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Abstract

Multileaf Collimators (MLC) consist of (currently 20-100) pairs of movable metal leaves

which are used to block radiation in Intensity Modulated Radiation Therapy (IMRT).

The leaves modulate a uniform source of radiation to achieve given intensity profiles.

The modulation process is modeled by the decomposition of a given non-negative integer

matrix into a non-negative linear combination of matrices with the (strict) consecutive

ones property.

In this paper we review some results and algorithms which can be used to minimize

the time a patient is exposed to radiation (corresponding to the sum of coefficients in the

linear combination), the set-up time (corresponding to the number of matrices used in

the linear combination), and other objectives which contribute to an improved radiation

therapy.
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1 Introduction

Intensity modulated radiation therapy (IMRT) is a form of cancer therapy which has been

used since the beginning of the 1990s. Its success in fighting cancer is based on the fact that

it can modulate radiation, taking specific patient data into consideration. Mathematical

optimization has contributed considerably since the end of the 1990s (see, for instance,

Shepard et al. (1999)) concentrating mainly on three areas,

• the geometry problem,

• the intensity problem, and

• the realization problem.

The first of these problems finds a best selection of radiation angles, i.e. the angles from

which radiation is delivered. A recent paper with the most up to date list of references

for this problem can be found in Ehrgott et al. (2005). Once a solution of the geometry

problem has been found, an intensity profile is determined for each of the angles. These

intensity profiles can be found, for instance, with the multicriteria approach of Hamacher

and Küfer (2002) or many other intensity optimization methods (see Shao (2005) for more

references). In Figure 1 an intensity profile is shown as greyscale coded grid. We assume

that the intensity profile has been discretized such that the different shades in this grid can

be represented by non-negative integers, where black corresponds to 0 and larger integers

are used for lighter colors. In the following we will therefore think of intensity profiles and

N × M intensity matrices A as one and the same.

In this paper, we assume that solutions for the geometry and intensity problems have

been found and focus on the problem of realizing the intensity matrix A using so-called

(static) multileaf collimators (MLC). Radiation is blocked by M (left, right) pairs of metal

leaves each of which can be positioned between the cells of the corresponding intensity

profile. The opening corresponding to a cell of the segment is refered to as bixel or beamlet.

On the right-hand-side of Figure 1 three possible segments for the intensity profile on the

left of Figure 1 are shown, where the black areas in the three rectangles correspond to

the left and right leaves. Radiation passes (perpendicular to the plane represented by the

segments) through the opening between the leaves (white areas). The goal is to find a set

of MLC segments such that the intensity matrix A is realized by irradiating each of these

segments for a certain amount of time (2, 1, and 3 in Figure 1).

In the same way as intensity profiles and integer matrices correspond to each other,

each segment in Figure 1 can be represented by a binary M ×N matrix Y = (ymn), where

ymn = 1 if and only if radiation can pass through bixel (m,n). Since the area left open

by each pair of leaves is contiguous, the matrix Y possesses the (strict) consecutive-ones

(C1) property in its rows, i.e. for all m ∈ M := {1, . . . ,M} and n ∈ N := {1, . . . , N}
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Figure 1: Realization of an intensity matrix by overlaying radiation fields with different

MLC segments.

there exists a pair lm ∈ N , rm ∈ N ∪ {N + 1} such that

ymn = 1 ⇐⇒ lm ≤ n < rm. (1)

Hence the realization problem can be formulated as the following C1 decomposition

problem. Let K be the index set of all M × N consecutive ones matrices and let K′ ⊆ K.

A C1 decomposition (with respect to K′) is defined by non-negative integers αk, k ∈ K′

and M × N C1 matrices Y k, k ∈ K′ such that

A =
∑

k∈K′

αkY
k. (2)

The coefficients αk are often called the monitor units, MU, of Y k. In order to evaluate the

quality of a C1 decomposition various objective functions have been used in the literature.

The beam-on-time (BOT), total number of monitor units, or decomposition time (DT)

objective

DT (α) :=
∑

k∈K′

αk (3)

is a measure for the time a patient is exposed to radiation. Since every change from one

segment of the MLC to another takes time, the number of segments or decomposition

cardinality (DC)

DC(α) := |{αk : αk > 0}|. (4)

is used to evaluate the (constant) set-up time

SUconst(α) := τDC(α) (5)

for the MLC. Here we assume that it takes constant time τ to move from one segment

to the next. If, on the other hand, τkl is a variable time to move from Y k to Y l and
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Y 1, . . . , Y K are the C1 matrices used in a decomposition, then one can also consider the

variable set-up time

SUvar(α) =

L−1
∑

k=1

τπ(k),π(k+1). (6)

Obviously, this objective depends on the sequence π(1), . . . , π(K) of these C1 matrices.

The treatment time is finally defined for each radiation angle by

TT (α) := DT (α) + SU(α), (7)

where SU(α) ∈ {SUvar(α), SUconst(α)}. Since the set-up time SU(α) can be of the con-

stant or variable kind, two different definitions of treatment time are possible.

For therapeutic and economic reasons, it is desirable to find decompositions with small

beam-on, set-up, and treatment times. These will be the optimization problems considered

in the subsequent sections.

In this paper we will summarize some basic results and present the ideas of algorithms

to solve the decomposition time (Section 2) and the decomposition cardinality (Section 3)

problem. In Section 4 we will deal with combined objective functions and mention some

current research questions.

