved

Figure 6.2: Reduction pro�le for save feature (tool syntsx)

The SDL-pro�le tool scans the reduction pro�le, using �ex, and stores the names in
the sets cs_true, cs_false and cs_undef.

6.4.3 Processing the Semantics De�nition
The SDL-pro�le tool implements the sequence of steps described in Section 6.1. In the
parse step, the formal semantics de�nition is read from the standard input by calling
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the bison-generated function yyparse(). The parser, generated from the speci�cation
of the concrete and abstract syntax, reads the semantics de�nition, and stores the root
of the resulting abstract syntax tree in the variable TheSpec of node type asmSpec.

The normalise step is triggered by calling the rewrite function on the root of the
abstract syntax tree, with rewrite view normal. The rewrite rules transform extend-
rules, and let-rules and -expressions. The number of transformations is equal to the
sum of all names in extend-rules plus the sum of all let-statements x = t in let-rules
and -expressions.

1 if (!opts . pretty ) {
2 fprintf (stderr ," normalising ...\n");
3 TheSpec=TheSpec−>rewrite(kc::normal);
4 }

After normalising the abstract syntax tree, references to de�nitions, which are
needed for the subsequent remove step, are set as described in Section 6.3.4. The
abstract syntax tree is traversed twice, �rst with unparse view reference to set the
references, then with the unparse view refcounter to count the references to each
de�nition. Output is suppressed by a dummy printer function.

1 fprintf (stderr ," setting references ...\ n");
2 TheSpec−>unparse(dummy_printer, reference);
3 TheSpec−>unparse(dummy_printer, refcounter);

On the normalised abstract syntax tree with references set, the remove function is
called in the remove step. Remove traverses the tree and returns an extracted copy of
the abstract syntax tree, as described in Sections 6.3.2 and 6.3.3.

On the resulting copy of the abstract syntax tree, the transformations of the clean
step are performed, by calling the rewrite function with rewrite view clean (see Section
6.3.5). The number of transformations performed is variable, but always terminates
since each transformation leads to a smaller abstract syntax tree. The clean step is
skipped if the corresponding option is set (see Section 6.4.1).

The copy of the abstract syntax tree returned by the remove function does not
contain any references to de�nitions. The references are set again after the clean step.
Additionally, the unparse function is called with view unreferenced, �lling the set
it_undef with unreferenced de�nitions that can be removed in subsequent iteration
steps.

1 asmSpec TheOldSpec = TheSpec;
2 TheSpec = remove(TheSpec);
3
4 if (opts .clean) {
5 TheSpec = TheSpec−>rewrite(clean);
6 }
7
8 TheSpec−>unparse(dummy_printer, reference);
9 TheSpec−>unparse(dummy_printer, refcounter);
10 TheSpec−>unparse(dummy_printer, unreferenced);

If the iteration option is set, the SDL-pro�le tool calculates a new reduction pro�le
in each step, and repeats the remove and clean steps until the new reduction pro�le
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is empty. The new reduction pro�le is contained in the sets it_undef, it_true and
it_false. These sets are �lled when resetting references, as described above, and when
traversing the abstract syntax tree with unparse view iterate. Included in the new
reduction pro�le are derived functions that equate to false, true, undefined and ∅,
functions with empty target domains, and rule macros that are equivalent to skip.
The old reduction pro�le is deleted, since it does not a�ect the subsequent remove
step, and replaced by the new reduction pro�le in the next iteration.

1 do {
2 nextstep = false;
3
4 /** remove, clean, reset references **/
5
6 if (opts . iterate ) {
7 TheSpec−>unparse(dummy_printer, kc::iterate);
8
9 /* calculate reduction profile for subsequent step */
10 if (! it_undef−>empty() || !it_true−>empty() || !it_false−>empty()) { nextstep = true; }
11 delete cs_undef; delete cs_true; delete cs_false;
12 cs_undef = it_undef; cs_true = it_true; cs_false = it_false;
13 it_undef = new std::set<casestring>(); it_true = new std::set<casestring>(); it_false = new

std::set<casestring>();
14 }
15 } while (opts. iterate && nextstep);

After the iterate step, the resulting abstract syntax tree is transformed to a textual
representation, and written to the standard output, as described in Section 6.3.7.

1 if (opts . type == f_asm) {
2 TheSpec−>unparse(prettyprinter, kc::ast2asm);
3 } else { if (opts . type == f_latex) {
4 TheSpec−>unparse(prettyprinter, kc::ast2latex);
5 } else { if (opts . type == f_sdlre) {
6 TheSpec=TheSpec−>rewrite(kc::sdlre);
7 TheSpec−>unparse(prettyprinter, kc::ast2sdlre);
8 } else {if (opts . type == f_logic) {
9 TheSpec−>unparse(prettyprinter, kc::ast2logic);
10 } } } }

6.5 Application of the SDL-Pro�le Tool
Given an ASM formal semantics de�nition and a reduction pro�le, the SDL-pro�le
tool generates a reduced formal semantics de�nition in the original format. In order to
validate the extraction process, we compare the original semantics de�nition with the
reduced version. For this, we have used graphical di�-based tools (for example, tkdi�)
to highlight the di�erences between the versions. Using the SDL-pro�le tool, we have
created reduction pro�les for several language modules, such as timer, exception, save,
composite state and inheritance. We have also created reduction pro�les for language
pro�les like SDL+ and Core, resulting in formal semantics de�nitions that, with small
modi�cations, match these SDL pro�les.
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ASM Listings 6.12 and 6.13 show an excerpt of the formal semantics de�nition before
and after applying the SDL-pro�le tool, using a reduction pro�le for SDL exceptions
(see Figure 5.9). The reduction pro�le contains, besides other function and macro
names, the function name currentExceptionInst, which is interpreted as unde�ned in
the context below. Therefore, the predicate false holds for the guard of the if -rule,
and the �rst part of the if -rule is removed.

1 SelectTransitionStartPhase ≡
2 if (Self .currentExceptionInst 6= unde�ned) then
3 Self .agentMode3 := selectException
4 Self .agentMode4 := startPhase
5 elseif (Self .currentStartNodes 6= ∅ ) then
6 ...
7 else
8 ...
9 endif

Listing 6.12: Macro SelectTransitionStartPhase before reduction

1 SelectTransitionStartPhase ≡
2 if (Self .currentStartNodes 6= ∅ ) then
3 ...
4 else
5 ...
6 endif

Listing 6.13: Macro SelectTransitionStartPhase after reduction

6.5.1 Extracting a Pro�le without Timers
In this section, we present the results of applying the SDL-pro�le tool to the formal
semantics de�nition of SDL, with a partial reduction pro�le for the timer feature.
Exemplarily, we restrict the reduction pro�le for timers to the domain Set, with
default value ∅ (see Figure 6.3). Domain Set holds the behaviour primitives for
setting timers, and is always empty for speci�cations without timers.

Set

Figure 6.3: Excerpt of reduction pro�le for timer feature

We examine the extraction for the rule macro for evaluating behaviour primitives,
Eval, and related rule macros EvalSet and SetTimer (see Listing 6.14).

1 Eval(a: Action) ≡
2 if a ∈ Var then EvalVar(a)
3 elseif ...
13 elseif a ∈ Set then EvalSet(a)
14 elseif ...
28 endif
29
30 EvalSet(a: Set) ≡
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31 SetTimer(a.s-Timer, values(a.s-ValueLabel-seq, Self), semvalueReal(value(a.s-TimeLabel,
Self)))

32 Self .currentLabel := a.s-ContinueLabel
33
34 static duration: Timer → Duration
35
36 SetTimer(tm: Timer, vSeq : Value∗, t:[Time]) ≡
37 let tmi = mk-TimerInst(Self.self, tm, vSeq) in
38 if t = unde�ned then
39 Self . inport .schedule := insert(tmi, now + tm.duration, delete(tmi, Self . inport .schedule))
40 tmi.arrival := now + tm.duration
41 else
42 Self . inport .schedule := insert(tmi, t , delete (tmi, Self . inport .schedule))
43 tmi.arrival := t
44 endif
45 endlet

Listing 6.14: Rule macros for setting timers [42]

Iteration Step 1
Remove: Domain Set defaults to the empty set, and the tool evaluates the expres-
sion a ∈ Set as false. Remove subsequently removes the corresponding then-part,
containing a rule macro call to EvalSet.

1 Eval(a: Action) ≡
2 if a ∈ Var then EvalVar(a)
3 elseif ...
13 elseif a ∈ Set︸ ︷︷ ︸

False

then EvalSet(a)

14 elseif ...
28 endif

Rule macro EvalSet has a parameter of type Set. Since no elements of Set
exist according to the reduction pro�le, the rule body is reduced to skip by the tool.
Rule macro calls to EvalSet would contradict the reduction pro�le, and lead to
inconsistencies.

1 EvalSet(a: Set) ≡
2 skip

Iterate: In the iterate step, the SDL-pro�le tool detects that no calls to rule macros
EvalSet and SetTimer exist in the reduced semantics de�nition, and includes the
rule macros in the set of unde�ned names.

Iteration Step 2
Remove: In the second remove step, the tool removes the de�nitions of EvalSet
and SetTimer, for which no rule macro calls exist. Therefore, no other parts of the
semantics de�nition are a�ected.
Iterate: In the iterate step, the SDL-pro�le tool detects that the static function

duration is unreferenced. The function de�nition is removed in a subsequent and �nal
iteration step.
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Listing 6.15 shows the formal semantics de�nition, extracted by the SDL-pro�le
tool with reduction pro�le in Figure 6.3. One line of speci�cation was removed from
the Eval rule macro, leading to 14 removed lines of unreferenced rule macros and
functions.

1 Eval(a: Action) ≡
2 if a ∈ Var then EvalVar(a)
3 elseif ...
27 endif

Listing 6.15: Extracted semantics de�nition

6.5.2 Extracting a Pro�le without Inheritance
In this section, we present the results of applying the SDL-pro�le tool to the formal
semantics de�nition of SDL, with a partial reduction pro�le for inheritance. We re-
strict the reduction pro�le to a single function: inheritedStateNode (see Figure 6.4).
Controlled function inheritedStateNode(s) returns for a state node s the state node s′

that s inherits from, or undefined. In the reduction pro�le, inheritedStateNode de-
faults to undefined. This is an invariant used in the reduction. A correctness criteria
is that no assignment unequal to undefined remains in the semantics de�nition - for
any such assignment a proof obligation is generated.

We show how several parts of the SVM are reduced by iterated application of the
remove and clean steps.

inheritedStateNode

Figure 6.4: Excerpt of reduction pro�le for inheritance feature

Listing 6.16 shows an excerpt of the SVM, which de�nes derived functions for in-
heritance and re�nement. DirectlyInheritsFrom, InheritsFrom, DirectlyRe�nedBy, Di-
rectlyInheritsFromOrRe�nedBy and InheritsFromOrRe�nedBy are predicates for the
direct or indirect inheritance or re�nement relation between two state nodes. Derived
functions selectNextStateNode and selectInheritedStateNode are used during transition
selection and return state nodes in a speci�c order. Derived function inheritedState-
Nodes is the transitive closure of inheritedStateNode.

1 DirectlyInheritsFrom(sn1: StateNode, sn2: StateNode): Boolean =def

2 if sn2.parentStateNode = unde�ned then False
3 elseif sn1.parentStateNode = unde�ned then False
4 elseif sn2.parentStateNode ∈ sn1.parentStateNode.inheritedStateNodes ∧sn1.stateName = sn2.

stateName ∧(¬ ∃sn3 ∈ StateNode:
5 if sn3.parentStateNode = unde�ned then
6 False
7 else
8 sn3.parentStateNode ∈ sn1.parentStateNode.inheritedStateNodes ∧
9 sn2.parentStateNode ∈ sn3.parentStateNode.inheritedStateNodes ∧
10 sn3.stateName = sn2.stateName) then True
11 else False
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12 endif
13
14 InheritsFrom(sn1: StateNode, sn2: StateNode): Boolean =def

15 if sn2.parentStateNode = unde�ned then False
16 elseif sn1.parentStateNode = unde�ned then False
17 else
18 sn2.parentStateNode ∈ sn1.parentStateNode.inheritedStateNodes ∧sn1.stateName = sn2.

stateName
19 endif
20
21 DirectlyRe�nedBy(sn1: StateNode, sn2: StateNode): Boolean =def

22 sn2.parentStateNode = sn1
23
24 DirectlyInheritsFromOrRe�nedBy(sn1: StateNode, sn2: StateNode): Boolean =def

25 DirectlyRe�nedBy(sn1, sn2) ∨ DirectlyInheritsFrom(sn1, sn2)
26
27 InheritsFromOrRe�nedBy(sn1: StateNode, sn2: StateNode): Boolean =def

28 DirectlyInheritsFromOrRe�nedBy(sn1, sn2) ∨∃ sn3 ∈ { sn ∈ StateNode :
DirectlyInheritsFromOrRe�nedBy (sn1, sn) } : InheritsFromOrRe�nedBy(sn3, sn2)

29
30 selectNextStateNode(snSet: StateNode−set): [StateNode] =def

31 let sn = take({sn1 ∈ snSet: (¬ ∃ sn2 ∈ snSet: InheritsFromOrRe�nedBy(sn1, sn2))}) in
32 if sn = unde�ned then unde�ned
33 elseif ∃ sn1 ∈ snSet: DirectlyInheritsFrom(sn1, sn) ∨ sn = sn1.inheritedStateNode then
34 selectNextStateNode(snSet \ {sn})
35 else sn
36 endif
37 endlet
38
39 inheritedStateNodes(sn: StateNode): StateNode−set =def

40 if sn.inheritedStateNode = unde�ned then ∅
41 else {sn.inheritedStateNode} ∪ sn.inheritedStateNode.inheritedStateNodes
42 endif
43
44 mostSpecialisedStateNode(sn: StateNode): StateNode =def

45 let sn1 = take({sn2 ∈ StateNode: InheritsFrom(sn2, sn)}) in
46 if sn1 = unde�ned then sn else sn1.mostSpecialisedStateNode endif
47 endlet
48
49 selectInheritedStateNode(sn: StateNode, snSet: StateNode−set): [StateNode ]=def

50 take({sn1 ∈ snSet: DirectlyInheritsFrom(sn,sn1)})
Listing 6.16: Derived functions for inheritance and re�nement [42]

Iteration Step 1
Remove: Function inheritedStateNode defaults to undefined, therefore the tool eval-
uates the guard of the following if -expression to true. The if -expression is replaced
by the then-part, which is the empty set.
inheritedStateNodes(sn: StateNode): StateNode−set =def

if sn.inheritedStateNode = undefined︸ ︷︷ ︸
True

then ∅

else {sn.inheritedStateNode} ∪ sn.inheritedStateNode.inheritedStateNodes
endif
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In selectNextStateNode, the SDL-pro�le tool determines that sn does not equal
sn1.inheritedStateNode, which is undefined. Note that this only holds because if
sn is undefined, the then-branch of the if -expression holds. The expression has no
e�ect on the result of the disjunction and is removed by the SDL-pro�le tool.
selectNextStateNode(snSet: StateNode−set): [StateNode] =def

let sn = take({sn1 ∈ snSet: (¬ ∃ sn2 ∈ snSet: InheritsFromOrRe�nedBy(sn1, sn2))}) in
if sn = unde�ned then unde�ned
elseif ∃ sn1 ∈ snSet: DirectlyInheritsFrom(sn1, sn) ∨ sn = sn1 .inheritedStateNode︸ ︷︷ ︸

False

then

selectNextStateNode(snSet \ {sn})
else sn
endif

endlet

Iterate: For the next iteration, inheritedStateNodes is included in the reduction
pro�le, defaulting to the empty set.
inheritedStateNodes(sn: StateNode): StateNode−set =def

∅

Iteration Step 2
Remove: The second iteration of remove a�ects derived functions DirectlyInherits-
From and InheritsFrom. Both contain guards with conjunctions where one subexpres-
sion is evaluated as false by the tool. The condition that a state node is contained in
the set of inherited state nodes of another state node is false, since inheritedStateNodes
returns the empty set. The corresponding parts of the SVM are therefore removed.
DirectlyInheritsFrom(sn1: StateNode, sn2: StateNode): Boolean =def

if sn2.parentStateNode = unde�ned then False
elseif sn1.parentStateNode = unde�ned then False
elseif sn2 .parentStateNode ∈ sn1 .parentStateNode.inheritedStateNodes︸ ︷︷ ︸

False

∧ sn1.stateName = sn2.

stateName ∧(¬ ∃sn3 ∈ StateNode:
if sn3.parentStateNode = unde�ned then
False

else
sn3.parentStateNode ∈ sn1.parentStateNode.inheritedStateNodes ∧
sn2.parentStateNode ∈ sn3.parentStateNode.inheritedStateNodes ∧
sn3.stateName = sn2.stateName) then True

else False
endif

InheritsFrom(sn1: StateNode, sn2: StateNode): Boolean =def

if sn2.parentStateNode = unde�ned then False
elseif sn1.parentStateNode = unde�ned then False
else

sn2 .parentStateNode ∈ sn1 .parentStateNode.inheritedStateNodes︸ ︷︷ ︸
False

∧ sn1.stateName = sn2.

stateName
endif
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Clean: The rewrite rules of the clean step match for if -expressions that return
the same result for every alternative. The if -expression is replaced with the result
common to all alternatives.
DirectlyInheritsFrom(sn1: StateNode, sn2: StateNode): Boolean =def

if sn2.parentStateNode = unde�ned then False
elseif sn1.parentStateNode = unde�ned then False
else False endif

InheritsFrom(sn1: StateNode, sn2: StateNode): Boolean =def

if sn2.parentStateNode = unde�ned then False
elseif sn1.parentStateNode = unde�ned then False
else False endif

Iterate: For the next iteration, DirectlyInheritsFrom and InheritsFrom are included
in the reduction pro�le, defaulting to false.
DirectlyInheritsFrom(sn1: StateNode, sn2: StateNode): Boolean =def

False

InheritsFrom(sn1: StateNode, sn2: StateNode): Boolean =def

False

Iteration Step 3
Remove: Derived function DirectlyInheritsFrom is false, as speci�ed in the reduction
pro�le. It is removed by the SDL-pro�le tool since it has no e�ect on the result of the
disjunction.
DirectlyInheritsFromOrRe�nedBy(sn1: StateNode, sn2: StateNode): Boolean =def

DirectlyRe�nedBy(sn1, sn2) ∨ DirectlyInheritsFrom(sn1 , sn2 )︸ ︷︷ ︸
False

DirectlyInheritsFrom is always false, therefore no element in snSet can exist for which
the derived function holds. The corresponding part of the if -expression is removed.
selectNextStateNode(snSet: StateNode−set): [StateNode] =def

let sn = take({sn1 ∈ snSet: (¬ ∃ sn2 ∈ snSet: InheritsFromOrRe�nedBy(sn1, sn2))}) in
if sn = unde�ned then unde�ned
elseif ∃sn1 ∈ snSet : DirectlyInheritsFrom(sn1 , sn)︸ ︷︷ ︸

False

then

selectNextStateNode(snSet \ {sn})
else sn
endif

endlet

In the derived functions selectInheritedStateNode andmostSpecialisedStateNode con-
tain set constructors with a condition that always evaluates to false, according to the
reduction pro�le in iteration step 3. The tool replaces the set constructor with the
empty set.
selectInheritedStateNode(sn: StateNode, snSet: StateNode−set): [StateNode]=def

take({sn1 ∈ snSet : DirectlyInheritsFrom(sn, sn1 )}︸ ︷︷ ︸
∅

)
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mostSpecialisedStateNode(sn: StateNode): StateNode =def

let sn1 = take({sn2 ∈ StateNode : InheritsFrom(sn2 , sn)}︸ ︷︷ ︸
∅

) in

if sn1 = unde�ned then sn else sn1.mostSpecialisedStateNode endif
endlet

Clean: Two rewrite rules apply to selectNextStateNode during the clean step. First,
the expression of the form 'if x = a then a else x endif ' is replaced with 'x'. Second,
the expression of the form 'let x = t in x endlet' is replaced by the expression 't'.
selectNextStateNode(snSet: StateNode−set): [StateNode] =def

let sn = take({sn1 ∈ snSet: (¬ ∃ sn2 ∈ snSet: InheritsFromOrRe�nedBy(sn1, sn2))}) in
if sn = unde�ned then unde�ned
else sn
endif

endlet

The take operator on the empty set evaluates to undefined, and is rewritten ac-
cordingly in the clean step. The expression of the form 'let x = t in if x = t then e1

else e2 endif endlet' is rewritten to e1.
selectInheritedStateNode(sn: StateNode, snSet: StateNode−set): [StateNode]=def

take(∅)︸ ︷︷ ︸
Undef

mostSpecialisedStateNode(sn: StateNode): StateNode =def

let sn1 = take(∅ ) in
if sn1 = unde�ned then sn else sn1.mostSpecialisedStateNode endif

endlet

Iteration: After cleanup, selectInheritedStateNode is de�ned as undefined and is
included in the reduction pro�le for the next iteration, which we do not show here
since it does not a�ect parts of the semantics de�nition included in Listing 6.16.