2 Algorithms for the Decomposition Time Problem

In this section we consider a given M × N non-negative integer matrix A corresponding

to an intensity profile and look for the decomposition (2) of A into a non-negative lin-

ear combination A =
∑

k∈K′ αkY
k of C1 matrices such that the decomposition time (3)

DT (α) :=
∑

k∈K′ αk is minimized. First, we review results of the unconstrained DT prob-

lem in which all C1 matrices can be used, i.e., K′ = K. Then we discuss the constrained

DT problem, where technical requirements exclude certain C1 matrices, i.e., K′ ( K.

2.1 Unconstrained DT Problem

The most important argument in the unconstrained case is the fact, that it suffices to

solve the DT problem for single row matrices.

Lemma 2.1 A =
∑

k∈K αkY
k is a decomposition with decompsition time DT (α) :=

∑

k∈K αk if and only if each row Am of A has a decomposition Am =
∑

k∈K αkm
Y k

m into

C1 row matrices with decomposition time DT (αm) :=
∑

k∈K αkm
, such that

DT (α) :=
M

max
m=1

DT (αm). (8)

The proof of this result follows from the fact that in the unconstrained DT problem

the complete set of all C1 matrices can be used. Hence, the decomposition of the row with
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largest DT (αm) can be extended in an arbitrary fashion by decompositions of the other

rows to yield a decomposition of the matrix A with DT (α) = DT (αm).

The most prominent reference in which the insight of Lemma 2.1 is used is Bortfeld

et al. (1994) which introduces the sweep algorithm. They consider each row independently

and then check from left to right, if a position of a left or right leaf needs to be changed

in order to realize given intensities amn. While most practitioners agree that the sweep

algorithm provides decompositions with short DT (α), the optimality of the algorithm was

only proved several years later. We will review some of the papers containing proofs below.

An algorithm which is quoted very often in the MLC optimization literature, the

algorithm of Siochi (1999). Each entry amn of the intensity map is assigned to a rod, the

length of which represents the value amn (see Figure 2). The standard step-and-shoot

approach, which is shared by all static MLC algorithms, is implemented in two parts, the

rod pushing and the extraction. While the objective in Siochi (1999) is to minimize total

treatment time TTvar, the proposed algorithm is only guaranteed to find a solution that

minimizes DT (α).

Ahuja and Hamacher (2004) prove the optimality of the sweep algorithm by trans-

forming the DT problem into a linear program. The decomposition of a row Am into

C1 row-matrices is first reformulated in a transposed form, i.e., the column vector AT
m is

decomposed into C1 column-matrices (columns with 1s in a single block). This yields a

linear system of equations, where the columns of the coefficient matrix are all possible

N(N −1)/2 C1 column-matrices, the variables are the (unkown) decomposition times and

the right-hand-side vector is the transpose AT
m of row Am. The objective of the linear pro-

gram is the sum of the MUs. Such a linear program is well known (see Ahuja et al. (1993))

to be equivalent to a network flow problem in a network with N nodes and N(N − 1)/2

arcs. Ahuja and Hamacher (2004) use the special structure of the network and present

a shortest augmenting path algorithm which saturates at least one of the nodes in each

iteration. Since each of the paths can be constructed in constant time, the complexity for

computing DT (αm) is O(N). This algorithm is applied to each of the rows of A, such

that Lemma 2.1 implies the following result.

Theorem 2.1 (Ahuja and Hamacher (2004)) The unconstrained decomposition time

problem for a given non-negative integer M ×N matrix A can be solved in O(NM) time.

It is important to notice that the identification of the flow augmenting path and the

determination of the flow value which is sent along this path can be interpreted as the two

phases of the step-and-shoot process in the sweep algorithm of Bortfeld et al. (1994) thus

establishing its optimality.

An alternative optimality proof of the sweep algorithm can be found in Kamath et al.

(2003). Their methodology is based on analyzing the left and right leaf trajectories for

each row Am,m ∈ M. These trajectory functions are at the focus of research in dynamic
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MLC models. For static MLC in which each leaf moves from left to right, they are

monotonously non-decreasing step functions with an increase of |am,n+1 − am,n| in the

left or right trajectory at position n if am,n+1 − am,n increases or decreases, respectively.

Figure 2 illustrates an example with row Am = (2, 3, 3, 5, 2, 2, 4, 4), the representation of

each entry amn as rod, and the corresponding trajectories. By proving that the step size

of the left leaf trajectory in any position n is an upper bound on the number of MUs of

any other feasible decompositions, Kamath et al. (2003) establish the optimality of the

decomposition delivered by their algorithm SINGLEPAIR for the case of single row DT

problems. In combination with Lemma 2.1, this yields the optimality of their solution

algorithm MULTIPAIR for the unconstrained DT problem, which is, again, a validity

proof of the sweep algorithm.

(a) (b)

left trajectory

right trajectory

Figure 2: Representation of intensity row Am = (2, 3, 3, 5, 2, 2, 4, 4) by rods (a) and the

corresponding left and right trajectories (b).

The same bounding argument as in Kamath et al. (2003) is used by Engel (2005) in

his TNMU algorithm (total number of monitor units). Instead of using trajectories, he

bases his work directly on the M × (N + 1) difference matrix

D = (dmn) with dmn := amn − am(n−1) for all m = 1, . . . ,M, n = 1, . . . , N + 1. (9)

Here, am0 := am(n+1) := 0. In each iteration, the TNMU algorithm reduces the TNMU

complexity of A

C(A) := max
m∈M

Cm(A), (10)

where Cm(A) :=
∑N+1

n=1 max{0, dm,n} is the row complexity of row Am. More precisely, in

each iteration the algorithm identifies some integer p > 0 and some C1 matrix Y such that

A′ = A−pY has non-negative entries and its TNMU complexity satisfies C(A′) = C(A)−p.

Various strategies are recommended to find suitable p and Y , one version of which results in

an O(N2M2) algorithm. As a consequence of its proof the following closed form expression

for the optimal objective value of the DT problem in terms of the TNMU complexity is

attained.
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Theorem 2.2 (Engel (2005)) The unconstrained decomposition time problem for a giv-

en non-negative integer M × N matrix A has optimal objective value DT (α) = C(A).

As will be seen in Section 3.2, this idea also leads to algorithms for the decomposition

cardinality problem.

2.2 Constrained DT Problem

Depending on the type of MLC, several restrictions may apply to the choice of C1 matrices

Y k which are used in decomposition (2), i.e. K′ ( K. For example, the mechanics of the

multileaf collimator may require that left and right leaf pairs (lm−1, rm−1) and (lm, rm)

in adjacent rows Ym−1 and Ym of any C1 matrix Y must not overlap (interleaf motion

constraints). More specifically, we call a C1 matrix Y shape matrix if

lm−1 ≤ rm and rm−1 ≥ lm (11)

holds for all m = 2, ...,M . The matrix

Y =













0 1 1 0 0 0 0

0 0 0 0 1 1 0

0 0 1 1 1 0 0

1 0 0 0 0 0 0













is, for instance, a C1 matrix, but not a shape matrix, since there are two violations of

(11), namely r1 = 4 < 5 = l2 and l3 = 3 > 2 = r4. By drawing the left and right leaves

corresponding to the left and right sets of zeros in each row of Y , it is easy to understand

why the constraints (11) are called interleaf motion constraints.

Another important restriction is the width or innerleaf motion constraint

rm − lm ≥ δ for all m ∈ M, (12)

where δ > 0 is a given (integer) constant.

A final constraint may be enforced to control tongue-and-groove (T&G) error which

often makes the decomposition model (2) inaccurate. Since several MLC types have T&G

joints between adjacent leaf pairs, the thinner material in the tongue and the groove

causes a smaller or larger radiation than predicted in model 2, if a leaf covers bixel m,n

(i.e., ymn = 0), but not m + 1, n (i.e., ym+1,n = 1), or vice versa. Some of this error is

unavoidable, but a decomposition with yk
mn = 1, yk

m+1,n = 0 and yk′

mn = 0, yk′

m+1,n = 1 can

often be avoided by swapping the mth rows of Y k and Y k′
.

Boland et al. (2004) present a polynomial algorithm for the DT problem with interleaf

motion and width constraints by reducing it to a network flow problem with side con-

straints. They first construct a layered graph G = (V,E), the shape matrix graph which

has M layers of nodes. The nodes in each layer represent left-right leaf set-ups in an MLC

7



satisfying the width constraint or – equivalently – a feasible row in a shape matrix (see

Figure 3). More precisely, node (m, l, r) stands for a possible row m in a C1 matrix with

left leaf in position l and right leaf in position r, where the width constraint is modeled by

allowing only nodes (m, l, r) with r − l ≥ δ. Hence, in each layer there are O(N(N − 1))

nodes, and the network has O(MN2) nodes. Interleaf motion constraints are modeled

by the definition of the arc set E according to ((m, l, r), (m + 1, l′, r′)) ∈ E if and only if

r′ − l ≥ δ and r − l′ ≥ δ.

111

211

311

411

112

212

312

412

113

213

313

413 422

322

222

122 123

223

323

423 433

333

233

133

D’

D

Figure 3: Shape matrix graph with two paths corresponding to two shape matrices. (Both

paths are extended by the return arc (D′,D).)

It should be noted that the definition of the arcs can also be adapted to include the

extended interleaf motion constraint

rm − lm−1 ≥ γ and lm − rm−1 ≥ γ for all m ∈ M, (13)

where γ > 0 is a given (integer) constant. Also, T&G constraints can be modeled by the

network structure. If we add a supersoure D and a supersink D′ connected to all nodes

(1, l, r) of the first layer and from all nodes (M, l, r) of the last layer, respectively (see

Figure 3), the following result is easy to show.

Lemma 2.2 (Boland et al. (2004)) Matrix Y with rows y1, . . . , yM is a shape matrix

satisfying width (with respect to given δ) and extended interleaf motion (with respect to
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given γ) constraints if and only if P (Y ) is a path from D to D′ in G where node (m, l, r)

in layer m corresponds to row m of matrix Y .

In the example of Figure 3 the two paths correspond to the two shape matrices

Y k =













1 0

0 1

1 1

1 0













and Y k′

=













0 1

1 1

1 0

0 1













.

Since paths in the shape matrix graph are in one-to-one correspondence with shape

matrices, the scalar multiplication αkY
k in decomposition (2) is equivalent to sending αk

units of flow along path PY k from D to D′. Hence, the DT problem is equivalent to a

network flow problem.

Theorem 2.3 (Boland et al. (2004)) The decomposition time problem with respect to

a given non-negative integer valued matrix A is equivalent to the decomposition network

flow problem: Minimize the flow value from source D to sink D′ subject to the constraints

that for all m ∈ M and n ∈ N the sum of the flow through nodes (m, l, r) with l ≤ n < r

equals the entry am,n. In particular, the DT problem is solvable in polynomial time.