Listing 6.17 is the �nal result of the extraction for the derived functions for inher-
itance and re�nement, starting from a reduction pro�le containing only the function
inheritedStateNode. The 50 lines of de�nition from Listing 6.16 have been reduced to
14 lines of de�nition by the SDL-pro�le tool. Further reduction can be achieved by re-
placing predicate DirectlyInheritsFromOrRe�nedBy and mostSpecialisedStateNode by
their de�nitions.

1 DirectlyRe�nedBy(sn1: StateNode, sn2: StateNode): Boolean =def

2 sn2.parentStateNode = sn1
3
4 DirectlyInheritsFromOrRe�nedBy(sn1: StateNode, sn2: StateNode): Boolean =def

5 DirectlyRe�nedBy(sn1, sn2)
6
7 InheritsFromOrRe�nedBy(sn1: StateNode, sn2: StateNode): Boolean =def

8 DirectlyInheritsFromOrRe�nedBy(sn1, sn2) ∨∃ sn3 ∈ { sn ∈ StateNode :
DirectlyInheritsFromOrRe�nedBy (sn1, sn) } : InheritsFromOrRe�nedBy(sn3, sn2)

9
10 selectNextStateNode(snSet: StateNode−set): [StateNode] =def

11 take({sn1 ∈ snSet: (¬ ∃ sn2 ∈ snSet: InheritsFromOrRe�nedBy(sn1, sn2))})
12

133



13 mostSpecialisedStateNode(sn: StateNode): StateNode =def

14 sn
Listing 6.17: Extracted derived functions for inheritance and re�nement

In other parts of the SVM, 36 lines of de�nition are removed, 29 for transition
selection and 7 for entering state nodes. Furthermore, several expressions are replaced
with less complex subexpressions. Adding the function stateNodesToBeSpecialised to
the reduction pro�le in Figure 6.4 leads to the removal of 33 further lines of de�nition
for the creation of state nodes. Overall, 105 lines of de�nition are removed, about 4%
of the dynamic semantics.

6.5.3 Size of Extracted SDL Pro�les
We have used the SDL-pro�le tool to extract formal semantics de�nitions for several
SDL pro�les. Apart from the pro�les described in Section 4.3, we have extracted
a number of pro�les where only one feature was removed from the formal semantics
de�nition. The number of removed lines of speci�cation is a measure for the complexity
of the removed feature. Table 6.4 shows the size, in lines of de�nition (LoDef), of the
extracted semantics de�nition for ten language features. The pro�les were extracted
from the dynamic semantics of SDL, including the compilation function and excluding
the data semantics, with a size of 2731 lines of de�nition.

Feature LoDef ∆ ∆∆
Complete dynamic semantics 2731

1 Procedure 2480 251
2 Exception 2510 221
3 Continuous signal 2610 121
4 Inheritance 2626 105
5 Exit composite states 2627 104
6 Priority input 2641 90
7 Timer 2647 84
8 Spontaneous transition 2675 56
9 Entry-/Exit-procedure 2702 29
10 Save 2715 16

2, 4, 7 2325 406 4
2, 4�5, 7�10 2123 608 7
1, 9 2480 251 29
1�10 1744 987 88

Table 6.4: Size of extracted SDL pro�les

The most complex language feature are procedures, which consume almost 10%
of the formal semantics de�nition. This includes the creation and initialisation of
procedure graphs, procedure calls and returns, storing and restoring procedure control
blocks and parts of transition selection.
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The reduction pro�les for these features can be combined, for example by repeated
application of the SDL-pro�le tool, to yield further SDL pro�les. The number of
removed lines of de�nition is equal or smaller to the sum of removed lines for the in-
dividual features, since parts of the dynamic semantics are removed in more than one
pro�le. The di�erence between the sum of removed lines for the individual features,
and the number of removed lines of the combined features, is a measure for feature in-
teraction. For example, Table 6.4 shows that the feature interaction between exception
(2), inheritance (4) and timer (7) is small. For procedure (1) and entry-/exit-procedure
(9), feature interaction is maximal, since entry- and exit-procedures of composite states
rely on procedures. The parts of de�nition removed for entry-/exit-procedure are a
subset of the parts of de�nition removed for procedure.

Feature LoDef ∆
Complete dynamic semantics 2731
Dynamic 2441 290
SDL Pro�le for UML 2306 425
Static2 2053 678
SDL+ 1669 1062
Static1 1665 1066
Core 996 1735

Table 6.5: Size of extracted SDL pro�les

Table 6.5 shows the size of the extracted formal semantics de�nition for several SDL
pro�les introduced in Section 4.3. The extracted dynamic semantics of the smallest
pro�le (Core) contains about a third of the lines of de�nition of the complete dynamic
semantics. 24 lines of de�nition of Core belong to features not contained in the pro�le,
but could not be removed by the SDL-pro�le tool.

For the SDL pro�les de�ned by ConTraST, the extracted semantics of Static2 is
signi�cantly reduced (678 lines of de�nition) by excluding exception, and dynamic
aspects of the language (procedures, creating and stopping processes). The extracted
semantics of Static1 has almost 400 additional removed lines of de�nition compared
to Static2 , by excluding inheritance and several transition kinds.

6.6 Summary and Conclusions
In this chapter, we have described the implementation of the SDL-pro�le tool, and its
application to the dynamic semantics of SDL, to extract a number of SDL pro�les.
We have applied the tool to extract SDL pro�les with single features removed, and
identi�ed features with a large impact on the dynamic semantics, such as procedures,
exceptions, continuous signals, and inheritance. We have extracted the dynamic se-
mantics for several SDL pro�les described in Section 4.3, including SDL+, the SDL
Pro�le for UML, and all SDL pro�les introduced by ConTraST.

The reduction of the dynamic semantics achieved for smaller pro�les such as Core,
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Static1 and SDL+ is signi�cant. However, the extracted semantics de�nitions are still
large, since the general structure, introduced in order to cope with the complexity
of SDL-2000, remains intact. For example, the extracted semantics of Core still has
about 1000 lines of de�nition.

The format of the reduction pro�le and the extraction process have been kept simple,
with only a small set of default values. However, these default values have proved
su�cient to extract a formal semantics for all pro�les mentioned in this chapter. The
number of dead ASM rules (rules not executed for any SDL speci�cation in a given
SDL pro�le, see Section 5.3.2) that could not be removed by the SDL-pro�le tool
is small compared to the number of lines removed. For example, Core contains 24
lines of dead ASM rules not removed by the SDL-pro�le tool, compared to 1735 lines
removed.

6.7 Future Work
Applying the Extraction to Further Modelling Languages
We have de�ned the extraction for Abstract State Machines, and applied it to SDL,
attaining good results. The extraction can be applied to every formal semantics that
is de�ned using ASMs5. An open question is whether good results can be attained
for these semantics de�nitions, given the small set of default values su�cient for the
dynamic semantics of SDL, or with an extended set of default values.

The most common constructs in ASM speci�cations are parallel update rules, usually
guarded by one or more if -rules. The e�ectiveness of the extraction relies on the
identi�cation of domains, functions and predicates that are static for all possible runs
of an ASM for a given language pro�le, and consequently, the evaluation of guards of
if -rules as true or false. Usually, such domains (functions, predicates) are related to
the concrete/abstract syntax of language features excluded in a pro�le.

1 state (entry, exit ,do(A),defer)
2
3 deferrable (e) = true ⇔ enabled(e) = ∅ ∧ e ∈ defer(deepest)
4 releasable (e) = true ⇔ e ∈ deferQueue ∧ enabled(e) 6= ∅
5
6 Rule Transition Selection
7 choose e : dispatched(e) ∨ releasable (e)
8 choose trans ∈ FirableTrans(e)
9 stateMachineExecution(trans)
10 if deferrable (e) then insert(e, deferQueue)
11 if releasable (e) then delete(e, deferQueue)

Listing 6.18: Excerpt from an ASM semantics for UML statemachines [5]

UML does not have a complete, standardised formal semantics de�nition. Non-
standardised formal semantics de�nitions using ASMs have been de�ned for some
aspects of UML, such as statemachines [5], activity diagrams [4], and classes/objects,
5Because no standardised syntax exists for ASMs, usually some syntactical adjustments are neces-
sary.
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relationships and actions [49]. Listing 6.18 shows an excerpt from an ASM semantics
de�nition for UML statecharts [5]. Line 1 shows the abstract syntax of plain states,
containing a set of deferred events defer that is empty for pro�les that exclude deferred
events. The extraction subsequently determines predicate deferrable (line 3) as false
for all events (e ∈ defer(deepest) is evaluated as false, and therefore the conjunction
and equivalence), and subsequently removes lines 3 and 10. An empty domain defer
leads to an empty deferQueue, and a subsequent removal of lines 4 (e ∈ deferQueue
evaluated as false) and 11 by the extraction.
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7 Conclusions
7.1 State of the Art
7.1.1 Combined Use of Modelling Languages
The harmonisation of SDL and UML, and possibly further modelling languages, has
been an ongoing work in research and industry. For several years, these languages have
in�uenced each other's development, incorporating features from the other language
into new language standards. In [57], a proposal for a true harmonisation of UML,
SDL and other languages was put forward. This proposal aimed at de�ning a common
semantic core for UML, SDL and VHDL/SystemC.

In order to de�ne a common semantic core, a rigorous comparison of the languages
involved is necessary. We have performed this comparison for SDL and a correspond-
ing subset of UML on a syntactic and semantic level. This comparison resulted in a
mapping between the abstract syntax representations of SDL (abstract grammars) and
UML (meta-models), a common abstract syntax, and a comparison of the semantics
for the speci�cation of behaviour in both languages. From this comparison we con-
cluded that, while SDL and UML are syntactically similar only for the speci�cation
of structural aspects, both languages have similar semantics for behavioural elements
(state machines and process graphs), with small semantic di�erences for some language
features.