The polynomiality of the decomposition network flow algorithm follows, since it is a

special case of a linear program. Its computation times are very short, but it produces

in general a non-integer set of decomposition times as solution, while integrality is for

various practical reasons a highly desirable feature in any decomposition. Boland et al.

(2004) show that there always exists an alternative integer solution, which can, in fact, be

obtained by a modification of the shape matrix graph. This version of the network flow

approach is, however, numerically not competitive.

An improved network flow formulation is given by Baatar and Hamacher (2003). They

use a smaller network with O(MN) nodes instead of the shape matrix graph G with

O(MN2) nodes. This is achieved by replacing each layer of G by two sets of nodes,

representing a potential left and right leaf position, respectively. An arc between two of

these nodes represents a row of a C1 matrix. The resulting linear programming formulation

has a coefficient matrix which can be shown to be totally unimodular, such that the linear

program yields an integer solution. Numerical experiments show that this double layer

approach improves the running time of the algorithm considerably.

In Baatar et al. (2005) a further step is taken by formulating a sequence of integer

programs each of which can be solved by a combinatorial algorithm, i.e., does not require

any linear programming solver. The variables in these integer programs correspond to

the incremental increases in decomposition time which are caused by the interleaf motion

constraint. Using arguments from multicriteria optimization the following complexity
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result shows that compared with the unconstrained case of Theorem 2.1 the complexity

only worsens by a factor of M .

Theorem 2.4 (Baatar et al. (2005)) The constrained decomposition time problem

with (extended) interleaf and width constraint can be solved in O(NM2) time.

While the preceding aproaches maintain the constraints throughout the course of the

algorithm, Kamath et al. (2003, 2004) solve the constrained decomposition time problem

by starting with a solution of the unconstrained problem. If this solution satisfies all

constraints it is obviously optimal. If the optimal solution violates the width constraint,

there does not exist a solution which does. Violations of interleaf motion and tongue-and-

groove constraints are eliminated by a bounded number of modification steps. A similar

correction approach is taken by Siochi (1999) starting from his rod-pushing and extraction

algorithm for the unconstrained case.

In the paper of Kalinowski (2005) the idea of the unconstrained algorithm of Engel

(2005) is carried over to the case of interleaf motion contraints. First, a linear program

(LP) is formulated with constraints (2). Hence, the LP has an exponential number of

variables. Its dual is solved by a maximal path problem in an acyclic graph. The optimal

dual objective value is proved to correspond to a feasible C1 decomposition, i.e. a primally

feasible solution of the LP, thus establishing the optimality of the decomposition using the

strong LP duality theorem.

3 Algorithms for the Decomposition Cardinality Problem

3.1 Complexity of the DC Problem

In contrast to the decomposition time problem, we cannot expect an efficient algorithm

which solves the decomposition cardinality problem exactly.

Theorem 3.1 The decomposition cardinality problem is strongly NP-hard even in the

unconstrained case. In particular, the following results hold.

1. (Baatar et al., 2005) The DC problem is strongly NP-hard for matrices with a

single row.

2. (Collins et al., 2006) The DC problem is strongly NP-hard for matrices with a

single column.

The first NP-hardness proof for the DC problem is due to Burkard (2002), who shows

that the subset sum problem can be reduced to the DC problem. His proof applies to

the case of matrices A with at least two rows. Independently, Chen et al. (2004b) use

the knapsack problem to prove the (non-strong) NP-hardness in the single-row case. The
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stronger result of Theorem 3.1 uses a reduction from the 3 -partition problem for the single

row case. The result for single column matrices uses a reduction from a variant of the

satisfiability problem, NAE-3SAT(5).

A special case, for which the DC problem can be solved in polynomial time is considered

in the next result.

Theorem 3.2 (Baatar et al. (2005)) If A = pB is a positive integer multiple of a

binary matrix B, then the C1 decomposition cardinality problem can be solved in polynomial

time for the constrained and unconstrained case.

If A is a binary matrix, this result follows from the polynomial solvability of DT (α),

since αk is binary for all k ∈ K′ and thus DT (α) = DC(α). If A = pB with p > 1, it can

be shown that the DC problem for A can be reduced to the solution of the DT problem

for B.

Theorem 3.2 is also important in the analysis of the algorithm of Xia and Verhey

(1998). Their main idea is to group the decomposition into phases where in phase k

only matrix elements with values amn ≥ 2R−k are considered, i.e., the matrix elements

can be represented by ones and zeros depending on whether amn ≥ 2k or not (R =

log2(max amn)). By Theorem 3.2 each of the decomposition cardinality problems can be

solved in polynomial time using a DT algorithm. Hence, the Xia-Verhey algorithm runs

in polynomial time and gives the best decomposition cardinality, however, only among all

decompositions with the same separation into phases.

In view of Theorem 3.1, most of the algorithms in the literature are heursitic or ap-

proximative (with performance guarantee). Most often, they guarantee minimal DT (α)

and minimze DC(α) heuristically or exactly subject to DT optimality. The few algorithms

that are able to solve the problem eaxctly have exponenetial running time and are limited

to small instances, as we shall see in Section 5.

3.2 Algorithms for the Unconstrained DC Problem

Engel (2005) applies a greedy idea to his TNMU algorithm. In each of his extraction

steps A′ = A − pY , p is computed as maximal possible value such that the pair (p, Y )

is admissible, i.e. a′mn ≥ 0 for all m,n and C(A′) = C(A) − p. Since the algorithm

is a specialized version of Engel’s decomposition time algorithm, it will only find good

decomposition cardinalities among all optimal solutions of the DT problem. Note, however,

(see Example 4.1) that none of the optimal solutions of the DT problem may be optimal

for the DC problem.

Kalinowski (2004) shows the validity of an algorithm which solves the lexicographic

problem of finding among all optimizers of DT one with smallest decomposition cardinality

DC. The complexity of this algorithm is O(MN2L+2), i.e., it is polynomial in M and N ,
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but exponential in L (where L is a bound for the entries amn of the matrix A). It should

be noted that this algorithm does, in general, not solve DC. This is due to the fact that

among the optimal solutions for DT there may not be an optimal solution for DC (see

Sections 4 and 5).

The idea of Kalinowski’s algorithm can, however, be extended to solve DC. The main

idea of this approach is to treat the decomposition time as a parameter c and to solve the

problem of finding a decomposition with smallest cardinality such that its decomposition

time is bounded by c. For c = min DT (α), this can be done by Kalinowski’s algorithm

in O(MN2L+2). For c = 1, . . . ,MNL, Nußbaum (2006) showed that the complexity

increases to O((MN)2L+2). We thus have the following result.

Theorem 3.3 (Nußbaum (2006)) The problem of minimizing the decomposition car-

dinality DC(α) in an unconstrained problem can be solved in O((MN)2L+3).

Luan et al. (2006) present approximation algorithms for the unconstrained DC prob-

lem. They define matrices Pk whose elements are the kth digits in the binary representation

of the entries in A. The (easy) segmentation of Pk for k = 1, . . . , log L then results in a

O(MN log(L)) (logbLc + 1)-approximation algorithm for DC. They show that the per-

formance guarantee can be improved to blog Dc + 1 by choosing D as the maximum of a

set of numbers containing all absolute differences between any two consecutive row entries

over all rows and the first and last entries of each row. In the context of approximation

algorithms we finally mention the following result by Bansal et al. (2006).

Theorem 3.4 The DC problem is APX-hard even for matrices with a single row with

entries polynomially bounded in N .

3.3 Algorithms for the Constrained DC Problem

A similar idea as in Engel (2005) is used in Baatar et al. (2005) for the constrained

decomposition cardinality problem. Data from the solution of the DT problem (see Section

2) is used as input for a greedy extraction procedure. Kalinowski (2005) also generalizes

the idea of Engel to the case of DC problems with interleaf motion constraints.

Chen et al. (2004a,b, 2005a,b) consider the decomposition cardinality problem with

interleaf motion, width, and tongue-and-groove constraints. The first two groups of con-

straints are considered by a geometric argumentation. The given matrix A is – similar to

Siochi (1999) – interpreted as a 3-dimensional set of rods, or as they call it a 3D-mountain,

where the height of each rod is determined by the value of its corresponding matrix entry

amn. The decomposition is done by a mountain reduction technique, where tongue-and-

groove constraints are taken into consideration using a graph model. The underlying graph

is complete with its node set corresponding to all feasible C1 matrices. The weight of the

edges is determined by the tongue-and-groove error occuring if both matrices are used in
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a decomposition. Matching algorithms are used to minimize the tongue-and-groove error.

In order to speed up the algorithm, smaller graphs are used and the optimal matchings

are computed using a network flow algorithm in a sparse graph.

Gunawardena et al. (2006) propose a difference-matrix metaheuristic to obtain solu-

tions with small DC as well as small DT values. The metaheuristsic uses multiple start

local search with a heuristic that sequentially extracts segments Yk based on results of

Engel (2005). They consider multiple constraints on the segments, including interleaf

and innerleaf motion constraints. They report results clearly outperforming the heuristics

implemented in the Elekta MLC system.

4 Combined Objective Functions

A first combination of decomposition time and cardinality problems is the treatment time

problem with constant set-up times TT (α) := DT (α) + SU(α) = DT (α) + τDC(α). For

τ suitably large, it is clear that the DC problem is a special case of the TT problem. Thus

the latter is strongly NP-hard due to Theorem 3.1.

The most versatile approach to deal with the TT problem including different kinds

of constraints, is by integer programming as done by Langer et al. (2001a). They first

formulate the decomposition time problem as an integer linear program (IP), where in-

terleaf motion, width, or tongue-and-groove constraints can easily be written as linear

constraints. The optimal objective z = DT (α) can then be used in a modified IP as

upper bound for the decomposition time which is now treated as variable (rather than as

objective) and in which the number of C1 matrices is to be minimized. This approach can

be considered as an ε-constraint method to solve bicriteria optimization problems (see, for

instance, Ehrgott (2005)). The solutions in Langer et al. (2001a) can thus be interpreted

as Pareto optimal solutions with respect to the two objective functions DT (α) and DC(α).

Due to the large number of variables, the algorithm presented in Langer et al. (2001a) is,

however, not usable for realistic problem instances.

The importance of conflict between the DT and DC objectives has not been inves-

tigated very much. Baatar (2005) showed that for matrices with a single row there is

always a decomposition that minimizes both DC(α) and DT (α). The following examples

show that the optimal solutions of the (unconstrained) DT , DC and TTvar problems are

in general attained in different decompositions. As a consequence, it is not enough to

find the best possible decomposition cardinality among all decompositions with minimal

decomposition time as is done in most papers on the DC problem (see Section 3). We will

present next an example which is the smallest possible one for different optimal solutions

of the DT and DC problems.
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Example 4.1 (Baatar (2005)) Let

A =

(

3 6 4

2 1 5

)

.