Given the similarities between SDL and UML on the semantic level, the approach
of the ITU - the standardisation body for SDL - was to use SDL as the semantic
core for UML. This approach mapped a subset of UML to the dynamic semantics of
SDL, thus reusing its formal semantics de�nition, and resolving the semantic variation
points of UML. With the mature UML pro�le mechanism introduced in the new UML
2.0 standard [52], this mapping was integrated into UML as a UML pro�le, de�ning
stereotypes for existing UML meta-model classes. In order to carry over the formality
of SDL to the subset of UML, we surveyed a formalisation approach for the UML
Pro�le for SDL. This formalisation produced feedback for the pro�le de�nition, leading
to the correction of several errors and imprecise statements. From the formalisation,
the meta-model constraints speci�ed with OCL are planned to be included in the �nal
standard.

With the standardisation of the UML Pro�le for SDL [33], SDL and UML can be
used together. A developer can specify a system design in UML, with the UML Pro�le
for SDL applied, automatically checking the constraints de�ned on the model. The
model can then be translated1 to SDL for the detailed design phase. To combine

1This translation can be automatically derived from a complete formalisation of the pro�le.
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UML and SDL in one model, for example, structural elements of UML with behaviour
speci�cation of SDL, we can extract a meta-model for SDL, using our mapping between
abstract syntax representations. This SDL meta-model can be integrated with the
UML meta-model, using inheritance, and ensuring that no constraints on the UML
meta-model are violated2. Note that this approach goes beyond the UML pro�le
approach, since UML pro�les are not allowed to extend the referenced meta-model.

7.1.2 Language Pro�les and Modular Language De�nition
Modelling languages like UML and SDL are complex and expressive, leading to lan-
guage de�nitions that are long and take substantial e�ort to be understood completely,
and that have a limited applicability in domains where tailor-made, domain-speci�c
languages are preferred. Tool support usually covers only a subset of these languages,
omitting features that are hard to implement, or unsuitable for the target domain
of the tool. Our aim was to develop methods for de�ning modular language de�ni-
tions (horizontal modularity), particularly formal language de�nitions, which enable
a tool provider to extract a tailor-made formal language de�nition for a subset of the
language - called language pro�le3.

We have examined two approaches for generating formal language de�nitions for
language pro�les. The composition approach splits the language into a language core
and a set of language modules. Language modules encapsulate a language feature,
and can be composed with the language core to yield a tailor-made language. For
imperative languages like C, C] and Java, such modular language de�nitions exist,
de�ning an interpreter with incremental extensions, using Abstract State Machines
[29, 63, 6]. For the formal semantics for a language such as SDL, which is used to
de�ne distributed, asynchronous systems, a virtual machine approach is more suitable
(see Section 2.4). For these kind of formal semantics de�nitions, it proved di�cult to
encapsulate language features into language modules, without sacri�cing readability.

Therefore, we have followed the extraction approach, where, starting from a com-
plete language de�nition, we extract the formal semantics of a language pro�le by
removing parts of the formal language de�nition that are not included in the pro�le.
We have formalised this approach for Abstract State Machines [27, 28], and applied
it to the formal semantics de�nition of SDL [42], extracting a number of SDL pro�les
using a tool that implements the formal de�nition of the extraction. We have used
the extraction approach to extract a language core for SDL, containing only basic fea-
tures of SDL. While the reduction achieved was signi�cant (two thirds of the original
semantics de�nition), the resulting semantics de�nition was still large, since the core
still contains the infrastructure for advanced SDL features.

2For example, an SDL meta-model class State-machine-de�nition can be integrated into the UML
meta-model as a subclass of abstract metaclass Behavior .

3Named after UML pro�les, which are used to specialise UML.
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7.2 Future Work
In this thesis, we have focused on the horizontal modularisation of modelling languages.
Future work is the provision of sound approaches for the other forms of modularity
introduced in Section 1.2: vertical, optional, temporal and hybrid modularity.

To some extent, the extraction approach de�ned in Chapter 5 can be applied to
vertical modularity. Given two languages of a language family, with one language
providing an abstract view of the model de�ned by the other language, the extraction
approach can be used to reduce the semantics de�nition of the more detailed language
to aspects relevant to the abstract view. ASM slicing [47, 48] can be applied, identifying
locations of interest to the abstract view, and reducing the formal semantics de�nition
to rules that a�ect these locations directly and indirectly.

For optional modularity, UML 2.0 [52] introduces a mature UML pro�le mechanism.
Using UML pro�les, semantic variation points can be resolved, leading to a speciali-
sation of the language. The UML pro�le concept can be applied to other languages.
However, it is only feasible for languages with many semantic variation points.

For temporal modularity, the composition approach to modular language de�nition,
outlined in Section 5.11, would enable the conservative extension of languages by
adding new language modules to the language core. For extensions that a�ect existing
modules, criteria for valid modi�cations of modules must be de�ned.
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A UML Kernel Abstract Grammar
/∗ 1 .2 Kernel − Root ∗/

Kernel_Element : :=(=) Kerne l_Relat ionship
| Kernel_Comment
| Kernel_NamedElement
| Kerne l_Mult ip l i c i tyElement
| Kernel_Slot

Kerne l_Relat ionship : :=(=) Kerne l_DirectedRelat ionsh ip
| Kerne l_Assoc iat ion

Kerne l_DirectedRelat ionsh ip : :=(=) Kernel_ElementImport
| Kernel_PackageImport
| Kerne l_Genera l i zat ion
| Kernel_PackageMerge

Kernel_Comment : : = ( : : )
S t r ing /∗ body ∗/
Kernel_Element_Idenf i f i er−s e t /∗ annotatedElement ∗/

/∗ 1 .3 Kernel − Namespaces ∗/

Kerne l_Vis ib i l i tyKind ::=(=) PUBLIC | PRIVATE | PROTECTED | PACKAGE

Kernel_NamedElement : :=(=) Kernel_PackageableElement
| Kernel_Namespace
| Kernel_TypedElement
| Kernel_RedefinableElement

Kernel_PackageableElement : :=(=) Kernel_Type
| Kernel_Constraint
| Ke rne l_In s tanceSpec i f i c a t i on
| Kernel_Package

Kernel_Namespace : :=(=) Ke rne l_C la s s i f i e r
| Kernel_BehavioralFeature
| Kernel_Package

Kernel_ElementImport : : = ( : : )
Kerne l_Vis ib i l i tyKind /∗ v i s i b i l i t y ∗/
[ S t r ing ] /∗ a l i a s ∗/
Kernel_PackageableElement_Ident i f ier /∗ importedElement ∗/

Kernel_PackageImport : : = ( : : )
Kerne l_Vis ib i l i tyKind /∗ v i s i b i l i t y ∗/
Kernel_Package_Ident i f i er /∗ importedPackage ∗/
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/∗ 1 .4 Kernel − Mu l t i p l i c i t i e s ∗/

Kerne l_Mult ip l i c i tyElement : :=(=) Kerne l_Structura lFeature
| Kernel_Parameter

Kernel_TypedElement : :=(=) Kerne l_ValueSpec i f i ca t ion
| Kerne l_Structura lFeature
| Kernel_Parameter

Kernel_Type : :=(=) Ke rne l_C la s s i f i e r

/∗ 1 .5 Kernel − Express ions ∗/

Kerne l_ValueSpec i f i ca t ion : :=(=) Kernel_Expression
| Kernel_OpaqueExpression
| Ke rn e l_L i t e r a l Sp e c i f i c a t i o n
| Kernel_InstanceValue

Kernel_Expression : : = ( : : )
S t r ing /∗ symbol ∗/
Kerne l_ValueSpec i f i cat ioN−s e t /∗ operand ∗/
[ Kerne l_Vis ib i l i tyKind ] /∗ v i s i b i l i t y ∗/
[ S t r ing ] /∗ name ∗/
[ Kernel_Type_Identi f ier ] /∗ type ∗/

Kernel_OpaqueExpression : : = ( : : )
S t r ing /∗ body ∗/
[ S t r ing ] /∗ language ∗/
[ Kerne l_Vis ib i l i tyKind ] /∗ v i s i b i l i t y ∗/
[ S t r ing ] /∗ name ∗/
[ Kernel_Type_Identi f ier ] /∗ type ∗/

Ke rn e l_L i t e r a l Sp e c i f i c a t i o n : :=(=) Kerne l_Litera lBoolean
| Kerne l_L i t e ra l In t ege r
| Kerne l_Li t e ra lS t r ing
| Kerne l_Litera lUnl imitedNatura l
| Kerne l_Li te ra lNul l

Kernel_InstanceValue : : = ( : : )
Ke rn e l_ In s t an c eSpe c i f i c a t i on_Iden t i f i e r /∗ i n s t anc e ∗/
[ Kerne l_Vis ib i l i tyKind ] /∗ v i s i b i l i t y ∗/
[ S t r ing ] /∗ name ∗/
[ Kernel_Type_Identi f ier ] /∗ type ∗/

Kerne l_Litera lBoolean : : = ( : : )
Boolean /∗ value ∗/
[ Kerne l_Vis ib i l i tyKind ] /∗ v i s i b i l i t y ∗/
[ S t r ing ] /∗ name ∗/
[ Kernel_Type_Identi f ier ] /∗ type ∗/

Kerne l_L i t e ra l In t ege r : : = ( : : )
I n t eg e r /∗ value ∗/
[ Kerne l_Vis ib i l i tyKind ] /∗ v i s i b i l i t y ∗/
[ S t r ing ] /∗ name ∗/
[ Kernel_Type_Identi f ier ] /∗ type ∗/
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Kerne l_Li t e ra lS t r ing : : = ( : : )
S t r ing /∗ value ∗/
[ Kerne l_Vis ib i l i tyKind ] /∗ v i s i b i l i t y ∗/
[ S t r ing ] /∗ name ∗/
[ Kernel_Type_Identi f ier ] /∗ type ∗/

Kerne l_Litera lUnl imitedNatura l : : = ( : : )
Unl imitedNatural /∗ value ∗/
[ Kerne l_Vis ib i l i tyKind ] /∗ v i s i b i l i t y ∗/
[ S t r ing ] /∗ name ∗/
[ Kernel_Type_Identi f ier ] /∗ type ∗/

Kerne l_Li te ra lNu l l : : = ( : : )
[ Kerne l_Vis ib i l i tyKind ] /∗ v i s i b i l i t y ∗/
[ S t r ing ] /∗ name ∗/
[ Kernel_Type_Identi f ier ] /∗ type ∗/

/∗ 1 .6 Kernel − Const ra int s ∗/

Kernel_Constraint : : = ( : : )
Kernel_Element_Identi f ier−s e t /∗ constra inedElement ∗/
Kerne l_ValueSpec i f i ca t ion /∗ s p e c i f i c a t i o n ∗/
Kerne l_Vis ib i l i tyKind /∗ v i s i b i l i t y ∗/
[ S t r ing ] /∗ name ∗/