Since the entries 1, . . . , 6 can only be uniquely represented by the numbers 1, 2 and 4, the

unique optimal decomposition of the DC problem is given by A = 1Y 1 + 2Y 2 + 4Y 3 where

Y 1 =

(

1 0 0

0 1 1

)

, Y 2 =

(

1 1 0

1 0 0

)

, and Y 3 =

(

0 1 1

0 0 1

)

.

Hence, the optimal value of the DC problem is 3, with DT = 7, Since the optimal

solution of the DT problem has DT = 6 we have that DC ≥ 4.

It is not clear whether this examples is of practical value. In Section 5 we see that

in our tests the optimal solution of the DC problem examples was not among the DT

optimal solutions in only 5 out of 32 examples. In these cases the difference in the DC

objective was only 1. This is also emphasized by Langer et al. (2001b) who confirm that

the conflict between DT and DC is often small in practice.

Another possible combination of objective functions is the treatment time problem

with variable set-up time TTvar(α) := DT (α) + SUvar(α) = DT (α) +
∑L−1

k=1 τπ(k),π(k+1)

(see (6)). Minimizing TTvar(α) is obviously strongly NP-hard by looking at the special

case τl,k = τ for all l, k which yields the objective function of TTconst(α). Here, we consider

τπ(k),π(k+1) = max
m∈M

max
{

|lπ(k)
m − lπ(k+1)

m |, |rπ(k)
m − rπ(k+1)

m |
}

(14)

i.e., the maximal number of positions any leave moves between two consecutive matrices

Y π(k) and Y π(k+1) in the sequence.

Extending Example 4.1, the following example shows that the three objective functions

DT (α), DC(α), and TTvar(α) yield, in general, different optimal solutions.

Example 4.2 Let

A =

(

8 5 6

5 3 6

)

.

The optimal decomposition for DC is

A = 5

(

1 1 0

1 0 0

)

+ 3

(

1 0 0

0 1 0

)

+ 6

(

0 0 1

0 0 1

)

.

This decomposition yields DT = 14, DC = 3 and TTvar = DT + SUvar = 14 + 3 = 17,

where SUvar = 1 + 2 = 3. The optimal decomposition for DT is

A = 3

(

1 0 0

0 0 1

)

+

(

0 0 1

0 1 1

)

+ 3

(

1 1 1

1 0 0

)

+ 2

(

1 1 1

1 1 1

)

.
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Here we obtain DT = 9, DC = 4, SUvar = 2 + 2 + 2 = 6 and thus TTvar = 15. The

optimal decomposition for TTvar is

A = 2

(

0 0 1

1 1 1

)

+ 3

(

1 0 0

1 0 0

)

+

(

1 1 0

0 1 0

)

+ 4

(

1 1 1

0 0 1

)

.

We get DT = 10, DC = 4 and SUvar = 2 + 1 + 1 = 4 leading to TTvar = 14.

If the set of C1 matrices Y 1, . . . , Y K in the formulation TTvar(α) is given, one can

apply a traveling salesman algorithm to minimize SUvar(α). Since the number L of C1

matrices is in general rather small, the TSP can be solved exactly in reasonable time. If

the set of C1 matrices is not given, the problem becomes a simultaneous decomposition

and sequencing problem which is currently under research.

5 Numerical Results

Very few numerical comparisons are available in the literature. Que (1999) compares in

his numerical investigations eight different heuristics for the DC problem. He concludes

that the Algorithm of Xia and Verhey (1998) outperforms his competitors. With new

algorithms developed since the appearance of Que’s paper, the dominance of the Xia-

Verhey algorithm is no longer true, as observed in Crooks et al. (2002) and seen below.

In this section we present results obtained with the majority of algorithms mentioned

in this paper for constrained and unconstrained problems. We consider only interleaf

motion constraints, since these are the most common and incoporated in most algorithms.

As seen in Section 2 the constrained and unconstrained DT problems can be solved in

O(NM), respectively O(NM2) time. Moreover, we found that algorithms that guarantee

minimal DT (α) and include a heuristic to reduce DC(α) do not require significantly higher

CPU time. Therefore we exclude algorithms that simply minimize DT (α) without control

over DC(α). Table 1 shows the references for the algorithms, and some remarks on their

properties.

Algorithm Problem Remarks

Baatar et al. (2005) unconstrained guarantees minDT , heuristic for DC

Engel (2005) gnconstrained guarantees minDT , heuristic for DC

Xia and Verhey (1998) unconstrained heuristic for DC

Baatar et al. (2005) constrained guarantees minDT , heuristic for DC

Kalinowski (2005) constrained guarantees minDT , heuristic for DC

Siochi (1999) constrained guarantees minDT , heuristic for TT

Xia and Verhey (1998) constrained heuristic for DC

Table 1: List of algorithms tested.
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We used 32 clinical examples varying in size from 5 to 23 rows and 6 to 30 columns,

with L varying between 9 and 40. In addition, we used 15 instances of size 10×10 with

entries randomly generated between 1 and 14. In all experiments we have applied an

(exact) TSP algorithm to the resulting matrices to minimize the total treatment time

for the given decomposition. Table 2 presents the results for the unconstrained, Table 3

those for the constrained problems. All experiments were run on a Pentium 4 PC with

2.4 GHz and 512 MB RAM. In both tables we first show the number of instances for

which the algorithms gave the best values for DT,DC and TTvar after application of

the TSP to the matrices produced by the algorithms. Next, we list the maximal CPU

time (in seconds) the algorithm took on any of the instances. The next four rows show

the minimum, maximum, median, and average relative deviation from the best DC value

found by any of the algorithms. The next four rows show the same for TTvar. Finally, we

list the improvement of variable setup time according to (14) obtained by applying the

TSP to the matrices found by the algorithms.

Baatar et al. (2005) Engel (2005) Xia and Verhey (1998)

Best DT 62 62 0

Best DC 7 62 1

Best TSP 38 17 9

Best CPU 0 21 45

Max CPU 0.1157 0.0820 0.0344

DC Deviation Min 0.00% 0.00% 0.00%

Max 33.33% 0.00% 86.67%

Median 18.18% 0.00% 36.93%

Mean 17.08% 0.00% 37.82%

TT Deviation Min 0.00% 0.00% 0.00%

Max 21.30% 42.38% 83.82%

Median 0.00% 5.66% 14.51%

Mean 3.14% 8.74% 17.23%

SU Improvement Min 0.83% 1.43% 7.89%

Max 37.50% 27.27% 43.40%

Median 14.01% 10.46% 25.41%

Mean 13.91% 12.15% 25.74%

Table 2: Numerical Results for the Unconstrained Algorithms.

Table 2 shows that Xia and Verhey (1998) is the fastest algorithm. However, it never

found the optimal DT value and found the best DC value for only one instance. Since the

largest CPU time is 0.116 seconds, computation time is not an issue. Thus we conclude

that Xia and Verhey (1998) is inferior to the other algorithms. Baatar et al. (2005) and

Engel (2005) are roughly equal in speed. Both guarantee optimal DT , the latter performs

better in terms of DC, finding the best value for all instances. However, the slightly more

matrices used by the former method appear to enable better TTvar values and a slightly
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bigger improvement of the variable setup time by reordering the segments. We observe

that applying a TSP algorithm is clearly worthwhile, reducing the variable setup time by

up to 40 %.

Baatar et al. (2005) Kalinowski (2005) Siochi (1999) Xia and Verhey (1998)

Best DT 62 62 62 0

Best DC 1 62 1 0

Best TT 12 43 11 0

Best CPU 0 0 0 62

Max CPU 0.2828 0.8071 1.4188 0.0539

DC Deviation Min 0.00% 0.00% 0.00% 11.11%

Max 160.00% 0.00% 191.67% 355.56%

Median 70.71% 0.00% 108.12% 70.71%

Mean 71.37% 0.00% 102.39% 86.58%

TT Deviation Min 0.00% 0.00% 0.00% 10.66%

Max 50.74% 45.28% 26.47% 226.42%

Median 5.23% 0.00% 8.49% 51.03%

Mean 7.97% 4.95% 8.26% 61.56%

SU Improvement Min 0.00% 2.27% 0.00% 5.00%

Max 18.18% 35.25% 20.00% 24.05%

Median 4.45% 22.45% 2.11% 14.20%

Mean 5.34% 21.66% 3.24% 14.42%

Table 3: Numerical Results for the Constrained Algorithms.

The results for the constrained problems underline that the algorithm of Xia and

Verhey (1998), despite being the fastest for all instances, is not competitive. It did not

find the best DT,DC, or TTvar values for any example. The other three algorithms

guarantee DT optimality. The algorithm of Kalinowski (2005) performs best, finding the

best DC value in all cases, and the best TTvar value in 43 of the 62 tests. Baatar et al.

(2005) and Siochi (1999) are comparable, with the former being slightly better in terms

of DC, TTvar and CPU time. Again, the application of a TSP algorithm is well worth the

effort to reduce the variable setup time.

Finally, the results of comparing the algorithm of Kalinowski (2004) with its new

iterative version of Nußbaum (2006) on a subset of the clinical instances are given in

Table 4. These tests were performed on a PC with Dual Xeon Processor with 3.2 GHz

and 4 GB RAM. In the comparison of 32 clinical cases there were only five cases (3, 5,

22, 40, 46) where the optimal solution of the DC problem was not among the optimal

solutions of the DT problem – and thus found by the algorithm of Kalinowski (2004). In

these five cases, the DC objective was only reduced by a value of 1. Since the iterative

algorithm performs maxDT − DT applications of Kalinowski-like procedures, the CPU

time is obvioiusly considerably larger.
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Kalinowski (2004) Nußbaum (2006)