/∗ 1 .7 Kernel − In s tance s ∗/

Kerne l_In s tanceSpec i f i c a t i on : :=(=) Kerne l_InstanceSpec i f i ca t ion_Concrete
| Kernel_EnumerationLiteral

Kerne l_InstanceSpec i f i cat ion_Concrete : : = ( : : )
Kernel_Slot−s e t /∗ s l o t ∗/
[ Kerne l_ValueSpec i f i ca t ion ] /∗ s p e c i f i c a t i o n ∗/
Ke rn e l_C l a s s i f i e r_ Id en t i f i e r−s e t /∗ c l a s s i f i e r ∗/
Kerne l_Vis ib i l i tyKind /∗ v i s i b i l i t y ∗/
[ S t r ing ] /∗ name ∗/

Kernel_Slot : : = ( : : )
Kerne l_ValueSpec i f i cat ion−s e t /∗ value ∗/
Kerne l_St ruc tura lFea ture_Ident i f i e r /∗ de f i n ingFea tu r e ∗/

/∗ 1 .8 Kernel − C l a s s i f i e r s ∗/

Ke rne l_C la s s i f i e r : :=(=) Kernel_Class
| Kerne l_Assoc iat ion
| Kernel_DataType

Kernel_RedefinableElement : :=(=) Ke rne l_C la s s i f i e r
| Kernel_Feature

Kerne l_Genera l i zat ion : : = ( : : )
Boolean /∗ i s S u i t a b l e ∗/
Ke rn e l_C l a s s i f i e r_ Id en t i f i e r /∗ gene ra l ∗/

/∗ 1 .9 Kernel − Features ∗/
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Kernel_ParamerDirectionKind ::=(=) IN | INOUT | OUT | RETURN

Kernel_Feature : :=(=) Kerne l_Structura lFeature
| Kernel_BehavioralFeature

Kerne l_Structura lFeature : :=(=) Kernel_Property

Kernel_BehavioralFeature : :=(=) Kernel_Operation

Kernel_Parameter : : = ( : : )
Kernel_ParamerDirectionKind /∗ d i r e c t i o n ∗/
[ S t r ing ] /∗ de f au l t ∗/
[ Kerne l_ValueSpec i f i ca t ion ] /∗ de fau l tVa lue ∗/
[ Kerne l_Vis ib i l i tyKind ] /∗ v i s i b i l i t y ∗/
[ S t r ing ] /∗ name ∗/
Boolean /∗ i sOrdered ∗/
Boolean /∗ i sUnique ∗/
[ Kernel_Type_Identi f ier ] /∗ type ∗/
[ Kerne l_ValueSpec i f i ca t ion ] /∗ upperValue ∗/
[ Kerne l_ValueSpec i f i ca t ion ] /∗ lowerValue ∗/

/∗ 1 .10 Kernel − Operat ions ∗/

Kernel_Operation : : = ( : : )
Boolean /∗ i sQuery ∗/
Kernel_Parameter−s e t /∗ formalParameter ∗/
Kernel_Constraint−s e t /∗ pre cond i t i on ∗/
Kernel_Constraint−s e t /∗ pos t cond i t i on ∗/
[ Kernel_Constraint ] /∗ bodyCondition ∗/
Kernel_Type_Identi f ier−s e t /∗ ra i s edExcept ion ∗/
Kerne l_Operat ion_Ident i f i e r−s e t /∗ r ede f inedOperat ion ∗/
Boolean /∗ i s S t a t i c ∗/
Boolean /∗ i s L e a f ∗/
[ Kerne l_Vis ib i l i tyKind ] /∗ v i s i b i l i t y ∗/
[ S t r ing ] /∗ name ∗/
Kernel_Parameter−s e t /∗ r e turnResu l t ∗/
Kernel_ElementImport−s e t /∗ elementImport ∗/
Kernel_PackageImport−s e t /∗ packageImport ∗/
Kernel_Constraint−s e t /∗ ownedRule ∗/

/∗ 1 .11 Kernel − Cla s s e s ∗/

Kernel_AggregationKind ::=(=) NONE | SHARED | COMPOSITE

Kernel_Class : : = ( : : )
Kernel_Property−s e t /∗ ownedAttribute ∗/
Kerne l_Cla s s i f i e r−s e t /∗ n e s t e dC l a s s i f i e r ∗/
Kernel_Operation−s e t /∗ ownedOperation ∗/
Boolean /∗ i sAbs t r a c t ∗/
Boolean /∗ i s L e a f ∗/
Kerne l_Vis ib i l i tyKind /∗ v i s i b i l i t y ∗/
[ S t r ing ] /∗ name ∗/
Ke rn e l_C l a s s i f i e r_ Id en t i f i e r−s e t /∗ r e d e f i n e dC l a s s i f i e r ∗/
Kernel_Genera l izat ion−s e t /∗ g e n e r a l i z a t i o n ∗/
Kernel_ElementImport−s e t /∗ elementImport ∗/
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Kernel_PackageImport−s e t /∗ packageImport ∗/
Kernel_Constraint−s e t /∗ ownedRule ∗/

Kernel_Property : : = ( : : )
Boolean /∗ i sDer ived ∗/
Boolean /∗ isReadOnly ∗/
Boolean /∗ i sDer ivedUnion ∗/
Kernel_AggregationKind /∗ aggregat i on ∗/
Kerne l_Property_Ident i f i e r−s e t /∗ subse t t e tPrope r ty ∗/
Kerne l_Property_Ident i f i e r−s e t /∗ r e f i n edPrope r ty ∗/
[ Kerne l_ValueSpec i f i ca t ion ] /∗ de fau l tVa lue ∗/
[ Kerne l_Assoc i a t i on_Ident i f i e r ] /∗ a s s o c i a s t i o n ∗/
Boolean /∗ i s S t a t i c ∗/
Boolean /∗ i s L e a f ∗/
Boolean /∗ i sOrdered ∗/
Boolean /∗ i sUnique ∗/
Boolean /∗ isReadOnly ∗/
[ Kerne l_Vis ib i l i tyKind ] /∗ v i s i b i l i t y ∗/
[ S t r ing ] /∗ name ∗/
[ Kernel_Type_Identi f ier ] /∗ type ∗/
[ Kerne l_ValueSpec i f i ca t ion ] /∗ upperValue ∗/
[ Kerne l_ValueSpec i f i ca t ion ] /∗ lowerValue ∗/

Kernel_Assoc iat ion : : = ( : : )
Boolean /∗ i sDer ived ∗/
Kernel_Property−s e t /∗ ownedEnd ∗/
Kernel_Property−s e t /∗ memberEnd ∗/
Boolean /∗ i sAbs t r a c t ∗/
Boolean /∗ i s L e a f ∗/
Kerne l_Vis ib i l i tyKind /∗ v i s i b i l i t y ∗/
[ S t r ing ] /∗ name ∗/
Ke rn e l_C l a s s i f i e r_ Id en t i f i e r−s e t /∗ r e d e f i n e dC l a s s i f i e r ∗/
Kernel_Genera l izat ion−s e t /∗ g e n e r a l i z a t i o n ∗/
Kernel_ElementImport−s e t /∗ elementImport ∗/
Kernel_PackageImport−s e t /∗ packageImport ∗/
Kernel_Constraint−s e t /∗ ownedRule ∗/

/∗ 1 .12 Kernel − Datatype ∗/

Kernel_DataType : :=(=) Kernel_Datatype_Concrete
| Kernel_PrimitiveType
| Kernel_Enumeration

Kernel_DataType_Concrete : : = ( : : )
Kernel_Property−s e t /∗ ownedAttribute ∗/
Kernel_Operation−s e t /∗ ownedOperation ∗/
Boolean /∗ i sAbs t r a c t ∗/
Boolean /∗ i s L e a f ∗/
Kerne l_Vis ib i l i tyKind /∗ v i s i b i l i t y ∗/
[ S t r ing ] /∗ name ∗/
Ke rn e l_C l a s s i f i e r_ Id en t i f i e r−s e t /∗ r e d e f i n e dC l a s s i f i e r ∗/
Kernel_Genera l izat ion−s e t /∗ g e n e r a l i z a t i o n ∗/
Kernel_ElementImport−s e t /∗ elementImport ∗/
Kernel_PackageImport−s e t /∗ packageImport ∗/
Kernel_Constraint−s e t /∗ ownedRule ∗/
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Kernel_PrimitiveType : : = ( : : )
Boolean /∗ i sAbs t r a c t ∗/
Boolean /∗ i s L e a f ∗/
Kerne l_Vis ib i l i tyKind /∗ v i s i b i l i t y ∗/
[ S t r ing ] /∗ name ∗/
Kernel_Property−s e t /∗ ownedAttribute ∗/
Kernel_Operation−s e t /∗ ownedOperation ∗/
Ke rn e l_C l a s s i f i e r_ Id en t i f i e r−s e t /∗ r e d e f i n e dC l a s s i f i e r ∗/
Kernel_Genera l izat ion−s e t /∗ g e n e r a l i z a t i o n ∗/
Kernel_ElementImport−s e t /∗ elementImport ∗/
Kernel_PackageImport−s e t /∗ packageImport ∗/
Kernel_Constraint−s e t /∗ ownedRule ∗/

Kernel_Enumeration : : = ( : : )
Kernel_EnumerationLiteral−s e t /∗ l i t e r a l ∗/
Boolean /∗ i sAbs t r a c t ∗/
Boolean /∗ i s L e a f ∗/
Kerne l_Vis ib i l i tyKind /∗ v i s i b i l i t y ∗/
[ S t r ing ] /∗ name ∗/
Kernel_Property−s e t /∗ ownedAttribute ∗/
Kernel_Operation−s e t /∗ ownedOperation ∗/
Ke rn e l_C l a s s i f i e r_ Id en t i f i e r−s e t /∗ r e d e f i n e dC l a s s i f i e r ∗/
Kernel_Genera l izat ion−s e t /∗ g e n e r a l i z a t i o n ∗/
Kernel_ElementImport−s e t /∗ elementImport ∗/
Kernel_PackageImport−s e t /∗ packageImport ∗/
Kernel_Constraint−s e t /∗ ownedRule ∗/