Data Sets DT DC TT CPU-Time DT DC TT CPU-Time

Clinical 1 27 7 49 0 27 7 49 0

Clinical 2 27 6 43 1 27 6 43 1

Clinical 3 24 8 59 2 28 7* 56 213

Clinical 4 33 6 48 1 33 6 48 1

Clinical 5 41 9 76 41 44 8* 73 134

Clinical 6 13 8 125 8 13 8 125 8

Clinical 7 12 9 134 27 12 9 134 27

Clinical 8 12 8 153 15 12 8 153 15

Clinical 9 12 9 118 174 12 9 118 174

Clinical 10 11 9 108 133 11 9 108 133

Clinical 11 11 6 97 0 11 6 97 0

Clinical 12 10 7 99 0 10 7 99 0

Clinical 14 17 8 48 0 17 8 48 0

Clinical 15 19 7 54 0 19 7 54 0

Clinical 16 15 7 46 0 15 7 46 0

Clinical 17 16 7 48 0 16 7 48 0

Clinical 18 20 8 50 4 20 8 50 9

Clinical 19 16 7 51 0 16 7 51 0

Clinical 20 18 7 47 0 18 7 47 0

Clinical 21 22 8 65 1 22 8 65 1

Clinical 22 22 10 74 10 25 9* 81 23

Clinical 23 26 9 76 24 26 9 76 24

Clinical 24 23 9 63 6 23 9 63 7

Clinical 25 23 9 75 12 23 9 75 13

Clinical 26 22 9 68 2 22 9 68 2

Clinical 39 28 10 88 149 28 10 88 149

Clinical 40 26 8 60 2 27 7* 55 3

Clinical 41 20 7 46 1 20 7 46 1

Clinical 42 23 8 55 0 23 8 55 0

Clinical 45 21 6 42 0 21 6 42 0

Clinical 46 19 9 65 10 21 8* 59 40

Clinical 47 24 10 85 1 24 10 85 1

Table 4: Comparison of Kalinowski (2004) and Nußbaum (2006). A * next to the DC

value indicates a difference between the algorithms
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Appendix: The Instances

Tables 6 and 5 show the size (N,M,L) of the instances, the optimal value of DT (α) in

the constrained and unconstrained problems, and the best DC(α) and TTvar(α) values

found by any of the tested algorithms, with a * indicating proven optimality for DC in

the unconstrained case.
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Unconstrained Constrained

Data Set M N L DT DC TT DT DC TT

Random 1 10 10 14 37 11 107 39 16 110

Random 2 10 10 14 30 11 102 33 13 100

Random 3 10 10 14 36 11 103 37 16 106

Random 4 10 10 14 37 11 114 37 12 99

Random 5 10 10 14 46 12 120 46 16 107

Random 6 10 10 14 45 12 123 45 14 112

Random 7 10 10 14 41 11 117 47 16 122

Random 8 10 10 14 41 12 119 41 15 106

Random 9 10 10 14 33 11 102 33 13 98

Random 10 10 10 14 34 10 94 40 15 102

Random 11 10 10 14 41 11 113 41 14 102

Random 12 10 10 14 35 11 106 37 15 102

Random 13 10 10 14 32 11 105 32 13 99

Random 14 10 10 14 43 11 114 43 18 112

Random 15 10 10 14 36 10 109 37 14 107

Table 5: The 15 random instances.
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Unconstrained Constrained

Data Set M N L DT DC TT DT DC TT

Clinical 1 5 6 23 27 7* 49 27 8 51
Clinical 2 5 7 27 27 6* 43 27 8 48
Clinical 3 5 8 18 24 7* 54 24 8 53
Clinical 4 5 7 30 33 6* 48 33 8 51
Clinical 5 5 8 25 41 8* 73 41 10 73
Clinical 6 16 29 10 13 8* 125 13 9 132
Clinical 7 16 27 10 12 9* 122 12 9 138
Clinical 8 16 30 10 12 8* 135 15 11 163
Clinical 9 15 28 9 12 9* 118 12 9 151
Clinical 10 16 28 10 11 9* 108 11 10 106
Clinical 11 20 23 10 11 6* 96 11 7 136
Clinical 12 16 28 10 10 7* 99 13 10 130
Clinical 13 20 25 9 17 11 151 17 12 130
Clinical 14 9 9 10 17 8* 38 17 9 50
Clinical 15 9 10 10 19 7* 53 19 11 62
Clinical 16 10 9 10 15 7* 44 18 9 50
Clinical 17 10 9 10 16 7* 45 16 8 47
Clinical 18 9 9 10 20 8* 50 20 10 49
Clinical 19 10 10 10 16 7* 50 16 8 57
Clinical 20 10 9 10 18 7* 47 18 9 56
Clinical 21 14 10 10 22 8* 65 23 13 73
Clinical 22 14 10 10 22 9* 74 22 11 79
Clinical 23 14 10 10 26 9* 76 30 15 89
Clinical 24 14 10 10 23 9* 63 24 11 79
Clinical 25 14 10 10 23 9* 74 23 12 84
Clinical 26 14 10 10 22 9* 68 22 10 70
Clinical 27 22 23 24 33 14 165 34 17 158
Clinical 28 23 17 27 46 15 184 46 17 186
Clinical 29 23 16 33 35 12 155 48 17 174
Clinical 30 22 21 31 50 15 197 58 21 196
Clinical 31 22 22 22 47 15 205 58 21 201
Clinical 32 22 15 26 33 11 134 42 16 142
Clinical 33 22 18 24 41 13 186 41 18 175
Clinical 34 9 13 29 45 13 147 45 15 129
Clinical 35 9 10 40 59 11 103 69 14 124
Clinical 36 9 12 26 45 12 131 45 14 111
Clinical 37 9 10 35 46 11 115 46 12 116
Clinical 38 11 11 19 35 9 68 35 10 79
Clinical 39 11 11 22 28 10* 84 33 14 91
Clinical 40 11 12 19 26 7* 55 27 10 75
Clinical 41 11 9 16 20 7* 46 22 8 52
Clinical 42 11 9 14 23 8* 55 23 10 58
Clinical 43 11 12 26 43 11 101 49 16 119
Clinical 44 10 15 26 49 13 137 54 16 114
Clinical 45 11 8 21 21 6* 48 21 9 49
Clinical 46 11 12 16 19 8* 42 19 10 66
Clinical 47 11 14 22 24 10* 59 38 15 105

Table 6: The 47 clinical instances.
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