Kernel_EnumerationLiteral : : = ( : : )
Kerne l_Vis ib i l i tyKind /∗ v i s i b i l i t y ∗/
[ S t r ing ] /∗ name ∗/
Kernel_Slot−s e t /∗ s l o t ∗/
[ Kerne l_ValueSpec i f i ca t ion ] /∗ s p e c i f i c a t i o n ∗/
Kerne l_Cla s s i f i e r−s e t /∗ c l a s s i f i e r ∗/

/∗ 1 .13 Kernel − Package ∗/

Kernel_Package : : = ( : : )
Kernel_PackageableElement−s e t /∗ ownedMember ∗/
Kernel_PackageMerge−s e t /∗ packageExtension ∗/
Kernel_Package−s e t /∗ nestedPackage ∗/
Kerne l_Vis ib i l i tyKind /∗ v i s i b i l i t y ∗/
[ S t r ing ] /∗ name ∗/
Kernel_ElementImport−s e t /∗ elementImport ∗/
Kernel_PackageImport−s e t /∗ packageImport ∗/
Kernel_Constraint−s e t /∗ ownedRule ∗/

Kernel_PackageMerge : : = ( : : )
Kerne l_Package_Ident i f i er /∗ mergedPackage ∗/
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B Agent Moves for Ping-Pong
System

system PingPong 1(1)

pi: Ping po: Pong

Ping Pong

C

pingpong

g1 g2

process type Ping 1(1)

wait

     ping

     pong

wait

     ping

process type Pong 1(1)

reply

     pong

     ping

reply

Figure B.1: SDL speci�cation of ping-pong system
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sas:

sa:

pis:

pia:

pos:

poa:

l1:

l2:

mI

mI1 mI2 mIS . . . mES . . .

mI

mI

mI1
. . . mSO . . .

mI1 . . .

mFS

mDS

mCS . . . mSO . . .

mFS

mDS

mCS . . .

Figure B.2: Partially-ordered run for ping-pong system

Move Agent mode (level) Action
mI initialisation (1) initialise agent set
mI1 initialising1 (2) initialise agent
mI2 initialising2 (2) create agent channels
mIS initialisingStateMachine (2) initialise state machine
mES enteringStateNode (3) enter statenode
mDS execution (1) deliver signal to inport
mSO �ringAction (3) signal output
mCS selectionPhase (4) consume input signal
mFS - (-) forward signal via link

Table B.1: Moves performed by ping-pong ASM agents

SDL SVM
System PingPong AgentSet sas, Agent sa
Agent Ping AgentSet pis, Agent pia
Agent Pong AgentSet pos, Agent poa
Channel C Link l1, Link l2

Table B.2: SDL entities and corresponding ASM agents
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C Complete Formal De�nition of
Extraction

C.1 De�nitions
D,D1, D2 ∈ domain, dn ∈ DomainName, exp ∈ formula, R, R1, R2 ∈ rule, ps ∈
paramSeq

remove(mode domain dn,V) = mode domain dn
remove(domain dn,V) = domain dn
remove(dn =def D,V) = dn =def remove(D,V)

remove(mode f ':' D1 → D2,V) = mode f ':' remove(D1,V) → remove(D2,V)
remove(mode f ':' → D2,V) = mode f ':' → remove(D2,V)
remove(f ':' D1 → D2,V) = f ':' remove(D1,V) → remove(D2,V)
remove(f ':' → D2,V) = f ':' → remove(D2,V)

remove(f ':' D =def exp,V) = f ':' remove(D,V) =def remove(exp,V)
remove(f(ps) ':' D =def exp,V) =

f(remove(ps,V)) ':' remove(D,V) =def remove(exp,V ∪ remfpar(ps))

remove(RuleName ≡ R,V) = RuleName ≡ remove(R,V)
remove(RuleName(ps) ≡ R,V) =

RuleName(remove(ps,V)) ≡ remove(R,V ∪ remfpar(ps))

remove(constraint exp,V) = constraint remove(exp,V)
remove(initially exp,V) = initially remove(exp,V)

remove(ProgramName ':' R,V) = ProgramName ':' remove(R,V)
remove(ProgramName ':',V) = ProgramName ':'

C.2 Macros, Functions and Parameters
fcs ∈ formulaCommaSeq, n, p ∈ N

remove(ps ',' x ':' D,V) =
remove(ps,V) iff undefined(D)
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remove(ps,V) ',' x ':' remove(D,V) else

remove(x ':' D,V) =
� iff undefined(D)
x ':' remove(D,V) else

numfpar(fcs ',' exp) = numfpar(fcs) + 1
numfpar(exp) = 1
numfpar(ps ',' x ':' D) = numfpar(ps) + 1
numfpar(x ':' D) = 1

remfpar(ps ',' x ':' D) =
{x} ∪ remfpar(ps) iff undefined(D)
remfpar(ps) else

remfpar(x ':' D) =
{x} iff undefined(D)
{} else

code(ps ',' x ':' D,n) =
code(ps, n− 1) + 2n iff undefined(D)
code(ps, n− 1) else

code(x ':' D, n) =
2n iff undefined(D)
0 else

count(MacroName) = code(ps,numfpar(ps)− 1)

removepar(fcs ',' exp, n, p) =
removepar(fcs, n− 1, p− 2n) iff p− 2n > 0
removepar(fcs, n− 1, p) ',' exp else

removepar(exp, n, p) =
� iff p = 2n // n should be 0
exp else

undefined(fcs, exp,V) iff undefined(fcs,V) ∨ undefined(exp,V)

C.3 Rules
remove(f(fcs) := exp,V) =
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skip iff undefined(f,V) ∨ undefined(fcs,V)∨
undefined(exp,V)

f(remove(fcs,V)) := remove(exp,V) else

remove(if exp then R1 else R2 endif, V) =
remove(R1,V) iff true(exp,V)
remove(R2,V) iff false(exp,V)
skip iff undefined(exp,V)
if remove(exp,V) then remove(R1,V) else
else remove(R2,V) endif

remove(let x = exp in R endlet, V) =
remove(R,V ∪ {x}) iff undefined(exp,V)
let x = remove(exp,V) in remove(R,V) else
endlet

remove(let x : D = exp in R endlet, V) =
remove(R,V ∪ {x}) iff undefined(exp,V) ∨ undefined(D)
let x : remove(D,V) = remove(exp,V) in else
remove(R,V) endlet

remove(extend dn with x R endextend, V) =
remove(R,V ∪ {x}) iff undefined(dn,V)
extend dn with x remove(R,V) endextend else

remove(choose x : exp R endchoose, V) =
skip iff false(exp,V) ∨ true(exp,V)∨

undefined(exp,V)
choose x : remove(exp,V) remove(R,V) else
endchoose

remove(do forall x ':' exp R enddo,V) =
skip iff false(exp,V) ∨ true(exp,V)∨

undefined(exp,V)
do forall x ':' remove(exp,V) remove(R,V) else
enddo

remove(R1 R,V) = remove(R1,V) remove(R,V)

C.4 Domains
s, s1, s2 ∈ simpledomain, t ∈ tupledomain, u ∈ uniondomain, ics ∈ itemCommaSeq.

remove(dn,V) =
nodomain iff undefined(dn,V)
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dn else
remove(dn mod ,V) =

nodomain iff undefined(dn)
dn mod else

remove((D),V) =
nodomain iff undefined(D,V)
(remove(D,V)) else

remove((D)-set,V) =
nodomain iff undefined(D,V)
(remove(D,V))-set else

remove([D],V) =
nodomain iff undefined(D,V)
[remove(D,V)] else

remove([D] mod ,V) =
nodomain iff undefined(D,V)
[remove(D,V)] mod else

remove(D1 → D2,V) =
nodomain iff undefined(D1,V) ∨ undefined(D2,V)
remove(D1,V) → remove(D2,V) else

remove(s1 × s2,V) =
� iff undefined(s1 × s2,V)
remove(s1,V)× remove(s2,V) else

remove(t× s,V) =
� iff undefined(t× s,V)
remove(t,V)× remove(s,V) else

remove('(' ')',V) = '(' ')'

remove(s1 ∪ s2,V) =
� iff undefined(s1 ∪ s2,V)
remove(s1,V) iff undefined(s2,V)
remove(s2,V) iff undefined(s1,V)
remove(s1,V) ∪ remove(s2,V) else

remove(u ∪ s,V) =
� iff undefined(u ∪ s,V)
remove(u,V) iff undefined(s,V)
remove(s,V) iff undefined(u,V)
remove(u,V) ∪ remove(s,V) else

remove('{' ics '}',V) = if undefined(ics,V) then � else '{' remove(ics,V) '}' endif
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undefined(dn∗,V) iff undefined(dn)
undefined(dn∗∗,V) iff undefined(dn)
undefined(dn+,V) iff undefined(dn)

undefined(dn-set,V) iff undefined(dn)
undefined((D),V) iff undefined(D,V)

undefined((D)-set,V) iff undefined(D,V)
undefined([D],V) iff undefined(D,V)

undefined([D]∗,V) iff undefined(D,V)
undefined([D]+,V) iff undefined(D,V)

undefined(D1 → D2,V) iff undefined(D1,V) ∨ undefined(D2,V)

undefined(s1 × s2,V) iff undefined(s1,V) ∨ undefined(s2,V)
undefined(t× s,V) iff undefined(t,V) ∨ undefined(s,V)
undefined(‘(‘ ‘)‘,V) iff false

undefined(s1 ∪ s2,V) iff undefined(s1,V) ∧ undefined(s2,V)
undefined(u ∪ s,V) iff undefined(u,V) ∧ undefined(s,V)

undefined(′{′ics′}′,V) iff undefined(ics,V)
undefined(ics′,′ x,V) iff x ∈ V

undefined(ics′,′ kw,V) iff undefined(ics,V) ∧ undefined(kw)
undefined(ics′,′ kw1 kw2,V) iff undefined(ics,V) ∧ undefined(kw1) ∧

undefined(kw2)
undefined(ics′,′ Literal,V) iff false

C.5 Expressions
Boolean Operators
e1 ¬ T F U -

F T U ¬e1
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e2

e1 ∨ T F U -
T T T T T
F T F F e1

U T F U e1

- T e2 e2 e1 ∨ e2

e2

e1 ∧ T F U -
T T F T e1

F F F F F
U T F U e1

- e2 F e2 e1 ∧ e2

e2

e1 → T F U -
T T T T T
F F T F ¬e1

U F T U ¬e1

- e2 T ¬e1 e1 → e2

e2

e1 ↔ T F U -
T T F F e1

F F T F ¬e1

U F F U F
- e2 ¬e2 F e1 ↔ e2

true(if e then e1 else e2 endif) iff (true(e) ∧ true(e1)) ∨
(false(e) ∧ true(e2))

false(if e then e1 else e2 endif) iff (true(e) ∧ false(e1)) ∨
(false(e) ∧ false(e2))

undefined(if e then e1 else e2 endif) iff (true(e) ∧ undefined(e1)) ∨ undefined(e)
∨(false(e) ∧ undefined(e2)) ∨
(undefined(e1) ∧ undefined(e2))

Quanti�cation

Qx ∈ e1 : e2, Q ∈ {∀,∃,∃1}
e1

e2 ∀ T F U -
U T T T T
- T - U -

remove(∀nseq ∈ e1‘ : ‘e2,V) =
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true iff undefined(e1,V) ∨ true(e2,V)
undefined iff ¬undefined(e1,V) ∧ undefined(e2,V)
∀nseq ∈ remove(e1,V)‘ : ‘remove(e2,V) else

e1

e2 ∃ T F U -
U F F F F
- - F U -

remove(∃nseq ∈ e1‘ : ‘e2,V) =
false iff undefined(e1,V) ∨ false(e2,V)
undefined iff ¬undefined(e1,V) ∧ undefined(e2,V)
∀nseq ∈ remove(e1,V)‘ : ‘remove(e2,V) else

e1

e2 ∃1 T F U -
U F F F F
- - F U -

remove(∃1nseq ∈ e1‘ : ‘e2,V) =
false iff undefined(e1,V) ∨ false(e2,V)
undefined iff ¬undefined(e1,V) ∧ undefined(e2,V)
∀nseq ∈ remove(e1,V)‘ : ‘remove(e2,V) else

Relational Operators
e2 op ∈ {<, >,≤,≥}

e1 op U -
U U U
- U -

remove(e1 > e2,V) =
undefined iff undefined(e1,V) ∨ undefined(e2,V)
remove(e1,V) > remove(e2,V) else

remove(e1 < e2,V) =
undefined iff undefined(e1,V) ∨ undefined(e2,V)
remove(e1,V) < remove(e2,V) else

remove(e1 ≥ e2,V) =
undefined iff undefined(e1,V) ∨ undefined(e2,V)
remove(e1,V) ≥ remove(e2,V) else

remove(e1 ≤ e2,V) =
undefined iff undefined(e1,V) ∨ undefined(e2,V)
remove(e1,V) ≤ remove(e2,V) else
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e2

e1 ∈ U -
U F F
- F -

e2

e1 6∈ U -
U T T
- T -

true(e = undefined,V) iff undefined(e,V)
false(e 6= undefined,V) iff undefined(e,V)

true(e = ∅,V) iff undefined(e,V)
false(e 6= ∅,V) iff undefined(e,V)

true(e = empty ,V) iff undefined(e,V)
false(e 6= empty ,V) iff undefined(e,V)

false(e1 = e2,V) iff ¬true(e1 = e2,V) ∧
(undefined(e1,V) ∧ ¬undefined(e2,V) ∨
¬undefined(e1,V) ∧ undefined(e2,V))

true(e1 6= e2,V) iff ¬false(e1 6= e2,V) ∧
(undefined(e1,V) ∧ ¬undefined(e2,V) ∨
¬undefined(e1,V) ∧ undefined(e2,V))

Arithmetic Operators
remove(−e,V) =

undefined iff undefined(e,V)
−remove(e,V) else

remove(e1 + e2,V) =
undefined iff undefined(e1,V) ∧ undefined(e2,V)
remove(e1,V) iff undefined(e2,V)
remove(e2,V) iff undefined(e1,V)
remove(e1,V) + remove(e2,V) else

remove(e1 − e2,V) =
undefined iff undefined(e1,V) ∧ undefined(e2,V)
remove(e1,V) iff undefined(e2,V)
remove(e2,V) iff undefined(e1,V)
remove(e1,V)− remove(e2,V) else

remove(e1 ∗ e2,V) =
undefined iff undefined(e1,V) ∨ undefined(e2,V)
remove(e1,V) ∗ remove(e2,V) else

remove(e1 / e2,V) =
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undefined iff undefined(e1,V) ∨ undefined(e2,V)
remove(e1,V) / remove(e2,V) else

remove(e1 MOD e2,V) =
undefined iff undefined(e1,V) ∨ undefined(e2,V)
remove(e1,V) MOD remove(e2,V) else

remove(e1 DIV e2,V) =
undefined iff undefined(e1,V) ∨ undefined(e2,V)
remove(e1,V) DIV remove(e2,V) else

undefined(−e,V) iff undefined(e,V)
undefined(e1 + e2,V) iff undefined(e1,V) ∧ undefined(e2,V)
undefined(e1 − e2,V) iff undefined(e1,V) ∧ undefined(e2,V)
undefined(e1 ∗ e2,V) iff undefined(e1,V) ∨ undefined(e2,V)
undefined(e1 / e2,V) iff undefined(e1,V) ∨ undefined(e2,V)

undefined(e1 mod e2,V) iff undefined(e1,V) ∨ undefined(e2,V)
undefined(e1 rem e2,V) iff undefined(e1,V) ∨ undefined(e2,V)

Sets and Sequences

< e1 | x ∈ e2 : e3 >, {e1 | x ∈ e2 : e3}

remove(< e1 | x ∈ e2 : e3 >,V) =
undefined iff undefined(e1,V) ∨ undefined(e3,V)
empty iff (false(e3,V) ∨ undefined(e2,V))

∧¬undefined(e1,V)
< remove(e1,V) | x ∈ remove(e2,V) else
: remove(e3,V) >

remove({e1 | x ∈ e2 : e3},V) =
undefined iff undefined(e1,V) ∨ undefined(e3,V)
∅ iff (false(e3,V) ∨ undefined(e2,V))

∧¬undefined(e1,V)
{remove(e1,V) | x ∈ remove(e2,V) else
: remove(e3,V)}

undefined(< e1 | x ∈ e2 : e3 >,V) iff undefined(e1,V) ∨ undefined(e3,V)
undefined({e1 | x ∈ e2 : e3},V) iff undefined(e1,V) ∨ undefined(e3,V)
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op ∈ {| |, ⋃}
e1 op U -

U -
e2 op ∈ {∩,∪,∩}

e1 op U -
U U -
- - -

e2 op ∈ {7→, ..}
e1 op U -

U U U
- U -

Function and Macro Calls
remove(MkName(),V) =

undefined iff undefined(MkName)
MkName() else

remove(MkName(fcs),V) =
skip iff undefined(MkName) ∨ undefined(fcs,V)
MkName(removepar(fcs,numfpar(fcs)− 1, count(MkName)))

else

undefined(MkName(),V) iff undefined(MkName)
undefined(MkName(fcs),V) iff undefined(MkName) ∨ undefined(fcs,V)

remove(f,V) =
undefined iff undefined(f)
f else

remove(exp.f,V) =
undefined iff undefined(f) ∨ undefined(exp,V)
remove(exp,V).f else

remove(f(fcs),V) =
undefined iff undefined(f) ∨ undefined(fcs,V)
f(removepar(fcs,numfpar(fcs)− 1, count(f)))

else

undefined(f(fcs),V) iff undefined(f) ∨ undefined(fcs,V)
undefined(f,V) iff undefined(f)

undefined(exp.f,V) iff undefined(f) ∨ undefined(exp,V)
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remove(DomainName,V) = if undefined(DomainName) then undefined else DomainName endif
remove(SynName,V) = if undefined(SynName) then undefined else SynName endif
remove(ProgramName,V) = if undefined(ProgramName) then undefined else ProgramName endif
remove(Keyword,V) = if undefined(Keyword) then undefined else Keyword endif
remove(Literal,V) = Literal
remove(undefined,V) = undefined
remove(<pcs>,V) = <remove(pcs,V)>

undefined(DomainName,V) iff undefined(DomainName)
undefined(SynName,V) iff undefined(SynName)

undefined(ProgramName,V) iff undefined(ProgramName)
undefined(Keyword,V) iff undefined(Keyword)
undefined(Literal,V) iff false

undefined(undefined,V) iff false
undefined(<pcs>,V) iff undefined(pcs,V)
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D Reduction Pro�les for SDL
Features

Reduction Pro�le for Procedure
d−Procedure−de�nition
d−Procedure−graph
d−Procedure−start−node
d−Value−return−node
d−Value−returning−call−node
d−Entry−procedure−de�nition
d−Exit−procedure−de�nition
d−Call
d−Call−node
f−procedureAS1
f−callingProcedureNode
a−initialisingProcedure
a−procedureNode

r−CreateProcedureVariables
r−EvalExitProcedure

True:
f−functional

Reduction Pro�le for Exception
d−Exception
d−ExceptionInst
d−ExceptionScope
d−ExceptionHandlerName
d−ExceptionHandlerNode
d−SetHandler
d−Raise

d−Exception−name
d−Exception−handler−name
d−Exception−identi�er
d−Exception−de�nition
d−Exception−handler−node
d−On−exception
d−Handle−node
d−Raise−node

a−selectException
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Reduction Pro�le for Continuous Signal
a−selectContinuous/a−startSelection

Reduction Pro�le for Inheritance
f−inheritedStateNode
f−stateNodesToBeSpecialised

Reduction Pro�le for Exit Transition
d−StateExitPoint
f−currentExitStateNodes
f−stateNodeToBeExited
a−selectExitTransition
a−exitingCompositeState

Reduction Pro�le for Priority Input
f−priorityInputTransitions
a−selectPriorityInput/a−selectInput

Reduction Pro�le for Timer
d−Set−node
d−Reset−node
d−Timer−active−expression

d−Timer
d−TimerInst
d−TimerActive
d−TimeLabel
d−Set
d−Reset

Reduction Pro�le for Spontaneous Transition
a−selectSpontaneous

False:
f−Spontaneous
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Reduction Pro�le for Entry-/Exit-Procedure
d−Entry−procedure−de�nition
d−Exit−procedure−de�nition

Reduction Pro�le for Save
d−Save−signalset

False:
f−SignalSaved
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E Syntax of Abstract State
Machines

Concrete Syntax of ASMs
The concrete syntax of ASMs, as de�ned by the SDLC compiler [58].
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ general structure ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
spec: asmSpec

;

asmSpec: /∗ empty ∗/ %prec DO_SHIFT
| asmSpec asmItem
;

asmItem: domainDef
| functionDecl
| functionDef
| ruleDef
| programDef
| constraint
| initialCond
;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ de�nitions ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
domainDef:

mode DOMAIN DOMAINNAME
| DOMAIN DOMAINNAME
| DEF_START DOMAINNAME DEFINES domain
;

functionDecl:
DEF_START mode FUNCTIONNAME ':' domain ARROW domain

| DEF_START mode FUNCTIONNAME ':' ARROW domain
| DEF_START FUNCTIONNAME ':' domain ARROW domain
| DEF_START FUNCTIONNAME ':' ARROW domain
;

functionDef:
DEF_START FUNCTIONNAME ':' domain DEFINES formula_with_let

| DEF_START FUNCTIONNAME ':' domain DEFINES DEF_START formula
| DEF_START FUNCTIONNAME formalParams ':' domain DEFINES formula_with_let
| DEF_START FUNCTIONNAME formalParams ':' domain DEFINES DEF_START formula
;

ruleDef:
DEF_START RULENAME EQUIV rules wherePart

| DEF_START RULENAME formalParams EQUIV rules wherePart
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;

constraint : CONSTRAINT formula
;

initialCond: INITIALLY formula
;

programDef:
PROGRAMNAME ':' rules wherePart

| PROGRAMNAME ':'
;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ auxiliar for de�nitions ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
mode: STATIC

| SHARED
| MONITORED
| CONTROLLED
| DERIVED
;

formalParams:
'(' ') '

| '(' paramSeq ')'
;

paramSeq:
ASMNAME ':' domain

| paramSeq ',' ASMNAME ':' domain
;

wherePart:
/∗ empty ∗/

| WHERE abbreviations ENDWHERE
;

abbreviations:
functionDef

| ruleDef
| abbreviations functionDef
| abbreviations ruleDef
;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ expressions ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
formula_with_let: formula

| letPart formula ENDLET
;

formula:
primary

| formula '=' formula
| formula NEQ formula
| formula AND formula
| formula OR formula
| formula IMPLIES formula
| formula IFF formula
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| NOT formula %prec UMINUS
| IF formula THEN formula elsepart
| IF formula THEN letPart formula elsepart
| IF formula THEN letPart formula ENDLET elsepart
| formula '>' formula
| formula '<' formula
| formula GEQ formula
| formula LEQ formula
| '−' formula %prec UMINUS
| formula '+' formula
| formula '−' formula
| formula '∗' formula
| formula '/' formula
| formula MOD formula
| formula REM formula
| '<' primary '|' ASMNAME IN primary ':' formula '>'
| '<' primary '|' ASMNAME IN primary '>'
| '<' ASMNAME IN primary ':' formula '>'
| ASMNAME IN ASMNAME
| formula CONCAT formula
| formula UNION formula
| formula INTERSECT formula
| formula SETMINUS formula
| formula ELEMENTOF formula
| formula NOTIN formula
| formula SUBSETEQ formula
| formula SUBSET formula
| '|' formula '|'
| BIGUNION formula %prec UMINUS
| EMPTYSET
| '{' primaryCommaSeq '}'
| '{' ASMNAME ELEMENTOF formula ':' formula '}'
| '{' formula '|' ASMNAME ELEMENTOF formula '}'
| '{' formula '|' ASMNAME ELEMENTOF formula ':' formula '}'
| '{' formula ARROW formula '}'
| formula DOTDOT formula
| quanti�ed
;

elsepart : ELSE formula
| ELSE formula ENDIF
| ELSE letPart formula ENDIF
| ELSE letPart formula ENDLET ENDIF
| ELSEIF formula THEN formula_with_let elsepart
| ENDIF
;

primary: functionCall
| MKNAME '(' formulaCommaSeq ')'
| MKNAME '(' ')'
| '(' formula_with_let ')'
| DOMAINNAME
| SYNNAME
| PROGRAMNAME
| KEYWORD
| KEYWORD KEYWORD
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| LITERAL
| UNDEFINED
| '<' primaryCommaSeq '>'
;

primaryCommaSeq:
primary

| primaryCommaSeq ',' primary
;

formulaCommaSeq:
formula

| formulaCommaSeq ',' formula
;

quanti�ed :
FORALL nameCommaSeq ELEMENTOF formula ':' formula

| EXISTS nameCommaSeq ELEMENTOF formula ':' formula
| EXISTS '!' nameCommaSeq ELEMENTOF formula ':' formula
| FORALL nameCommaSeq ELEMENTOF formula ':' letPart formula ENDLET
| EXISTS nameCommaSeq ELEMENTOF formula ':' letPart formula ENDLET
| EXISTS '!' nameCommaSeq ELEMENTOF formula ':' letPart formula ENDLET
;

functionCall :
FUNCTIONNAME

| FUNCTIONNAME '(' formulaCommaSeq ')'
| SYNNAME '(' formulaCommaSeq ')'
| ASMNAME
| ASMNAME '(' formula ')'
| SNAME '(' formula ')'
| S2NAME '(' formula ')'
| S3NAME '(' formula ')'
| functionCall '.' FUNCTIONNAME
| functionCall '.' SNAME
| functionCall '.' S2NAME
| functionCall '.' S3NAME
| functionCall '[' formula ']'
;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ rules ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
rule : FUNCTIONNAME ASSIGN formula

| ASMNAME ASSIGN formula
| FUNCTIONNAME '(' formulaCommaSeq ')' ASSIGN formula
| functionCall '.' FUNCTIONNAME ASSIGN formula
| functionCall '.' DOMAINNAME ASSIGN formula
| RULENAME
| RULENAME '(' formulaCommaSeq ')'
| IF formula THEN rules elserules
| IF formula THEN elserules
| DOFORALL ASMNAME ':' formula rules %prec DOFORALL
| DOFORALL ASMNAME ':' formula rules ENDDO
| CHOOSE ASMNAME ':' formula rules %prec CHOOSE
| CHOOSE ASMNAME ':' formula rules ENDCHOOSE
| EXTEND DOMAINNAME WITH nameCommaSeq rules %prec EXTEND
| EXTEND DOMAINNAME WITH nameCommaSeq rules ENDEXTEND
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| DOINPARALLEL rules ENDDO
| oneLet rules %prec LET
| oneLet rules ENDLET
| SKIP
;

elserules : /∗ empty ∗/ %prec THEN
| ENDIF
| ELSEIF formula THEN rules elserules
| ELSE rules
| ELSE rules ENDIF
| ELSE ENDIF
;

rules : rule
| rules rule
;

nameCommaSeq: ASMNAME
| nameCommaSeq ',' ASMNAME
;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ domains ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
domain: simpledomain

| tupledomain
| uniondomain
| '{' itemCommaSeq '}'
| domain ARROW domain
;

simpledomain: DOMAINNAME
| DOMAINNAME '∗'
| DOMAINNAME '∗' '∗'
| DOMAINNAME '+'
| DOMAINNAME SET
| SYNNAME
| SYNNAME '∗'
| SYNNAME '+'
| SYNNAME SET
| KEYWORD
| '(' domain ')'
| '(' domain ')' SET
| '[' domain ']'
| '[' domain ']' '∗'
| '[' domain ']' '+'
;

tupledomain: simpledomain TIMES simpledomain
| tupledomain TIMES simpledomain
| '(' ') '
;

uniondomain: simpledomain UNION simpledomain
| uniondomain UNION simpledomain
;
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itemCommaSeq: ASMNAME
| KEYWORD
| KEYWORD KEYWORD
| LITERAL
| itemCommaSeq ',' ASMNAME
| itemCommaSeq ',' KEYWORD
| itemCommaSeq ',' KEYWORD KEYWORD
| itemCommaSeq ',' LITERAL
;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ transformations ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

letPart : oneLet
| letPart oneLet
;

oneLet: LET ASMNAME '=' formula IN
| LET ASMNAME ':' domain '=' formula IN
;

Abstract Syntax of ASMs
The abstract syntax of ASMs, de�ned by the SDLC compiler [58] and modi�ed for the
SDL-pro�le tool.
asmSpec: Defs(defList);

defList : list de�nition ;

de�nition :
DomainDecl(mode casestring)

| DomainDef(casestring domain)
| FunctionDecl(mode casestring domain domain)
| FunctionDef(casestring fargList domain expr)
| RuleDef(casestring fargList defList rule)
| ProgramDef(casestring defList rule)
| Constraint(expr)
| InitialCond(expr)
{ int refcounter = 0; }
;

letStatements: list letStatement;

letStatement: LetStatement(casestring domain expr);

pattern: NamedPattern(casestring pattern)
| ConstructorPattern(casestring parameters)
| MatchAll()
| KeywordP(casestring)
| TwoKeywordP(casestring casestring)
| LiteralP( casestring )
| UndefP()
| UnionP(nameList)
;
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parameters: list pattern;

mode: Static ()
| Controlled()
| Shared()
| Monitored()
| Derived()
;

domain: PlainDomain(casestring)
| KWDomain(casestring)
| SetDomain(domain)
| SeqDomain(domain)
| SeqPlusDomain(domain)
| OptDomain(domain)
| MapDomain(domain domain)
| TupleDomain(tupleDomainList)
| UnionDomain(unionDomainList)
| ItemDomain(argumentList)
| NoDomain()
;

tupleDomainList: list domain;
unionDomainList: list domain;

fargList : list farg ;

farg : FArg(casestring domain);

rule : Assign(casestring argumentList expr)
| IfThenElse(expr rule rule)
| Empty()
| Skip()
| Parallel(ruleList)
| ForAll(casestring expr rule)
| Choose(casestring expr rule)
| Extend(domain nameList rule)
| Let(letStatements rule)
| RuleCall(casestring argumentList)
| ProofObligation(casestring expr)
{ de�nition def ; }
;

ruleList : list rule ;

argumentList: list expr;

nameList: list casestring ;

expr: Variable(casestring)
| Literal ( casestring )
| Program(casestring)
| Domain(casestring)
| IfExpr(expr expr expr)
| FunCall(casestring argumentList)
| Select( casestring casestring expr)
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| Index(expr expr)
| MKCall(casestring argumentList)
| BinOp(casestring expr expr)
| UnOp(casestring expr)
| Quant(qkind nameList expr expr)
| SetComp(expr casestring expr expr)
| SeqComp(expr casestring expr expr)
| Range(expr expr)
| MapElement(expr expr)
| Keyword(casestring)
| TwoKeyword(casestring casestring)
| EmptySet()
| Undef()
| NoExpr()
| LetExpr(letStatements expr)
{ de�nition def ; }
;

qkind: Exi()
| ExiOne()
| Gen()
;
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